JP2009276307A - Magnetic measurement device - Google Patents

Magnetic measurement device Download PDF

Info

Publication number
JP2009276307A
JP2009276307A JP2008130313A JP2008130313A JP2009276307A JP 2009276307 A JP2009276307 A JP 2009276307A JP 2008130313 A JP2008130313 A JP 2008130313A JP 2008130313 A JP2008130313 A JP 2008130313A JP 2009276307 A JP2009276307 A JP 2009276307A
Authority
JP
Japan
Prior art keywords
axis
magnetic
magnetic sensor
data
compensation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008130313A
Other languages
Japanese (ja)
Other versions
JP5109800B2 (en
Inventor
Kenji Iijima
建二 飯島
Naoto Mishina
尚登 三品
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2008130313A priority Critical patent/JP5109800B2/en
Publication of JP2009276307A publication Critical patent/JP2009276307A/en
Application granted granted Critical
Publication of JP5109800B2 publication Critical patent/JP5109800B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Measuring Magnetic Variables (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnetic measurement device that allows a magnetic sensor in a reference attitude to be installed without requiring unnecessary labor and spending much time, performs terrestrial magnetism compensation by a three-axis magnetic sensor in an optional attitude, and accurately measures magnetism without requiring unnecessary labor. <P>SOLUTION: The magnetic measurement device includes: a reference attitude uniaxial magnetic sensor 1-1 having a detection axis in the vertical direction by a gimbal mechanism; a plurality of three-axis magnetic sensors 1-2 and 1-3 installed in optional attitudes; and a signal processing apparatus 2. The signal processing apparatus 2 converts respective output data of the three-axis magnetic sensors 1-2 and 1-3 of the optional attitudes into magnetic data equivalent to data obtained in the case where the sensors are installed in the magnetically east-west direction, magnetically south-north direction and vertical direction by referring to the output data of the reference attitude uniaxial magnetic sensor 1-1, uses the data after conversion as magnetic data for terrestrial magnetism compensation and magnetic data to be compensated, and subtracts the magnetic data to be compensated to perform terrestrial magnetism compensation. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、地磁気中における微小磁気の計測を行う磁気計測装置に関する。  The present invention relates to a magnetic measuring device that measures minute magnetism in geomagnetism.

一般に、地磁気の変動よりも微小な磁気を計測する場合、地磁気補償用磁気センサ出力を被補償用磁気センサ出力から引いて地磁気補償を行っており、3軸磁気センサにおいては、地磁気補償用磁気センサと被補償用磁気センサの設置の際、東西南北に関しては地磁気を利用し、鉛直方向に関しては水準器を利用して、地磁気補償用磁気センサと被補償用磁気センサの姿勢を調整し、3軸の方向を一致させている。   Generally, when measuring magnetism smaller than the fluctuation of geomagnetism, the magnetic sensor output for geomagnetism compensation is subtracted from the output of the compensated magnetic sensor, and the geomagnetic compensation is performed. When the magnetic sensor for compensation is installed, the geomagnetism is used for the east, west, north, and south, and the level is used for the vertical direction to adjust the orientation of the magnetic sensor for compensation and the magnetic sensor for compensation. The directions are matched.

また、磁気センサの姿勢を調整するのが困難な場所においては、基準の姿勢の磁気センサで測定した地磁気の3成分より、任意の姿勢の磁気センサで測定した地磁気の3成分の感度軸に対するずれ角を算出し、前記ずれ角に基づいて軸まわりの回転演算を行い、感度軸に対して所望する関係となるように被測定磁界値を変換し、3軸の方向を一致させる磁気測定装置が開示されており(例えば特許文献1参照)、任意の姿勢で設置された地磁気補償用磁気センサと被補償用磁気センサを基準姿勢に変換し、地磁気補償用磁気センサと被補償用磁気センサの3軸の方向を一致させている。
特開平7−198809号公報
Further, in a place where it is difficult to adjust the attitude of the magnetic sensor, the deviation of the geomagnetic three components measured by the magnetic sensor of an arbitrary attitude from the three geomagnetic components measured by the magnetic sensor of the arbitrary attitude with respect to the sensitivity axis. A magnetic measuring device that calculates an angle, performs a rotation calculation around the axis based on the deviation angle, converts a measured magnetic field value so as to have a desired relationship with the sensitivity axis, and matches the directions of the three axes. The geomagnetic compensation magnetic sensor and the compensated magnetic sensor installed in an arbitrary posture are converted into a reference posture, and 3 of the geomagnetic compensation magnetic sensor and the compensated magnetic sensor are disclosed. The axis directions are matched.
JP-A-7-198809

上記した従来の一般的な方法で地磁気補償用磁気センサと被補償用磁気センサの3軸方向を一致させる場合、地磁気及び水準器を使用して合わせる方法では、手間、時間がかかる。また、特許文献1に記載の方法では、任意姿勢の磁気センサから見れば、基準姿勢磁気センサと姿勢が異なっていても、地磁気の3軸の出力が同じになる姿勢が存在するため、任意姿勢の地磁気補償用磁気センサと被補償用磁気センサの姿勢を基準姿勢に一致させるのは、困難である。また、基準姿勢の磁気センサが必要なため、従来の一般的な方法と同様に、基準姿勢の磁気センサの姿勢を地磁気及び水準器を使用して合わせる必要があるため、手間、時間がかかる。   When matching the three axial directions of the magnetic sensor for geomagnetism compensation and the magnetic sensor for compensation by the conventional general method described above, the method of matching using the geomagnetism and the level takes time and effort. In addition, in the method described in Patent Document 1, when viewed from a magnetic sensor in an arbitrary posture, there is a posture in which the output of the three geomagnetism axes is the same even if the posture is different from the reference posture magnetic sensor. It is difficult to make the postures of the geomagnetic compensation magnetic sensor and the compensated magnetic sensor coincide with the reference posture. In addition, since a magnetic sensor with a reference posture is required, it is necessary to match the posture of the magnetic sensor with the reference posture using the geomagnetism and the level as in the conventional general method, which takes time and effort.

この発明は、上記した事情に鑑みてなされたものであり、手間、時間をかけずに基準姿勢の磁気センサを設置し、基準姿勢の磁気センサ出力を用いて、任意の姿勢に設置された3軸磁気センサ各軸出力を、磁気的な東西、磁気的な南北、鉛直方向に設置された場合と等価になるように変換し、地磁気補償をなしうる磁気計測装置を提供することを目的とする。   The present invention has been made in view of the above-described circumstances. The magnetic sensor of the reference posture is installed without taking time and effort, and the magnetic sensor output of the reference posture is used to install 3 in an arbitrary posture. An object of the present invention is to provide a magnetic measuring device capable of performing geomagnetic compensation by converting the output of each axis magnetic sensor so that the output of each axis is equivalent to the case of being installed in the magnetic east-west, magnetic north-south, and vertical directions. .

本願の請求項1に係る磁気計測装置は、地磁気中で動作させる複数個の3軸磁気センサ及び1軸磁気センサからの信号を受信・記憶・信号処理する信号処理器とを具備してなる磁気計測装置において、前記信号処理器に、任意の姿勢に設置した3軸磁気センサの各軸の出力データを、少なくとも1個の鉛直方向に向けた1軸磁気センサの出力データを用いて、3軸磁気センサの各軸を磁気的な東西,磁気的な南北及び鉛直方向に設置した場合と等価なデータに変換するために、任意の姿勢に設置した3軸磁気センサの各軸を中心とした回転演算を行って1軸磁気センサの出力と回転演算後の3軸磁気センサの任意に1軸の出力が一致する回転角及び3軸磁気センサの任意の1軸と1軸磁気センサとの出力一致後の他の2軸出力より求めた、2軸を磁気的東西、磁気的南北に回転する回転角の回転角度係数を基準姿勢変換係数として求める手段と、任意の姿勢に設置した3軸磁気センサ各軸出力に、前記基準姿勢変換係数を用いて、各軸を中心とした回転演算を行うことにより、任意の姿勢に設置した3軸磁気センサ各軸出力を磁気的な東西、磁気的な南北及び鉛直方向に設置した場合と等価なデータに変換する手段を備えたことを特徴とする。  A magnetic measuring device according to claim 1 of the present application includes a plurality of triaxial magnetic sensors operated in geomagnetism and a signal processor for receiving, storing, and processing signals from the uniaxial magnetic sensors. In the measuring apparatus, the output signal of each axis of the three-axis magnetic sensor installed in an arbitrary posture is used for the signal processor by using the output data of the one-axis magnetic sensor oriented in at least one vertical direction. Rotation around each axis of the 3-axis magnetic sensor installed in an arbitrary posture to convert the magnetic sensor axes to data equivalent to magnetic east-west, magnetic north-south, and vertical orientation Calculate the rotation angle at which the output of the 1-axis magnetic sensor and the output of the 3-axis magnetic sensor after the rotation calculation are arbitrarily matched, and the output match between the arbitrary 1-axis of the 3-axis magnetic sensor and the 1-axis magnetic sensor. The two axes obtained from the other two axes output Means for obtaining the rotation angle coefficient of the rotation angle rotating magnetically north-south and magnetic north-south as a reference attitude conversion coefficient, and each axis output of the three-axis magnetic sensor installed in an arbitrary attitude, using the reference attitude conversion coefficient, A means for converting the output of each axis of a 3-axis magnetic sensor installed in an arbitrary posture into data equivalent to the case where it is installed in the magnetic east-west, magnetic north-south, and vertical directions by performing rotation calculation around the axis. It is provided with.

また、請求項2に係る磁気計測装置は、前記基準姿勢変換後の3軸磁気センサを、地磁気補償用磁気センサと被補償用磁気センサに分類し、請求項1に係る磁気計測装置の前記信号処理器により、前記変換後の被補償磁気センサ各軸出力データから前記変換後の地磁気補償磁気センサ各軸出力データを減算することにより地磁気補償を行う手段を備えたことを特徴とする。   The magnetic measurement device according to claim 2 classifies the three-axis magnetic sensor after the reference attitude conversion into a magnetic sensor for geomagnetic compensation and a magnetic sensor for compensation, and the signal of the magnetic measurement device according to claim 1 The processor includes means for performing geomagnetic compensation by subtracting the output data of each axis of the compensated magnetic sensor after conversion from the output data of each axis of the compensated magnetic sensor after conversion.

また、請求項3に係る磁気計測装置は、請求項2に係る磁気計測装置の前記信号処理器により、前記変換後の地磁気補償用磁気センサの出力データに係数をかけて、前記変換後の被補償用磁気センサの出力データから減算を行い、前記変換後の被補償用磁気センサの各軸の出力データ及び全磁力の出力データの地磁気補償を行う手段を備えたことを特徴とする。   According to a third aspect of the present invention, there is provided a magnetic measurement apparatus that uses the signal processor of the magnetic measurement apparatus according to the second aspect to multiply the output data of the converted geomagnetic compensation magnetic sensor by a coefficient, Means is provided for subtracting from the output data of the compensating magnetic sensor and performing geomagnetic compensation of the output data of each axis of the compensated magnetic sensor and the output data of the total magnetic force after the conversion.

この発明によれば、基準となる磁気センサは鉛直方向を向いた1軸磁気センサであり、例えばジンバル機構を有した1軸センサで容易に実現できるので、手間、時間をかけずに容易に設置でき、3軸磁気センサは姿勢を気にせずに、つまり方向を規定することなく設置できるので、姿勢を規定して設置することが困難な場所においても3軸磁気センサを磁気的な東西、磁気的な南北及び鉛直方向に設置した場合と等価で、かつ地磁気補償を行った磁気測定を行なうことが可能となる。   According to the present invention, the reference magnetic sensor is a uniaxial magnetic sensor oriented in the vertical direction. For example, since it can be easily realized by a uniaxial sensor having a gimbal mechanism, it can be easily installed without taking time and effort. The three-axis magnetic sensor can be installed without worrying about the posture, that is, without specifying the direction. It is possible to perform magnetic measurement equivalent to the case where it is installed in the north-south and vertical directions and with geomagnetic compensation.

以下、実施の形態により、この発明をさらに詳細に説明する。図1はこの発明の一実施形態磁気計測装置のシステム構成を示す概略構成図である。
この実施形態磁気計測装置では、1軸磁気センサ(この例では1個であるが、複数個でも良い)1−1及び複数固の3軸磁気センサ(この例では2個であるが、3個以上でも良い)1−2、1−3が配置されている。ここで、1軸センサ1−1はジンバル機構などにより鉛直方向に向けられており、基準姿勢センサと呼ぶ。その他の3軸の磁気センサ1−2、1−3は、それぞれ任意の姿勢で設置されており、任意姿勢センサと呼ぶ。1軸磁気センサ1−1で検出された1軸磁気データ及び3軸磁気センサ1−2〜1−3で検出された3軸の磁気データは、信号処理器2に取り込まれ、記憶されるとともに、データ処理される。
Hereinafter, the present invention will be described in more detail with reference to embodiments. FIG. 1 is a schematic configuration diagram showing a system configuration of a magnetic measuring apparatus according to an embodiment of the present invention.
In this embodiment of the magnetic measuring device, a uniaxial magnetic sensor (one in this example, but may be plural) 1-1 and a plurality of solid three-axis magnetic sensors (two in this example, but three). (1 or 2) 1-2 and 1-3 are arranged. Here, the uniaxial sensor 1-1 is directed in the vertical direction by a gimbal mechanism or the like, and is referred to as a reference posture sensor. The other three-axis magnetic sensors 1-2 and 1-3 are installed in arbitrary postures, and are called arbitrary posture sensors. The uniaxial magnetic data detected by the uniaxial magnetic sensor 1-1 and the triaxial magnetic data detected by the triaxial magnetic sensors 1-2 to 1-3 are captured and stored in the signal processor 2. Data processing.

信号処理器2では、図2に示すフロー図の各信号処理を実行する機能を有する。第1の処理として、ステップS1において、3軸磁気センサの各軸を磁気的な東西、磁気的な南北及び鉛直方向に設置した場合と等価なデータに変換(基準姿勢変換)するための変換係数(基準姿勢変換係数)の算出計算を3軸磁気センサ毎に行う。次にステップS2に移行する。   The signal processor 2 has a function of executing each signal processing of the flowchart shown in FIG. As a first process, in step S1, conversion coefficients for converting each axis of the three-axis magnetic sensor into data equivalent to the case where each axis is installed in the magnetic east-west, magnetic north-south, and vertical directions (reference posture conversion). Calculation of (reference posture conversion coefficient) is performed for each triaxial magnetic sensor. Next, the process proceeds to step S2.

ステップS2において、第2の処理として、基準姿勢変換を行う。ここでは、第1の処理で求めた各磁気センサ毎の基準姿勢変換係数を任意姿勢の3軸磁気センサ1−2、1−3のセンサ毎の出力にそれぞれ適用し、基準姿勢出力に変換する。次にステップS3に移行する。   In step S2, reference posture conversion is performed as a second process. Here, the reference orientation conversion coefficient for each magnetic sensor obtained in the first process is applied to the output of each sensor of the three-axis magnetic sensors 1-2 and 1-3 having an arbitrary orientation, and converted to the reference orientation output. . Next, the process proceeds to step S3.

ステップS3において、第3の処理として、地磁気補償係数計算を行う。ここでは、地磁気補償を行うために、基準姿勢に変換した3軸磁気センサ1−2、1−3の出力を地磁気補償用出力及び被補償用出力に分類し、被補償用磁気データから地磁気補償用磁気データを引く際の地磁気補償用磁気データの振幅、オフセットの地磁気補償係数を求める。次にステップS4へ移行する。   In step S3, geomagnetic compensation coefficient calculation is performed as a third process. Here, in order to perform geomagnetic compensation, the outputs of the three-axis magnetic sensors 1-2 and 1-3 converted to the reference posture are classified into geomagnetic compensation outputs and compensated outputs, and geomagnetic compensation is performed from the compensated magnetic data. The amplitude of the geomagnetic compensation magnetic data and the offset geomagnetic compensation coefficient when the magnetic data is drawn are obtained. Next, the process proceeds to step S4.

ステップS4において、第4の処理として、地磁気補償を行う。ここでは、第3の処理で求めた地磁気補償係数を用いて地磁気補償を行う。   In step S4, geomagnetic compensation is performed as a fourth process. Here, geomagnetic compensation is performed using the geomagnetic compensation coefficient obtained in the third process.

以下に、第1の処理から第4の処理の詳細を説明する。   Details of the first process to the fourth process will be described below.

先ず、第1の処理、基準姿勢変換係数計算について説明する。処理の詳細は図5に示すフロー図を参照して説明する。図3に示すように、任意姿勢磁気センサのZ軸と地磁気Hのなす角をθn、任意姿勢磁気センサのX軸と地磁気HのXY平面成分のなす角をφn、任意姿勢磁気センサのZ軸まわりの回転角をψnとする。また姿勢の変換に関しては、式(1)に示す各軸周りの回転に関する一般式を用いる。式(1)の回転方向を図4に示す。図4において、(a)はX軸周りの回転を、(b)はY軸周りの回転を、(c)はZ軸周りの回転を示す。   First, the first process, the reference attitude conversion coefficient calculation, will be described. Details of the processing will be described with reference to the flowchart shown in FIG. As shown in FIG. 3, the angle between the Z axis of the arbitrary attitude magnetic sensor and the geomagnetism H is θn, the angle between the X axis of the arbitrary attitude magnetic sensor and the XY plane component of the geomagnetism H is φn, and the Z axis of the arbitrary attitude magnetic sensor The rotation angle around is ψn. As for the posture conversion, a general expression relating to rotation around each axis shown in Expression (1) is used. The rotation direction of Formula (1) is shown in FIG. 4, (a) shows rotation around the X axis, (b) shows rotation around the Y axis, and (c) shows rotation around the Z axis.

先ず処理開始のステップST11において、任意姿勢の3軸磁気データHx、Hy、Hzを読み込み、式(2)を用いて、時刻tにおけるθn、φnを求める。この角度θn、φnは、基準姿勢変換係数の一つである。 First, in the process start step ST11, the three-axis magnetic data Hx, any attitude, Hy,, Hz, reads, using Equation (2), .theta.n at time t, determining the .phi.n. The angles θn and φn are one of the reference posture conversion coefficients.

なお、θnは、式(3)に示すように、Hx、Hy、HzをZ軸周りにφn回転したHxφ 、Hyφ 、Hzφ を用いて求める。Z軸周りの回転は、図9に示す矢印の方向で行う。 Incidentally, .theta.n, as shown in equation (3), Hx,, Hy,, Hz, the Hx that φn rotated about the Z axis phi,, Hy phi,, Hz phi, determined using. The rotation around the Z axis is performed in the direction of the arrow shown in FIG.

次に、ステップST12へ移行する。
ステップST12においては、ステップST11において求めたφn、θnを用いて式(3)、式(4)により、時系列に入力される任意姿勢3軸磁気データHx、Hy、HzをZ軸周りにφn,Y軸周りにθnの順に回転させ(変換1と呼ぶ)、Hxθ 、Hyθ 、Hzθ を用いて求める。ここでのY軸周りの回転は、図10に示す矢印の方向で行う。
Next, the process proceeds to step ST12.
In step ST12, .phi.n obtained in step ST11, the formula using .theta.n (3), the equation (4), any attitude is inputted in time series 3-axis magnetic data Hx,, Hy,, Hz, the Z-axis φn around, rotate in the order of θn about the Y-axis (referred to as conversion 1), Hx θ,, Hy θ,, Hz θ, determined using. The rotation around the Y-axis here is performed in the direction of the arrow shown in FIG.



次に、ステップST13へ移行する。   Next, the process proceeds to step ST13.

ステップST13においては、ステップST12で求めたHxθ 、Hyθ 、Hzθ を式(5)を用いてZ軸周りにψn回転させ(変換2と呼ぶ)、Hxψ 、Hyψ 、Hzψ を得る。ここでのZ軸周りの回転は図11で示す態様で行う。つまり、このときの回転角ψnは、ステップST13〜ステップST16までのループ処理において、たとえば0.1°ステップで0°〜359.9°まで変化させる。具体的には1回目のループ処理においては、ψnは0.0で、2回目のループ処理においてはψnは、0.1とする。 In step ST13, Hx theta, obtained in step ST12, Hy θ,, Hz θ , was ψn rotated around the Z axis using the equation (5) (referred to as a conversion 2), Hx ψ,, Hy ψ, obtain Hz [psi, a. The rotation around the Z-axis here is performed in the manner shown in FIG. That is, the rotation angle ψn at this time is changed from 0 ° to 359.9 °, for example, in 0.1 ° steps in the loop processing from step ST13 to step ST16. Specifically, ψn is 0.0 in the first loop processing, and ψn is 0.1 in the second loop processing.


次に、ステップST14へ移行する。   Next, the process proceeds to step ST14.

ステップST14においては、伏角θfを予め求めておき、ステップST13で求めたHxψ 、Hyψ 、Hzψ を式(6)を用いてY軸周りに(90−θf)回転させ(変換3と呼ぶ)、Hx(90−θf) 、Hy(90−θf) 、Hz(90−θf) を求める。ここで伏角θfは、図12に示すように、計測地点において地磁気Hが水平面から鉛直軸へなす角である。 In step ST14, obtained in advance dip .theta.f, Hx [psi calculated in step ST13,, Hy ψ,, Hz ψ, is rotated (90-.theta.f) around the Y axis by using the equation (6) (conversion 3 and referred to), Hx (90-θf) ,, Hy (90-θf),, Hz (90-θf), Request. Here, as shown in FIG. 12, the depression angle θf is an angle formed by the geomagnetism H from the horizontal plane to the vertical axis at the measurement point.



次に、ステップST15へ移行する。   Next, the process proceeds to step ST15.

ステップST15においては、ステップST14で求めたHz(90−θf) 及び1軸磁気データHzを用いて.HzとHz(90−θf) の誤差を式(7)を用いて求める。なお、このステップにおいては、ψnを0.1°ずつ変化させて求める誤差が、それまでの最小分と比較し、今回が最小の場合に、この時に角度ψnを、誤差が最小となる角度ψnであるとして出力する。 In step ST15, Hz calculated in step ST14 (90-θf), and using a uniaxial magnetic data Hz. Obtaining Hz and Hz (90-.theta.f), an error of using Equation (7). In this step, when the error obtained by changing ψn by 0.1 ° is compared with the minimum amount until then, when this time is the minimum, the angle ψn is changed to the angle ψn at which the error is minimized. Output as.

次に、ステップST16へ移行する。   Next, the process proceeds to step ST16.

ステップST16においては、ψnが359.9までカウントされたかどうかをチェックし、カウントされていない場合は、ステップST13に戻り、ψnを0.1°カウントアップする。ψnが359.9までカウントされている場合は、基準姿勢変換係数算出計算を終了する。この時点で得られる誤差が最小となる角度ψnも基準姿勢変換係数である。   In step ST16, it is checked whether or not ψn has been counted up to 359.9. If not counted, the processing returns to step ST13 and ψn is counted up by 0.1 °. When ψn is counted up to 359.9, the reference posture conversion coefficient calculation calculation is terminated. The angle ψn that minimizes the error obtained at this time is also the reference posture conversion coefficient.

次に、ステップST17へ移行する。   Next, the process proceeds to step ST17.

ステップST17においては、ステップST14において求めた変換3後の3軸磁気データのうちのHx(90−θf)‘、Hy(90−θf)’より、磁気的な北に対する方位θdirを式(8)を用いて求める。θdirも基準姿勢変換係数である。 In step ST17, from the Hx (90−θf) ′, Hy (90− θf ) ′ of the three-axis magnetic data after the conversion 3 obtained in step ST14, the magnetic direction θdir relative to the north is expressed by equation (8). Find using. θdir is also a reference posture conversion coefficient.

続いて、第2の処理における基準姿勢変換過程を図6に示すフロー図を参照して説明する。  Next, the reference posture conversion process in the second process will be described with reference to the flowchart shown in FIG.

先ず処理開始のステップST21においては、任意姿勢3軸磁気センサデータ及び第1の処理にて求めた基準姿勢変換係数θn、φnを読み込み、式(3)及び式(4)を用いて、任意姿勢3軸磁気センサデータHx、Hy、HzをZ軸周りにφn、Y軸周りにθnの順に回転させ、変換1後の3軸磁気センサデータHxθ 、Hyθ 、Hzθ を求める。 First, in step ST21 at the start of the process, the arbitrary attitude three-axis magnetic sensor data and the reference attitude conversion coefficients θn and φn obtained in the first process are read, and using the expressions (3) and (4), the arbitrary attitude 3-axis magnetic sensor data Hx,, Hy,, Hz, to φn about the Z axis, is rotated in the order of θn around the Y axis, three-axis magnetic sensor data Hx theta converted 1,, Hy theta,, Hz theta, Ask for.

次に、ステップST22へ移行する。   Next, the process proceeds to step ST22.

ステップST22においては、第1の処理にて求めた基準姿勢変換係数ψnを読み込み、ステップST21で求めたHxθ 、Hyθ 、Hzθ を式(5)を用いてZ軸周りにψn回転させ、変換2後の3軸磁気センサデータHxψ 、Hyψ 、Hzψ を得る。 In step ST22, it reads the reference attitude transform coefficients Pusaienu obtained in the first process, Hx obtained in step ST21 θ,, Hy θ,, ψn Hz θ, the around the Z axis using the equation (5) rotate, 3-axis magnetic sensor data Hx [psi, the converted 2, Hy ψ,, Hz ψ , obtained.

次に、ステップST23へ移行する。   Next, the process proceeds to step ST23.

ステップST23においては、ステップST22において求めたHxψ 、Hyψ 、Hzψ を式(6)を用いてY軸周りに(90−θf)回転させ変換3後の3軸磁気センサデータHx(90−θf) 、Hy(90−θf) 、Hz(90−θf) を求める。 In step ST23, Hx [psi obtained in step ST22,, Hy ψ,, Hz ψ, the formula (90-.theta.f) around the Y-axis with (6) 3-axis magnetic sensor data Hx converted 3 is rotated (90-θf),, Hy (90-θf),, Hz (90-θf), Request.

次に、ステップST24へ移行する。  Next, the process proceeds to step ST24.

ステップST24においては、第1の処理において求めた基準姿勢変換係数θdirを読み込み、ステップST23で求めたHx(90−θf) 、Hy(90−θf) 、Hz(90−θf) を式(9)を用いてZ軸周りにθdir回転させ、3軸磁気センサの各軸を磁気的な東西,磁気的な南北及び鉛直区方向に向けたHx、Hy、Hzを得る。 In step ST24, reads the reference attitude transform coefficients θdir obtained in the first process, Hx obtained in step ST23 (90-θf),, Hy (90-θf),, Hz (90-θf), the formula (9) is θdir rotated about the Z axis is used to obtain each axis magnetic east and west of the 3-axis magnetic sensor, Hx Bu toward magnetic north and south and the vertical ku direction, Hy Bu, the Hz Bu.

続いて、第3の処理における地磁気補償過程を図7に示すフロー図を参照して説明する。   Next, the geomagnetic compensation process in the third process will be described with reference to the flowchart shown in FIG.

先ず処理開始のステップST31においては、基準姿勢変換後の地磁気補償用磁気データを読み込む。   First, in step ST31 of the process start, the magnetic data for geomagnetic compensation after the reference attitude conversion is read.

次に、ステップST32へ移行する。   Next, the process proceeds to step ST32.

ステップST32においては、基準姿勢変換後の被補償用磁気データを読み込む。   In step ST32, the compensated magnetic data after the reference attitude conversion is read.

次に、ステップST33へ移行する。   Next, the process proceeds to step ST33.

ステップST33においては、地磁気補償係数をステップST31と、ステップST32で読み込んだデータから最小自乗法を用いて3軸分の地磁気補償係数を求める。地磁気補償係数α、βは式(10)を演算実行して求める。   In step ST33, geomagnetic compensation coefficients for three axes are obtained from the data read in step ST31 and step ST32 using the least square method. The geomagnetic compensation coefficients α and β are obtained by executing the equation (10).

なお、Nはデータ数、Hx0’は被補償用磁気データ、Hx は地磁気補償用磁気データを示す。また、Y、Z軸についても、式(8)と同様に求める。 N represents the number of data, Hx 0 ′ represents compensated magnetic data, and Hx 1 represents geomagnetic compensation magnetic data. Also, the Y and Z axes are obtained in the same manner as in equation (8).

最後に、第4の処理における地磁気補償計算の処理過程を図8に示すフロー図を参照して説明する。  Finally, the process of the geomagnetic compensation calculation in the fourth process will be described with reference to the flowchart shown in FIG.

先ずステップST41において、地磁気補償係数を読み込む。   First, in step ST41, a geomagnetic compensation coefficient is read.

次に、ステップST42へ移行する。   Next, the process proceeds to step ST42.

ステップST42においては、基準姿勢変換後地磁気補償用磁気データを取り込む。   In step ST42, the magnetic data for geomagnetic compensation after the reference attitude conversion is taken.

次にステップST43へ移行する。   Next, the process proceeds to step ST43.

ステップST43においては、基準姿勢変換後被補償用磁気データを取り込む。   In step ST43, the compensated magnetic data after the reference attitude conversion is taken.

次にステップST44に移行する。   Next, the process proceeds to step ST44.

ステップST44おいては、基準姿勢変換後被補償用磁気データから、基準姿勢変換後地磁気補償用磁気データに地磁気補償係数をかけた結果を引く。地磁気補償データは、次の式(11)を演算実行して求める。   In step ST44, a result obtained by applying a geomagnetic compensation coefficient to the magnetic data for reference geomagnetic compensation after reference attitude conversion is subtracted from the compensated magnetic data after reference attitude conversion. The geomagnetic compensation data is obtained by calculating and executing the following equation (11).



ここで、Hx0 は被補償用磁気データ、Hx1 は地磁気補償用磁気データ、Hx2 は地磁気補償結果を示す。Y軸、Z軸についても同様に求める。 Here, Hx 0 represents compensated magnetic data, Hx 1 represents geomagnetic compensation magnetic data, and Hx 2 represents geomagnetic compensation results. The same applies to the Y axis and Z axis.

以上本発明の実施形態について説明したが、本発明は上記実施形態に限定されるものではない。例えば、本発明における信号処理器2は、上記第1の処理及び第2の処理のみを実行可能に構成されているもの、及び、上記第1〜第4の処理を全て実行可能に構成されているもののいずれであってもよい。ただし、第1〜第4の処理をすべて実行可能に構成されている信号処理装器2を採用すれば、地磁気補償を行うことができるため、微小磁気計測が可能となる。また、上記実施形態において、基準姿勢変換後の地磁気補償用磁気センサの出力データに地磁気補償係数α、β等をかけて減算することとしたが、係数を掛けることなく減算することとしても良い。ただし、上記実施形態のように求めた地磁気補償係数を掛けて減算することにより、地磁気補償の精度を向上させることが可能となる。   Although the embodiment of the present invention has been described above, the present invention is not limited to the above embodiment. For example, the signal processor 2 in the present invention is configured to be capable of executing only the first process and the second process, and is configured to be capable of executing all of the first to fourth processes. Any of them may be used. However, if the signal processing device 2 configured so as to be able to execute all of the first to fourth processes is employed, it is possible to perform geomagnetic compensation, and thus it is possible to perform micromagnetic measurement. In the above embodiment, the output data of the geomagnetic compensation magnetic sensor after the reference attitude conversion is subtracted by applying the geomagnetic compensation coefficients α, β, etc., but the subtraction may be performed without applying the coefficients. However, it is possible to improve the accuracy of the geomagnetic compensation by multiplying and subtracting the obtained geomagnetic compensation coefficient as in the above embodiment.

この発明の一実施形態磁気計測装置のシステム構成を示す概略図である。It is the schematic which shows the system configuration | structure of the magnetic measuring device of one Embodiment of this invention. 同実施形態磁気計測装置の処理概要を説明する図である。It is a figure explaining the process outline | summary of the magnetic measuring apparatus of the embodiment. 地磁気と3軸感度軸の位置関係と説明する図である。It is a figure explaining the positional relationship of geomagnetism and a triaxial sensitivity axis. 3軸まわりの回転移動を説明する図である。It is a figure explaining the rotational movement of 3 axis | shafts. 上実施形態磁気計測装置における基準姿勢変更係数計算の処理過程を説明するフロー図である。It is a flowchart explaining the process of the reference | standard attitude | position change coefficient calculation in the magnetic measurement apparatus of the upper embodiment. 同実施形態磁気計測装置における基準姿勢変換の処理過程変換を説明するフロー図である。It is a flowchart explaining process-process conversion of the reference | standard attitude | position conversion in the magnetic measuring device of the embodiment. 同実施形態磁気計測装置における地磁気補償係数計算の処理過程を説明するフロー図である。It is a flowchart explaining the process of the geomagnetic compensation coefficient calculation in the magnetic measuring device of the embodiment. 同実施形態磁気計測装置における地磁気補償の処理過程を説明するフロー図である。It is a flowchart explaining the process of the geomagnetic compensation in the magnetic measuring device of the embodiment. 同実施形態磁気計測装置におけるZ軸周りのφnの回転を説明する図である。It is a figure explaining rotation of (phi) n around the Z-axis in the magnetic measuring device of the embodiment. 同実施形態磁気計測装置におけるY軸周りのθnの回転を説明する図である。It is a figure explaining the rotation of (theta) n around the Y-axis in the magnetic measuring device of the embodiment. 同実施形態磁気計測装置におけるZ軸周りの小刻みな角度ψnの回転を説明する図である。It is a figure explaining the rotation of the small angle ψn around the Z axis in the magnetic measuring apparatus of the same embodiment. 同実施形態磁気計測装置における伏角θfを説明する図である。It is a figure explaining the depression angle (theta) f in the magnetic measuring device of the embodiment.

符号の説明Explanation of symbols

1−1 基準姿勢センサ
1−2、1−3 任意姿勢センサ
2 信号処理器
1-1 Reference attitude sensor 1-2, 1-3 Arbitrary attitude sensor 2 Signal processor

Claims (3)

地磁気中で動作させる複数個の3軸磁気センサ及び1軸磁気センサからの信号を受信・記憶・信号処理する信号処理器とを具備してなる磁気計測装置において、
前記信号処理器に、任意の姿勢に設置した3軸磁気センサの各軸の出力データを、少なくとも1個の鉛直方向に向けた1軸磁気センサの出力データを用いて、3軸磁気センサの各軸を磁気的な東西,磁気的な南北及び鉛直方向に設置した場合と等価なデータに変換するために、任意の姿勢に設置した3軸磁気センサの各軸を中心とした回転演算を行って1軸磁気センサの出力と回転演算後の3軸磁気センサの任意の1軸の出力が一致する回転角及び3軸磁気センサの任意の1軸が1軸磁気センサの出力に一致後の3軸磁気センサの他の2軸を用いて求めた磁気的な東西、南北へ回転する回転角の回転角度係数(基準姿勢変換係数)を求める手段と、任意の姿勢に設置した3軸磁気センサ各軸出力に、前記基準姿勢変換係数を用いて、各軸を中心とした回転演算を行うことにより、任意の姿勢に設置した3軸磁気センサ各軸出力を磁気的な東西、磁気的な南北及び鉛直方向に設置した場合と等価なデータに変換する手段を備えたことを特徴とする磁気計測装置。
In a magnetic measuring device comprising a plurality of three-axis magnetic sensors operated in geomagnetism and a signal processor for receiving, storing and processing signals from the single-axis magnetic sensors,
Using the output data of each axis of the three-axis magnetic sensor installed in an arbitrary posture in the signal processor, the output data of the one-axis magnetic sensor directed to at least one vertical direction, In order to convert the axis into data equivalent to the case of magnetic east-west, magnetic north-south, and vertical installation, rotation calculation is performed around each axis of the 3-axis magnetic sensor installed in an arbitrary posture. The rotation angle at which the output of the one-axis magnetic sensor and the output of any one axis of the three-axis magnetic sensor after rotation calculation coincide, and the three axes after any one axis of the three-axis magnetic sensor matches the output of the one-axis magnetic sensor Means for obtaining the rotation angle coefficient (reference attitude conversion coefficient) of the rotation angle obtained by using the other two axes of the magnetic sensor and rotating to the north, east, west, and north and south, and each axis of the three-axis magnetic sensor installed in an arbitrary attitude Using the reference orientation conversion coefficient for output, each axis is By means of the rotation calculation as described above, there is provided means for converting the output of each axis of the 3-axis magnetic sensor installed in an arbitrary posture into data equivalent to the case where it is installed in the magnetic east-west, magnetic north-south and vertical directions. Magnetic measuring device characterized by that.
前記基準姿勢変換後の3軸磁気センサを、地磁気補償用磁気センサと被補償用磁気センサに分類し、前記信号処理器により、前記変換後の被補償用磁気センサ各軸出力データから前記変換後の地磁気補償用磁気センサ各軸出力データを減算することにより地磁気補償を行う手段を備えたことを特徴とする請求項1記載の磁気計測装置。   The three-axis magnetic sensor after the reference attitude conversion is classified into a magnetic sensor for geomagnetic compensation and a magnetic sensor for compensation, and the signal processor performs post-conversion from the output data of each axis of the compensated magnetic sensor after conversion. 2. The magnetic measuring apparatus according to claim 1, further comprising means for performing geomagnetic compensation by subtracting output data of each axis of the magnetic sensor for magnetic field compensation. 前記信号処理器により、前記変換後の地磁気補償用磁気センサの出力データに係数をかけて、前記変換後の被補償用磁気センサの出力データから減算を行い、前記変換後の被補償用磁気センサの各軸の出力データ及び全磁力の出力データの地磁気補償を行う手段を備えたことを特徴とする請求項2記載の磁気計測装置。
The signal processor multiplies the output data of the converted geomagnetic compensation magnetic sensor by a coefficient, subtracts the output data of the compensated magnetic sensor after conversion, and the converted compensated magnetic sensor. 3. A magnetic measuring apparatus according to claim 2, further comprising means for performing geomagnetic compensation of the output data of each axis and the output data of the total magnetic force.
JP2008130313A 2008-05-19 2008-05-19 Magnetic measuring device Expired - Fee Related JP5109800B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008130313A JP5109800B2 (en) 2008-05-19 2008-05-19 Magnetic measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008130313A JP5109800B2 (en) 2008-05-19 2008-05-19 Magnetic measuring device

Publications (2)

Publication Number Publication Date
JP2009276307A true JP2009276307A (en) 2009-11-26
JP5109800B2 JP5109800B2 (en) 2012-12-26

Family

ID=41441862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008130313A Expired - Fee Related JP5109800B2 (en) 2008-05-19 2008-05-19 Magnetic measuring device

Country Status (1)

Country Link
JP (1) JP5109800B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106569150A (en) * 2016-11-02 2017-04-19 南京理工大学 Two-step simple correction method for triaxial magnetic sensor
WO2021214956A1 (en) * 2020-04-23 2021-10-28 三菱電機株式会社 Magnetic sensor device, magnetic sensing method, and program
CN114280512A (en) * 2021-12-10 2022-04-05 上海艾为电子技术股份有限公司 Single Hall sensing device and electronic equipment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07198809A (en) * 1993-12-29 1995-08-01 Shimadzu Corp Magnetism measuring instrument
JP2000180462A (en) * 1998-12-17 2000-06-30 Tokin Corp Posture angle detecting device
JP2005331265A (en) * 2004-05-18 2005-12-02 Nec Tokin Corp Attitude angle detection device
JP2007183138A (en) * 2006-01-05 2007-07-19 Kenzo Nonami Compact attitude sensor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07198809A (en) * 1993-12-29 1995-08-01 Shimadzu Corp Magnetism measuring instrument
JP2000180462A (en) * 1998-12-17 2000-06-30 Tokin Corp Posture angle detecting device
JP2005331265A (en) * 2004-05-18 2005-12-02 Nec Tokin Corp Attitude angle detection device
JP2007183138A (en) * 2006-01-05 2007-07-19 Kenzo Nonami Compact attitude sensor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106569150A (en) * 2016-11-02 2017-04-19 南京理工大学 Two-step simple correction method for triaxial magnetic sensor
CN106569150B (en) * 2016-11-02 2019-03-05 南京理工大学 A kind of two step bearing calibrations simply corrected for magnetic sensor
WO2021214956A1 (en) * 2020-04-23 2021-10-28 三菱電機株式会社 Magnetic sensor device, magnetic sensing method, and program
JPWO2021214956A1 (en) * 2020-04-23 2021-10-28
JP7094472B2 (en) 2020-04-23 2022-07-01 三菱電機株式会社 Magnetic sensor device, magnetic sensing method and program
CN114280512A (en) * 2021-12-10 2022-04-05 上海艾为电子技术股份有限公司 Single Hall sensing device and electronic equipment
CN114280512B (en) * 2021-12-10 2024-05-10 上海艾为电子技术股份有限公司 Single Hall sensing device and electronic equipment

Also Published As

Publication number Publication date
JP5109800B2 (en) 2012-12-26

Similar Documents

Publication Publication Date Title
Vasconcelos et al. Geometric approach to strapdown magnetometer calibration in sensor frame
Seel et al. Eliminating the effect of magnetic disturbances on the inclination estimates of inertial sensors
Včelák et al. AMR navigation systems and methods of their calibration
CN106289246B (en) A kind of flexible link arm measure method based on position and orientation measurement system
CN107270893B (en) Lever arm and time asynchronous error estimation and compensation method for real estate measurement
US20170350721A1 (en) Method of Updating All-Attitude Angle of Agricultural Machine Based on Nine-Axis MEMS Sensor
JP2007500350A (en) System using 2-axis magnetic sensor for 3-axis compass solution
JP2020528553A (en) How to calibrate the magnetometer
JPWO2006035505A1 (en) Magnetic sensor control method, control device, and portable terminal device
WO2014010727A1 (en) Device for estimating moving object travel direction and method for estimating travel direction
Li et al. Gradient descent optimization-based self-alignment method for stationary SINS
WO2011158856A1 (en) Error cause determination method and device, error compensation method, three-axis magnetic sensor, sensor module, and program for determining error cause
KR20110081205A (en) Electronic compass
JP2006226810A (en) Azimuth measuring instrument
US11408735B2 (en) Positioning system and positioning method
JP5086225B2 (en) Calibration apparatus, method and program for magnetic direction sensor
JP2005061969A (en) Azimuthal angle measuring instrument and azimuthal angle measuring method
JP5109800B2 (en) Magnetic measuring device
JPWO2007020702A1 (en) Sensor device
JP5168730B2 (en) Magnetic measuring device
JP5017527B2 (en) Electronic compass system
JP2005172787A (en) Inclination searching method for tilt compensation type electronic compass
JP2000009468A (en) Magnetoelectronic compass
Spielvogel et al. Preliminary results with a low-cost fiber-optic gyrocompass system
JP2019035629A (en) Calibration device, calibration method, rotational angle detector, and program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120703

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120911

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120924

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151019

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5109800

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151019

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees