JP2010251185A - Method of testing membrane electrode assembly - Google Patents

Method of testing membrane electrode assembly Download PDF

Info

Publication number
JP2010251185A
JP2010251185A JP2009100809A JP2009100809A JP2010251185A JP 2010251185 A JP2010251185 A JP 2010251185A JP 2009100809 A JP2009100809 A JP 2009100809A JP 2009100809 A JP2009100809 A JP 2009100809A JP 2010251185 A JP2010251185 A JP 2010251185A
Authority
JP
Japan
Prior art keywords
gas
mea
catalyst
humidification
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009100809A
Other languages
Japanese (ja)
Inventor
Kotaro Ikeda
耕太郎 池田
Junro Nonoyama
順朗 野々山
Shinobu Okazaki
しのぶ 岡崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2009100809A priority Critical patent/JP2010251185A/en
Publication of JP2010251185A publication Critical patent/JP2010251185A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of testing a membrane electrode assembly in which reliability of a fuel cell ability test can be enhanced. <P>SOLUTION: When an MEA ability test is carried out, humidification condition of a supply gas is arranged at a low humidification condition of relative humidity ≤40%. In the fuel cell integrated with the MEA that is determined as a non-defective article through the ability test under this kind of low humidification condition, power generation capacity can be guaranteed in the low humidificatiion condition. At power generation operation of the fuel cell, the gas humidification condition in the MEA can become the gas humidification condition raised up to a desirable humidification extent for promoting a progress of an electrochemical reaction in an electrolyte, for example, the gas humidification condition of ≥40% of relative humidity. When the supply gas humidification condition is raised, gas diffusion resistance becomes lower, thereby the fuel cell exhibits high power generation ability. Accordingly, in the fuel cell integrated with the MEA determined as the non-defective article through the ability test under the low humidification condition, the power generation ability can be guaranteed even under the high humidification condition wherein the gas diffusion resistance becomes lower than that under the gas humidification condition of the relative humidity of ≤40%. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、電解質膜と膜両面に接合した触媒電極とを含む膜電極接合体の検査方法に関する。   The present invention relates to a method for inspecting a membrane electrode assembly including an electrolyte membrane and a catalyst electrode bonded to both sides of the membrane.

燃料電池は、アノードに供給された燃料ガス中の燃料、例えば水素と、カソードに供給された酸素含有ガス中の酸素との電気化学反応を進行させて発電する。この電気化学反応は、電解質膜と膜両面に接合した触媒電極とを含む膜電極接合体(Membrane Electrode Assembly/MEA)にて進行し、MEAの電極面においてガスの供給が不均一となると、電気化学反応の進行状況が電極面で相違して電池性能が低下することがよく知られている。このため、MEAへのガス供給をガスの均一な供給をもたらすガス拡散供給とした上で、その拡散抵抗を低減する技術が種々提案されている(例えば、特許文献1)。   The fuel cell generates electricity by advancing an electrochemical reaction between a fuel, for example hydrogen, in the fuel gas supplied to the anode and oxygen in the oxygen-containing gas supplied to the cathode. This electrochemical reaction proceeds in a membrane electrode assembly (MEA) including an electrolyte membrane and a catalyst electrode bonded to both sides of the membrane, and when the gas supply becomes uneven on the electrode surface of the MEA, It is well known that the progress of the chemical reaction is different on the electrode surface and the battery performance decreases. For this reason, various techniques have been proposed for reducing the diffusion resistance after the gas supply to the MEA is a gas diffusion supply that provides a uniform supply of gas (for example, Patent Document 1).

特開2004−273366号公報JP 2004-273366 A

上記特許文献によれば、ガス拡散層の拡散抵抗低減によりMEAの電極面へのガス供給の均一化をもたらし、MEAを有する発電単位としての電池セル、延いては当該セルの積層体として構成される燃料電池の発電能力の向上を可能としている。通常、燃料電池の製造過程では、用いるMEAの能力検査、或いは電池セルもしくは燃料電池の形態での能力検査を行い、その能力検査においては、電解質膜での電気化学反応の進行を図る上から望ましい加湿程度のガスをアノードおよびカソードに供給して、発電能力担保の確認がなされている。   According to the above-mentioned patent document, the gas resistance to the electrode surface of the MEA is made uniform by reducing the diffusion resistance of the gas diffusion layer, and the battery cell as a power generation unit having the MEA is formed as a stacked body of the cells. It is possible to improve the power generation capacity of fuel cells. Usually, in the manufacturing process of the fuel cell, the capability test of the MEA to be used or the capability test in the form of the battery cell or the fuel cell is performed, and this capability test is desirable from the viewpoint of promoting the electrochemical reaction in the electrolyte membrane. A gas with a degree of humidification is supplied to the anode and cathode to confirm the power generation capacity.

燃料電池を取り巻く環境、例えば車載した燃料電池では走行地域や走行状況によりその環境は種々変化する等の理由により、燃料電池への供給ガスの加湿状況は一律とはならないのが現状である。このため、検査において発電能力担保が確認されたとしても、燃料電池に供給されるガスの加湿状況が電解質膜での電気化学反応の進行を図る上から望ましいガス加湿程度より低いと、電気化学反応の進行が緩慢となり発電能力の低下を来すと予想される。   In the environment surrounding the fuel cell, for example, in the case of a fuel cell mounted on the vehicle, the humidification state of the gas supplied to the fuel cell is not uniform because the environment changes variously depending on the traveling region and the traveling state. For this reason, even if the power generation capacity guarantee is confirmed in the inspection, if the humidification state of the gas supplied to the fuel cell is lower than the desirable gas humidification degree in order to promote the electrochemical reaction in the electrolyte membrane, the electrochemical reaction This is expected to slow down and reduce power generation capacity.

本発明は、上記した課題を踏まえ、燃料電池の能力検査の信頼性を高めることをその目的とする。   In view of the above-described problems, an object of the present invention is to improve the reliability of the fuel cell capability test.

上記した目的の少なくとも一部を達成するために、本発明では、以下の構成を採用した。   In order to achieve at least a part of the above object, the present invention adopts the following configuration.

[適用:膜電極接合体の検査方法]
電解質膜と膜両面に接合した触媒電極とを含む膜電極接合体の検査方法であって、
前記膜電極接合体のアノードとカソードに燃料ガスと酸素含有ガスを供給して能力検査を行うに当たり、前記燃料ガスと前記酸素含有ガスとを40%以下の相対湿度に加湿調整して供給する
ことを要旨とする。
[Application: Inspection method for membrane electrode assembly]
A method for inspecting a membrane electrode assembly comprising an electrolyte membrane and a catalyst electrode bonded to both sides of the membrane,
When supplying a fuel gas and an oxygen-containing gas to the anode and cathode of the membrane electrode assembly and performing a capacity test, the fuel gas and the oxygen-containing gas are supplied after being humidified to a relative humidity of 40% or less. Is the gist.

上記構成の膜電極接合体の検査方法では、その能力検査を、膜電極接合体のアノードとカソードに、40%以下の相対湿度に加湿調整した燃料ガスと酸素含有ガスとを供給した状況下で行う。40%以下の相対湿度のガス加湿は、電解質膜での電気化学反応の進行を図る上から望ましい加湿程度より低い加湿状況であることから、こうした低加湿状況での能力検査により良品判定となれば、その良品の膜電極接合体を組み込んだ電池セル、延いては当該セルを積層した燃料電池では、低加湿状況下において発電能力を担保できることになる。   In the method for inspecting a membrane electrode assembly having the above-described configuration, the capacity test is performed under the condition that fuel gas and oxygen-containing gas adjusted to a relative humidity of 40% or less are supplied to the anode and cathode of the membrane electrode assembly. Do. Gas humidification with a relative humidity of 40% or less is a humidification situation that is lower than the degree of humidification desirable for the purpose of promoting the electrochemical reaction in the electrolyte membrane. A battery cell incorporating the non-defective membrane electrode assembly, and thus a fuel cell in which the cells are stacked, can ensure power generation capacity under low humidification conditions.

膜電極接合体においては、その電解質に触媒電極を経てガスが拡散供給され、触媒電極でのガス流路は触媒電極を構成するアイオノマーにて触媒電極形成の際に形成され、流路表面はアイオノマーの表面となる。つまり、触媒とその担持体に加えアイオノマーが存在した上でのガス流路を備えるという触媒電極としての性質から、触媒電極でのガス拡散抵抗は、供給されたガスに含まれる水分によるアイオノマー表面の濡れ程度やアイオノマーでの電荷授受の影響を受け、ガス加湿程度が40%の相対湿度を超える状況では低下する。このため、ガス加湿程度が40%の相対湿度を超える状況では、40%以下の相対湿度のガス加湿状況下より低いガス拡散抵抗のために電解質膜へのガス拡散性が高まり、電気化学反応は円滑に進行する。よって、40%以下の相対湿度という低加湿状況での能力検査により良品判定された膜電極接合体を組み込んだ電池セルを積層した燃料電池は、40%以下の相対湿度のガス加湿状況下より低いガス拡散抵抗となる高加湿状況下においても発電能力を担保できる。この結果、上記構成の膜電極接合体の検査方法によれば、能力検査の信頼性を高めることができる。   In the membrane electrode assembly, gas is diffused and supplied to the electrolyte through the catalyst electrode, the gas flow path at the catalyst electrode is formed when the catalyst electrode is formed by the ionomer constituting the catalyst electrode, and the surface of the flow path is the ionomer It becomes the surface of. In other words, the gas diffusion resistance at the catalyst electrode is based on the surface of the ionomer due to the moisture contained in the supplied gas because of the nature of the catalyst electrode that comprises a gas flow path in addition to the catalyst and its support. Under the influence of the degree of wetting and the charge exchange with the ionomer, the gas humidification degree decreases in a situation where the relative humidity exceeds 40%. For this reason, in the situation where the degree of gas humidification exceeds 40% relative humidity, the gas diffusion resistance to the electrolyte membrane is increased due to the lower gas diffusion resistance than in the gas humidification situation where the relative humidity is 40% or less. Proceed smoothly. Therefore, a fuel cell in which a battery cell incorporating a membrane electrode assembly that has been determined to be non-defective by a capacity test in a low humidification state with a relative humidity of 40% or less is lower than in a gas humidification state with a relative humidity of 40% or less. The power generation capacity can be ensured even under highly humidified conditions that cause gas diffusion resistance. As a result, according to the method for inspecting a membrane electrode assembly having the above configuration, the reliability of the capability inspection can be improved.

本発明の実施例としてのMEA検査手順を含むMEA製造手順を示す手順図である。It is a flowchart which shows the MEA manufacturing procedure containing the MEA test | inspection procedure as an Example of this invention. 供給ガスの相対湿度と触媒電極におけるガス拡散抵抗との関係を示すグラフである。It is a graph which shows the relationship between the relative humidity of supply gas, and the gas diffusion resistance in a catalyst electrode. ステップS140で能力良否判定を行ったMEAについての発電能力の差異を示す説明図である。It is explanatory drawing which shows the difference in the electric power generation capability about MEA which performed the capability quality determination by step S140. 図1相当図であり検査特化のMEAの製造手順を検査手順を含んで示す手順図である。FIG. 2 is a view corresponding to FIG. 1 and showing a procedure for manufacturing an inspection-specific MEA including an inspection procedure. 図4の製造手順の内容を模式的に示す説明図である。It is explanatory drawing which shows the content of the manufacturing procedure of FIG. 4 typically.

以下、本発明の実施の形態について、その実施例を図面に基づき説明する。図1は本発明の実施例としてのMEA検査手順を含むMEA製造手順を示す手順図である。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a flowchart showing an MEA manufacturing procedure including an MEA inspection procedure as an embodiment of the present invention.

図示するように、アノードおよびカソードの触媒電極形成のための触媒インクを作製する(ステップS100)。本実施例では、固体高分子型燃料電池に用いるMEAを製造することから、電解質膜は、固体高分子材料、例えばパーフルオロカーボンスルホン酸を備えるフッ素系樹脂により形成されたプロトン伝導性のイオン交換膜であり、湿潤状態で良好な電気伝導性を示す。この電解質膜の膜面に接合してアノード或いはカソードとなる触媒電極形成用の触媒インクは、白金を担持したカーボン粒子と、MEAを構成する電解質膜と同様のフッ素系高分子電解質とを含有している。白金を担持したカーボン粒子は、例えばカーボンブラックから成るカーボン粒子を、白金化合物の溶液(例えば、テトラアンミン白金塩溶液やジニトロジアンミン白金溶液や白金硝酸塩溶液、あるいは塩化白金酸溶液など)中に分散させて、含浸法や共沈法、あるいはイオン交換法によって作製する。このようにして作製した白金担持カーボン粒子を、水および有機溶剤からなる適当な溶媒中に分散させると共に、既述したフッ素系高分子電解質を含有する電解質溶液(例えば、ナフィオン溶液、アルドリッチ社製:ナフィオンは商品名)をさらに混合することで、触媒インクが得られる。この触媒インクにおける電解質溶液は、触媒電極におけるアイオノマーとなる。   As shown in the drawing, a catalyst ink for forming anode and cathode catalyst electrodes is prepared (step S100). In this embodiment, since the MEA used for the polymer electrolyte fuel cell is manufactured, the electrolyte membrane is a proton conductive ion exchange membrane formed of a solid polymer material, for example, a fluororesin having perfluorocarbon sulfonic acid. And exhibits good electrical conductivity in a wet state. The catalyst ink for forming a catalyst electrode which is bonded to the membrane surface of the electrolyte membrane and serves as an anode or cathode contains carbon particles carrying platinum and a fluorine-based polymer electrolyte similar to the electrolyte membrane constituting the MEA. ing. For example, the carbon particles carrying platinum are dispersed in a platinum compound solution (for example, a tetraammine platinum salt solution, a dinitrodiammine platinum solution, a platinum nitrate solution, or a chloroplatinic acid solution). It is produced by an impregnation method, a coprecipitation method or an ion exchange method. The platinum-supported carbon particles thus prepared are dispersed in a suitable solvent composed of water and an organic solvent, and an electrolyte solution containing the above-described fluorine-based polymer electrolyte (for example, Nafion solution, manufactured by Aldrich: The catalyst ink is obtained by further mixing Nafion with a trade name). The electrolyte solution in the catalyst ink becomes an ionomer in the catalyst electrode.

本実施例では、後述するように低加湿状況下で能力検査を行うのであり、このことは、低加湿状況下での触媒電極におけるガス拡散抵抗の低減を図ることにも繋がる。図2は相対湿度と触媒電極におけるガス拡散抵抗との関係を示すグラフである。触媒電極におけるガス拡散抵抗は、アノード・カソードの両触媒電極を電解質膜膜面に形成したMEAに水素ガス・空気を供給して発電した場合の電流密度Iと次の関係にある。   In the present embodiment, the capacity test is performed under a low humidification condition as will be described later, which leads to a reduction in gas diffusion resistance in the catalyst electrode under the low humidification condition. FIG. 2 is a graph showing the relationship between relative humidity and gas diffusion resistance at the catalyst electrode. The gas diffusion resistance in the catalyst electrode has the following relationship with the current density I when power is generated by supplying hydrogen gas / air to the MEA in which both the anode and cathode catalyst electrodes are formed on the electrolyte membrane surface.

触媒電極のガス拡散抵抗=(4F x Po2)/(10RT x I) …式1 Gas diffusion resistance of catalyst electrode = (4F × Po 2 ) / (10RT × I) Equation 1

この式1において、Fはファラデー定数、Po2は酸素分圧、Rは気体定数、Tは温度であり、電流密度Iは、MEAに多孔質流路を備えたガス拡散層を介してアノード・カソードに水素ガス・空気を供給して0.15Vの電圧を得る場合の電流値である。 In this equation 1, F is the Faraday constant, Po 2 is the oxygen partial pressure, R is the gas constant, T is the temperature, and the current density I is measured via the gas diffusion layer provided with a porous channel in the MEA. This is the current value when hydrogen gas / air is supplied to the cathode to obtain a voltage of 0.15V.

図2から判るように、触媒電極のガス拡散抵抗は、図中黒塗りドットで示されるMEAと白抜きドットで表されるMEAの両MEAにおいて、ガスの相対湿度が低い場合に共に大きい。その反面、ガスの相対湿度が40%を超えると、両MEAのガス拡散抵抗は共に低下すると共に、ガス拡散抵抗の差は小さくなる。つまり、ガスの相対湿度が40%を超える加湿状況では、触媒電極のガス拡散抵抗を定める電流密度Iにおいて差が小さく、電流密度Iの差(ガス拡散抵抗の差)は、40%以下の相対湿度でガス供給を図る場合に顕著となる。ガス拡散抵抗が小さければ、電流密度Iが大きく高い発電能力を担保できることと同義であるので、図2に示すよう、低加湿状況下での触媒電極におけるガス拡散抵抗の低減をもたらすよう、触媒インクを作製することが望ましい。触媒電極のガス拡散抵抗の低減は、電流密度Iの増大の観点から見ると、触媒電極において電気化学反応に関与する触媒(白金)の凝集抑制と、カーボン粒子自体の凝集(1次凝集)の抑制や凝集カーボン粒子の成長(2次凝集)の抑制が有益である。また、触媒電極におけるガス流路は、溶媒の除去乾燥を経てアイオノマー表面で形成されるので、このガス流路のアイオノマーによる物理的な閉塞抑制の観点から、溶媒におけるアイオノマー(ナフィオン)の分散性向上が有益である。このため、ステップS100の触媒インクの作製に際しては、触媒凝集抑制のためにインク作製時の溶液温度制御を行ったり、アイオノマーの分散性向上のための攪拌促進、例えば遠心分離や剪断力による分散促進を行うこととした。   As can be seen from FIG. 2, the gas diffusion resistance of the catalyst electrode is large when the relative humidity of the gas is low in both the MEA indicated by black dots and the MEA indicated by white dots in the figure. On the other hand, if the relative humidity of the gas exceeds 40%, both the gas diffusion resistances of both MEAs are lowered and the difference in gas diffusion resistance is reduced. That is, in the humidification situation where the relative humidity of the gas exceeds 40%, the difference in the current density I that determines the gas diffusion resistance of the catalyst electrode is small, and the difference in the current density I (difference in gas diffusion resistance) is 40% or less. This becomes conspicuous when gas is supplied at humidity. If the gas diffusion resistance is small, the current density I is large and synonymous with ensuring high power generation capability. Therefore, as shown in FIG. 2, the catalyst ink is used to reduce the gas diffusion resistance in the catalyst electrode under low humidification conditions. It is desirable to produce. From the viewpoint of increasing the current density I, the reduction of the gas diffusion resistance of the catalyst electrode is caused by the suppression of the aggregation of the catalyst (platinum) involved in the electrochemical reaction in the catalyst electrode and the aggregation of the carbon particles themselves (primary aggregation). Suppression and suppression of the growth of the aggregated carbon particles (secondary aggregation) are beneficial. In addition, since the gas flow path in the catalyst electrode is formed on the surface of the ionomer after the solvent is removed and dried, the dispersibility of the ionomer (Nafion) in the solvent is improved from the viewpoint of suppressing physical blockage by the ionomer in the gas flow path. Is beneficial. For this reason, when the catalyst ink is prepared in step S100, the solution temperature is controlled at the time of ink preparation to suppress catalyst aggregation, or the stirring is promoted to improve the dispersibility of the ionomer, for example, the dispersion is promoted by centrifugation or shearing force. It was decided to do.

次に、上記触媒インクを所定の基材に塗布して、基材上にアノードあるいはカソードとなる触媒電極(触媒層)を成膜する(ステップS110)。触媒インクを塗布する基材としては、後述する加熱プレス時の温度における耐熱性を有すると共に、触媒層との間の剥離性が良好であれば良く、例えば、ポリエチレンテレフタレート(PET)やポリテトラフルオロエチレン(PTFE)から成る基材を用いることができる。触媒インクの基材上への塗布は、例えば、スプレー法や、スクリーン印刷、あるいは、ドクターブレード法や、インクジェット法により行なうこともできる。これらの方法を用いることで、触媒インクを所望の厚みに塗布して所望の厚みの触媒層とすることができる。   Next, the catalyst ink is applied to a predetermined substrate, and a catalyst electrode (catalyst layer) serving as an anode or a cathode is formed on the substrate (step S110). As a base material to which the catalyst ink is applied, it is sufficient that the substrate has heat resistance at the temperature at the time of heating press described later and has good peelability from the catalyst layer. For example, polyethylene terephthalate (PET) or polytetrafluoro A substrate made of ethylene (PTFE) can be used. The application of the catalyst ink onto the base material can be performed by, for example, a spray method, screen printing, a doctor blade method, or an ink jet method. By using these methods, the catalyst ink can be applied to a desired thickness to form a catalyst layer having a desired thickness.

上記のように触媒インクを塗布した後は、塗布した触媒インクを乾燥させる(ステップS120)。この乾燥により、触媒インクに含まれる溶媒は気化するので、乾燥後の触媒層は、その内部に微細な細孔としてのガス流路を有する多孔質な触媒電極となる。この触媒層の乾燥に際しては、溶媒気化後の多孔質ガス流路の閉塞抑制が触媒電極のガス拡散抵抗の低減に寄与する。よって、ステップS120においては、触媒インクに用いる有機溶媒の性質に応じて乾燥温度を定めたり、乾燥のための昇温速度調整や真空乾燥の採用等することにより、触媒電極のガス拡散抵抗の低減を図ることとした。   After applying the catalyst ink as described above, the applied catalyst ink is dried (step S120). Since the solvent contained in the catalyst ink is vaporized by this drying, the dried catalyst layer becomes a porous catalyst electrode having gas passages as fine pores therein. When the catalyst layer is dried, the suppression of the clogging of the porous gas flow path after the solvent vaporization contributes to the reduction of the gas diffusion resistance of the catalyst electrode. Therefore, in step S120, the gas diffusion resistance of the catalyst electrode is reduced by determining the drying temperature according to the nature of the organic solvent used in the catalyst ink, adjusting the temperature increase rate for drying, or employing vacuum drying. We decided to plan.

その後、ステップS120で基材上に形成した触媒層(触媒電極)と、既に準備済みの既述した電解質膜とを重ね合わせて積層し、積層状態で加熱プレスすることで、電解質膜の膜両面に触媒電極を接合させたMEAを作製する(ステップS130)。このMEA化では、触媒電極が電解質膜の膜面に熱圧転写されることになり、プレス後において基材が剥離除去される。ステップS130でのMEA化では、触媒層乾燥を経て触媒層内部に形成済みの多孔質のガス流路をプレス圧で不用意に閉塞させないようプレス圧力を例えば3MPa程度に調整したり、アイオノマーの不用意なガラス転移を起こさないようプレス温度を例えば120℃程度に調整する。こうすれば、MEA化においても、触媒電極のガス拡散抵抗の低減に寄与できる。   Thereafter, the catalyst layer (catalyst electrode) formed on the base material in step S120 and the already prepared electrolyte membrane are laminated and laminated, and heated and pressed in a laminated state, so that both surfaces of the electrolyte membrane An MEA in which the catalyst electrode is bonded to the substrate is manufactured (step S130). In this MEA conversion, the catalyst electrode is transferred to the membrane surface of the electrolyte membrane by heat and pressure, and the substrate is peeled off after pressing. In the MEA conversion in step S130, the press pressure is adjusted to, for example, about 3 MPa so that the porous gas flow path formed in the catalyst layer after the catalyst layer is dried is not inadvertently blocked by the press pressure, or the ionomer is not used. The press temperature is adjusted to, for example, about 120 ° C. so as not to cause a ready glass transition. If it carries out like this, it can contribute to reduction of the gas diffusion resistance of a catalyst electrode also in MEA conversion.

MEA作製に続いては、能力検査を行う(ステップS140)。この能力検査は、作製したMEAの全てについて行う必要はなく、定期的或いは不定期に検査対象MEAを抽出して行えばよい。そして、抽出したMEAについて、その能力としての電流密度Iを次のようにして測定する。まず、検査MEAを評価治具に取り付ける。評価治具は、検査MEAの1cm2の検査領域について、その両側にガス拡散層とガス供給流路部材とを接合し、上記検査領域のMEAに水素ガスと空気含有ガスを供給する。アノードへは、水素ガスを所定の相対湿度に加湿調整した上で500ml/minの流量で供給し、カソードについては、酸素と窒素の混合ガス(酸素含有ガス)を2%の酸素濃度に調整した上で水素ガスと同様に加湿調整し、500ml/minの流量で供給する。評価治具は、ガス温度を80℃とし、アノード・カソードの背圧を共に50KPaGとして上記のガス供給を図りつつ、検査MEAを0.15Vの電圧で発電させた場合の電流密度Iを測定する。 Following the MEA production, a capability inspection is performed (step S140). This capability inspection need not be performed for all of the produced MEAs, but may be performed by extracting the inspection target MEAs periodically or irregularly. And about the extracted MEA, the current density I as the capability is measured as follows. First, the inspection MEA is attached to the evaluation jig. The evaluation jig joins the gas diffusion layer and the gas supply flow path member on both sides of the inspection area of 1 cm 2 of the inspection MEA, and supplies hydrogen gas and air-containing gas to the MEA in the inspection area. Hydrogen gas was humidified and adjusted to a predetermined relative humidity and then supplied to the anode at a flow rate of 500 ml / min. For the cathode, a mixed gas of oxygen and nitrogen (oxygen-containing gas) was adjusted to an oxygen concentration of 2%. Humidification is adjusted in the same manner as hydrogen gas above, and supplied at a flow rate of 500 ml / min. The evaluation jig measures the current density I when the inspection MEA is generated at a voltage of 0.15V while the gas temperature is 80 ° C. and the anode / cathode back pressure is 50 KPaG and the above gas supply is performed. .

既述したように、測定した電流密度Iは、式(1)により触媒電極のガス拡散抵抗に換算され、図2に示すように、この換算したガス拡散抵抗とガス供給の際の相対湿度との関係が得られる。つまり、上記の評価治具にて、図2に示す相対湿度(25%、40%、65%、80%および100%)となるよう水素ガス・空気含有ガスを上記流量等の条件で供給して電流密度Iを測定し、測定電流密度Iから換算したガス拡散抵抗を、加湿調整した相対湿度に対してプロットすると、図2が得られる。   As described above, the measured current density I is converted into the gas diffusion resistance of the catalyst electrode by the equation (1). As shown in FIG. 2, the converted gas diffusion resistance and the relative humidity at the time of gas supply are calculated. The relationship is obtained. That is, with the above-described evaluation jig, hydrogen gas / air-containing gas is supplied under the above conditions such as the flow rate so that the relative humidity (25%, 40%, 65%, 80% and 100%) shown in FIG. When the current density I is measured and the gas diffusion resistance converted from the measured current density I is plotted against the relative humidity adjusted for humidification, FIG. 2 is obtained.

既述したように、図2の示す意味は、触媒電極のガス拡散抵抗は、相対湿度の増加と共に低減し、低加湿状況である40%以下の相対湿度では、検査対象となったMEAごとのガス拡散抵抗の差異が顕著となる。その一方、40%を超える相対湿度の高加湿状況でのガス供給では、供給されたガスに含まれる水分によるアイオノマーの濡れにより、アイオノマーでの電荷授受の促進の影響を受け、電流密度Iの向上、とこれに伴うガス拡散抵抗の低下が起きる。このため、検査対象となったMEAごとのガス拡散抵抗は小さくなり、その差異も小さくなる。このため、本実施例のステップS140での能力検査は、アノード・カソードに供給するガスの加湿状況を相対湿度40%以下の低加湿状況として、検査MEAの能力検査(電流密度I測定)を行うこととした。この能力検査により、図中黒塗りドットで示されるMEAは、相対湿度40%以下の低加湿状況でのガス拡散抵抗が大きい(即ち、電流密度Iが小さい)ので、低能力のMEAと判定され、白抜きドットで表されるMEAは、相対湿度40%以下の低加湿状況でのガス拡散抵抗が小さい(即ち、電流密度Iが大きい)ので、能力良好のMEAと判定される。この能力の良否判定は、図2より、ガス加湿状況が40%の相対湿度であれば200〜220s/mのガス拡散抵抗値を判定基準に下され、25%の相対湿度であれば300〜320s/mのガス拡散抵抗値を判定基準に下さる。   As described above, the meaning shown in FIG. 2 is that the gas diffusion resistance of the catalyst electrode decreases with an increase in the relative humidity, and in a relative humidity of 40% or less, which is a low humidification state, for each MEA to be inspected. The difference in gas diffusion resistance becomes significant. On the other hand, in gas supply under high humidification conditions with a relative humidity exceeding 40%, the ionomer is wetted by moisture contained in the supplied gas, and is affected by the acceleration of charge transfer in the ionomer, and the current density I is improved. As a result, the gas diffusion resistance is lowered. For this reason, the gas diffusion resistance for each MEA to be inspected is reduced, and the difference is also reduced. For this reason, in the capacity test in step S140 of the present embodiment, the capacity test (current density I measurement) of the test MEA is performed with the humidification status of the gas supplied to the anode / cathode as a low humidification status with a relative humidity of 40% or less. It was decided. By this capability test, the MEA indicated by the black dots in the figure has a high gas diffusion resistance (that is, the current density I is small) in a low humidification state where the relative humidity is 40% or less, and is thus determined to be a low capability MEA. An MEA represented by white dots has a low gas diffusion resistance (ie, a high current density I) in a low humidification state with a relative humidity of 40% or less, and is therefore determined to be an MEA with good performance. The determination of pass / fail of this capability is based on the gas diffusion resistance value of 200 to 220 s / m when the gas humidification state is 40% relative humidity, and from 300 to 220 when the relative humidity is 25%. A gas diffusion resistance value of 320 s / m is set as a criterion.

ここで、上記した相対湿度40%以下の低加湿状況下での能力検査の妥当性について説明する。図3はステップS140で能力良否判定を行ったMEAについての発電能力の差異を示す説明図である。この図3は、能力低判定MEAと能力良好判定MEAの両MEAのそれぞれを電池セルとして構成して電極面全域にて発電を行うようにして、発電能力としての発電電圧を測定した。つまり、両MEAのアノード・カソードの両電極面にカーボンペーパやカーボンクロス等からなるガス拡散層を接合し、このガス拡散層にガス流路部材を接合して、アノード・カソードに、ガス流路部材からガス拡散層を経て水素ガス・空気含有ガスを供給する。発電電圧の測定に際しては、アノード・カソードへのガス供給を、80℃のガス温度、100KPaGの背圧、500ml/minの流量で行いつつ、この際のガス加湿状況を露点温度50℃の加湿状況としてややドライな状態でガス供給を行った。そして、上記の条件でガス供給を図りつつ、能力低判定MEAと能力良好判定MEAの両MEAについて、電流密度が1.0A/cm2の電流が得られる場合の電圧を測定する。この測定結果が図3に示されている。 Here, the validity of the capability test under the low humidification condition where the relative humidity is 40% or less will be described. FIG. 3 is an explanatory diagram showing the difference in power generation capacity for the MEAs that have been judged to be good or bad in step S140. In FIG. 3, each of the low-capacity determination MEA and the high-capacity determination MEA is configured as a battery cell, and power generation is performed over the entire electrode surface, and the generated voltage as the power generation capacity is measured. That is, a gas diffusion layer made of carbon paper, carbon cloth, or the like is bonded to both electrode surfaces of the anode and cathode of both MEAs, a gas flow path member is bonded to the gas diffusion layer, and the gas flow path is connected to the anode and cathode. Hydrogen gas / air-containing gas is supplied from the member through the gas diffusion layer. When measuring the power generation voltage, gas supply to the anode and cathode is performed at a gas temperature of 80 ° C., a back pressure of 100 KPaG, and a flow rate of 500 ml / min. The gas was supplied in a slightly dry state. Then, while gas is supplied under the above-described conditions, the voltage at which a current density of 1.0 A / cm 2 is obtained is measured for both the low ability MEA and the good ability MEA. The measurement results are shown in FIG.

図3から明らかなように、ステップS140において低加湿状況下での能力判定により能力良好判定とされたMEAは、能力低判定のMEAより高い発電能力を備える。この発電能力は、ドライな状態でのガス供給を測ったものである。しかしながら、発電セルの発電運転の際にMEAの電解質膜の湿潤化の観点から求められる加湿状況下のガス供給であれば、その際の発電能力は、触媒電極のガス拡散抵抗の低減により(図2参照)、ドライなガス供給時の発電能力と同等、もしくはこれより向上する。   As is clear from FIG. 3, the MEA that is determined to have good capability by the capability determination under the low humidification condition in step S140 has a higher power generation capability than the MEA of low capability determination. This power generation capacity is a measure of gas supply in a dry state. However, if the gas supply is in a humidified condition required from the viewpoint of wetting of the MEA electrolyte membrane during the power generation operation of the power generation cell, the power generation capacity at that time is reduced by reducing the gas diffusion resistance of the catalyst electrode (see FIG. 2), equivalent to or better than the power generation capacity when dry gas is supplied.

本実施例では、図1のステップS140で行う低加湿状況での能力検査を経て、能力良好判定のMEAを出荷する(ステップS150)。出荷されたMEAは、電池セルに組み込まれ、燃料電池を構成する。   In the present embodiment, the MEA of the good ability determination is shipped through the ability inspection in the low humidification state performed in step S140 of FIG. 1 (step S150). The shipped MEA is incorporated into a battery cell to constitute a fuel cell.

以上説明したように、本実施例によれば、作製したMEAを、相対湿度が40%以下という低加湿状況下での能力検査に処する(ステップS140)。この能力検査の際のガス加湿は、電解質膜での電気化学反応の進行を図る上から望ましい加湿程度より低い加湿状況である。そして、こうした低加湿状況での能力検査により良品判定となれば、図3に示すように、その良品のMEAを組み込んだ電池セル、延いては当該セルを積層した燃料電池では、低加湿状況下において発電能力を担保できることになる。   As described above, according to the present embodiment, the manufactured MEA is subjected to a capability test under a low humidification condition in which the relative humidity is 40% or less (step S140). The gas humidification at the time of this capability test is a humidification situation lower than a desirable humidification degree in order to promote the electrochemical reaction in the electrolyte membrane. If the non-defective product is determined by the capability test in such a low humidification situation, as shown in FIG. 3, in the battery cell incorporating the good MEA, and in the fuel cell in which the cells are stacked, In this way, the power generation capacity can be secured.

その一方、燃料電池の発電運転の際には、MEAの電解質での電気化学反応の進行を図る上から望ましい加湿程度にまで高められたガス加湿状況でアノード・カソードにガス供給がなされる。つまり、燃料電池の発電運転の際には、図2に示す相対湿度40%を超える60%程度かそれ以上の加湿状況でガス供給がなされるので、供給されたガスに含まれる水分によるアイオノマー表面の濡れ程度やアイオノマーでの電荷授受の影響を受けてガス拡散抵抗は低くなる。そして、低ガス拡散抵抗下でのガス供給となることから、MEAの電解質での電気化学反応の進行を図る上から望ましい加湿状況であることと相まって、燃料電池は高い発電能力を発揮する。このことは、40%以下の相対湿度という低加湿状況での能力検査により良品判定されたMEAを組み込んだ電池セルを積層した燃料電池は、40%以下の相対湿度のガス加湿状況下より低いガス拡散抵抗となる高加湿状況下においても発電能力を担保できることを意味する。この結果、本実施例の能力検査によれば、発電能力担保を保証する能力検査の信頼性を高めることができる。   On the other hand, during the power generation operation of the fuel cell, gas is supplied to the anode / cathode in a gas humidification state that is increased to a desirable degree of humidification in order to promote the electrochemical reaction in the MEA electrolyte. That is, during the power generation operation of the fuel cell, gas is supplied in a humidified state exceeding about 40% relative humidity shown in FIG. 2 or higher, so that the surface of the ionomer due to moisture contained in the supplied gas The gas diffusion resistance becomes lower due to the degree of wetting and the effect of charge transfer by the ionomer. Since the gas supply is performed under a low gas diffusion resistance, the fuel cell exhibits a high power generation capability in combination with a humidification situation that is desirable for promoting the electrochemical reaction in the MEA electrolyte. This is because a fuel cell in which a battery cell incorporating a MEA that has been determined to be non-defective by a capacity test in a low humidification state with a relative humidity of 40% or less is lower than a gas humidification state with a relative humidity of 40% or less. It means that the power generation capacity can be secured even under highly humidified conditions that cause diffusion resistance. As a result, according to the capability test of the present embodiment, the reliability of the capability test that guarantees the power generation capability guarantee can be improved.

図2に示すよう、本実施例の能力検査により能力良好とされたMEAでは、相対湿度40%以下の場合のガス拡散抵抗と40%を超える相対湿度の場合のガス拡散抵抗との差が、能力低判定されたMEAより小さい。従って、低加湿状況下でのガス供給を行う場合と高加湿状況下でのガス供給を行う場合のガス拡散抵抗との差が小さいMEAは、発電能力担保の上で望ましいMEAであると言える。   As shown in FIG. 2, in the MEA whose performance is good by the capability test of this example, the difference between the gas diffusion resistance when the relative humidity is 40% or less and the gas diffusion resistance when the relative humidity exceeds 40% is It is smaller than the MEA determined to have a low capacity. Therefore, it can be said that an MEA having a small difference between the gas diffusion resistance in the case of performing gas supply under a low humidification condition and the gas supply in a high humidification condition is a desirable MEA in terms of ensuring power generation capacity.

また、本実施例では、MEAの作製過程において、触媒電極形成のための触媒インクの作製に当たり、インク作製時の溶液温度制御や攪拌促進等を行って、触媒(白金)の凝集抑制や、カーボン粒子自体の凝集(1次凝集)の抑制、凝集カーボン粒子の成長(2次凝集)の抑制、乾燥形成後の触媒電極におけるガス流路の閉塞抑制を行うようにした。このため、低加湿状況下での触媒電極におけるガス拡散抵抗を図2において白抜き矢印で示すように低減でき、低加湿状況下での発電能力を確保できる。   Further, in this example, in the preparation of the catalyst ink for forming the catalyst electrode in the MEA preparation process, the solution temperature control during the ink preparation and the stirring are promoted to suppress the aggregation of the catalyst (platinum) and the carbon. Suppression of agglomeration (primary agglomeration) of particles itself, suppression of growth of agglomerated carbon particles (secondary agglomeration), and suppression of clogging of gas flow paths in the catalyst electrode after dry formation were performed. For this reason, the gas diffusion resistance in the catalyst electrode under the low humidification condition can be reduced as indicated by the white arrow in FIG. 2, and the power generation capacity under the low humidification condition can be secured.

また、触媒インクの乾燥に当たっても、触媒インクに用いる有機溶媒の性質に応じた乾燥温度制御や昇温速度調整延いては真空乾燥の採用等により、低加湿状況下での触媒電極のガス拡散抵抗の低減を図り、低加湿状況下での発電能力を確保できる。加えて、電解質膜の両膜面に触媒電極を加熱プレスしてMEA化するに当たり、加温プレスの際の圧力や温度制御により、触媒層(触媒電極)内部のガス流路を不用意に閉塞させないようにしたり、プレス圧力を例えば3MPa程度に調整したり、アイオノマーの不用意なガラス転移を起こさないので、低加湿状況下での触媒電極のガス拡散抵抗の低減を図り、低加湿状況下での発電能力を確保できる。   In addition, even when the catalyst ink is dried, the gas diffusion resistance of the catalyst electrode under low humidification conditions can be achieved by controlling the drying temperature according to the nature of the organic solvent used in the catalyst ink, adjusting the heating rate, and adopting vacuum drying. It is possible to secure a power generation capacity under low humidification conditions. In addition, when the catalyst electrode is heated and pressed on both membrane surfaces of the electrolyte membrane, the gas flow path inside the catalyst layer (catalyst electrode) is inadvertently blocked by pressure and temperature control during the heating press. In order to reduce the gas diffusion resistance of the catalyst electrode under low humidification conditions, the press pressure is adjusted to, for example, about 3 MPa, or an inadvertent glass transition of the ionomer does not occur. Power generation capacity can be secured.

次に、図1に示したMEA製造手順をステップS140の能力検査を除いて実施しつつ、この製造手順を踏襲して検査用に特化したMEAを作製して能力検査を行う点について説明する。図4は図1相当図であり検査特化のMEAの製造手順を検査手順を含んで示す手順図、図5は図4の製造手順の内容を模式的に示す説明図である。   Next, the MEA manufacturing procedure shown in FIG. 1 is performed except for the capability inspection in step S140, and the point that the MEA specialized for inspection is manufactured and the capability inspection is performed by following this manufacturing procedure will be described. . FIG. 4 is a diagram corresponding to FIG. 1 and is a procedure diagram showing the manufacturing procedure of the MEA for inspection specialization including the inspection procedure, and FIG. 5 is an explanatory diagram schematically showing the contents of the manufacturing procedure of FIG.

図4の製造手順では、図1のステップS100〜130を踏襲して、触媒インク作製、触媒インク塗布、触媒層乾燥およびMEA作製を実施する(ステップS200〜230)。この場合、ステップS210の触媒インク塗布では、図1における触媒インク塗布の際のインク塗布量の約20%程度まで少なくして、少量のインク塗布による検査用に特化した触媒層とする。このように触媒層形成のための触媒インク量が少なければ、触媒層はこれを構成する触媒量、その担持体であるカーボン量、アイオノマーの量も少なくなり、当然に触媒層の厚みも薄くなる。このため、ステップS210の触媒インク塗布を経た検査特化の触媒層では、図5に示すように、ガス拡散抵抗は低下する。   In the manufacturing procedure of FIG. 4, following steps S100 to 130 of FIG. 1, catalyst ink preparation, catalyst ink application, catalyst layer drying, and MEA preparation are performed (steps S200 to 230). In this case, the catalyst ink application in step S210 is reduced to about 20% of the ink application amount at the time of applying the catalyst ink in FIG. 1 to obtain a catalyst layer specialized for inspection by applying a small amount of ink. In this way, if the amount of catalyst ink for forming the catalyst layer is small, the catalyst layer also has a small amount of catalyst constituting the catalyst layer, the amount of carbon as the carrier, and the amount of ionomer, and naturally the thickness of the catalyst layer is also reduced. . Therefore, in the inspection-specific catalyst layer that has undergone the catalyst ink application in step S210, the gas diffusion resistance decreases as shown in FIG.

ステップS200の触媒インク作製とステップS220の触媒層乾燥は、燃料電池に採用するMEA製造の際のステップS100の触媒インク作製とステップS120の触媒層乾燥と同一条件で行われている。そして、触媒インク作製時の溶液温度制御や分散程度および触媒層乾燥の際の温度制御は、既述したように低加湿状況下での触媒電極におけるガス拡散抵抗の低減に寄与する。しかも、インク塗布量低減によりそもそもガス拡散抵抗が小さいことから、触媒インク作製時の溶液温度制御や分散程度および触媒層乾燥の際の温度制御は、ガス拡散抵抗の低減に大きく影響する。   The preparation of the catalyst ink in step S200 and the drying of the catalyst layer in step S220 are performed under the same conditions as the preparation of the catalyst ink in step S100 and the drying of the catalyst layer in step S120 when manufacturing the MEA used in the fuel cell. Then, the solution temperature control and the degree of dispersion during catalyst ink production and the temperature control during catalyst layer drying contribute to the reduction of gas diffusion resistance in the catalyst electrode under low humidification conditions as described above. Moreover, since the gas diffusion resistance is originally small due to the reduction in the amount of ink applied, the solution temperature control and the degree of dispersion during catalyst ink preparation and the temperature control during catalyst layer drying greatly influence the reduction of the gas diffusion resistance.

このため、ステップS130と同様にして低加湿状況下で行うステップS230の能力検査において能力低判定された場合(ガス拡散抵抗大)には、触媒インク作製時の溶液温度制御や分散程度および触媒層乾燥の際の温度制御を、ガス拡散抵抗の低減をもたらすよう反映させる(ステップS250)。よって、図4に示すように、触媒インクの塗布量を少なくした検査用のMEAを製造した上で、この検査用MEAについて低加湿状況で能力検査を行うようにすれば、検査の信頼性を高めることに加え、製品としてのMEAの発電能力確保の上から好適である。   For this reason, when it is determined that the capability is low (high gas diffusion resistance) in the capability test in step S230 performed under the low humidification condition in the same manner as in step S130, the solution temperature control and dispersion degree at the time of catalyst ink preparation, and the catalyst layer The temperature control during drying is reflected so as to reduce the gas diffusion resistance (step S250). Therefore, as shown in FIG. 4, if an inspection MEA with a reduced amount of catalyst ink applied is manufactured, and the capability inspection is performed on the inspection MEA in a low humidified state, the reliability of the inspection is improved. In addition to increasing, it is preferable from the viewpoint of securing the power generation capability of MEA as a product.

本発明は上記した実施例や実施形態に限られるものではなく、その要旨を逸脱しない範囲において、種々の態様で実施可能である。例えば、図2に示したMEA製造手順では、触媒層を触媒インクの塗布・乾燥を経て基材上に形成したが、触媒インクを電解質膜の膜面に直接塗布した上で乾燥させて、触媒層を形成するようにすることもできる。この場合には、例えば、触媒インクのスプレー塗布を昇温環境下で行うようにすれば、触媒インクの溶媒蒸発がスプレー塗布と並行して進むので、溶媒蒸発に伴うガス流路の閉塞を抑制でき、触媒電極のガス拡散抵抗の低減に有益となる。   The present invention is not limited to the above-described examples and embodiments, and can be implemented in various modes without departing from the gist thereof. For example, in the MEA manufacturing procedure shown in FIG. 2, the catalyst layer is formed on the substrate through the application and drying of the catalyst ink. However, the catalyst ink is directly applied to the membrane surface of the electrolyte membrane and then dried. A layer can also be formed. In this case, for example, if the catalyst ink is sprayed in a temperature-enhanced environment, the solvent evaporation of the catalyst ink proceeds in parallel with the spray coating. This is useful for reducing the gas diffusion resistance of the catalyst electrode.

Claims (1)

電解質膜と膜両面に接合した触媒電極とを含む膜電極接合体の検査方法であって、
前記膜電極接合体のアノードとカソードに燃料ガスと酸素含有ガスを供給して能力検査を行うに当たり、前記燃料ガスと前記酸素含有ガスとを40%以下の相対湿度に加湿調整して供給する
膜電極接合体の検査方法。
A method for inspecting a membrane electrode assembly comprising an electrolyte membrane and a catalyst electrode bonded to both sides of the membrane,
When supplying a fuel gas and an oxygen-containing gas to the anode and cathode of the membrane electrode assembly and performing a capacity test, the fuel gas and the oxygen-containing gas are supplied after being humidified to a relative humidity of 40% or less. Inspection method of electrode assembly.
JP2009100809A 2009-04-17 2009-04-17 Method of testing membrane electrode assembly Pending JP2010251185A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009100809A JP2010251185A (en) 2009-04-17 2009-04-17 Method of testing membrane electrode assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009100809A JP2010251185A (en) 2009-04-17 2009-04-17 Method of testing membrane electrode assembly

Publications (1)

Publication Number Publication Date
JP2010251185A true JP2010251185A (en) 2010-11-04

Family

ID=43313294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009100809A Pending JP2010251185A (en) 2009-04-17 2009-04-17 Method of testing membrane electrode assembly

Country Status (1)

Country Link
JP (1) JP2010251185A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2669982A1 (en) 2012-05-29 2013-12-04 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method for measuring the reproducibility of N individual electrode- / ion-exchange membrane assemblies by introducing a pollutant
JP5732126B2 (en) * 2011-03-02 2015-06-10 本田技研工業株式会社 Variable damping force damper
JP2016225146A (en) * 2015-05-29 2016-12-28 日産自動車株式会社 Manufacturing method of membrane electrode assembly for fuel cell
WO2023204027A1 (en) * 2022-04-18 2023-10-26 株式会社デンソー Fuel battery system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5732126B2 (en) * 2011-03-02 2015-06-10 本田技研工業株式会社 Variable damping force damper
EP2669982A1 (en) 2012-05-29 2013-12-04 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method for measuring the reproducibility of N individual electrode- / ion-exchange membrane assemblies by introducing a pollutant
JP2016225146A (en) * 2015-05-29 2016-12-28 日産自動車株式会社 Manufacturing method of membrane electrode assembly for fuel cell
WO2023204027A1 (en) * 2022-04-18 2023-10-26 株式会社デンソー Fuel battery system

Similar Documents

Publication Publication Date Title
CN103563143B (en) Gas diffusion layer for fuel cell
Chaparro et al. PEMFC electrode preparation by electrospray: optimization of catalyst load and ionomer content
US20120276470A1 (en) Solution based enhancements of fuel cell components and other electrochemical systems and devices
US20090023018A1 (en) Multi-Layered Electrode for Fuel Cell and Method for Producing the Same
JP5298566B2 (en) Membrane electrode assembly
WO2003077336A1 (en) Method for manufacturing polymer electrolyte type fuel cell
Avcioglu et al. Influence of FEP nanoparticles in catalyst layer on water management and performance of PEM fuel cell with high Pt loading
US20110027696A1 (en) Method for controlling ionomer and platinum distribution in a fuel cell electrode
CN100377401C (en) Ink for forming catalyst layer, and electrode and membrane-electrode assembly using the same
JPWO2007126153A1 (en) Method of manufacturing gas diffusion electrode, gas diffusion electrode, and membrane electrode assembly including the same
JP2010251185A (en) Method of testing membrane electrode assembly
US10873097B2 (en) Electrode for fuel cell, membrane electrode complex body for fuel cell, and fuel cell
JP5596522B2 (en) Catalyst layer member, membrane electrode assembly and fuel cell
JP6536458B2 (en) Method of manufacturing membrane electrode assembly
JP2005025974A (en) High polymer fuel cell and its manufacturing method
JP2005294175A (en) Electrode catalyst layer and its manufacturing method
JP5396730B2 (en) Membrane electrode assembly
CN107425203B (en) The manufacturing method of catalyst layer
KR20100068028A (en) Catalyst layer for fuel cell and method for preparing the same
JP5423143B2 (en) Membrane-electrode assembly for fuel cell, method for producing the same, and fuel cell
JP5565305B2 (en) Fuel cell catalyst layer manufacturing apparatus, fuel cell catalyst layer manufacturing method, polymer electrolyte solution, and polymer electrolyte solution manufacturing method
JP2005317287A (en) Film-electrode junction, and solid polymer fuel cell
JP5989344B2 (en) Fuel cell
JP2005310545A (en) Manufacturing method of polyelectrolyte fuel cell
JP2009170243A (en) Membrane electrode assembly