JP2009275362A - River hydraulic test device - Google Patents

River hydraulic test device Download PDF

Info

Publication number
JP2009275362A
JP2009275362A JP2008125109A JP2008125109A JP2009275362A JP 2009275362 A JP2009275362 A JP 2009275362A JP 2008125109 A JP2008125109 A JP 2008125109A JP 2008125109 A JP2008125109 A JP 2008125109A JP 2009275362 A JP2009275362 A JP 2009275362A
Authority
JP
Japan
Prior art keywords
river
sand
floor portion
water
colored
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008125109A
Other languages
Japanese (ja)
Inventor
Manabu Kageyama
学 景山
Takeshi Arimitsu
剛 有光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Original Assignee
Kansai Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc filed Critical Kansai Electric Power Co Inc
Priority to JP2008125109A priority Critical patent/JP2009275362A/en
Publication of JP2009275362A publication Critical patent/JP2009275362A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a river hydraulic test device capable of obtaining the detailed information about destination of transportation of eroded sediment and a supply source of deposited sediment. <P>SOLUTION: This river hydraulic test device enables a worker to distinguish an outflow and worn-away part due to erosion of a curved moving bed part 10c in a moving bed part 10 by providing the bed part 10c with a colored sand buried region 20 allowing visual identification of silica sand being a river bed material other than it depending on difference in color of the silica sand. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、河川における侵食を解析するために用いられる河川水理実験装置に関する。   The present invention relates to a river hydraulic experiment apparatus used for analyzing erosion in a river.

経済的な土砂移動制御手法を確立するため、単一湾曲部を有する河川をモデル化し、水理実験により流速や水位の条件と、側岸侵食を表現する数値モデルを検証するためには、水理実験装置を用いた様々なデータの収集・解析が必要である。このような、水理実験装置として、下記特許文献1に開示されるものが挙げられる。
特開2002−356834号公報
In order to establish an economical sediment movement control method, a river with a single bend is modeled, and the water flow conditions and water level conditions and numerical models expressing side erosion are verified by hydraulic experiments. It is necessary to collect and analyze various data using physical experiment equipment. An example of such a hydraulic experimental apparatus is disclosed in Patent Document 1 below.
Japanese Patent Laid-Open No. 2002-356834

従来の水理実験装置においては、測定の前後における河床形状の変化、河床内の土量の変化を知ることは可能である。しかし、河床形状の変化の前後において、河床内に堆積した土砂が、上流側から輸送されてきた土砂か、近辺の側壁等が削られたことにより発生した土砂なのか等について、侵食された土砂の輸送先や、堆積土砂の供給源などの詳細な情報を得ることはできなかった。そのため、河床の地形変化を生じさせる原因や、その影響範囲を特定することができない課題があった。   In a conventional hydraulic experimental device, it is possible to know changes in the riverbed shape before and after measurement and changes in the amount of soil in the riverbed. However, before and after the change of the riverbed shape, whether the sediment deposited in the riverbed is the sediment transported from the upstream side or the sediment generated by the removal of the nearby side wall etc. It was not possible to obtain detailed information such as transportation destinations and sources of sediment. For this reason, there is a problem that the cause of the riverbed topographic change and the influence range cannot be specified.

したがって、本発明の目的は、侵食された土砂の輸送先や、堆積土砂の供給源などの詳細な情報を得ることを可能とする河川水理実験装置を提供することにある。   Accordingly, an object of the present invention is to provide a river hydraulic experiment apparatus that makes it possible to obtain detailed information such as the destination of the eroded earth and sand and the source of sediment.

この発明に基づいた河川水理実験装置においては、河川における侵食を解析するために用いられる河川水理実験装置であって、横断面形状が所定の河床形状に成形された通水路と、上記通水路の上流側に配置され、上記通水路に水を供給するための貯水槽と、上記通水路の下流に配置される沈砂槽とを備えている。   The river hydraulic experimental apparatus based on this invention is a river hydraulic experimental apparatus used for analyzing erosion in a river, wherein the cross-sectional shape is formed into a predetermined river bed shape, and the above-mentioned flow channel. A water storage tank that is arranged on the upstream side of the water channel and supplies water to the water channel, and a sand settling tank that is arranged downstream of the water channel are provided.

また、上記通水路は、砂により所定の河床形状に成形された移動床部を含み、上記移動床部は、周りとは異なる色の砂からなる着色砂埋設領域を有している。   Further, the water channel includes a moving floor portion formed into a predetermined river bed shape with sand, and the moving floor portion has a colored sand burying region made of sand of a color different from the surroundings.

この発明に基づいた河川水理実験装置によれば、移動床部が着色砂埋設領域を有することにより、移動床部が侵食により削られて流出した場合には、周りの砂との色の違いで、流出した砂であるかどうかの違いを識別することが可能となる。その結果、通水路への通水前後の着色砂の分布の差異から、土砂の移動方向や範囲・量を分析することにより、河川内の土砂の供給源や輸送先、移動量などの情報を得ることができる。   According to the river hydraulic experimental apparatus based on this invention, when the moving floor portion has a colored sand embedment area, when the moving floor portion is shaved by erosion and flows out, the color difference from the surrounding sand Thus, it is possible to identify the difference between the sand and the spilled sand. As a result, by analyzing the distribution direction, range, and amount of sediment from the difference in the distribution of colored sand before and after passing through the water channel, information on the source, transport destination, and travel amount of sediment in the river can be obtained. Obtainable.

さらに、色の異なる2以上の着色砂を用いた場合には、各着色砂埋設領域から供給された土砂の影響範囲について、より詳細な情報を得ることが可能となる。   Further, when two or more colored sands having different colors are used, it is possible to obtain more detailed information about the affected range of the earth and sand supplied from each colored sand embedding area.

以下、この発明に基づいた実施の形態における、河川における侵食を解析するために用いられる河川水理実験装置1000について、図1から図6を参照して説明する。なお、図1は、本実施の形態における河川水理実験装置1000の構成を示す全体平面図であり、図2は、本実施の形態における河川水理実験装置1000の横断面図である。なお、図中の矢印は、水の流れる方向を示している。   Hereinafter, a river hydraulic test apparatus 1000 used for analyzing erosion in a river in an embodiment based on the present invention will be described with reference to FIGS. 1 to 6. FIG. 1 is an overall plan view showing the configuration of the river hydraulic experiment apparatus 1000 in the present embodiment, and FIG. 2 is a cross-sectional view of the river hydraulic experiment apparatus 1000 in the present embodiment. In addition, the arrow in a figure has shown the direction through which water flows.

また、図3は、この河川水理実験装置1000の通水路を構成する移動床部に用いられる砂(珪砂3L号)の粒度分布を示す図である。また、図4は、この河川水理実験装置1000の寸法の実物換算値と模型値との関係を示す図である。さらに、図5は、この河川水理実験装置1000の湾曲状移動床部10cの部分拡大平面図であり、図6は、図5中のVI線矢視断面図である。   Moreover, FIG. 3 is a figure which shows the particle size distribution of the sand (silica sand 3L) used for the moving floor part which comprises the water flow path of this river hydraulic experiment apparatus 1000. FIG. Moreover, FIG. 4 is a figure which shows the relationship between the actual conversion value of the dimension of this river hydraulic experiment apparatus 1000, and a model value. 5 is a partially enlarged plan view of the curved moving floor portion 10c of the river hydraulic experiment apparatus 1000, and FIG. 6 is a cross-sectional view taken along the line VI in FIG.

この河川水理実験装置1000は、図1に示すように、横断面形状が所定の河床形状に成形された通水路10と、この通水路10の上流側に配置され、通水路10に水を供給するための貯水槽100と、この通水路10の下流に配置される沈砂槽200とを備えている。沈砂槽200の下流には、水位調整ゲート300および循環水路400が設けられている。   As shown in FIG. 1, the river hydraulic experiment apparatus 1000 is disposed on the upstream side of the water passage 10 having a cross-sectional shape formed into a predetermined river bed shape, and water is supplied to the water passage 10. The water storage tank 100 for supplying and the sand settling tank 200 arrange | positioned downstream of this water flow path 10 are provided. A water level adjusting gate 300 and a circulating water channel 400 are provided downstream of the sand settling tank 200.

通水路10は、貯水槽100に連結し、直線状に延びる直線状固定床部10aと、この直線状河床部10aから直線状に設けられ、移動床部を構成する第1直線状移動床部10bと、この第1直線状移動床部10bから湾曲状に設けられ、移動床部を構成する湾曲状移動床部10cと、この湾曲状移動床部10cから直線状に設けられるとともに沈砂槽200に連結し、移動床部を構成する第2直線状移動床部10dとを含んでいる。   The water passage 10 is connected to the water storage tank 100, and extends linearly from a straight fixed floor portion 10a, and is provided in a straight line from the straight river bed portion 10a, and forms a movable floor portion. 10b, a curved moving floor portion 10c that is provided in a curved shape from the first linear moving floor portion 10b, and that is provided in a linear shape from the curved moving floor portion 10c. And a second linear moving floor portion 10d constituting the moving floor portion.

直線状固定床部10aの直線長さは約4000mm、第1直線状移動床部10bの直線長さは約2000mm、湾曲状移動床部10cの曲率半径Rは約2000mm、第2直線状移動床部10dの直線長さは約3000mmである。湾曲状移動床部10cにより通水路10は、90°方向転換している。   The straight fixed floor portion 10a has a straight length of about 4000 mm, the first straight moving floor portion 10b has a straight length of about 2000 mm, the curved moving floor portion 10c has a radius of curvature R of about 2000 mm, and the second straight moving bed. The straight length of the portion 10d is about 3000 mm. The water passage 10 is turned 90 ° by the curved moving floor 10c.

直線状固定床部10aおよび移動床部10b、10c、10dの横断面形状(図1中A−A断面、B−B断面)を図2に示す。まず、通水路10の河床形状は、底面(低水路)11と、この底面11の両側から斜め上方に延びる斜面(側岸)12a,12b、および、この斜面12a,12bの上端から水平方向に延びる上面(高水敷)13a,13bによって規定されている。   FIG. 2 shows the cross-sectional shapes (AA cross section and BB cross section in FIG. 1) of the straight fixed floor portion 10a and the movable floor portions 10b, 10c, and 10d. First, the riverbed shape of the water flow channel 10 includes a bottom surface (low water channel) 11, slopes (side banks) 12 a and 12 b extending obliquely upward from both sides of the bottom surface 11, and horizontal directions from the upper ends of the slopes 12 a and 12 b. It is prescribed | regulated by the extended upper surface (high water sill) 13a, 13b.

直線状固定床部10aの横断面形状は、底面11の幅(B)が約1000mm、斜面(側岸)12a,12bの高さ(H)が約10mm、斜面(側岸)12a,12bの傾斜角度(α)が40°、上面13aと上面13bとの間隔(S)が約1238mmである。直線状固定床部10aの表面は、モルタルにより仕上げられている。   The cross-sectional shape of the straight fixed floor portion 10a is such that the width (B) of the bottom surface 11 is about 1000 mm, the heights (H) of the slopes (side banks) 12a and 12b are about 10 mm, and the slopes (side banks) 12a and 12b. The inclination angle (α) is 40 °, and the distance (S) between the upper surface 13a and the upper surface 13b is about 1238 mm. The surface of the straight fixed floor portion 10a is finished with mortar.

移動床部10b、10c、10dの横断面形状は、底面11の幅(B)が約1000mm、斜面(側岸)12a,12bの高さ(H)が約10mm、斜面(側岸)12a,12bの傾斜角度(α)が40°、上面13aと上面13bとの間隔(S)が約1238mmである。移動床部10b、10c、10dは、砂により成形されている。   The cross-sectional shapes of the movable floor portions 10b, 10c, and 10d are as follows. The width (B) of the bottom surface 11 is about 1000 mm, the heights (H) of the slopes (side banks) 12a and 12b are about 10 mm, and the slopes (side banks) 12a, The inclination angle (α) of 12b is 40 °, and the distance (S) between the upper surface 13a and the upper surface 13b is about 1238 mm. The movable floor portions 10b, 10c, and 10d are formed of sand.

この砂の一例としては、図3に示す粒度分布を示す珪砂3L号(粒径d50=1.86mm、d=1.83mm、日鐵商事株式会社製)を用いた。なお、砂の単位体積重量は、1.45g/cm〜1.58g/cm程度である。また、砂の堆積厚さは、流水の浸食によっても全てが流されない十分な堆積厚さとした。 As an example of the sand, No. 3L silica sand (particle size d 50 = 1.86 mm, d m = 1.83 mm, manufactured by Nippon Steel Corporation) having the particle size distribution shown in FIG. 3 was used. The unit volume weight of the sand is 1.45g / cm 3 ~1.58g / cm 3 order. In addition, the sand deposition thickness was set to a sufficient deposition thickness so that not all was washed away by running water erosion.

再び、図1を参照して、図中のNo.2〜No.18に示す丸印箇所は、水位計測位置を示し、河床の鉛直方向成分をレーザ式変位計で計測する。   Again referring to FIG. 2-No. A circle mark position 18 indicates a water level measurement position, and a vertical component of the river bed is measured by a laser displacement meter.

上述した河川水理実験装置1000の数値は、模型値での寸法であり、図4(B)に示すように、想定する実物の1/50縮尺で造られている。実物換算値は、図4(A)に示すようになる。なお、通水路10における河床勾配は、1/80である。   The numerical values of the above-described river hydraulic experiment apparatus 1000 are the dimensions of the model values, and as shown in FIG. The actual conversion value is as shown in FIG. In addition, the riverbed gradient in the water channel 10 is 1/80.

さらに、本実施の形態における河川水理実験装置1000は、図5に示すように、湾曲状移動床部10cの外側の斜面12b側に、周りとは異なる色(赤色)の砂からなる着色砂埋設領域20が設けられている。この着色砂埋設領域20は、図6の断面図に示すように、外側に位置する斜面12bにおいて露出するように埋設され、上面13bでの幅(W)は、約200mm程度ある。また、円弧の位置は、第2直線状移動床部10dとの連結部から45°(α1)の位置から、約15°(α2)の幅で設けられている(これは、後述の図12および図13に示すケース1の条件に相当する)。   Furthermore, as shown in FIG. 5, the river hydraulic experiment apparatus 1000 according to the present embodiment is colored sand made of sand having a color (red) different from the surroundings on the outer slope 12b side of the curved moving floor portion 10c. A buried region 20 is provided. As shown in the cross-sectional view of FIG. 6, the colored sand buried region 20 is buried so as to be exposed on the slope 12b located on the outer side, and the width (W) on the upper surface 13b is about 200 mm. Further, the position of the arc is provided with a width of about 15 ° (α2) from a position of 45 ° (α1) from the connecting portion with the second linear moving floor portion 10d (this will be described later with reference to FIG. 12). And corresponds to the condition of Case 1 shown in FIG. 13).

上記構成からなる河川水理実験装置1000を用いて、河川浸食水理実験を行なった場合を、図7および図8に示す。図7および図8は、河川浸食水理実験経過を示す、第1および第2平面図である。なお、河川水理実験装置1000における珪砂3L号は、全体として白色であり、着色砂埋設領域20には、赤色に着色した珪砂を用いた。通水路10への流量は、図4(B)に示すように、流量0.0085m/s、等流水深16mm、給砂量300cm/minである。 FIGS. 7 and 8 show a case where a river erosion hydraulic experiment is performed using the river hydraulic experiment apparatus 1000 having the above configuration. 7 and 8 are first and second plan views showing the course of the river erosion hydraulic experiment. In addition, the silica sand 3L in the river hydraulic experiment apparatus 1000 is white as a whole, and the colored sand burying region 20 is made of silica sand colored red. As shown in FIG. 4B, the flow rate to the water flow path 10 is a flow rate of 0.0085 m 3 / s, a uniform water depth of 16 mm, and a sand supply amount of 300 cm 3 / min.

実験開始から4分後には、図7に示すように、着色砂埋設領域20が侵食されながら水の流れに沿って輸送される状態20aが観測できるとともに、斜面(側岸)12bが侵食されて、上面13bの位置が後退した領域13cが観測できた。   After 4 minutes from the start of the experiment, as shown in FIG. 7, the state 20a transported along the flow of water while the colored sand embedding area 20 is eroded can be observed, and the slope (side bank) 12b is eroded. A region 13c where the position of the upper surface 13b was retreated was observed.

実験開始から8分後には、図8に示すように、さらに着色砂埋設領域20が侵食されながら水の流れに沿って下流にまで輸送される状態20aが観測できるとともに、斜面(側岸)12bが大きく侵食されて、上面13bの位置がさらに後退した領域13cが観測できた。   8 minutes after the start of the experiment, as shown in FIG. 8, a state 20a in which the colored sand embedding area 20 is further eroded and transported downstream along the flow of water can be observed, and a slope (side bank) 12b. As a result, the region 13c in which the position of the upper surface 13b was further retracted was observed.

このように、本実施の形態における河川水理実験装置1000によれば、移動床部の湾曲状移動床部10cが着色砂埋設領域20を有することにより、湾曲状移動床部10cが侵食により削られて流出した場合には、それ以外の河床材料である珪砂と目視により珪砂の色の違いで識別することができる。   Thus, according to the river hydraulic experiment apparatus 1000 in the present embodiment, the curved movable floor portion 10c of the movable floor portion has the colored sand burying region 20, so that the curved movable floor portion 10c is cut by erosion. If it flows out, it can be discriminated by the difference in the color of the quartz sand, which is the other riverbed material, visually.

その結果、通水路10への通水前後の着色砂の分布の差異から、土砂の移動方向や範囲・量を分析することにより、河川内の土砂の供給源や輸送先、移動量などの情報を得ることができる。   As a result, by analyzing the direction, range, and amount of sediment movement from the difference in the distribution of colored sand before and after passing through the water channel 10, information on the source and destination of transportation and the amount of movement in the river Can be obtained.

なお、上記河川水理実験装置1000においては、湾曲状移動床部10cに着色砂埋設領域20を一箇所設ける場合について説明しているが、図9に示すように、それぞれ異なる色の第1着色(たとえば赤色)砂埋設領域21、第2着色(たとえば青色)砂埋設領域22、および、第3着色(たとえば黄色)砂埋設領域23を、通水路10の流れ方向に沿って併設されることも可能である。なお、図9は、湾曲状移動床部10cの他の実施の形態を示す部分拡大平面図である。これにより、各着色砂埋設領域から供給された土砂の影響範囲についてより詳細な情報も得ることが可能となる。   In the river hydraulic experiment apparatus 1000, the case where one colored sand burying region 20 is provided in the curved moving floor portion 10c has been described. However, as shown in FIG. A (for example, red) sand buried region 21, a second colored (for example, blue) sand buried region 22, and a third colored (for example, yellow) sand buried region 23 may be provided along the flow direction of the water passage 10. Is possible. FIG. 9 is a partially enlarged plan view showing another embodiment of the curved movable floor portion 10c. Thereby, it becomes possible to obtain more detailed information about the influence range of the earth and sand supplied from each colored sand embedding area.

また、図10および図11に示すように、湾曲状移動床部10cの斜面12bにおいて、通水路10の水が流れる方向に対して交差する方向に沿って積層するように、それぞれ異なる色の第1着色(たとえば赤色)砂埋設領域24および第2着色(たとえば青色)砂埋設領域25を設けることも可能である(これは、後述の図12および図13に示すケース5の条件に相当する)。なお、図10は、湾曲状移動床部10cの他の実施の形態を示す部分拡大平面図であり、図11は、図10中のXI線矢視断面図である。これにより、経時的な侵食作用における、各着色砂埋設領域から供給された土砂への影響範囲の情報を得ることが可能となる。   Further, as shown in FIGS. 10 and 11, the slopes 12b of the curved moving floor portion 10c are stacked in different colors so as to be laminated along the direction intersecting the direction of water flow in the water passage 10. It is also possible to provide a first colored (for example, red) sand buried region 24 and a second colored (for example, blue) sand buried region 25 (this corresponds to the conditions of case 5 shown in FIGS. 12 and 13 described later). . 10 is a partially enlarged plan view showing another embodiment of the curved movable floor portion 10c, and FIG. 11 is a cross-sectional view taken along the line XI in FIG. This makes it possible to obtain information on the range of influence on the earth and sand supplied from each colored sand burying region in the erosion action over time.

さらに、着色砂埋設領域は、外側の斜面12bだけでなく、底面11および内側の斜面12aに設ける構成の採用や、移動床部10b、10c、10dに設ける構成等を様々組み合わせることも可能である。   Further, the colored sand burying region can be variously combined with a configuration in which the colored sand burying region is provided not only on the outer slope 12b but also on the bottom surface 11 and the inner slope 12a, and on the moving floor portions 10b, 10c, and 10d. .

たとえば、図12および図13に示すように、ケース1〜ケース6に示す条件の下で、縦断方向(角度範囲)と横断方向(法肩からの距離)と選択・組み合わせることにより、各着色砂埋設領域から供給された土砂への影響範囲の情報を詳細に得ることが可能となる。なお、図13中に示す断面は、上述の図6および図11に示す断面に相当するものである。   For example, as shown in FIGS. 12 and 13, each colored sand can be selected and combined with the longitudinal direction (angle range) and the transverse direction (distance from the shoulder) under the conditions shown in Case 1 to Case 6. It is possible to obtain detailed information on the range of influence on the earth and sand supplied from the buried area. The cross section shown in FIG. 13 corresponds to the cross sections shown in FIGS. 6 and 11 described above.

以上、本発明の実施の形態について説明したが、今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   Although the embodiments of the present invention have been described above, the embodiments disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

この発明の実施の形態における河川水理実験装置の構成を示す全体平面図である。It is a whole top view which shows the structure of the river hydraulic experiment apparatus in embodiment of this invention. この発明の実施の形態における河川水理実験装置の横断面図である。It is a cross-sectional view of the river hydraulic experiment apparatus in the embodiment of the present invention. この発明の実施の形態における河川水理実験装置の通水路を構成する移動床部に用いられる砂(珪砂3L号)の粒度分布を示す図である。It is a figure which shows the particle size distribution of the sand (silica sand 3L) used for the moving floor part which comprises the water flow path of the river hydraulic experiment apparatus in embodiment of this invention. この発明の実施の形態における河川水理実験装置の寸法の実物換算値と模型値との関係を示す図である。It is a figure which shows the relationship between the actual conversion value and model value of the dimension of the river hydraulic experiment apparatus in embodiment of this invention. この発明の実施の形態における河川水理実験装置の湾曲状移動床部の部分拡大平面図である。It is the elements on larger scale of the curved moving floor part of the river hydraulic experiment apparatus in embodiment of this invention. 図5中のVI線矢視断面図である。FIG. 6 is a cross-sectional view taken along line VI in FIG. 5. この発明の実施の形態における河川水理実験装置を用いた河川浸食水理実験経過を示す第1平面図である。It is a 1st top view which shows the course of river erosion hydraulic experiment using the river hydraulic experiment apparatus in embodiment of this invention. この発明の実施の形態における河川水理実験装置を用いた河川浸食水理実験経過を示す第2平面図である。It is a 2nd top view which shows the river erosion hydraulic experiment progress using the river hydraulic experiment apparatus in embodiment of this invention. この発明の他の実施の形態における河川水理実験装置の湾曲状移動床部の部分拡大平面図である。It is the elements on larger scale of the curved moving floor part of the river hydraulic experiment apparatus in other embodiment of this invention. この発明の他の実施の形態における河川水理実験装置の湾曲状移動床部の部分拡大平面図である。It is the elements on larger scale of the curved moving floor part of the river hydraulic experiment apparatus in other embodiment of this invention. 図10中のXI線矢視断面図である。It is XI arrow sectional drawing in FIG. 各着色砂埋設領域から供給された土砂への影響範囲の情報を得るためのケース1〜ケース6の各条件を示す図である。It is a figure which shows each condition of case 1-case 6 for obtaining the information of the influence range to the earth and sand supplied from each colored sand burial area. ケース1〜ケース6の着色範囲を示す図である。It is a figure which shows the coloring range of case 1-case 6. FIG.

符号の説明Explanation of symbols

10 通水路、10a 直線状固定床部、10b 第1直線状移動床部、10c 湾曲状移動床部、10d 第2直線状移動床部、100 貯水槽、11 底面(低水路)、12a,12b 斜面(側岸)、13a,13b 上面(高水敷)、13c 領域、20 着色砂埋設領域、20a 状態、21,24 第1着色砂埋設領域、22,25 第2着色砂埋設領域、23 第3着色砂埋設領域、200 沈砂槽、300 水位調整ゲート、400 循環水路、1000 河川水理実験装置。   DESCRIPTION OF SYMBOLS 10 Water flow path, 10a Linear fixed floor part, 10b 1st linear moving floor part, 10c Curved moving floor part, 10d 2nd linear moving floor part, 100 Water storage tank, 11 Bottom surface (low water channel), 12a, 12b Slope (side bank), 13a, 13b Top surface (high water pad), 13c region, 20 colored sand buried region, 20a state, 21, 24 first colored sand buried region, 22, 25 second colored sand buried region, 23 3 colored sand burial area, 200 sand settling tank, 300 water level adjustment gate, 400 circulation channel, 1000 river hydraulic experiment equipment.

Claims (6)

河川における侵食を解析するために用いられる河川水理実験装置であって、
横断面形状が所定の河床形状に成形された通水路(10)と、
前記通水路(10)の上流側に配置され、前記通水路(10)に水を供給するための貯水槽(100)と、
前記通水路(10)の下流に配置される沈砂槽(200)と、を備え、
前記通水路(10)は、
砂により所定の河床形状に成形された移動床部(10b,10c,10d)を含み、
前記移動床部(10b,10c,10d)は、周りとは異なる色の砂からなる着色砂埋設領域(20,21,22,23,24,25)を有する、河川水理実験装置。
A river hydraulic experimental device used to analyze erosion in a river,
A water passage (10) having a cross-sectional shape formed into a predetermined river bed shape, and
A water storage tank (100) disposed on the upstream side of the water passage (10), for supplying water to the water passage (10),
A sand settling tank (200) disposed downstream of the water passage (10),
The water channel (10) is
Including a moving bed portion (10b, 10c, 10d) formed into a predetermined river bed shape by sand,
The moving hydraulic unit (10b, 10c, 10d) has a colored sand burying region (20, 21, 22, 23, 24, 25) made of sand having a different color from the surroundings.
前記河床形状は、底面(11)、この底面(11)の両側から斜め上方に延びる斜面(12a、12b)、および、この斜面(12a、12b)の上端から水平方向に延びる上面(13a,13b)によって規定され、
前記通水路(10)は、
前記貯水槽(100)に連結し、直線状に延びる直線状固定床部(10a)と、
前記直線状固定床部(10a)から直線状に設けられ、前記移動床部を構成する第1直線状移動床部(10b)と、
前記第1直線状移動床部(10b)から湾曲状に設けられ、前記移動床部を構成する湾曲状移動床部(10c)と、
前記湾曲状移動床部(10c)から直線状に設けられるとともに前記沈砂槽(200)に連結し、前記移動床部を構成する第2直線状移動床部(10d)と、
を含む、請求項1に記載の河川水理実験装置。
The riverbed shape includes a bottom surface (11), slopes (12a, 12b) extending obliquely upward from both sides of the bottom surface (11), and top surfaces (13a, 13b) extending horizontally from the upper ends of the slopes (12a, 12b). )
The water channel (10) is
A linear fixed floor (10a) connected to the water storage tank (100) and extending linearly,
A first linear movable floor portion (10b) provided linearly from the linear fixed floor portion (10a) and constituting the movable floor portion;
A curved moving floor (10c) provided in a curved shape from the first linear moving floor (10b) and constituting the moving floor;
A second linear moving floor portion (10d) which is provided in a straight line from the curved moving floor portion (10c) and is connected to the sand settling tank (200) to constitute the moving floor portion;
The river hydraulic experiment apparatus according to claim 1, comprising:
前記着色砂埋設領域(20,21,22,23,24,25)は、前記湾曲状移動床部(10c)に設けられる、請求項2に記載の河川水理実験装置。   The river hydraulic experiment apparatus according to claim 2, wherein the colored sand burying region (20, 21, 22, 23, 24, 25) is provided in the curved moving floor (10c). 前記着色砂埋設領域(20,21,22,23,24,25)は、外側に位置する前記斜面(12b)に露出するように設けられる、請求項3に記載の河川水理実験装置。   The river hydraulic experimental device according to claim 3, wherein the colored sand burying region (20, 21, 22, 23, 24, 25) is provided so as to be exposed to the slope (12b) located outside. 前記着色砂埋設領域(21,22,23,24,25)は、第1着色砂埋設領域と第2着色砂埋設領域とを含む、請求項1から4のいずれかに記載の河川水理実験装置。   The river hydraulic experiment according to any one of claims 1 to 4, wherein the colored sand buried region (21, 22, 23, 24, 25) includes a first colored sand buried region and a second colored sand buried region. apparatus. 前記第1着色砂埋設領域と前記第2着色砂埋設領域とは、前記通水路(10)の流れ方向に沿って併設される、請求項5に記載の河川水理実験装置。   The river hydraulic experiment apparatus according to claim 5, wherein the first colored sand burying region and the second colored sand burying region are provided along the flow direction of the water passage (10).
JP2008125109A 2008-05-12 2008-05-12 River hydraulic test device Withdrawn JP2009275362A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008125109A JP2009275362A (en) 2008-05-12 2008-05-12 River hydraulic test device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008125109A JP2009275362A (en) 2008-05-12 2008-05-12 River hydraulic test device

Publications (1)

Publication Number Publication Date
JP2009275362A true JP2009275362A (en) 2009-11-26

Family

ID=41441056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008125109A Withdrawn JP2009275362A (en) 2008-05-12 2008-05-12 River hydraulic test device

Country Status (1)

Country Link
JP (1) JP2009275362A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102002925A (en) * 2010-11-17 2011-04-06 黄河水利委员会黄河水利科学研究院 Artificially turning method of sandy river engineering project mobile bed model and artificially turning diversion trench
CN102140786A (en) * 2011-01-07 2011-08-03 河海大学 Manufacturing method of hydraulic model
CN102140785A (en) * 2011-01-07 2011-08-03 北京航空航天大学 Device for making hydraulic model
CN102304907A (en) * 2011-06-29 2012-01-04 浙江省水利河口研究院 In-time sediment adding system for tidal estuary sediment physical model
KR101186138B1 (en) 2010-12-15 2012-09-27 한국건설기술연구원 Test-channel device for revetment stability assessment
CN102839628A (en) * 2012-09-06 2012-12-26 中国水利水电科学研究院 Large-scale high-pressure cylinder permeation simulation device and method
CN102877438A (en) * 2012-10-31 2013-01-16 中国水利水电科学研究院 System for measuring bed load silt discharge of river model test
CN103866734A (en) * 2014-02-27 2014-06-18 黄河水利委员会黄河水利科学研究院 Sand content vertical line distribution hydraulic model
CN103866735A (en) * 2014-02-27 2014-06-18 黄河水利委员会黄河水利科学研究院 Suspended load sediment distribution hydraulic model
CN104314040A (en) * 2014-10-28 2015-01-28 重庆交通大学 System and method for using river model to measure open channel turbulence long structure
CN104404911A (en) * 2014-09-26 2015-03-11 黄河水利委员会黄河水利科学研究院 Method for setting river movable bed hydraulic model
CN104452651A (en) * 2014-09-26 2015-03-25 黄河水利委员会黄河水利科学研究院 River flow bed hydraulic model
CN105178243A (en) * 2015-08-07 2015-12-23 黄河水利委员会黄河水利科学研究院 Hydraulic model capable of dynamically simulating relocation diffusion process of sediment to pollutants
CN105801747A (en) * 2016-04-01 2016-07-27 长江水利委员会长江科学院 Dynamic shore simulation material in river model test and application thereof
CN106930227A (en) * 2017-04-25 2017-07-07 黄河水利委员会黄河水利科学研究院 A kind of pipeline preparation method of reservoir area model
CN107090798A (en) * 2017-05-16 2017-08-25 长江水利委员会长江科学院 Restoration & saturation coefficient computational methods under a kind of reservoir over-saturation sediment transport state
CN107988992A (en) * 2017-11-14 2018-05-04 浙江海洋大学 Silt-determination measure device is used in one kind experiment
CN108277774A (en) * 2018-01-18 2018-07-13 河海大学 River model test auto purification type tilts inlet method
CN108729405A (en) * 2018-03-06 2018-11-02 河海大学 A kind of river model test method
CN110004871A (en) * 2019-02-21 2019-07-12 四川大学 There is the bed load discharge prediction technique in vegetational type river
CN112160282A (en) * 2020-09-09 2021-01-01 长江水利委员会长江科学院 Method for measuring river water-sand synchronism

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102002925A (en) * 2010-11-17 2011-04-06 黄河水利委员会黄河水利科学研究院 Artificially turning method of sandy river engineering project mobile bed model and artificially turning diversion trench
KR101186138B1 (en) 2010-12-15 2012-09-27 한국건설기술연구원 Test-channel device for revetment stability assessment
CN102140786A (en) * 2011-01-07 2011-08-03 河海大学 Manufacturing method of hydraulic model
CN102140785A (en) * 2011-01-07 2011-08-03 北京航空航天大学 Device for making hydraulic model
CN102140785B (en) * 2011-01-07 2012-02-15 北京航空航天大学 Device for making hydraulic model
CN102304907A (en) * 2011-06-29 2012-01-04 浙江省水利河口研究院 In-time sediment adding system for tidal estuary sediment physical model
CN102304907B (en) * 2011-06-29 2013-07-17 浙江省水利河口研究院 In-time sediment adding system for tidal estuary sediment physical model
CN102839628B (en) * 2012-09-06 2014-12-31 中国水利水电科学研究院 Large-scale high-pressure cylinder permeation simulation device and method
CN102839628A (en) * 2012-09-06 2012-12-26 中国水利水电科学研究院 Large-scale high-pressure cylinder permeation simulation device and method
CN102877438A (en) * 2012-10-31 2013-01-16 中国水利水电科学研究院 System for measuring bed load silt discharge of river model test
CN103866735B (en) * 2014-02-27 2015-09-09 黄河水利委员会黄河水利科学研究院 A kind of vertical measuring point sand content sample devices
CN103866734B (en) * 2014-02-27 2015-09-09 黄河水利委员会黄河水利科学研究院 A kind of vertical measuring point sand content method of sampling
CN103866734A (en) * 2014-02-27 2014-06-18 黄河水利委员会黄河水利科学研究院 Sand content vertical line distribution hydraulic model
CN103866735A (en) * 2014-02-27 2014-06-18 黄河水利委员会黄河水利科学研究院 Suspended load sediment distribution hydraulic model
CN104404911A (en) * 2014-09-26 2015-03-11 黄河水利委员会黄河水利科学研究院 Method for setting river movable bed hydraulic model
CN104452651A (en) * 2014-09-26 2015-03-25 黄河水利委员会黄河水利科学研究院 River flow bed hydraulic model
CN104452651B (en) * 2014-09-26 2016-09-14 黄河水利委员会黄河水利科学研究院 A kind of real-time high-fidelity sampling device of movable-bed model test bed material
CN104314040A (en) * 2014-10-28 2015-01-28 重庆交通大学 System and method for using river model to measure open channel turbulence long structure
CN105178243A (en) * 2015-08-07 2015-12-23 黄河水利委员会黄河水利科学研究院 Hydraulic model capable of dynamically simulating relocation diffusion process of sediment to pollutants
CN105801747A (en) * 2016-04-01 2016-07-27 长江水利委员会长江科学院 Dynamic shore simulation material in river model test and application thereof
CN105801747B (en) * 2016-04-01 2017-09-22 长江水利委员会长江科学院 Bank simulation material and its application are moved in a kind of river model test
CN106930227B (en) * 2017-04-25 2020-01-24 黄河水利委员会黄河水利科学研究院 Flow line manufacturing method of reservoir model
CN106930227A (en) * 2017-04-25 2017-07-07 黄河水利委员会黄河水利科学研究院 A kind of pipeline preparation method of reservoir area model
CN107090798A (en) * 2017-05-16 2017-08-25 长江水利委员会长江科学院 Restoration & saturation coefficient computational methods under a kind of reservoir over-saturation sediment transport state
CN107090798B (en) * 2017-05-16 2018-11-23 长江水利委员会长江科学院 Restoration & saturation coefficient calculation method under a kind of reservoir over-saturation sediment transport state
CN107988992B (en) * 2017-11-14 2020-01-14 浙江海洋大学 Sediment test device for experiments
CN107988992A (en) * 2017-11-14 2018-05-04 浙江海洋大学 Silt-determination measure device is used in one kind experiment
CN108277774A (en) * 2018-01-18 2018-07-13 河海大学 River model test auto purification type tilts inlet method
CN108729405A (en) * 2018-03-06 2018-11-02 河海大学 A kind of river model test method
CN110004871A (en) * 2019-02-21 2019-07-12 四川大学 There is the bed load discharge prediction technique in vegetational type river
CN110004871B (en) * 2019-02-21 2020-02-14 四川大学 Method for predicting bed load sand transportation rate of vegetation community river channel
CN112160282A (en) * 2020-09-09 2021-01-01 长江水利委员会长江科学院 Method for measuring river water-sand synchronism
CN112160282B (en) * 2020-09-09 2021-11-26 长江水利委员会长江科学院 Method for measuring river water-sand synchronism

Similar Documents

Publication Publication Date Title
JP2009275362A (en) River hydraulic test device
Kw An et al. Local scour and flow measurements at bridge abutments
Guillén‐Ludeña et al. Hydro‐morphodynamic evolution in a 90° movable bed discordant confluence with low discharge ratio
Bos Long-throated flumes and broad-crested weirs
CN106836191A (en) The construction method of subway building enclosure ground-connecting-wall under a kind of low clearance
JP4278004B2 (en) Tunnel passage construction method and passage forming member
Belikov et al. Hydraulic substantiation of the Bagaevskaya hydro complex project based on numerical hydrodynamic modeling
Relvas et al. Inception point and air concentration in flows on stepped chutes lined with wedge-shaped concrete blocks
Rea et al. Contemporaneous, localized, basal ice-flow variations: implications for bedrock erosion and the origin of p-forms
Sidorchuk A dynamic model of gully erosion
CN106646594A (en) Shallow lithologic reservoir quantitative prediction method based on fault-sand coupling relation
Whiting The effect of stage on flow and components of the local force balance
Michelazzo Breaching of river levees: Analytical flow modelling and experimental hydro-morphodynamic investigations
Temple et al. Earth dam overtopping and breach outflow
Navin et al. Example of 2D finite element analyses to inform backward erosion piping evaluation of a typical levee cross-section
Zeng et al. Flow decomposition method based on computational fluid dynamics for rock weir head-discharge relationship
CN104878694B (en) A kind of simple deck paving absolute altitude control method
Roy et al. Equilibrium morphology and scour evolution at blunt nosed chevrons
ITRM20060564A1 (en) ADJUSTABLE CLOSING DEVICE FOR TRAPS
CN108729478A (en) A kind of simulation three-dimensional surface determines the long construction method of CFG stakes
Jaeger Hydraulic improvements in culverts for climate change adaptation
JP5173783B2 (en) Groundwater flow conservation method
Maager et al. Bed Stability of Step‐Pool Channels With Macrorough Sidewalls
Schmocker Application of a videometric measurement system to investigate spatial dike breach
Linder Stabilization of stream beds with sheet piling and rock sills

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110802