JP2009275812A - Automatic transmission controller - Google Patents

Automatic transmission controller Download PDF

Info

Publication number
JP2009275812A
JP2009275812A JP2008127427A JP2008127427A JP2009275812A JP 2009275812 A JP2009275812 A JP 2009275812A JP 2008127427 A JP2008127427 A JP 2008127427A JP 2008127427 A JP2008127427 A JP 2008127427A JP 2009275812 A JP2009275812 A JP 2009275812A
Authority
JP
Japan
Prior art keywords
control
rotational speed
input shaft
hydraulic pressure
gear mechanism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008127427A
Other languages
Japanese (ja)
Other versions
JP5051624B2 (en
Inventor
Motoyoshi Hatta
素嘉 八田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2008127427A priority Critical patent/JP5051624B2/en
Publication of JP2009275812A publication Critical patent/JP2009275812A/en
Application granted granted Critical
Publication of JP5051624B2 publication Critical patent/JP5051624B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To prevent a shock from occurring when restoring a transmission gear mechanism of an automatic transmission from a quasi-neutral state (a state of decreasing an engaging force of a clutch on an engaging side) to a normal state. <P>SOLUTION: When a releasing condition of the quasi-neutral state has been established during quasi-neutral control for making the transmission gear mechanism into the quasi-neutral state, restoring control is performed to restore the transmission gear mechanism from the quasi-neutral state to the normal state. In this restoring control, an oil pressure command value of the clutch on the engaging side is corrected depending on a revolution speed difference between an input shaft revolution speed Nt of the transmission gear mechanism and a target synchronous revolution speed (a revolution speed obtained by multiplying a first-stage transmission ratio by an output shaft revolution speed No of the transmission gear mechanism). As a result, even if a revolution speed difference is small between the input shaft revolution speed Nt of the transmission gear mechanism and the target synchronous revolution speed during quasi-neutral control, the input shaft revolution speed Nt of the transmission gear mechanism is allowed to gently decease during restoring control, thereby moderately proceeding to the target synchronous revolution speed. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、所定条件が成立したときに変速機構を疑似的なニュートラル状態に制御する機能を備えた自動変速機の制御装置に関する発明である。   The present invention relates to an automatic transmission control device having a function of controlling a speed change mechanism to a pseudo neutral state when a predetermined condition is satisfied.

自動車用の自動変速機は、内燃機関の駆動力をトルクコンバータを介して変速機構の入力軸に伝達し、この変速機構で変速して出力軸に伝達し、駆動輪を回転駆動するようにしている。一般に、変速機構は、入力軸と出力軸との間に複数の歯車を配列して、入力軸と出力軸との間に変速比の異なる複数の動力伝達経路を構成し、各動力伝達経路中にクラッチやブレーキ等の摩擦係合要素を設けて、変速要求に応じて各摩擦係合要素に作用させる油圧を個別に制御することで、各摩擦係合要素の係合と解放を選択的に切り換えて、入出力軸間の動力伝達経路を切り換えて変速段(変速比)を切り換えるようにしている。   An automatic transmission for an automobile transmits a driving force of an internal combustion engine to an input shaft of a transmission mechanism through a torque converter, shifts the transmission by the transmission mechanism and transmits it to an output shaft, and rotationally drives a drive wheel. Yes. In general, a speed change mechanism has a plurality of gears arranged between an input shaft and an output shaft to form a plurality of power transmission paths having different speed ratios between the input shaft and the output shaft. Are provided with friction engagement elements such as clutches and brakes, and by individually controlling the hydraulic pressure applied to each friction engagement element in response to a shift request, engagement and release of each friction engagement element are selectively performed. By switching, the power transmission path between the input and output shafts is switched to switch the gear position (speed ratio).

このような自動変速機の制御装置においては、特許文献1(特開2003−202076号公報)に記載されているように、内燃機関の燃費向上を目的として、シフトレバーによりDレンジ(ドライブレンジ)等の走行レンジが選択された状態で車両が停止状態であり且つ内燃機関がアイドル運転状態のときに、走行レンジで走行する際に係合状態にする係合側摩擦係合要素の係合力を低下させて変速機構を疑似的なニュートラル状態(以下「疑似ニュートラル状態」という)に維持するように係合側摩擦係合要素の油圧指令値を制御する疑似ニュートラル制御を行うようにしたものがある。   In such an automatic transmission control device, as described in Patent Document 1 (Japanese Patent Application Laid-Open No. 2003-202076), a D lever (drive range) is used with a shift lever for the purpose of improving the fuel consumption of the internal combustion engine. The engagement force of the engagement side frictional engagement element to be engaged when traveling in the travel range when the vehicle is in a stopped state and the internal combustion engine is in the idle operation state with the travel range such as There is a type in which pseudo neutral control is performed to control the hydraulic pressure command value of the engagement side frictional engagement element so that the transmission mechanism is lowered and maintained in a pseudo neutral state (hereinafter referred to as “pseudo neutral state”). .

このような疑似ニュートラル制御を行うシステムでは、走行レンジが選択されていても、変速機構を疑似ニュートラル状態にしたときには、車輪側にトルクがあまり伝達されないため、車両を登坂路で停車させた状態から発進させるためにブレーキを解除した直後に、車両が後退してしまう可能性がある。   In such a system that performs pseudo-neutral control, even when the travel range is selected, when the speed change mechanism is set to the pseudo-neutral state, torque is not transmitted to the wheels so much that the vehicle is stopped on the uphill road. Immediately after releasing the brake to start the vehicle, the vehicle may move backward.

この対策として、特許文献2(特開2004−225797号公報)に記載されているように、疑似ニュートラル制御の際に、車両を停車させた登坂路の勾配を検出し、登坂路の勾配が大きいほど、トルクコンバータの入力軸回転速度と出力軸回転速度との差(スリップ量)を大きくするように係合側摩擦係合要素の油圧指令値を制御することで車輪に伝達されるトルクを増大させるようにしたものがある。
特開2003−202076号公報(第3頁等参照) 特開2004−225797号公報(第2頁等参照)
As a countermeasure, as described in Patent Document 2 (Japanese Patent Application Laid-Open No. 2004-225797), the slope of the uphill road where the vehicle is stopped is detected during pseudo neutral control, and the slope of the uphill road is large. The torque transmitted to the wheel is increased by controlling the hydraulic pressure command value of the engagement side frictional engagement element so as to increase the difference (slip amount) between the input shaft rotation speed and the output shaft rotation speed of the torque converter. There is something to let you do.
Japanese Patent Laid-Open No. 2003-202076 (see page 3) JP 2004-225797 A (see page 2 etc.)

ところで、本発明者は、疑似ニュートラル制御中に、例えばアクセルペダルが踏み込まれて疑似ニュートラル状態の解除条件が成立して、変速機構を疑似ニュートラル状態から通常状態に復帰させる復帰制御の際に、まず、係合側摩擦係合要素の油圧指令値を所定の一定勾配で増加させる増圧制御を実行し、この増圧制御による変速機構の入力軸回転速度の変化を検出した後に、変速機構の入力軸回転速度の変化率(低下勾配)を目標変化率に一致させるように係合側摩擦係合要素の油圧指令値をフィードバック制御し、このフィードバック制御中に復帰制御の進行率が所定値に達したときに、目標変化率を緩やかにすることで、変速機構の入力軸回転速度を目標同期回転速度(変速機構の出力軸回転速度に1速の変速比を乗算した回転速度)に向かって緩やかに収束させる軟着陸フィードバック制御を行うシステムを研究しているが、その研究過程で次のような新たな課題が判明した。   Incidentally, during the pseudo neutral control, the present inventor first performs the return control for returning the transmission mechanism from the pseudo neutral state to the normal state by, for example, depressing the accelerator pedal and establishing the pseudo neutral state release condition. The pressure increase control for increasing the hydraulic pressure command value of the engagement side frictional engagement element with a predetermined constant gradient is executed, and after detecting the change in the input shaft rotational speed of the speed change mechanism due to the pressure increase control, the input of the speed change mechanism The hydraulic pressure command value of the engagement side frictional engagement element is feedback controlled so that the change rate (decreasing gradient) of the shaft rotation speed matches the target change rate, and the progress rate of the return control reaches a predetermined value during this feedback control. When the target change rate is moderated, the input shaft rotational speed of the transmission mechanism is changed to the target synchronous rotational speed (the rotational speed obtained by multiplying the output shaft rotational speed of the transmission mechanism by the first gear ratio) While studying a system for slowly soft landing feedback control to converge towards, new challenges such as the following were found in the research process.

上記特許文献2の技術のように、疑似ニュートラル制御の際に、車両を停車させた登坂路の勾配が大きいほど、トルクコンバータの入力軸回転速度と出力軸回転速度との差(スリップ量)を大きくするように係合側摩擦係合要素の油圧指令値を制御すると、変速機構の入力軸回転速度と目標同期回転速度との差が小さくなるため、変速機構を疑似ニュートラル状態から通常状態に復帰させる際に、増圧制御とフィードバック制御を実行したときに、変速機構の入力軸回転速度が目標同期回転速度付近に低下するまでの時間が短くなる。このため、フィードバック制御の効果が得られる前に、変速機構の入力軸回転速度が目標同期回転速度に到達してしまい、変速機構の入力軸回転速度を目標同期回転速度に緩やかに収束させることができず、ショックが発生する可能性がある。   As in the technique of Patent Document 2, the difference (slip amount) between the input shaft rotational speed and the output shaft rotational speed of the torque converter is increased as the slope of the uphill road where the vehicle is stopped is increased during pseudo neutral control. When the hydraulic pressure command value of the engagement side frictional engagement element is controlled so as to increase, the difference between the input shaft rotation speed of the transmission mechanism and the target synchronous rotation speed is reduced, so the transmission mechanism is returned from the pseudo-neutral state to the normal state. When the pressure increase control and the feedback control are executed, the time until the input shaft rotation speed of the transmission mechanism decreases to the vicinity of the target synchronous rotation speed is shortened. For this reason, before the effect of the feedback control is obtained, the input shaft rotational speed of the transmission mechanism reaches the target synchronous rotational speed, and the input shaft rotational speed of the transmission mechanism can be gradually converged to the target synchronous rotational speed. There is a possibility that a shock will occur.

本発明は、このような事情を考慮してなされたものであり、従って本発明の目的は、変速機構を疑似ニュートラル状態から通常状態に復帰させる際に、ショックが発生することを未然に防止することができる自動変速機の制御装置を提供することにある。   The present invention has been made in view of such circumstances. Accordingly, an object of the present invention is to prevent a shock from occurring when the transmission mechanism is returned from the pseudo-neutral state to the normal state. An object of the present invention is to provide a control device for an automatic transmission.

上記目的を達成するために、請求項1に係る発明は、内燃機関の動力をトルクコンバータと変速機構を介して車輪側に伝達する車両に適用され、変速機構に設けられた複数の摩擦係合要素に作用させる油圧を個別に制御することで各摩擦係合要素の係合と解放を選択的に切り換えて変速機構の変速段を切り換える油圧制御手段を備え、油圧制御手段は、所定の走行レンジが選択された状態で車両が停止状態であり且つ内燃機関がアイドル運転状態のときに、走行レンジで走行する際に係合状態にする係合側摩擦係合要素の係合力を低下させて変速機構を疑似的なニュートラル状態(以下「疑似ニュートラル状態」という)に維持するように係合側摩擦係合要素の油圧指令値を制御する自動変速機の制御装置において、油圧制御手段は、疑似ニュートラル状態の解除条件が成立したときに、変速機構の入力軸回転速度と、変速機構の出力軸回転速度に車両発進時の変速段の変速比(例えば1速の変速比)を乗算した回転速度(以下「目標同期回転速度」という)との差に応じて係合側摩擦係合要素の油圧指令値を変化させる構成としたものである。   To achieve the above object, the invention according to claim 1 is applied to a vehicle that transmits the power of an internal combustion engine to a wheel side via a torque converter and a speed change mechanism, and a plurality of friction engagements provided in the speed change mechanism. Hydraulic control means is provided with hydraulic control means for selectively switching engagement and disengagement of each friction engagement element by individually controlling the hydraulic pressure applied to the elements to switch the gear stage of the transmission mechanism. When the vehicle is in a stopped state and the internal combustion engine is in an idling operation state, the engagement-side frictional engagement element that is engaged when the vehicle travels in the travel range reduces the engagement force of the engagement-side friction engagement element. In a control device for an automatic transmission that controls a hydraulic pressure command value of an engagement side frictional engagement element so as to maintain a mechanism in a pseudo neutral state (hereinafter referred to as a “pseudo neutral state”), the hydraulic control means includes a pseudo Rotation speed obtained by multiplying the input shaft rotational speed of the speed change mechanism and the output shaft rotational speed of the speed change mechanism by the speed ratio of the gear stage at the start of the vehicle (for example, the speed ratio of the first speed) when the release condition of the total state is satisfied The hydraulic pressure command value of the engagement side frictional engagement element is changed in accordance with the difference from the following (hereinafter referred to as “target synchronous rotation speed”).

この構成では、変速機構を疑似ニュートラル状態に制御する疑似ニュートラル制御中に変速機構の入力軸回転速度と目標同期回転速度との差が小さい場合でも、疑似ニュートラル状態の解除条件が成立して、変速機構を疑似ニュートラル状態から通常状態に復帰させる際に、変速機構の入力軸回転速度と目標同期回転速度との差に応じて係合側摩擦係合要素の油圧指令値を変化させることで、変速機構の入力軸回転速度を緩やかに低下させるように係合側摩擦係合要素の油圧を制御して、変速機構の入力軸回転速度を目標同期回転速度に緩やかに収束させることができ、ショックが発生することを未然に防止することができる。   In this configuration, even if the difference between the input shaft rotational speed of the transmission mechanism and the target synchronous rotational speed is small during pseudo neutral control for controlling the transmission mechanism to the pseudo neutral state, the condition for canceling the pseudo neutral state is satisfied, and When the mechanism is returned from the pseudo-neutral state to the normal state, the hydraulic pressure command value of the engagement side frictional engagement element is changed in accordance with the difference between the input shaft rotational speed of the speed change mechanism and the target synchronous rotational speed. By controlling the hydraulic pressure of the engagement side frictional engagement element so as to gently decrease the input shaft rotation speed of the mechanism, the input shaft rotation speed of the speed change mechanism can be gradually converged to the target synchronous rotation speed. Occurrence can be prevented in advance.

本発明は、請求項2のように、疑似ニュートラル状態の解除条件が成立したときに、係合側摩擦係合要素の油圧指令値を所定勾配で増加させる増圧制御を実行し、該増圧制御による変速機構の入力軸回転速度の変化を検出した後に該入力軸回転速度の変化率を目標値に一致させるように係合側摩擦係合要素の油圧指令値をフィードバック制御するシステムに適用すると良い。このようにすれば、疑似ニュートラル状態の解除条件が成立して、変速機構を疑似ニュートラル状態から通常状態に復帰させる際に、フィードバック制御の効果が得られる前に、変速機構の入力軸回転速度が目標同期回転速度付近に到達してしまう場合でも、変速機構の入力軸回転速度と目標同期回転速度との差に応じて係合側摩擦係合要素の油圧指令値を変化させることで、変速機構の入力軸回転速度を目標同期回転速度に緩やかに収束させることができる。   The present invention executes pressure increase control for increasing the hydraulic pressure command value of the engagement side frictional engagement element with a predetermined gradient when the condition for canceling the pseudo-neutral state is satisfied. When detecting a change in the input shaft rotation speed of the speed change mechanism by the control and applying it to a system that feedback-controls the hydraulic pressure command value of the engagement side frictional engagement element so that the rate of change of the input shaft rotation speed matches the target value good. In this way, when the condition for canceling the pseudo-neutral state is established and the transmission mechanism is returned from the pseudo-neutral state to the normal state, the input shaft rotational speed of the transmission mechanism is reduced before the effect of feedback control is obtained. Even when the vicinity of the target synchronous rotational speed is reached, by changing the hydraulic pressure command value of the engagement side frictional engagement element according to the difference between the input shaft rotational speed of the transmission mechanism and the target synchronous rotational speed, the speed change mechanism The input shaft rotation speed can be gradually converged to the target synchronous rotation speed.

また、請求項3のように、増圧制御による変速機構の入力軸回転速度の変化を検出したときに変速機構の入力軸回転速度と目標同期回転速度との差が所定値以下の場合に、係合側摩擦係合要素の油圧指令値のフィードバック制御をフィードバック制御禁止手段により禁止するようにしても良い。つまり、変速機構の入力軸回転速度と目標同期回転速度との差が所定値以下の場合には、既に変速機構の入力軸回転速度が目標同期回転速度付近であるため、係合側摩擦係合要素の油圧指令値のフィードバック制御を行う必要が無いと判断して、フィードバック制御を禁止する。これにより、変速機構を疑似ニュートラル状態から通常状態に復帰させる際の制御を簡略化することができる。   Further, as in claim 3, when a change in the input shaft rotational speed of the speed change mechanism by the pressure increase control is detected and the difference between the input shaft rotational speed of the speed change mechanism and the target synchronous rotational speed is equal to or less than a predetermined value, Feedback control of the hydraulic pressure command value of the engagement side frictional engagement element may be prohibited by the feedback control prohibiting means. That is, when the difference between the input shaft rotational speed of the speed change mechanism and the target synchronous rotational speed is equal to or smaller than a predetermined value, the input shaft rotational speed of the speed change mechanism is already near the target synchronous rotational speed. It is determined that there is no need to perform feedback control of the hydraulic command value of the element, and feedback control is prohibited. Thereby, it is possible to simplify the control when the transmission mechanism is returned from the pseudo-neutral state to the normal state.

更に、請求項4のように、係合側摩擦係合要素の油圧指令値のフィードバック制御が禁止された場合には、係合側摩擦係合要素の油圧指令値を増圧制御の終了時の油圧指令値に維持するようにすると良い。つまり、既に変速機構の入力軸回転速度が目標同期回転速度付近であるため、係合側摩擦係合要素の油圧指令値のフィードバック制御を禁止した場合には、係合側摩擦係合要素の油圧指令値を増圧制御の終了時の油圧指令値に維持することで、変速機構の入力軸回転速度を目標同期回転速度に緩やかに収束させることができる。   Further, as in claim 4, when the feedback control of the hydraulic pressure command value of the engagement side frictional engagement element is prohibited, the hydraulic pressure command value of the engagement side frictional engagement element is set to the value at the end of the pressure increase control. It is better to maintain the hydraulic pressure command value. In other words, since the input shaft rotation speed of the transmission mechanism is already near the target synchronous rotation speed, if the feedback control of the hydraulic pressure command value of the engagement side frictional engagement element is prohibited, the hydraulic pressure of the engagement side frictional engagement element is By maintaining the command value at the hydraulic pressure command value at the end of the pressure increase control, the input shaft rotation speed of the speed change mechanism can be gradually converged to the target synchronous rotation speed.

以下、本発明を実施するための最良の形態を具体化した一実施例を説明する。
まず、図1及び図2に基づいて自動変速機11の概略構成を説明する。
図2に示すように、エンジン(図示せず)の出力軸には、トルクコンバータ12の入力軸13が連結され、このトルクコンバータ12の出力軸14に、油圧駆動式の変速歯車機構15(変速機構)が連結されている。トルクコンバータ12の内部には、流体継手を構成するポンプインペラ31とタービンランナ32が対向して設けられ、ポンプインペラ31とタービンランナ32との間には、オイルの流れを整流するステータ33が設けられている。ポンプインペラ31は、トルクコンバータ12の入力軸13に連結され、タービンランナ32は、トルクコンバータ12の出力軸14に連結されている。
Hereinafter, an embodiment embodying the best mode for carrying out the present invention will be described.
First, a schematic configuration of the automatic transmission 11 will be described with reference to FIGS. 1 and 2.
As shown in FIG. 2, an input shaft 13 of a torque converter 12 is connected to an output shaft of an engine (not shown), and a hydraulically driven transmission gear mechanism 15 (speed change) is connected to the output shaft 14 of the torque converter 12. Mechanism). Inside the torque converter 12, a pump impeller 31 and a turbine runner 32 constituting a fluid coupling are provided to face each other, and a stator 33 for rectifying the flow of oil is provided between the pump impeller 31 and the turbine runner 32. It has been. The pump impeller 31 is connected to the input shaft 13 of the torque converter 12, and the turbine runner 32 is connected to the output shaft 14 of the torque converter 12.

また、トルクコンバータ12には、入力軸13側と出力軸14側との間を係合又は切り離しするためのロックアップクラッチ16が設けられている。エンジンの出力トルクは、トルクコンバータ12を介して変速歯車機構15に伝達され、変速歯車機構15の複数のギヤ(フロントプラネタリギヤ23やリアプラネタリギヤ22等)で変速されて、車両の駆動輪(前輪又は後輪)に伝達される。変速歯車機構15には、複数の変速段を切り換えるための摩擦係合要素である複数のクラッチRC,HC,LCとブレーキB0,B1が設けられていると共に、ローワンウェイクラッチ34が設けられ、図3に示すように、これら各クラッチRC,HC,LCと各ブレーキB0,B1の係合/解放を油圧で切り換えて、動力を伝達するギヤの組み合わせを切り換えることによって変速比を切り換えるようになっている。   The torque converter 12 is provided with a lock-up clutch 16 for engaging or disengaging between the input shaft 13 side and the output shaft 14 side. The engine output torque is transmitted to the transmission gear mechanism 15 via the torque converter 12, and is shifted by a plurality of gears (front planetary gear 23, rear planetary gear 22 and the like) of the transmission gear mechanism 15 to drive the vehicle drive wheels (front wheels or Is transmitted to the rear wheels. The transmission gear mechanism 15 is provided with a plurality of clutches RC, HC, LC and brakes B0, B1, which are friction engagement elements for switching a plurality of shift stages, and a low one-way clutch 34. As shown in FIG. 3, the gear ratio is switched by switching the engagement / release of each of the clutches RC, HC, LC and the brakes B0, B1 by hydraulic pressure and switching the combination of gears for transmitting power. Yes.

尚、図3は4速自動変速機のクラッチRC,HC,LCとブレーキB0,B1の係合の組合せを示すもので、○印はその変速段で係合状態(トルク伝達状態)に保持されるクラッチとブレーキを示し、無印は解放状態を示している。また、◎印は該当する駆動時にのみ係合されることを示し、△印は発進時だけ解放して所定の車速以上になったときに係合することを示している。   FIG. 3 shows a combination of engagement of the clutches RC, HC, LC and brakes B0, B1 of the 4-speed automatic transmission. The circles are held in the engaged state (torque transmission state) at the gear stage. The clutch and brake are shown, and the unmarked state shows the released state. The symbol ◎ indicates that the engagement is performed only at the time of the corresponding drive, and the symbol Δ indicates that the engagement is performed only when the vehicle is started and the vehicle speed exceeds a predetermined value.

例えば、Dレンジ(ドライブレンジ)のスアクセル踏み込み状態では、車速が上がるにつれて、1速、2速、3速、4速へとアップシフトしていく。1速から2速への変速では、LC及びB1の係合状態からB1を解放し、新たにB0を係合する。2速から3速への変速では、LC及びB0の係合状態からB0を解放し、新たにHCを係合する。3速から4速への変速では、HC及びLCの係合状態からLCを解放し、新たにB0を係合する。   For example, in the D range (drive range) saccel stepping-on state, the vehicle is upshifted to the first speed, the second speed, the third speed, and the fourth speed as the vehicle speed increases. In the shift from the first speed to the second speed, B1 is released from the engaged state of LC and B1, and B0 is newly engaged. In the shift from the second speed to the third speed, B0 is released from the engaged state of LC and B0, and HC is newly engaged. In the shift from the 3rd speed to the 4th speed, the LC is released from the engaged state of the HC and the LC, and B0 is newly engaged.

図1に示すように、変速歯車機構15には、エンジン動力で駆動される油圧ポンプ18が設けられ、作動油(オイル)を貯溜するオイルパン(図示せず)内には、油圧制御回路17が設けられている。この油圧制御回路17は、ライン圧制御回路19、自動変速制御回路20、ロックアップ制御回路21、手動切換弁26等から構成され、オイルパンから油圧ポンプ18で汲み上げられた作動油がライン圧制御回路19を介して自動変速制御回路20とロックアップ制御回路21に供給される。ライン圧制御回路19には、油圧ポンプ18からの油圧を所定のライン圧に制御するライン圧制御用の油圧制御弁(図示せず)が設けられ、自動変速制御回路20には、変速歯車機構15の各クラッチRC,HC,LCと各ブレーキB0,B1に供給する油圧を制御する複数の変速用の油圧制御弁(図示せず)が設けられている。また、ロックアップ制御回路21には、ロックアップクラッチ16に供給する油圧を制御するロックアップ制御用の油圧制御弁(図示せず)が設けられている。   As shown in FIG. 1, the transmission gear mechanism 15 is provided with a hydraulic pump 18 driven by engine power, and a hydraulic control circuit 17 is provided in an oil pan (not shown) for storing hydraulic oil (oil). Is provided. The hydraulic control circuit 17 is composed of a line pressure control circuit 19, an automatic transmission control circuit 20, a lockup control circuit 21, a manual switching valve 26, and the like. The hydraulic oil pumped up from the oil pan by the hydraulic pump 18 is controlled by the line pressure. This is supplied to the automatic transmission control circuit 20 and the lockup control circuit 21 via the circuit 19. The line pressure control circuit 19 is provided with a hydraulic pressure control valve (not shown) for controlling the hydraulic pressure from the hydraulic pump 18 to a predetermined line pressure. The automatic transmission control circuit 20 has a transmission gear mechanism. A plurality of shift hydraulic control valves (not shown) for controlling the hydraulic pressure supplied to the 15 clutches RC, HC, LC and the brakes B0, B1 are provided. The lockup control circuit 21 is provided with a lockup control hydraulic control valve (not shown) for controlling the hydraulic pressure supplied to the lockup clutch 16.

また、ライン圧制御回路19と自動変速制御回路20との間には、シフトレバー25の操作に連動して切り換えられる手動切換弁26が設けられている。シフトレバー25がNレンジ(ニュートラルレンジ)又はPレンジ(パーキングレンジ)に操作されているときには、自動変速制御回路20の油圧制御弁への通電が停止(OFF)された状態になっていても、手動切換弁26によって変速歯車機構15に供給する油圧が変速歯車機構15をニュートラル状態とするように切り換えられる。   A manual switching valve 26 that is switched in conjunction with the operation of the shift lever 25 is provided between the line pressure control circuit 19 and the automatic transmission control circuit 20. When the shift lever 25 is operated to the N range (neutral range) or the P range (parking range), even if the power supply to the hydraulic control valve of the automatic transmission control circuit 20 is stopped (OFF), The hydraulic pressure supplied to the transmission gear mechanism 15 by the manual switching valve 26 is switched so that the transmission gear mechanism 15 is in a neutral state.

一方、エンジンには、エンジン回転速度Ne(トルクコンバータ12の入力軸13の回転速度)を検出するエンジン回転速度センサ27が設けられ、変速歯車機構15には、変速歯車機構15の入力軸回転速度Nt(トルクコンバータ12の出力軸14の回転速度)を検出する入力軸回転速度センサ28と、変速歯車機構15の出力軸回転速度No(変速歯車機構15の出力軸35の回転速度)を検出する出力軸回転速度センサ29が設けられている。   On the other hand, the engine is provided with an engine rotation speed sensor 27 that detects an engine rotation speed Ne (the rotation speed of the input shaft 13 of the torque converter 12). The transmission gear mechanism 15 has an input shaft rotation speed of the transmission gear mechanism 15. An input shaft rotational speed sensor 28 for detecting Nt (rotational speed of the output shaft 14 of the torque converter 12) and an output shaft rotational speed No of the transmission gear mechanism 15 (rotational speed of the output shaft 35 of the transmission gear mechanism 15) are detected. An output shaft rotation speed sensor 29 is provided.

これら各種センサの出力信号は、自動変速機電子制御回路(以下「AT−ECU」と表記する)30に入力される。このAT−ECU30は、マイクロコンピュータを主体として構成され、内蔵されたROM(記憶媒体)に記憶された各ルーチンを実行することで、特許請求の範囲でいう油圧制御手段として機能し、予め設定した変速パターンに従って変速歯車機構15の変速が実行されるように、シフトレバー25の操作位置や運転条件(スロットル開度、車速等)に応じて自動変速制御回路20の各油圧制御弁への通電を制御して、変速歯車機構15の各クラッチRC,HC,LCと各ブレーキB0,B1に作用させる油圧を制御することによって、図3に示すように、各クラッチRC,HC,LCと各ブレーキB0,B1の係合/解放を切り換えて、動力を伝達するギヤの組み合わせを切り換えることで、変速歯車機構15の変速比を切り換える。   Output signals of these various sensors are input to an automatic transmission electronic control circuit (hereinafter referred to as “AT-ECU”) 30. The AT-ECU 30 is configured mainly by a microcomputer, and functions as hydraulic control means in the claims by executing each routine stored in a built-in ROM (storage medium), and is set in advance. Energizing each hydraulic control valve of the automatic transmission control circuit 20 according to the operating position of the shift lever 25 and the operating conditions (throttle opening, vehicle speed, etc.) so that the transmission of the transmission gear mechanism 15 is executed according to the transmission pattern. By controlling the hydraulic pressure applied to each clutch RC, HC, LC and each brake B0, B1 of the transmission gear mechanism 15, as shown in FIG. 3, each clutch RC, HC, LC and each brake B0. , B1 are switched to engage / release, and the gear ratio of the transmission gear mechanism 15 is switched by switching the combination of gears that transmit power.

また、AT−ECU30は、図示しない疑似ニュートラル制御ルーチンを実行することで、図4に示すように、シフトレバー25によりDレンジ(ドライブレンジ)、2レンジ(セカンドレンジ)、Lレンジ(ローレンジ)等の走行レンジが選択された状態で車両が停止状態であり且つエンジンがアイドル運転状態のときに、該走行レンジで走行する際に係合状態にする係合側クラッチ(例えばクラッチLC)の油圧指令値を低下させて係合側クラッチの油圧を低下させることで、係合側クラッチの係合力を低下させて変速歯車機構15を疑似的なニュートラル状態(以下「疑似ニュートラル状態」という)に維持する疑似ニュートラル制御を行う。   Further, the AT-ECU 30 executes a pseudo neutral control routine (not shown), and as shown in FIG. 4, the shift lever 25 causes the D range (drive range), 2 range (second range), L range (low range), etc. When the vehicle is stopped with the travel range selected, and the engine is in the idle operation state, the hydraulic command for the engagement clutch (for example, clutch LC) to be engaged when traveling in the travel range. By reducing the value to lower the hydraulic pressure of the engagement side clutch, the engagement force of the engagement side clutch is reduced to maintain the transmission gear mechanism 15 in a pseudo neutral state (hereinafter referred to as “pseudo neutral state”). Perform pseudo-neutral control.

このような疑似ニュートラル制御を行うシステムでは、走行レンジが選択されていても、変速歯車機構15を疑似ニュートラル状態にしたときには、車輪側にトルクがあまり伝達されないため、車両を登坂路で停車させた状態から発進させるためにブレーキを解除した直後に、車両が後退してしまう可能性がある。   In such a system that performs pseudo-neutral control, even when the travel range is selected, when the transmission gear mechanism 15 is in the pseudo-neutral state, torque is not transmitted to the wheels so much that the vehicle is stopped on an uphill road. Immediately after releasing the brake to start from the state, the vehicle may move backward.

この対策として、図5及び図6に示すように、疑似ニュートラル制御の際に、車両を停車させた登坂路の勾配を検出し、登坂路の勾配が大きいほどトルクコンバータ12の入力軸回転速度と出力軸回転速度との差(つまりエンジン回転速度Neと変速歯車機構15の入力軸回転速度Ntとの差)であるスリップ量を大きくするように係合側クラッチの油圧指令値を制御することで車輪に伝達されるトルクを増大させるようにしても良い。   As a countermeasure against this, as shown in FIGS. 5 and 6, the slope of the uphill road where the vehicle is stopped is detected during pseudo neutral control, and the higher the slope of the uphill road, the higher the input shaft rotation speed of the torque converter 12 becomes. By controlling the hydraulic pressure command value of the engagement side clutch so as to increase the slip amount which is the difference from the output shaft rotational speed (that is, the difference between the engine rotational speed Ne and the input shaft rotational speed Nt of the transmission gear mechanism 15). You may make it increase the torque transmitted to a wheel.

また、AT−ECU30は、後述する図7及び図8の各ルーチンを実行することで、図4に示すように、例えば疑似ニュートラル制御中にアクセルペダルが踏み込まれて疑似ニュートラル状態の解除条件が成立したときに、変速歯車機構15を疑似ニュートラル状態から通常状態に復帰させる復帰制御を実行する。   Further, the AT-ECU 30 executes the routines shown in FIGS. 7 and 8 to be described later, and, as shown in FIG. 4, for example, the accelerator pedal is depressed during the pseudo neutral control, and the release condition for the pseudo neutral state is satisfied. When this is done, return control is performed to return the transmission gear mechanism 15 from the pseudo-neutral state to the normal state.

この復帰制御では、図4に示すように、まず、疑似ニュートラル状態の解除条件が成立した時点t1 で、係合側クラッチの油圧指令値を所定の一定勾配で増加させる増圧制御を実行する。これにより、係合側クラッチの油圧が上昇して係合側クラッチの係合力が増加するため、変速歯車機構15の入力軸回転速度Ntが低下し始める。   In this return control, as shown in FIG. 4, first, at time t1 when the condition for canceling the pseudo-neutral state is satisfied, pressure increase control is executed to increase the hydraulic pressure command value of the engagement side clutch with a predetermined constant gradient. As a result, the hydraulic pressure of the engagement side clutch is increased and the engagement force of the engagement side clutch is increased, so that the input shaft rotation speed Nt of the transmission gear mechanism 15 starts to decrease.

この後、増圧制御による変速歯車機構15の入力軸回転速度Ntの変化を検出した時点t2 で、変速歯車機構15の入力軸回転速度Ntの変化率(低下勾配)を目標変化率に一致させるように係合側クラッチの油圧指令値を制御するF/B制御(フィードバック制御)を実行し、このF/B制御中に復帰制御の進行率が所定値に達した時点t3 で、目標変化率を緩やかにすることで、変速歯車機構15の入力軸回転速度Ntを目標同期回転速度(変速歯車機構15の出力軸回転速度Noに車両発進時の変速段である1速の変速比を乗算した回転速度)に向かって緩やかに収束させる軟着陸F/B制御を行う。   Thereafter, at the time t2 when the change in the input shaft rotational speed Nt of the transmission gear mechanism 15 due to the pressure increase control is detected, the change rate (decrease gradient) of the input shaft rotational speed Nt of the transmission gear mechanism 15 is made to coincide with the target change rate. F / B control (feedback control) for controlling the hydraulic pressure command value of the engagement side clutch is executed, and at the time t3 when the rate of progress of return control reaches a predetermined value during this F / B control, the target change rate The input shaft rotational speed Nt of the transmission gear mechanism 15 is multiplied by the target synchronous rotational speed (the output shaft rotational speed No of the transmission gear mechanism 15 is multiplied by the speed ratio of the first speed that is the gear stage at the start of the vehicle. The soft landing F / B control is performed to converge gently toward the rotation speed.

この後、変速歯車機構15の入力軸回転速度Ntと目標同期回転速度との差が判定値以下になって1速の変速比が成立した時点t4 で、係合側クラッチの油圧指令値を最高圧まで上昇させる終了制御を実行して、係合側クラッチの油圧を最高圧まで上昇させて、復帰制御を完了する。   Thereafter, at the time point t4 when the difference between the input shaft rotational speed Nt of the transmission gear mechanism 15 and the target synchronous rotational speed becomes equal to or smaller than the determination value and the first gear ratio is established, the hydraulic command value for the engaging clutch is maximized. End control for increasing the pressure to a high pressure is executed to increase the hydraulic pressure of the engagement side clutch to the maximum pressure, thereby completing the return control.

ところで、図5に示すように、疑似ニュートラル制御の際に、車両を停車させた登坂路の勾配が大きいほど、トルクコンバータ12の入力軸回転速度と出力軸回転速度との差(つまりエンジン回転速度Neと変速歯車機構15の入力軸回転速度Ntとの差)であるスリップ量を大きくするように係合側クラッチの油圧指令値を制御すると、変速歯車機構15の入力軸回転速度Ntと目標同期回転速度との差が小さくなるため、変速歯車機構15を疑似ニュートラル状態から通常状態に復帰させる際に、増圧制御とF/B制御を実行したときに、変速歯車機構15の入力軸回転速度Ntが目標同期回転速度付近に低下するまでの時間が短くなる。このため、何もしないと、F/B制御の効果が得られる前に、変速歯車機構15の入力軸回転速度Ntが目標同期回転速度に到達してしまい、変速歯車機構15の入力軸回転速度Ntを目標同期回転速度に緩やかに収束させることができず、ショックが発生する可能性がある。   By the way, as shown in FIG. 5, in pseudo neutral control, the difference between the input shaft rotational speed and the output shaft rotational speed of the torque converter 12 (that is, the engine rotational speed) is increased as the slope of the uphill road where the vehicle is stopped is larger. When the hydraulic pressure command value of the engagement side clutch is controlled so as to increase the slip amount, which is the difference between Ne and the input shaft rotation speed Nt of the transmission gear mechanism 15, the input shaft rotation speed Nt of the transmission gear mechanism 15 and the target synchronization are controlled. Since the difference with the rotational speed becomes small, when the pressure increase control and the F / B control are executed when the speed change gear mechanism 15 is returned from the pseudo neutral state to the normal state, the input shaft speed of the speed change gear mechanism 15 is increased. The time until Nt decreases to near the target synchronous rotation speed is shortened. Therefore, if nothing is done, the input shaft rotational speed Nt of the transmission gear mechanism 15 reaches the target synchronous rotational speed before the effect of the F / B control is obtained, and the input shaft rotational speed of the transmission gear mechanism 15 is reached. Nt cannot be gradually converged to the target synchronous rotation speed, and a shock may occur.

この対策して、本実施例では、図6に示すように、疑似ニュートラル状態の解除条件が成立して、変速歯車機構15を疑似ニュートラル状態から通常状態に復帰させる復帰制御を行う際に、変速歯車機構15の入力軸回転速度Ntと目標同期回転速度(変速歯車機構15の出力軸回転速度Noに1速の変速比を乗算した回転速度)との回転速度差に応じて係合側クラッチの油圧指令値を補正する。これにより、疑似ニュートラル制御中に変速歯車機構15の入力軸回転速度Ntと目標同期回転速度との回転速度差が小さい場合でも、復帰制御の際に変速歯車機構15の入力軸回転速度Ntを緩やかに低下させるように係合側クラッチの油圧指令値を制御して、変速歯車機構15の入力軸回転速度Ntを目標同期回転速度に緩やかに収束させることが可能となる。   As a countermeasure against this, in this embodiment, as shown in FIG. 6, when the return control for returning the transmission gear mechanism 15 from the pseudo-neutral state to the normal state is performed when the release condition for the pseudo-neutral state is established, Depending on the rotational speed difference between the input shaft rotational speed Nt of the gear mechanism 15 and the target synchronous rotational speed (the rotational speed obtained by multiplying the output shaft rotational speed No of the transmission gear mechanism 15 by the first gear ratio), Correct the hydraulic pressure command value. As a result, even if the rotational speed difference between the input shaft rotational speed Nt of the transmission gear mechanism 15 and the target synchronous rotational speed is small during pseudo neutral control, the input shaft rotational speed Nt of the transmission gear mechanism 15 is gradually reduced during the return control. By controlling the hydraulic pressure command value of the engagement side clutch so as to decrease the input shaft rotational speed, the input shaft rotational speed Nt of the transmission gear mechanism 15 can be gradually converged to the target synchronous rotational speed.

以上説明した疑似ニュートラル状態からの復帰制御は、AT−ECU30によって図7及び図8の各ルーチンに従って実行される。以下、これらの各ルーチンの処理内容を説明する。   The return control from the pseudo-neutral state described above is executed by the AT-ECU 30 according to the routines shown in FIGS. Hereinafter, the processing content of each of these routines will be described.

[復帰制御ルーチン]
図7に示す復帰制御ルーチンは、AT−ECU30の電源オン中に所定周期で実行される。本ルーチンが起動されると、まず、ステップ101で、疑似ニュートラル状態の解除条件が成立したか否かを、例えば、疑似ニュートラル制御中にアクセルペダルが踏み込まれたか否か、ブレーキ操作が解除されたか否か等によって判定する。
[Return control routine]
The return control routine shown in FIG. 7 is executed at predetermined intervals while the AT-ECU 30 is powered on. When this routine is started, first, in step 101, it is determined whether the condition for canceling the pseudo neutral state is satisfied, for example, whether the accelerator pedal is depressed during the pseudo neutral control, whether the brake operation is released. Judgment is based on whether or not.

このステップ101で、疑似ニュートラル状態の解除条件が不成立であると判定された場合には、ステップ102に進み、現在(つまり復帰制御開始前)の変速歯車機構15の入力軸回転速度Ntと目標同期回転速度(変速歯車機構15の出力軸回転速度Noに車両発進時の変速段である1速の変速比を乗算した回転速度)との回転速度差を演算してメモリに記憶する。   If it is determined in step 101 that the condition for canceling the pseudo-neutral state is not satisfied, the process proceeds to step 102 where the input shaft rotational speed Nt of the transmission gear mechanism 15 (that is, before the return control is started) and the target synchronization are performed. The rotational speed difference with the rotational speed (the rotational speed obtained by multiplying the output shaft rotational speed No of the transmission gear mechanism 15 by the speed ratio of the first speed, which is the shift stage when the vehicle starts) is calculated and stored in the memory.

その後、上記ステップ101で、疑似ニュートラル状態の解除条件が成立していると判定された時点で、ステップ103に進み、復帰制御の段階を判定するための制御段階フラグFlagANを初期値「0」にリセットした後、ステップ104に進み、図8の係合側クラッチ油圧制御ルーチンを実行する。
[係合側クラッチ油圧制御ルーチン]
図8に示す係合側クラッチ油圧制御ルーチンは、前記図7の復帰制御ルーチンのステップ104で実行されるサブルーチンである。本ルーチンが起動されると、まず、ステップ201で、制御段階フラグFlagANの値が0〜4のいずれであるか否かで、現在の復帰制御の段階を判定する。
Thereafter, when it is determined in step 101 that the condition for canceling the pseudo-neutral state is satisfied, the process proceeds to step 103, and the control stage flag FlagAN for determining the stage of return control is set to the initial value “0”. After resetting, the routine proceeds to step 104, where the engagement side clutch hydraulic pressure control routine of FIG. 8 is executed.
[Engagement side clutch hydraulic control routine]
The engagement side clutch hydraulic pressure control routine shown in FIG. 8 is a subroutine executed in step 104 of the return control routine of FIG. When this routine is started, first, in step 201, the current return control stage is determined depending on whether the value of the control stage flag FlagAN is 0 to 4.

係合側クラッチ油圧制御を開始する時点では、制御段階フラグFlagANは初期値「0」に設定されているため、ステップ202に進み、係合側クラッチの油圧指令値を所定の一定勾配で増加させる増圧制御を実行する。これにより、係合側クラッチの油圧が上昇して係合側クラッチの係合力が増加するため、変速歯車機構15の入力軸回転速度Ntが低下し始める。   Since the control stage flag FlagAN is set to the initial value “0” at the time of starting the engagement side clutch hydraulic pressure control, the process proceeds to step 202 to increase the hydraulic pressure command value of the engagement side clutch at a predetermined constant gradient. Execute pressure increase control. As a result, the hydraulic pressure of the engagement side clutch is increased and the engagement force of the engagement side clutch is increased, so that the input shaft rotation speed Nt of the transmission gear mechanism 15 starts to decrease.

この後、ステップ203に進み、変速歯車機構15の入力軸回転速度Ntと目標同期回転速度(変速歯車機構15の出力軸回転速度Noに1速の変速比を乗算した回転速度)との回転速度差に応じて係合側クラッチの油圧指令値を補正する。この場合、図9に示す減量補正値のマップを参照して、変速歯車機構15の入力軸回転速度Ntと目標同期回転速度との回転速度差に応じた減量補正値を算出し、増圧制御中に係合側クラッチのベース油圧指令値から減量補正値を減算することで係合側クラッチの油圧指令値を補正して、最終的な係合側クラッチの油圧指令値を求める。   Thereafter, the routine proceeds to step 203, where the rotational speed between the input shaft rotational speed Nt of the transmission gear mechanism 15 and the target synchronous rotational speed (the rotational speed obtained by multiplying the output shaft rotational speed No of the transmission gear mechanism 15 by the first gear ratio). The hydraulic pressure command value of the engagement side clutch is corrected according to the difference. In this case, a reduction correction value corresponding to the rotational speed difference between the input shaft rotation speed Nt of the transmission gear mechanism 15 and the target synchronous rotation speed is calculated with reference to the map of the reduction correction value shown in FIG. By subtracting the reduction correction value from the base hydraulic pressure command value of the engagement side clutch, the hydraulic pressure command value of the engagement side clutch is corrected to obtain the final hydraulic pressure command value of the engagement side clutch.

図9に示す減量補正値のマップは、変速歯車機構15の入力軸回転速度Ntと目標同期回転速度との回転速度差が小さいほど減量補正値が大きくなって、係合側クラッチの油圧指令値が緩やかに増加するように設定されている。これにより、変速歯車機構15の入力軸回転速度Ntと目標同期回転速度との回転速度差が小さいほど係合側クラッチの係合力を緩やかに増加させて変速歯車機構15の入力軸回転速度Ntを緩やかに低下させるように設定されている。   The map of the reduction correction value shown in FIG. 9 shows that the reduction correction value increases as the rotational speed difference between the input shaft rotation speed Nt of the transmission gear mechanism 15 and the target synchronous rotation speed is smaller. Is set to increase slowly. As a result, the smaller the rotational speed difference between the input shaft rotational speed Nt of the transmission gear mechanism 15 and the target synchronous rotational speed is, the more gently the engagement force of the engagement side clutch is increased, and the input shaft rotational speed Nt of the transmission gear mechanism 15 is increased. It is set to decrease gradually.

尚、変速歯車機構15の入力軸回転速度Ntと目標同期回転速度との回転速度差に応じて係合側クラッチの油圧指令値を補正する方法は、適宜変更しても良く、例えば、変速歯車機構15の入力軸回転速度Ntと目標同期回転速度との回転速度差に応じた補正係数をマップ等により算出し、係合側クラッチのベース油圧指令値に補正係数を乗算することで係合側クラッチの油圧指令値を補正して、最終的な係合側クラッチの油圧指令値を求めるようにしても良い。或は、変速歯車機構15の入力軸回転速度Ntと目標同期回転速度との回転速度差に応じて最終的な係合側クラッチの油圧指令値をマップ等により求めるようにしても良い。その際、変速歯車機構15の入力軸回転速度Ntと目標同期回転速度との回転速度差に応じて係合側クラッチの油圧指令値を連続的に変化させるようにしても良いし、段階的に切り換えるようにしても良い。   The method of correcting the hydraulic pressure command value of the engagement side clutch according to the rotational speed difference between the input shaft rotational speed Nt of the transmission gear mechanism 15 and the target synchronous rotational speed may be changed as appropriate. A correction coefficient corresponding to the rotation speed difference between the input shaft rotation speed Nt of the mechanism 15 and the target synchronous rotation speed is calculated from a map or the like, and the base hydraulic pressure command value of the engagement clutch is multiplied by the correction coefficient to thereby engage the engagement side. The clutch hydraulic pressure command value may be corrected to obtain a final engagement clutch hydraulic pressure command value. Alternatively, the final hydraulic pressure command value of the engagement side clutch may be obtained by a map or the like according to the rotational speed difference between the input shaft rotational speed Nt of the transmission gear mechanism 15 and the target synchronous rotational speed. At this time, the hydraulic pressure command value of the engaging clutch may be continuously changed according to the rotational speed difference between the input shaft rotational speed Nt of the transmission gear mechanism 15 and the target synchronous rotational speed, or stepwise. You may make it switch.

この後、ステップ204に進み、増圧制御により変速歯車機構15の入力軸回転速度Ntが変化したかを、例えば、復帰制御開始前(増圧制御開始前)の入力軸回転速度Ntと現在の入力軸回転速度Ntとの差が所定値以上になったか否かによって判定し、入力軸回転速度Ntが変化したと判定された時点で、ステップ205に進み、変速歯車機構15の入力軸回転速度Ntと目標同期回転速度との回転速度差が所定値以下であるか否かを判定する。   Thereafter, the process proceeds to step 204, where whether the input shaft rotational speed Nt of the transmission gear mechanism 15 has changed due to the pressure increase control is determined, for example, by the input shaft rotational speed Nt before the start of the return control (before the pressure increase control starts) and the current Determination is made based on whether or not the difference from the input shaft rotational speed Nt is equal to or greater than a predetermined value. When it is determined that the input shaft rotational speed Nt has changed, the routine proceeds to step 205 where the input shaft rotational speed of the transmission gear mechanism 15 is changed. It is determined whether or not the rotational speed difference between Nt and the target synchronous rotational speed is equal to or less than a predetermined value.

このステップ205で、変速歯車機構15の入力軸回転速度Ntと目標同期回転速度との回転速度差が所定値以下であると判定された場合には、既に変速歯車機構15の入力軸回転速度Ntが目標同期回転速度付近であるため、F/B制御を行う必要が無いと判断して、ステップ206に進み、制御段階フラグFlagANを「1」に設定する。   If it is determined in step 205 that the rotational speed difference between the input shaft rotational speed Nt of the transmission gear mechanism 15 and the target synchronous rotational speed is equal to or smaller than a predetermined value, the input shaft rotational speed Nt of the transmission gear mechanism 15 has already been determined. Since it is near the target synchronous rotation speed, it is determined that it is not necessary to perform the F / B control, the process proceeds to step 206, and the control stage flag FlagAN is set to “1”.

一方、上記ステップ205で、変速歯車機構15の入力軸回転速度Ntと目標同期回転速度との回転速度差が所定値よりも大きいと判定された場合には、まだ変速歯車機構15の入力軸回転速度Ntが目標同期回転速度付近に到達していないため、F/B制御を行う必要が有ると判断して、ステップ207に進み、制御段階フラグFlagANを「2」に設定する。   On the other hand, if it is determined in step 205 that the rotational speed difference between the input shaft rotational speed Nt of the transmission gear mechanism 15 and the target synchronous rotational speed is greater than a predetermined value, the input shaft rotational speed of the transmission gear mechanism 15 is still Since the speed Nt has not reached the vicinity of the target synchronous rotation speed, it is determined that the F / B control needs to be performed, the process proceeds to step 207, and the control stage flag FlagAN is set to “2”.

上記ステップ206で、制御段階フラグFlagANが「1」に設定された場合(入力軸回転速度Ntと目標同期回転速度との回転速度差が所定値以下の場合)には、次回の本ルーチンの起動時に、ステップ201からステップ208に進み、F/B制御を禁止して、係合側クラッチの油圧指令値を増圧制御の終了時の油圧指令値に維持することで、変速歯車機構15の入力軸回転速度Ntを目標同期回転速度に緩やかに収束させる。   When the control stage flag FlagAN is set to “1” in the above step 206 (when the rotational speed difference between the input shaft rotational speed Nt and the target synchronous rotational speed is equal to or smaller than a predetermined value), the next activation of this routine is performed. Sometimes, from step 201 to step 208, the F / B control is prohibited and the hydraulic pressure command value of the engagement side clutch is maintained at the hydraulic pressure command value at the end of the pressure increase control. The shaft rotational speed Nt is gradually converged to the target synchronous rotational speed.

この後、ステップ209に進み、1速の変速比が成立したか否かを、例えば、変速歯車機構15の入力軸回転速度Ntと目標同期回転速度との回転速度差が判定値以下の状態が所定時間以上継続したか否かによって判定し、1速の変速比が成立したと判定された時点で、ステップ210に進み、制御段階フラグFlagANを「4」に設定する。   Thereafter, the process proceeds to step 209 to determine whether or not the first gear ratio is established, for example, whether the rotational speed difference between the input shaft rotational speed Nt of the transmission gear mechanism 15 and the target synchronous rotational speed is equal to or smaller than a determination value. It is determined by whether or not it has continued for a predetermined time or more. When it is determined that the first gear ratio is established, the process proceeds to step 210, and the control stage flag FlagAN is set to “4”.

これにより、次回の本ルーチンの起動時に、ステップ201からステップ217に進み、係合側クラッチの油圧指令値を最高圧に制御まで上昇させる終了制御を実行して、係合側クラッチの油圧を最高圧まで上昇させた後、ステップ215に進み、制御段階フラグFlagANを初期値「0」にリセットして、復帰制御を完了する。   As a result, at the next activation of this routine, the routine proceeds from step 201 to step 217, where the end control for increasing the hydraulic pressure command value of the engagement side clutch to the maximum pressure is executed, and the hydraulic pressure of the engagement side clutch is maximized. After the pressure is raised to a high pressure, the process proceeds to step 215, the control stage flag FlagAN is reset to the initial value “0”, and the return control is completed.

これに対して、上記ステップ207で制御段階フラグFlagANが「2」に設定された場合(入力軸回転速度Ntと目標同期回転速度との回転速度差が所定値よりも大きい場合)には、次回の本ルーチンの起動時に、ステップ201からステップ211に進み、変速歯車機構15の入力軸回転速度Ntの変化率(低下勾配)を目標変化率に一致させるように係合側クラッチの油圧指令値を制御するF/B制御を実行する。   On the other hand, when the control stage flag FlagAN is set to “2” in step 207 (when the rotational speed difference between the input shaft rotational speed Nt and the target synchronous rotational speed is greater than a predetermined value), the next time When this routine is started, the routine proceeds from step 201 to step 211, where the engagement clutch hydraulic pressure command value is set so that the rate of change (decrease gradient) of the input shaft rotational speed Nt of the transmission gear mechanism 15 matches the target rate of change. The F / B control to be controlled is executed.

この後、ステップ212に進み、復帰制御の進行率が所定値に達したか否かを判定する。この際、復帰制御の進行率は、例えば、(現在の入力軸回転速度Ntと目標同期回転速度との回転速度差)/(復帰制御開始前の入力軸回転速度Ntと目標同期回転速度との回転速度差)とする。   Thereafter, the process proceeds to step 212, and it is determined whether or not the progress rate of the return control has reached a predetermined value. At this time, the progress rate of the return control is, for example, (the difference between the current input shaft rotational speed Nt and the target synchronous rotational speed) / (the input shaft rotational speed Nt before the start of the return control and the target synchronous rotational speed). Rotational speed difference).

このステップ212で、復帰制御の進行率が所定値に達したと判定された時点で、ステップ213に進み、制御段階フラグFlagANを「3」に設定する。
これにより、次回の本ルーチンの起動時に、ステップ201からステップ214に進み、目標変化率を緩やかにすることで、変速歯車機構15の入力軸回転速度Ntを目標同期回転速度に向かって緩やかに収束させる軟着陸F/B制御を行う。
When it is determined in step 212 that the return control progress rate has reached a predetermined value, the process proceeds to step 213 and the control stage flag FlagAN is set to “3”.
As a result, at the next startup of this routine, the routine proceeds from step 201 to step 214, where the target change rate is made gentle so that the input shaft rotational speed Nt of the transmission gear mechanism 15 converges gradually toward the target synchronous rotational speed. The soft landing F / B control is performed.

この後、ステップ215に進み、1速の変速比が成立したか否かを、例えば、変速歯車機構15の入力軸回転速度Ntと目標同期回転速度との回転速度差が判定値以下の状態が所定時間以上継続したか否かによって判定し、1速の変速比が成立したと判定された時点で、ステップ216に進み、制御段階フラグFlagANを「4」に設定する。   Thereafter, the process proceeds to step 215 to determine whether or not the first gear ratio has been established, for example, whether the rotational speed difference between the input shaft rotational speed Nt of the transmission gear mechanism 15 and the target synchronous rotational speed is equal to or smaller than a determination value. It is determined by whether or not it has continued for a predetermined time or more. When it is determined that the first gear ratio is established, the process proceeds to step 216, and the control stage flag FlagAN is set to “4”.

これにより、次回の本ルーチンの起動時に、ステップ201からステップ217に進み、係合側クラッチの油圧指令値を最高圧に制御まで上昇させる終了制御を実行して、係合側クラッチの油圧を最高圧まで上昇させた後、ステップ218に進み、制御段階フラグFlagANを初期値「0」にリセットして、復帰制御を完了する。   As a result, at the next activation of this routine, the routine proceeds from step 201 to step 217, where the end control for increasing the hydraulic pressure command value of the engagement side clutch to the maximum pressure is executed, and the hydraulic pressure of the engagement side clutch is maximized. After the pressure is raised to a high pressure, the process proceeds to step 218, where the control stage flag FlagAN is reset to the initial value “0” to complete the return control.

以上説明した本実施例では、疑似ニュートラル状態の解除条件が成立して、変速歯車機構15を疑似ニュートラル状態から通常状態に復帰させる復帰制御を行う際に、変速歯車機構15の入力軸回転速度Ntと目標同期回転速度(変速歯車機構15の出力軸回転速度Noに1速の変速比を乗算した回転速度)との回転速度差に応じて係合側クラッチの油圧指令値を補正するようにしたので、疑似ニュートラル制御中に変速歯車機構15の入力軸回転速度Ntと目標同期回転速度との回転速度差が小さく、F/B制御の効果が得られる前に、変速歯車機構15の入力軸回転速度Ntが目標同期回転速度付近に到達してしまう場合でも、復帰制御の際に変速歯車機構15の入力軸回転速度Ntを緩やかに低下させるように係合側クラッチの油圧指令値を制御して、変速歯車機構15の入力軸回転速度Ntを目標同期回転速度に緩やかに収束させることができ、ショックが発生することを防止することができる。   In the present embodiment described above, when the release condition for the pseudo-neutral state is satisfied and the return control for returning the transmission gear mechanism 15 from the pseudo-neutral state to the normal state is performed, the input shaft rotation speed Nt of the transmission gear mechanism 15 is performed. And the target synchronous rotational speed (the rotational speed obtained by multiplying the output shaft rotational speed No of the transmission gear mechanism 15 by the speed ratio of the first gear) is corrected in accordance with the hydraulic command value of the engagement side clutch. Therefore, the rotational speed difference between the input shaft rotational speed Nt of the transmission gear mechanism 15 and the target synchronous rotational speed is small during the pseudo neutral control, and before the effect of the F / B control is obtained, the input shaft rotation of the transmission gear mechanism 15 is achieved. Even when the speed Nt reaches the vicinity of the target synchronous rotation speed, the hydraulic finger of the engagement side clutch is gradually decreased so that the input shaft rotation speed Nt of the transmission gear mechanism 15 is gradually reduced during the return control. By controlling the value, the input shaft rotational speed Nt of the transmission gear mechanism 15 can be gradually converged to the target synchronizing speed, it is possible to prevent the shock occurs.

また、本実施例では、増圧制御による変速歯車機構15の入力軸回転速度Ntの変化を検出したときに、変速歯車機構15の入力軸回転速度Ntと目標同期回転速度との差が所定値以下の場合には、既に変速歯車機構15の入力軸回転速度Ntが目標同期回転速度付近であるため、F/B制御を行う必要が無いと判断して、F/B制御を禁止して、係合側クラッチの油圧指令値を増圧制御の終了時の油圧指令値に維持するようにしたので、変速歯車機構15を疑似ニュートラル状態から通常状態に復帰させる復帰制御を簡略化しながら、変速歯車機構15の入力軸回転速度Ntを目標同期回転速度に緩やかに収束させることができる。   In this embodiment, when a change in the input shaft rotational speed Nt of the transmission gear mechanism 15 due to the pressure increase control is detected, the difference between the input shaft rotational speed Nt of the transmission gear mechanism 15 and the target synchronous rotational speed is a predetermined value. In the following cases, since the input shaft rotational speed Nt of the transmission gear mechanism 15 is already near the target synchronous rotational speed, it is determined that there is no need to perform the F / B control, and the F / B control is prohibited. Since the hydraulic pressure command value of the engagement side clutch is maintained at the hydraulic pressure command value at the end of the pressure increase control, the speed change gear mechanism 15 is simplified while the return control for returning from the pseudo neutral state to the normal state is performed. The input shaft rotational speed Nt of the mechanism 15 can be gradually converged to the target synchronous rotational speed.

尚、上記実施例では、変速歯車機構15を疑似ニュートラル状態から通常状態に復帰させる復帰制御を行う際に、増圧制御とF/B制御を行うシステムに本発明を適用したが、復帰制御の方法は適宜変更しても良く、例えば、復帰制御の際に、増圧制御やF/B制御を行わずに、係合側クラッチの油圧指令値を見込みで制御するシステムに本発明を適用しても良い。   In the above embodiment, the present invention is applied to a system that performs pressure increase control and F / B control when performing return control for returning the transmission gear mechanism 15 from the pseudo neutral state to the normal state. The method may be changed as appropriate. For example, the present invention is applied to a system in which the hydraulic pressure command value of the engagement side clutch is controlled with the expectation without performing the pressure increase control or the F / B control in the return control. May be.

本発明の一実施例における自動変速機全体の概略構成図である。It is a schematic block diagram of the whole automatic transmission in one Example of this invention. 自動変速機の機械的構成を模式的に示す図である。It is a figure which shows typically the mechanical structure of an automatic transmission. 各変速段毎のクラッチとブレーキの係合/解放の組み合わせを示す図である。It is a figure which shows the combination of engagement / release of the clutch and brake for each gear position. 疑似ニュートラル制御及び復帰制御を説明するタイムチャートである。It is a time chart explaining pseudo neutral control and return control. 比較例の復帰制御を説明するタイムチャートである。It is a time chart explaining the return control of a comparative example. 本実施例の復帰制御を説明するタイムチャートである。It is a time chart explaining the return control of a present Example. 復帰制御ルーチンの処理の流れを説明するフローチャートである。It is a flowchart explaining the flow of a process of a return control routine. 係合側クラッチ油圧制御ルーチンの処理の流れを説明するフローチャートである。It is a flowchart explaining the flow of a process of an engagement side clutch hydraulic pressure control routine. 減量補正値のマップの一例を概念的に示す図である。It is a figure which shows notionally an example of the map of a weight reduction correction value.

符号の説明Explanation of symbols

11…自動変速機、12…トルクコンバータ、15…変速歯車機構(変速機構)、16…ロックアップクラッチ、17…油圧制御回路、20…自動変速制御回路、25…シフトレバー、27…エンジン回転速度センサ、28…入力軸回転速度センサ、29…出力軸回転速度センサ、30…AT−ECU(油圧制御手段)、RC,HC,LC…クラッチ(摩擦係合要素)、B0,B1…ブレーキ(摩擦係合要素)   DESCRIPTION OF SYMBOLS 11 ... Automatic transmission, 12 ... Torque converter, 15 ... Transmission gear mechanism (transmission mechanism), 16 ... Lock-up clutch, 17 ... Hydraulic control circuit, 20 ... Automatic transmission control circuit, 25 ... Shift lever, 27 ... Engine speed Sensors 28... Input shaft rotational speed sensor 29... Output shaft rotational speed sensor 30... AT-ECU (hydraulic control means), RC, HC, LC .. clutch (friction engagement element), B 0, B 1. Engaging element)

Claims (4)

内燃機関の動力をトルクコンバータと変速機構を介して車輪側に伝達する車両に適用され、前記変速機構に設けられた複数の摩擦係合要素に作用させる油圧を個別に制御することで各摩擦係合要素の係合と解放を選択的に切り換えて前記変速機構の変速段を切り換える油圧制御手段を備え、前記油圧制御手段は、所定の走行レンジが選択された状態で車両が停止状態であり且つ内燃機関がアイドル運転状態のときに、前記走行レンジで走行する際に係合状態にする係合側摩擦係合要素の係合力を低下させて前記変速機構を疑似的なニュートラル状態(以下「疑似ニュートラル状態」という)に維持するように前記係合側摩擦係合要素の油圧指令値を制御する自動変速機の制御装置において、
前記油圧制御手段は、前記疑似ニュートラル状態の解除条件が成立したときに、前記変速機構の入力軸回転速度と、前記変速機構の出力軸回転速度に車両発進時の変速段の変速比を乗算した回転速度(以下「目標同期回転速度」という)との差に応じて前記係合側摩擦係合要素の油圧指令値を変化させることを特徴とする自動変速機の制御装置。
This is applied to a vehicle that transmits the power of an internal combustion engine to a wheel side via a torque converter and a speed change mechanism, and each frictional force is controlled by individually controlling the hydraulic pressure applied to a plurality of friction engagement elements provided in the speed change mechanism. Hydraulic control means for selectively switching engagement and disengagement of the coupling elements to switch the gear stage of the transmission mechanism, wherein the hydraulic control means is in a state where the vehicle is in a stopped state with a predetermined travel range selected; When the internal combustion engine is in the idling operation state, the engagement force of the engagement side frictional engagement element that is engaged when traveling in the travel range is reduced to make the speed change mechanism in a pseudo neutral state (hereinafter referred to as “pseudo”). In a control device for an automatic transmission that controls a hydraulic pressure command value of the engagement side frictional engagement element so as to be maintained in a "neutral state"),
The hydraulic control means multiplies the input shaft rotational speed of the transmission mechanism and the output shaft rotational speed of the transmission mechanism by the transmission gear ratio at the time of vehicle start when the condition for canceling the pseudo neutral state is satisfied. A control device for an automatic transmission, wherein a hydraulic pressure command value of the engagement side frictional engagement element is changed in accordance with a difference from a rotation speed (hereinafter referred to as "target synchronous rotation speed").
前記油圧制御手段は、前記疑似ニュートラル状態の解除条件が成立したときに、前記係合側摩擦係合要素の油圧指令値を所定勾配で増加させる増圧制御を実行し、該増圧制御による前記変速機構の入力軸回転速度の変化を検出した後に該入力軸回転速度の変化率を目標値に一致させるように前記係合側摩擦係合要素の油圧指令値をフィードバック制御することを特徴とする請求項1に記載の自動変速機の制御装置。   The hydraulic pressure control means executes pressure increase control for increasing a hydraulic pressure command value of the engagement side frictional engagement element with a predetermined gradient when the release condition of the pseudo neutral state is satisfied, and the pressure increase control performs the pressure increase control. After detecting a change in the input shaft rotational speed of the speed change mechanism, feedback control is performed on the hydraulic pressure command value of the engagement side frictional engagement element so that the rate of change of the input shaft rotational speed matches the target value. The control device for an automatic transmission according to claim 1. 前記増圧制御による前記変速機構の入力軸回転速度の変化を検出したときに前記変速機構の入力軸回転速度と前記目標同期回転速度との差が所定値以下の場合に、前記係合側摩擦係合要素の油圧指令値のフィードバック制御を禁止するフィードバック制御禁止手段を備えていることを特徴とする請求項2に記載の自動変速機の制御装置。   When a change in the input shaft rotational speed of the speed change mechanism due to the pressure increase control is detected and the difference between the input shaft rotational speed of the speed change mechanism and the target synchronous rotational speed is a predetermined value or less, the engagement side friction The control apparatus for an automatic transmission according to claim 2, further comprising feedback control prohibiting means for prohibiting feedback control of the hydraulic pressure command value of the engagement element. 前記油圧制御手段は、前記フィードバック制御禁止手段により前記係合側摩擦係合要素の油圧指令値のフィードバック制御が禁止された場合に、該係合側摩擦係合要素の油圧指令値を前記増圧制御の終了時の油圧指令値に維持することを特徴とする請求項3に記載の自動変速機の制御装置。   The hydraulic pressure control means increases the hydraulic pressure command value of the engagement side frictional engagement element when the feedback control prohibition means prohibits feedback control of the hydraulic pressure command value of the engagement side frictional engagement element. 4. The control apparatus for an automatic transmission according to claim 3, wherein the hydraulic pressure command value at the end of the control is maintained.
JP2008127427A 2008-05-14 2008-05-14 Control device for automatic transmission Active JP5051624B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008127427A JP5051624B2 (en) 2008-05-14 2008-05-14 Control device for automatic transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008127427A JP5051624B2 (en) 2008-05-14 2008-05-14 Control device for automatic transmission

Publications (2)

Publication Number Publication Date
JP2009275812A true JP2009275812A (en) 2009-11-26
JP5051624B2 JP5051624B2 (en) 2012-10-17

Family

ID=41441431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008127427A Active JP5051624B2 (en) 2008-05-14 2008-05-14 Control device for automatic transmission

Country Status (1)

Country Link
JP (1) JP5051624B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013224716A (en) * 2012-04-23 2013-10-31 Mazda Motor Corp Automatic transmission control method, control device, and automatic transmission system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001295920A (en) * 2000-04-14 2001-10-26 Mitsubishi Motors Corp Creep force control device for automatic transmission for vehicle
JP2009074579A (en) * 2007-09-19 2009-04-09 Toyota Motor Corp Vehicle control device, control method, program for realizing its method by computer and recording medium for recording its program

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001295920A (en) * 2000-04-14 2001-10-26 Mitsubishi Motors Corp Creep force control device for automatic transmission for vehicle
JP2009074579A (en) * 2007-09-19 2009-04-09 Toyota Motor Corp Vehicle control device, control method, program for realizing its method by computer and recording medium for recording its program

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013224716A (en) * 2012-04-23 2013-10-31 Mazda Motor Corp Automatic transmission control method, control device, and automatic transmission system

Also Published As

Publication number Publication date
JP5051624B2 (en) 2012-10-17

Similar Documents

Publication Publication Date Title
JP4683023B2 (en) Vehicle acceleration shock reduction device
US8160789B2 (en) Control device for vehicle and control method thereof
JP4400617B2 (en) Powertrain control device, control method, program for realizing the method, and recording medium recording the program
JP6418187B2 (en) Vehicle shift control device
JP2010006326A (en) Control device of vehicle
JP2004144293A (en) Speed change control device for automatic transmission for vehicle
JP2005180693A (en) Method for controlling up shifting of automatic transmission for vehicles
JP4877511B2 (en) Control device for automatic transmission
JP4623146B2 (en) Vehicle control apparatus and control method
JP2010286040A (en) Lock-up control device for automatic transmission
JP4583355B2 (en) Shift control device for automatic transmission
JP5593908B2 (en) Control device for lock-up clutch
US8190340B2 (en) Shift control device for automatic transmission and control method thereof
JP2004324876A (en) Oil feed control device for automatic transmission and method of controlling oil feed
JP5454347B2 (en) Control device for vehicle drive system
JP5326684B2 (en) Control device for vehicle lock-up clutch
JP5051624B2 (en) Control device for automatic transmission
JP4967722B2 (en) Vehicle control apparatus and control method
JP2010169162A (en) Vehicle control device
JP5534212B2 (en) Vehicle control device
JP2008309066A (en) Control device for vehicle
JP5040823B2 (en) Lock-up clutch control device
JP4983820B2 (en) Powertrain control device, control method, program for realizing the method, and recording medium recording the program
JP2009275904A (en) Device and method for controlling automatic transmission
JP2010112408A (en) Controller for automatic transmission

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120702

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R151 Written notification of patent or utility model registration

Ref document number: 5051624

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120715

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150803

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250