JPH07198809A - Magnetism measuring instrument - Google Patents

Magnetism measuring instrument

Info

Publication number
JPH07198809A
JPH07198809A JP35345293A JP35345293A JPH07198809A JP H07198809 A JPH07198809 A JP H07198809A JP 35345293 A JP35345293 A JP 35345293A JP 35345293 A JP35345293 A JP 35345293A JP H07198809 A JPH07198809 A JP H07198809A
Authority
JP
Japan
Prior art keywords
axis
magnetic field
magnetic sensor
magnetic
sensitivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP35345293A
Other languages
Japanese (ja)
Other versions
JP3206268B2 (en
Inventor
Kenji Iijima
健二 飯島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP35345293A priority Critical patent/JP3206268B2/en
Publication of JPH07198809A publication Critical patent/JPH07198809A/en
Application granted granted Critical
Publication of JP3206268B2 publication Critical patent/JP3206268B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)

Abstract

PURPOSE:To provide a magnetism measuring instrument in which a sensitivity axis is made to be adjusted easily and automatically and which is miniaturized further. CONSTITUTION:The magnetism measuring instrument is installed in an arbitrary attitude. Geomagnetism is first detected by a three-axis magnetic sensor 5 which is composed of a three-axis magnetic sensor element 1 and a sensor controller 2, it is converted into a digital signal by an A/D converter 3, the digital signal is taken into a computer 4, and a deviation angle from the sensitivity axis of the geomagnetism is computed. Then, a magnetic field to be measured is detected by the three-axis magnetic sensor 5. The magnetic field to be measured is turned around the axis and operated on the basis of the deviation angle which has already been computed by the computer 4, it is converted into a measured value corresponding to the sensitivity axis, and a converted value is output.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、3軸の磁気測定器、
特に感度軸を自動的に一致させ得る磁気測定器に関す
る。
BACKGROUND OF THE INVENTION This invention relates to a triaxial magnetic measuring device,
In particular, the present invention relates to a magnetic measuring device capable of automatically matching sensitivity axes.

【0002】[0002]

【従来の技術】一般に、3軸磁気センサを地磁気中に設
置して、磁界の測定を行う場合、磁界の感度軸は、鉛直
方向、磁気的な東西方向、そして南北方向に一致させて
設置する。そのため、蓄積されたデータも、これらの感
度軸方向で得られたものが大部分である。従来、鉛直方
向、磁気的な東西方向、南北方向に一致させるために、
人が何回か、測定をしながら一致させる方法、あるいは
鉛直方向にジンバル機構を用いて一致させ、方位方向は
人手あるいはモータにより物理的に感度軸を回転させる
方法を採っていた。
2. Description of the Related Art Generally, when a three-axis magnetic sensor is installed in the earth's magnetism to measure a magnetic field, the magnetic field sensitivity axes are installed in the vertical direction, the magnetic east-west direction, and the north-south direction. . Therefore, most of the accumulated data are obtained in these sensitivity axis directions. Conventionally, to match the vertical direction, magnetic east-west direction, north-south direction,
A method is adopted in which a person makes a match several times while making a measurement, or a method in which a gimbal mechanism is used to make a match in the vertical direction and the sensitivity axis is physically rotated by a human or a motor in the azimuth direction.

【0003】[0003]

【発明が解決しようとする課題】上記した従来の感度軸
を一致させる方法では、人手による場合は手間、時間が
かかるし、ジンバル機構やモータを使用すると、その
分、磁気測定器が大型化するという問題があった。この
発明は、上記問題点に着目してなされたものであって、
比較的容易に、かつ自動的に感度軸を一致させ得、かつ
小型の磁気測定器を提供することを目的としている。
In the above-mentioned conventional method of aligning the sensitivity axes, it takes time and labor if it is done manually, and if a gimbal mechanism or a motor is used, the size of the magnetic measuring device becomes correspondingly large. There was a problem. The present invention was made by focusing on the above problems,
It is an object of the present invention to provide a compact magnetic measuring device which can relatively easily and automatically match the sensitivity axes.

【0004】[0004]

【課題を解決するための手段及び作用】この発明の磁気
測定器は、3軸磁気センサと、この3軸磁気センサの検
知した磁界値をディジタル値に変換する手段と、地磁気
を測定して得られた磁界の3成分より、地磁気の3軸磁
気センサの感度軸に対するずれ角を算出する手段と、被
測定磁界に対し、前記ずれ角に基づいて軸まわりの回転
演算を行い、感度軸に対して所望する関係となるよう
に、被測定磁界値を変換する手段とを備えている。
The magnetic measuring instrument of the present invention comprises a triaxial magnetic sensor, a means for converting the magnetic field value detected by the triaxial magnetic sensor into a digital value, and a geomagnetic field. A means for calculating a deviation angle of the geomagnetic 3-axis magnetic sensor with respect to the sensitivity axis from the obtained three components of the magnetic field, and a rotation calculation about the axis for the magnetic field to be measured based on the deviation angle, and with respect to the sensitivity axis. And a means for converting the measured magnetic field value so as to obtain a desired relationship.

【0005】この磁気測定器では、任意の姿勢に設置し
た状態で、地磁気のみを測定し、その測定した3方向成
分値と、本来、鉛直方向、磁気的東西方向、南北方向に
一致させた場合の磁界値より、感度軸に対するずれ角を
算出する。その後、その姿勢で、被測定磁界を測定し、
その磁界をそれぞれずれ角を参照して、軸まわりに回転
演算し、3軸センサを感度軸に一致させた場合に得られ
る磁界値を変換演算して出力する。
In this magnetometer, only the geomagnetism is measured in a state of being installed in an arbitrary posture, and the measured three-direction component values are made to coincide with each other in the vertical direction, the magnetic east-west direction, and the north-south direction. The deviation angle with respect to the sensitivity axis is calculated from the magnetic field value of. After that, in that posture, measure the magnetic field to be measured,
The magnetic fields are respectively rotated around the axes with reference to the displacement angles, and the magnetic field values obtained when the three-axis sensor is aligned with the sensitivity axis are converted and output.

【0006】[0006]

【実施例】以下、実施例により、この発明をさらに詳細
に説明する。図1は、この発明の一実施例磁気測定器の
構成を示すブロック図である。この実施例磁気測定器
は、3軸磁気センサ素子1と、センサ制御器2と、A/
D変換器3と、コンピュータ4とから構成されている。
The present invention will be described in more detail with reference to the following examples. FIG. 1 is a block diagram showing the configuration of a magnetometer according to an embodiment of the present invention. The magnetometer of this embodiment includes a triaxial magnetic sensor element 1, a sensor controller 2, and an A /
It is composed of a D converter 3 and a computer 4.

【0007】3軸磁気センサ素子1は、磁界の3成分H
x、Hy、Hzに反応してアナログ信号を発生する。例
えば、フラックスゲート型の磁気センサ素子を3個、互
いに直交させて配置した構成を用いる。センサ制御器2
は、3軸磁気センサ素子1を駆動し、3軸磁気センサ素
子が磁界に反応して発生したアナログ信号の増幅、ある
いは不用な周波数成分の除去等の信号処理を行い、結果
をアナログ信号として出力する。この3軸磁気センサ素
子1とセンサ制御器2とで、3軸磁気センサ5が構成さ
れている。
The triaxial magnetic sensor element 1 has three components H of the magnetic field.
An analog signal is generated in response to x, Hy, and Hz. For example, a configuration in which three flux gate type magnetic sensor elements are arranged orthogonal to each other is used. Sensor controller 2
Drives the 3-axis magnetic sensor element 1, performs signal processing such as amplification of an analog signal generated in response to a magnetic field by the 3-axis magnetic sensor element, or removal of unnecessary frequency components, and outputs the result as an analog signal. To do. The triaxial magnetic sensor element 1 and the sensor controller 2 constitute a triaxial magnetic sensor 5.

【0008】A/D変換器3は、センサ制御器2から出
力されるアナログの検出信号を、コンピュータ4に取り
込む信号、つまりディジタル信号に変換する。コンピュ
ータ4は、ディジタルに変換された検出信号、すなわち
検出磁界の3成分Hx、Hy、Hzを取り込み、後述す
るアルゴリズムで演算を行う。これにて得られた結果
を、また別に目的を持つ演算に使用し、あるいはディス
プレイ6またはプリンタ7等へ出力する等の処理を行
う。
The A / D converter 3 converts the analog detection signal output from the sensor controller 2 into a signal to be taken into the computer 4, that is, a digital signal. The computer 4 takes in the digitally converted detection signal, that is, the three components Hx, Hy, and Hz of the detection magnetic field, and performs an operation with an algorithm described later. The result thus obtained is used for another purposeful calculation, or is output to the display 6, the printer 7, or the like.

【0009】次に、上記実施例磁気検出器の採用原理に
ついて説明する。地磁気に対して、3軸磁気センサの感
度軸が種々の方向を向く状態というのは、逆の見方とし
て、感度軸の方を基準として考えれば、感度軸に対して
地磁気が種々の方向を向くことを意味する。図2に示す
ように、地磁気H’と3軸感度軸の位置関係は、極座標
表現にてZ軸方向と地磁気のなす角θ、およびX軸方向
と地磁気のXY平面成分のなす角φで一義的に定義可能
である。感度軸に対して地磁気が種々の方向を向く状態
というのは、この角度θ、φが種々の値をとることを意
味する。3軸磁気センサにより計測可能なものは、地磁
気の各軸成分であるが、この各軸成分値をHx、Hy、
Hzとすれば、
Next, the principle of adoption of the magnetic detector of the above embodiment will be described. The situation in which the sensitivity axis of the three-axis magnetic sensor faces various directions with respect to the earth's magnetism is the opposite. If the sensitivity axis is taken as a reference, the earth magnetism faces various directions with respect to the sensitivity axis. Means that. As shown in FIG. 2, the positional relationship between the geomagnetism H ′ and the triaxial sensitivity axis is unambiguously defined by the angle θ between the Z-axis direction and the geomagnetism, and the angle φ between the X-axis direction and the XY plane component of the geomagnetism in polar coordinate representation. Can be defined explicitly. The state in which the geomagnetism faces various directions with respect to the sensitivity axis means that the angles θ and φ take various values. What can be measured by the three-axis magnetic sensor is each axial component of the earth's magnetism, and these axial component values are Hx, Hy,
Hz,

【0010】[0010]

【数1】 [Equation 1]

【0011】という関係が成り立つ。3軸磁気センサの
感度軸を所定の方向に向ける方法とはHを一定とし、角
度θ、φを任意の値に変更する方法ということが言え
る。角度θ、φを変化させると、式(1) 〜(3) により、
磁界Hx、Hy、Hzが変化することが理解できる。逆
な見方をすればHx、Hy、HzをHを一定にしたまま
変化させると角度θ、φが変化することになる。したが
って、Hx、Hy、Hzを目標とする角度θ、φとなる
ように、自分自身を用いて変換する方法が得られれば、
地磁気を等価的に感度軸に一致させるという、今回の目
的が達成されることになる。
The following relationship holds. It can be said that the method of directing the sensitivity axis of the three-axis magnetic sensor in a predetermined direction is a method of keeping H constant and changing the angles θ and φ to arbitrary values. When the angles θ and φ are changed, equations (1) to (3) give
It can be seen that the magnetic fields Hx, Hy, Hz change. From the opposite viewpoint, if Hx, Hy, and Hz are changed while H is kept constant, the angles θ and φ will change. Therefore, if a method of transforming Hx, Hy, and Hz so that the target angles θ and φ are obtained is obtained,
The purpose of this time, which is to make the geomagnetism equivalently coincident with the sensitivity axis, will be achieved.

【0012】角度θ、φにつき、現在の値を同じ表記で
θ、φとし、所望する値をθ0 、φ0 とし、θ、φおよ
びθ0 、φ0 である地磁気をそれぞれ H’=(Hx、Hy、Hz) …(5) H'0=(Hx0 、Hy0 、Hz0 ) …(6) ただし、H’の絶対値=H'0の絶対値 …(7) とすると、式(1) 〜(3) より、
With respect to the angles θ and φ, current values are represented by the same notation θ and φ, desired values are θ 0 and φ 0, and geomagnetisms θ and φ and θ 0 and φ 0 are H ′ = ( Hx, Hy, Hz) ... ( 5) H '0 = (Hx 0, Hy 0, Hz 0) ... (6) However, H' absolute value of = H '0 of ... When (7), wherein From (1) to (3),

【0013】[0013]

【数2】 [Equation 2]

【0014】となり、角度θ、φは、Hx、Hy、Hz
より求めることができる。なお、各文字の右肩の ’は
便宜上、ベクトル記号として用いている(以下同じ)。
一般にXYZ3次元座標系における点(x、y、z)の
移動変換の1つとして軸のまわりの回転がある。3次元
であるので、この軸のまわりの回転は、図4で示すよう
に、X軸のまわりの回転〔図4の(a)〕、Y軸まわり
の回転〔図4の(b)〕、及びZ軸のまわりの回転〔図
4の(c)〕の3通りの回転変換が存在する。
And the angles θ and φ are Hx, Hy, Hz
You can ask more. The 'on the right shoulder of each character is used as a vector symbol for convenience (the same applies below).
In general, one of the movement transformations of a point (x, y, z) in an XYZ three-dimensional coordinate system is rotation about an axis. Since it is three-dimensional, rotation about this axis is as shown in FIG. 4, rotation about the X axis [(a) in FIG. 4], rotation about the Y axis [(b) in FIG. 4], And three rotation transformations of rotation around the Z axis [(c) in FIG. 4].

【0015】この軸のまわりの回転による点(x、y、
z)の移動後の座標を(xa 、ya、za )とし、回転
の正の向きを座標軸の正方向に右ネジを進めた場合の回
転向きを定め、回転角をαで表すとき、 ・x軸まわりの回転 xa =x …(10) ya =ycosα−zsinα …(11) za =ysinα+zcosα …(12) ・Y軸まわりの回転 xa =zsinα+xcosα …(13) ya =y …(14) za =zcosα−xsinα …(15) ・Z軸まわりの回転 xa =xcosα−ysinα …(16) ya =xsinα+ycosα …(17) za =z …(18) となる。
A point (x, y,
The coordinates after the movement of z) and (x a, y a, z a), when the positive direction of rotation determines the rotation direction of when advancing the right screws in the positive direction of the coordinate axis representing the rotational angle α , rotation around · x axis x a = x ... (10) y a = ycosα-zsinα ... (11) z a = ysinα + zcosα ... (12) around · Y axis rotation x a = zsinα + xcosα ... ( 13) y a = y ... a (14) z a = zcosα- xsinα ... (15) · rotation around the Z-axis x a = xcosα-ysinα ... ( 16) y a = xsinα + ycosα ... (17) z a = z ... (18).

【0016】さて、この軸のまわりの座標点の移動とい
う視点で図3に示すH’のH'0への変換という問題を見
るに、次の2つの手順により、変換が可能であることに
気付いた。 〈第1の手順〉説明は図5を参照して行う。
[0016] Now, to see the problem of conversion to 0 'H of' H shown in FIG. 3 in perspective of the movement of points around this axis, by the following two steps, that the conversion is possible Noticed. <First Procedure> Description will be given with reference to FIG.

【0017】先ず、H’をZ軸のまわりに−φ回転さ
せる。この変換により、得られる磁界ベクトルを H'1=(Hx1 、Hy1 、Hz1 ) …(19) とし、 次に、ベクトルH'1をY軸のまわりに−(θ−θ0
回転させる。この変換により、得られる磁界ベクトルを H'2=(Hx2 、Hy2 、Hz2 ) …(20) とし、最後にH'2をZ軸のまわりにφ0 回転させる。
First, H'is rotated by -φ about the Z axis. By this conversion, the obtained magnetic field vector is H ′ 1 = (Hx 1 , Hy 1 , Hz 1 ) ... (19), and then the vector H ′ 1 is − (θ−θ 0 ) around the Y axis.
Rotate. By this conversion, the obtained magnetic field vector is set to H ′ 2 = (Hx 2 , Hy 2 , Hz 2 ) ... (20), and finally H ′ 2 is rotated by φ 0 around the Z axis.

【0018】〈第2の手順〉説明は図6を参照して行
う。 H’をZ軸のまわりに(90°−φ)回転させる。こ
の変換により、得られる磁界ベクトルを H'3=(Hx3 、Hy3 、Hz3 ) …(21) とし、次に H'3をX軸のまわりに(θ−θ0 )回転させる。この
変換により、得られる磁界ベクトルを H'4=(Hx4 、Hy4 、Hz4 ) …(22) とし、最後に H'4をZ軸のまわりに−(90°−φ0 )回転させ
る。座標点も磁界ベクトルも数学的には表現が同じこと
から、式(10)〜(18)を磁界ベクトルにあてはめると、例
えば手順1で示したH'1、H'2、そして変換結果である
H'0の各軸成分は、 Hx1 =Hxcos(−φ)−Hysin(−φ) …(23) Hy1 =Hxsin(−φ)+Hycos(−φ) …(24) Hz1 =Hz …(25) Hx2 =Hz1 sin -(θ−θ0 ) +Hx1 cos -(θ−θ0) …(26) Hy2 =Hy1 …(27) Hz2 =Hz1 cos -(θ−θ0 ) −Hx1 sin -(θ−θ0) …(28) Hx0 =Hx2 cos φ0 −Hy2 sin φ0 …(29) Hy0 =Hx2 sin φ0 +Hy2 cos φ0 …(30) Hz0 =Hz2 …(31) となる。
<Second Procedure> Description will be given with reference to FIG. Rotate H ′ about the Z axis (90 ° -φ). By this conversion, the obtained magnetic field vector is set to H ′ 3 = (Hx 3 , Hy 3 , Hz 3 ) ... (21), and then H ′ 3 is rotated about the X axis (θ−θ 0 ). This conversion 'and 4 = a (Hx 4, Hy 4, Hz 4) ... (22), the end H' obtained magnetic field vector H 4 to about the Z-axis - (90 ° -φ 0) is rotated . Since the coordinate point and the magnetic field vector have the same mathematical expression, applying equations (10) to (18) to the magnetic field vector gives, for example, H ′ 1 , H ′ 2 shown in step 1, and the conversion result. each axis component of H '0 is, Hx 1 = Hxcos (-φ) -Hysin (-φ) ... (23) Hy 1 = Hxsin (-φ) + Hycos (-φ) ... (24) Hz 1 = Hz ... ( 25) Hx 2 = Hz 1 sin-(θ-θ 0 ) + Hx 1 cos-(θ-θ 0 ) ... (26) Hy 2 = Hy 1 ... (27) Hz 2 = Hz 1 cos-(θ-θ 0 ) −Hx 1 sin − (θ−θ 0 ) ... (28) Hx 0 = Hx 2 cos φ 0 −Hy 2 sin φ 0 … (29) Hy 0 = Hx 2 sin φ 0 + Hy 2 cos φ 0 … (30 ) Hz 0 = Hz 2 (31)

【0019】したがって、角度θ0 、φ0 を定め、H
x、Hy、Hzを計測し、これらの値より、式(8)(9)よ
り、θ、φを求め、次に式(23)〜(25)よりH'1を求め、
これを式(26)〜(28)に代入し、H'2を求め、最後にこれ
を式(29)〜(31)に代入すれば、H'0が求まる。これらの
ことは手順2にも同様にあてはまり、いずれの手順によ
っても、H0 をθ0 、φ0 、Hx、Hy、Hzより求め
ることができる。
Therefore, the angles θ 0 and φ 0 are determined, and H
x, Hy, Hz are measured, θ and φ are obtained from the equations (8) and (9) from these values, and then H ′ 1 is obtained from the equations (23) to (25).
This is substituted into equation (26) ~ (28), H ' seek 2, if finally substituted into equation (29) ~ (31), H' 0 is obtained. The same applies to the procedure 2, and H 0 can be obtained from θ 0 , φ 0 , Hx, Hy, and Hz by any of the procedures.

【0020】[0020]

【発明の効果】この発明によれば、コンピュータのソフ
トウェア処理により、物理的に決まる感度軸に対して、
任意の姿勢に設置しても、測定値をあたかも磁気センサ
を感度軸に一致させたのと、等価な値に変換して出力す
るので、設定時にいろいろ感度軸を一致させるための手
間が不要となり、また感度軸を調整するためのジンバル
構成やモータも不要なので、小型化を実現できる。
According to the present invention, the sensitivity axis physically determined by the software processing of the computer is
Even if it is installed in any posture, the measured value is converted into an equivalent value as if the magnetic sensor was aligned with the sensitivity axis and output, so there is no need for the effort to match the sensitivity axis in various settings. Moreover, since a gimbal configuration and a motor for adjusting the sensitivity axis are not required, it is possible to realize miniaturization.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例磁気測定器の構成を示すブ
ロック図である。
FIG. 1 is a block diagram showing a configuration of a magnetometer according to an embodiment of the present invention.

【図2】地磁気と3軸感度軸の位置関係を説明する図で
ある。
FIG. 2 is a diagram illustrating a positional relationship between geomagnetism and a triaxial sensitivity axis.

【図3】座標点の変換例を説明する図である。FIG. 3 is a diagram illustrating a conversion example of coordinate points.

【図4】3軸まわりの回転移動を説明する図である。FIG. 4 is a diagram illustrating rotational movement about three axes.

【図5】極座標系における磁界ベクトルの回転変換の手
順例を説明する図である。
FIG. 5 is a diagram illustrating a procedure example of rotation conversion of a magnetic field vector in a polar coordinate system.

【図6】極座標系における磁界ベクトルの回転変換の他
の手順例を説明する図である。
FIG. 6 is a diagram illustrating another procedure example of rotation conversion of a magnetic field vector in a polar coordinate system.

【符号の説明】[Explanation of symbols]

1 3軸磁気センサ素子 2 センサ制御器 3 A/D変換器 4 コンピュータ 5 3軸磁気センサ 1 3-axis magnetic sensor element 2 Sensor controller 3 A / D converter 4 Computer 5 3-axis magnetic sensor

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】3軸磁気センサと、この3軸磁気センサの
検知した磁界値をディジタル値に変換する手段と、地磁
気を測定して得られた磁界の3成分より、地磁気の3軸
磁気センサの感度軸に対するずれ角を算出する手段と、
被測定磁界に対し、前記ずれ角に基づいて軸まわりの回
転演算を行い、感度軸に対して所望する関係となるよう
に、被測定磁界値を変換する手段とを備えたことを特徴
とする磁気測定器。
1. A triaxial magnetic sensor for geomagnetism, comprising a triaxial magnetic sensor, means for converting a magnetic field value detected by the triaxial magnetic sensor into a digital value, and three magnetic field components obtained by measuring geomagnetism. Means for calculating the deviation angle with respect to the sensitivity axis of
The magnetic field to be measured is provided with means for performing rotation calculation about the axis based on the deviation angle and converting the measured magnetic field value so as to have a desired relationship with the sensitivity axis. Magnetic measuring instrument.
JP35345293A 1993-12-29 1993-12-29 Magnetometer Expired - Fee Related JP3206268B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35345293A JP3206268B2 (en) 1993-12-29 1993-12-29 Magnetometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35345293A JP3206268B2 (en) 1993-12-29 1993-12-29 Magnetometer

Publications (2)

Publication Number Publication Date
JPH07198809A true JPH07198809A (en) 1995-08-01
JP3206268B2 JP3206268B2 (en) 2001-09-10

Family

ID=18430950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35345293A Expired - Fee Related JP3206268B2 (en) 1993-12-29 1993-12-29 Magnetometer

Country Status (1)

Country Link
JP (1) JP3206268B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11132704A (en) * 1997-10-31 1999-05-21 Shimadzu Corp Magnetic three-dimensional digitizer
JP2009276307A (en) * 2008-05-19 2009-11-26 Shimadzu Corp Magnetic measurement device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11132704A (en) * 1997-10-31 1999-05-21 Shimadzu Corp Magnetic three-dimensional digitizer
JP2009276307A (en) * 2008-05-19 2009-11-26 Shimadzu Corp Magnetic measurement device

Also Published As

Publication number Publication date
JP3206268B2 (en) 2001-09-10

Similar Documents

Publication Publication Date Title
US5126669A (en) Precision measurement of magnetic characteristics of an article with nullification of external magnetic fields
JP4252555B2 (en) Tilt sensor and azimuth measuring device using the same
US4414753A (en) Process for compensating the magnetic disturbances in the determination of a magnetic heading, and devices for carrying out this process
KR20060060666A (en) System for using a 2-axis magnetic sensor for a 3-axis compass solution
KR100655937B1 (en) Geomagnetic sensor for computing azimuth and method thereof
US5394029A (en) Geomagnetic orientation sensor, means, and system
JPH0629732B2 (en) Direction detector for mobile
JP7025215B2 (en) Positioning system and positioning method
WO2006088057A1 (en) Bearing measuring instrument
KR101210394B1 (en) geomagnetism detection device
US6484131B1 (en) Localization and tracking system
CA1220279A (en) Precision magnetometer orientation device
JP2005061969A (en) Azimuthal angle measuring instrument and azimuthal angle measuring method
JPS62287115A (en) Output correcting device for azimuth detecting device
KR100571795B1 (en) Geomagnetic sensor for detecting dip angle and method thereof
JP5017527B2 (en) Electronic compass system
JPH07198809A (en) Magnetism measuring instrument
JPS59114410A (en) Magnetic compass
JP5425671B2 (en) Magnetic field detector
JPH08278137A (en) Bearing output device
JP3576728B2 (en) Attitude detection device
JP5144701B2 (en) Magnetic field detector
KR100743250B1 (en) Portable terminal having for function of navigation
CN110568387B (en) Magnetic gradient tensor-based spacecraft magnetic moment testing method
KR100555668B1 (en) Fluxgate sensor for calibrating azimuth at slope and calibration method thereof

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080706

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090706

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20110706

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110706

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120706

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120706

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130706

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees