JP2009275113A - Gas oil base and gas oil composition - Google Patents

Gas oil base and gas oil composition Download PDF

Info

Publication number
JP2009275113A
JP2009275113A JP2008127615A JP2008127615A JP2009275113A JP 2009275113 A JP2009275113 A JP 2009275113A JP 2008127615 A JP2008127615 A JP 2008127615A JP 2008127615 A JP2008127615 A JP 2008127615A JP 2009275113 A JP2009275113 A JP 2009275113A
Authority
JP
Japan
Prior art keywords
mass
less
content
light oil
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008127615A
Other languages
Japanese (ja)
Other versions
JP5091762B2 (en
Inventor
Shigeru Koyama
成 小山
Tatsuo Hamamatsu
辰雄 濱松
Hideki Ono
秀樹 尾野
Yasutoshi Iguchi
靖敏 井口
Suguru Iki
英 壱岐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Corp filed Critical Nippon Oil Corp
Priority to JP2008127615A priority Critical patent/JP5091762B2/en
Priority to PCT/JP2009/058664 priority patent/WO2009139325A1/en
Publication of JP2009275113A publication Critical patent/JP2009275113A/en
Application granted granted Critical
Publication of JP5091762B2 publication Critical patent/JP5091762B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/04Liquid carbonaceous fuels essentially based on blends of hydrocarbons
    • C10L1/08Liquid carbonaceous fuels essentially based on blends of hydrocarbons for compression ignition
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/143Organic compounds mixtures of organic macromolecular compounds with organic non-macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L10/00Use of additives to fuels or fires for particular purposes
    • C10L10/14Use of additives to fuels or fires for particular purposes for improving low temperature properties
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1011Biomass
    • C10G2300/1014Biomass of vegetal origin
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1011Biomass
    • C10G2300/1018Biomass of animal origin
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/202Heteroatoms content, i.e. S, N, O, P
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/182Organic compounds containing oxygen containing hydroxy groups; Salts thereof
    • C10L1/1822Organic compounds containing oxygen containing hydroxy groups; Salts thereof hydroxy group directly attached to (cyclo)aliphatic carbon atoms
    • C10L1/1824Organic compounds containing oxygen containing hydroxy groups; Salts thereof hydroxy group directly attached to (cyclo)aliphatic carbon atoms mono-hydroxy
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/19Esters ester radical containing compounds; ester ethers; carbonic acid esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/19Esters ester radical containing compounds; ester ethers; carbonic acid esters
    • C10L1/191Esters ester radical containing compounds; ester ethers; carbonic acid esters of di- or polyhydroxyalcohols
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/192Macromolecular compounds
    • C10L1/195Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • C10L1/197Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derived from monomers containing a carbon-to-carbon unsaturated bond and an acyloxy group of a saturated carboxylic or carbonic acid
    • C10L1/1973Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derived from monomers containing a carbon-to-carbon unsaturated bond and an acyloxy group of a saturated carboxylic or carbonic acid mono-carboxylic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/222Organic compounds containing nitrogen containing at least one carbon-to-nitrogen single bond
    • C10L1/224Amides; Imides carboxylic acid amides, imides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Liquid Carbonaceous Fuels (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a gas oil base which is obtained by using a raw material containing an oxygen-containing hydrocarbon compound derived from animal and vegetable oils and excels in life cycle CO<SB>2</SB>discharging properties, oxidation stability, and low-temperature flowability, and to provide a gas oil composition. <P>SOLUTION: The gas oil base is a hydrocarbon fraction obtained by subjecting to hydrogenation treatment an oil to be treated which contains an oxygen-containing hydrocarbon compound derived from animal and vegetable oils, an aliphatic hydrocarbon compound, and a sulfur-containing hydrocarbon compound in the presence of hydrogen, and has a content of normal paraffins of not less than 90 mass% and an average value of (B<SB>n-1</SB>/A<SB>n</SB>) [wherein A<SB>n</SB>(unit: mass%) is the total paraffin content at a specified carbon number n (wherein 10≤n≤20 and n is an even number) in the hydrocarbon fraction; B<SB>n-1</SB>(unit: mass%) is the total paraffin content at a carbon number n-1; and the ratio of B<SB>n-1</SB>to A<SB>n</SB>is taken as (B<SB>n-1</SB>/A<SB>n</SB>)] in 10≤n≤20 of not less than 0.30. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は軽油基材及び軽油組成物に関する。   The present invention relates to a light oil base and a light oil composition.

従来、軽油の基材としては、原油の常圧蒸留装置から得られる直留軽油に水素化精製や水素化脱硫処理を施したもの、原油の常圧蒸留装置から得られる直留灯油に水素化精製や水素化脱硫処理を施したもの等が知られている。従来の軽油組成物は上記軽油基材及び灯油基材を1種又は2種以上配合することにより製造されている。また、これらの軽油組成物には、必要に応じてセタン価向上剤や清浄剤等の添加剤が配合される(例えば、非特許文献1参照。)。   Conventionally, as a base material for diesel oil, straight run diesel oil obtained from crude oil atmospheric distillation equipment has been hydrorefined and hydrodesulfurized, and hydrogenated to straight run kerosene obtained from crude oil atmospheric distillation equipment. Those subjected to purification and hydrodesulfurization are known. A conventional light oil composition is produced by blending one or more of the above light oil base and kerosene base. Moreover, additives, such as a cetane number improver and a detergent, are mix | blended with these light oil compositions as needed (for example, refer nonpatent literature 1).

ところで、近年、早急な大気環境改善及び環境負荷低減を目指して、内燃機関用燃料である軽油中の硫黄分及び芳香族含有量の低減が求められている。また同時に地球温暖化問題に対応するため、一層の燃費向上に貢献しかつ二酸化炭素(CO)削減に効果的な燃料性状が求められており、その解決手段の1つとして合成燃料や再生可能エネルギーであるバイオディーゼル燃料(以下、「BDF」とも表記する。)を代替燃料として用いることが検討されている。 By the way, in recent years, reduction of sulfur content and aromatic content in light oil, which is a fuel for internal combustion engines, has been demanded with the aim of promptly improving the air environment and reducing the environmental load. At the same time, in order to cope with the global warming problem, there is a demand for fuel properties that contribute to further improvement in fuel efficiency and reduce carbon dioxide (CO 2 ). Synthetic fuels and renewable energy are one of the solutions. The use of biodiesel fuel, which is energy (hereinafter also referred to as “BDF”), as an alternative fuel is being studied.

BDFは天然の動植物油脂を原料にした脂肪酸アルキルエステル混合物が主であり、排出ガス中のすす生成寄与度が大きいとされている芳香族化合物分や排出ガス後処理触媒への被毒等の影響が大きいとされている硫黄分をほとんど含まず、またそれ自身が分子中に酸素を持った含酸素化合物であるため、代替燃料の有力な候補として着目されている。また、植物由来であることから再生可能エネルギーと位置づけられているため、1997年に締結された国際間での二酸化炭素削減プロトコル、いわゆる京都議定書においてはBDF起因の二酸化炭素は排出量として計上されないルールである点も、BDFは政策的なメリットを有している。   BDF is mainly a mixture of fatty acid alkyl esters made from natural animal and plant oils and fats. Influence of poisoning on aromatic compounds and exhaust gas aftertreatment catalysts that are considered to have a large contribution to soot formation in exhaust gas Since it is an oxygen-containing compound that has almost no sulfur content and has oxygen in the molecule, it has attracted attention as a promising candidate for alternative fuels. In addition, because it is derived from plants, it is positioned as renewable energy, so the international carbon dioxide reduction protocol concluded in 1997, the so-called Kyoto Protocol, rules that carbon dioxide derived from BDF is not counted as emissions. The BDF also has a policy merit.

例えば、特許文献1には、天然油脂類あるいはその誘導体及び食用廃油等を原料とする炭化水素類の製造方法を提供することを目的として、天然油脂、廃天然油脂又はその誘導体と、活性化した水素とを金属触媒、合金触媒、金属担持触媒及び合金担持触媒からなる群より選ばれる触媒の存在下反応させることを特徴とする炭化水素類の製造方法が開示されている。   For example, Patent Document 1 has been activated with natural fats and oils, waste natural fats or derivatives thereof for the purpose of providing a method for producing hydrocarbons using natural fats or derivatives thereof and edible waste oils as raw materials. There has been disclosed a method for producing hydrocarbons characterized by reacting hydrogen with a catalyst selected from the group consisting of a metal catalyst, an alloy catalyst, a metal-supported catalyst and an alloy-supported catalyst.

また、特許文献2には、植物及び/又は動物及び/又は魚を起源とする生物学的原材料から調製される成分又は成分の混合物を0.1〜99容量%及び酸素を含む成分を0〜20容量%含むディーゼルエンジン用燃料組成物が開示されている。ここで両成分は、フィッシャー−トロプシュ工程からの粗油及び/又は画分にもとづくディーゼル成分と混合されるとされている。   In addition, Patent Document 2 discloses that a component or a mixture of components prepared from biological raw materials originating from plants and / or animals and / or fish is 0.1 to 99% by volume and a component containing oxygen is 0 to A diesel engine fuel composition containing 20% by volume is disclosed. Both components are said to be mixed with diesel components based on crude oil and / or fractions from the Fischer-Tropsch process.

また、特許文献3には、脂肪酸を構成する炭素数が6から20までの飽和又は不飽和脂肪酸のメチルエステル又はエチルエステル、あるいはそれらの混合物からなる環境対応型ディーゼル燃料組成物が開示されている。
特開2003−171670号公報 特表2005−538204号公報 特開2004−189885号公報 小西誠一著,「燃料工学概論」,裳華房,1991年3月,p.136−144
Patent Document 3 discloses an environment-friendly diesel fuel composition comprising a methyl ester or ethyl ester of a saturated or unsaturated fatty acid having 6 to 20 carbon atoms constituting a fatty acid, or a mixture thereof. .
JP 2003-171670 A JP 2005-538204 A JP 2004-189885 A Seiichi Konishi, “Introduction to Fuel Engineering”, Saika Hanafusa, March 1991, p. 136-144

しかしながら、天然の動植物油脂を原料とした脂肪酸アルキルエステルは本来重質な成分が多く、エンジン燃焼等における燃え切り性が悪くなり、燃焼時の未燃炭化水素排出を増加させる懸念がある。また、脂肪酸アルキルエステルは含酸素化合物であるため、燃焼時のアルデヒド類の排出を増加させる懸念がある。飽和脂肪酸基を多く有する脂肪酸アルキルエステル多くを含有するBDFの場合は、常温で固体であるために燃料としての取り扱いに劣り、また低温時の流動性能も確保することが困難である。不飽和脂肪酸基を多く含有するBDFの場合は、その化学組成上酸化安定性に劣り、色相の劣化やスラッジの生成及びエンジン部材への悪影響が懸念されている。更には、脂肪酸アルキルエステルを精製する際の原料である脂肪酸グリセライド、アルキルアルコール及び副生成物であるグリセリン混合物はエンジン部材や燃料噴射系への悪影響が極めて懸念されているものである。   However, fatty acid alkyl esters using natural animal and vegetable oils and fats as raw materials are inherently heavy, and there is a concern that unburned hydrocarbon emissions during combustion may increase due to poor burn-off in engine combustion and the like. In addition, since fatty acid alkyl esters are oxygen-containing compounds, there is a concern of increasing the emission of aldehydes during combustion. In the case of BDF containing many fatty acid alkyl esters having many saturated fatty acid groups, since it is solid at room temperature, it is inferior in handling as a fuel, and it is difficult to ensure fluidity at low temperatures. In the case of BDF containing a lot of unsaturated fatty acid groups, its chemical composition is inferior in oxidative stability, and there is concern about deterioration of hue, generation of sludge, and adverse effects on engine members. Furthermore, the fatty acid glyceride, the alkyl alcohol, and the glycerin mixture, which is a by-product, are raw materials used for refining the fatty acid alkyl ester, which are extremely concerned about adverse effects on engine members and fuel injection systems.

これらの傾向は従来の一般的な軽油等には見られなかった傾向であり、そのためBDF単独で使用する場合だけでなく、既存の軽油等に混合して使用する場合においても同様に問題となっており、BDF自体の性状に留意するだけでなく、BDF以外の軽油との混合使用時においても酸化安定性や低温性能、燃焼性等に従来以上に留意する必要がある。   These tendencies have not been observed in conventional general light oils and the like. Therefore, not only when using BDF alone but also when mixing with existing light oils and the like, the same problem occurs. In addition to paying attention to the properties of BDF itself, it is necessary to pay more attention to oxidation stability, low-temperature performance, combustibility, etc. than before even when mixed with light oil other than BDF.

従って、有害排気成分の低減と共にライフサイクルCO排出特性及び酸化安定性に優れ、良好な低温性能を有する軽油組成物の提供に関して、天然の動植物油脂を原料にした脂肪酸アルキルエステル混合物である従来のBDFの使用では、これらの性能改善を同時に達成することはできない。さらに、これらのエンジン性能は他の燃料性状とも密接に関連するため、これらの要求性能を高水準で同時に達成できる高品質の燃料を設計することは非常に困難であり、なおかつ市販燃料油として求められている諸性能を十分満たし、また現実的な製造方法の検討を踏まえた例、知見は存在していない。 Therefore, the conventional fatty acid alkyl ester mixture made from natural animal and vegetable oils and fats is provided for providing a light oil composition that has excellent life cycle CO 2 emission characteristics and oxidation stability as well as reduction of harmful exhaust components, and good low-temperature performance. Using BDF, these performance improvements cannot be achieved simultaneously. Furthermore, because these engine performances are closely related to other fuel properties, it is very difficult to design high-quality fuels that can simultaneously achieve these required performances at a high level, and are required as commercial fuel oils. There are no examples or knowledge based on the examination of practical manufacturing methods that satisfy the various performances.

本発明は、かかる実状に鑑みてなされたものであり、その目的は、動植物油に由来する含酸素炭化水素化合物を含有する原料を用いて得られる、ライフサイクルCO排出特性及び酸化安定性、低温流動性に優れた軽油基材及び軽油組成物を提供することにある。 The present invention has been made in view of such a situation, and the object thereof is life cycle CO 2 emission characteristics and oxidation stability obtained using a raw material containing an oxygen-containing hydrocarbon compound derived from animal and vegetable oils, An object of the present invention is to provide a light oil base material and a light oil composition excellent in low-temperature fluidity.

上記課題を解決するために、本発明は、水素の存在下、動植物油に由来する含酸素炭化水素化合物、脂肪族炭化水素化合物、及び含硫黄炭化水素化合物を含有する被処理油を水素化処理することによって得られる炭化水素留分であって、ノルマルパラフィンの含有量が90質量%以上であり、炭化水素留分中の規定炭素数n(10≦n≦20;nは偶数を示す。)における総パラフィン含有量をA(単位:質量%)、炭素数n−1における総パラフィン含有量をBn−1(単位:質量%)、Aに対するBn−1の比を(Bn−1/A)としたとき、10≦n≦20における(Bn−1/A)の平均値が0.30以上であることを特徴とする軽油基材を提供する。 In order to solve the above-described problems, the present invention hydrotreats an oil to be treated containing oxygen-containing hydrocarbon compounds, aliphatic hydrocarbon compounds, and sulfur-containing hydrocarbon compounds derived from animal and vegetable oils in the presence of hydrogen. And the content of normal paraffin is 90% by mass or more, and the specified carbon number n in the hydrocarbon fraction (10 ≦ n ≦ 20; n indicates an even number). a n total paraffin content of (unit: mass%), B the total paraffin content in the carbon number of n-1 n-1 (unit: mass%), the ratio of B n-1 with respect to a n (B n −1 / A n ), the average value of (B n-1 / A n ) in 10 ≦ n ≦ 20 is 0.30 or more.

ここで、上記被処理油を水素化処理すると、動植物油に由来する含酸素炭化水素化合物の水素化脱酸素反応が進行し、炭化水素が生成する。本発明でいう「水素化脱酸素反応」とは、含酸素炭化水素化合物を構成する酸素原子を除去し、開裂した部分に水素を付加する反応を意味する。例えば脂肪酸トリグリセライドや脂肪酸は、それぞれエステル基、カルボキシル基等の含酸素基を有しているが、水素化脱酸素反応によって、これらの含酸素基に含まれる酸素原子が取り除かれ、含酸素炭化水素化合物は炭化水素に転換される。脂肪酸トリグリセライド等が有する含酸素基の水素化脱酸素には、主として二つの反応経路がある。第1の反応経路は、脂肪酸トリグリセライド等の含酸素基がそのまま二酸化炭素として脱離する脱炭酸経路であり、酸素原子は二酸化炭素として取り除かれる。第2の反応経路は、脂肪酸トリグリセライド等の炭素数を維持しながらアルデヒド、アルコールを経由して還元される水素化経路である。この場合、酸素原子は水に転換される。これらの反応が並列に進行した場合、炭化水素と水、二酸化炭素が生成する。   Here, if the said to-be-processed oil is hydrotreated, the hydrodeoxygenation reaction of the oxygen-containing hydrocarbon compound originating in animal and vegetable oil will advance, and a hydrocarbon will produce | generate. The “hydrodeoxygenation reaction” in the present invention means a reaction in which oxygen atoms constituting the oxygen-containing hydrocarbon compound are removed and hydrogen is added to the cleaved portion. For example, fatty acid triglycerides and fatty acids have oxygen-containing groups such as ester groups and carboxyl groups, respectively, but oxygen atoms contained in these oxygen-containing groups are removed by hydrodeoxygenation reaction, and oxygen-containing hydrocarbons. The compound is converted to a hydrocarbon. There are mainly two reaction pathways for hydrodeoxygenation of oxygen-containing groups of fatty acid triglycerides and the like. The first reaction pathway is a decarboxylation pathway in which oxygen-containing groups such as fatty acid triglycerides are eliminated as carbon dioxide as they are, and oxygen atoms are removed as carbon dioxide. The second reaction route is a hydrogenation route that is reduced via an aldehyde or alcohol while maintaining the number of carbon atoms such as fatty acid triglyceride. In this case, oxygen atoms are converted to water. When these reactions proceed in parallel, hydrocarbons, water, and carbon dioxide are generated.

ステアリン酸のアルキルエステルの場合を例とした水素化脱酸素の反応スキームを下記式(1)、(2)に示す。式(1)で表される反応スキームは上記第1の反応経路に相当するものであり、また、式(2)で示される反応スキームは上記第2の反応経路に相当するものである。また、式(1)、(2)中のRはアルキル基を示す。
1735COOR+H→C1736+CO+RH (1)
1735COOR+4H→C1838+2HO+RH (2)
A reaction scheme of hydrodeoxygenation taking the case of an alkyl ester of stearic acid as an example is shown in the following formulas (1) and (2). The reaction scheme represented by the formula (1) corresponds to the first reaction path, and the reaction scheme represented by the formula (2) corresponds to the second reaction path. In the formulas (1) and (2), R represents an alkyl group.
C 17 H 35 COOR + H 2 → C 17 H 36 + CO 2 + RH (1)
C 17 H 35 COOR + 4H 2 → C 18 H 38 + 2H 2 O + RH (2)

なお、炭化水素留分中の規定炭素数nは10〜20の範囲の偶数であるが、これは、動植物に由来する含酸素炭化水素化合物の炭素数が通常偶数であることによる。また、本発明におけるノルマルパラフィンの含有量、及び総パラフィン含有量、とはガスクロマトグラフ・飛行時間質量分析計(GC−TOFMS)を用いて測定される値(単位:質量%)を意味する。GC−TOFMSにおいては、先ず、試料の構成成分をガスクロマトグラフィーにより分離し、分離された各成分をイオン化する。次いで、イオンに一定の加速電圧を与えたときの飛行速度がイオンの質量によって異なることに基づき、イオンを質量分離し、イオン検出器への到達時間の違いに基づいて質量スペクトルを得る。なお、当該パラフィン量は質量スペクトルから直接求めてもよいが、質量スペクトルデータに基づいて、炭素数が同一である成分ごとにガスクロマトグラフィーのリテンションタイムと強度との相関を示すグラフを作成し、そのグラフにおける各成分のピーク面積比から当該パラフィン量を求めてもよい。   In addition, although the normal carbon number n in a hydrocarbon fraction is an even number in the range of 10 to 20, this is because the carbon number of the oxygen-containing hydrocarbon compound derived from animals and plants is usually an even number. In addition, the normal paraffin content and the total paraffin content in the present invention mean values (unit: mass%) measured using a gas chromatograph / time-of-flight mass spectrometer (GC-TOFMS). In GC-TOFMS, first, constituent components of a sample are separated by gas chromatography, and each separated component is ionized. Next, the ions are mass-separated based on the flight speed when a constant acceleration voltage is applied to the ions depending on the mass of the ions, and a mass spectrum is obtained based on the difference in arrival time to the ion detector. The amount of paraffin may be obtained directly from the mass spectrum, but based on the mass spectrum data, create a graph showing the correlation between the retention time and the intensity of gas chromatography for each component having the same carbon number, You may obtain | require the said paraffin amount from the peak area ratio of each component in the graph.

つまり、本発明におけるBn−1/Aは、炭素数nの含酸素炭化水素化合物の水素化脱酸素反応における上記2つの反応経路の割合と相関する指標である。また、炭素数nの含酸素10≦n≦20における(Bn−1/A)の平均値が0.30以上であることは、B/A10、B11/A12、B13/A14、B15/A16,B17/A18及びB19/A20の平均値が0.30以上であることを意味する。なお、炭化水素留分の規定炭素数nにおける総パラフィン量A、Bn−1のうちどちらか一方、あるいは双方ともに数値が存在しない(総パラフィン量の値が0)場合は、(Bn−1/A)は算出せず、(Bn−1/A)の平均値にも加味しないこととする。 That, B n-1 / A n in the present invention is an index correlated with the ratio of the two reaction paths in hydrodeoxygenation reactions of oxygenated hydrocarbon compounds n carbon atoms. Further, the average value of the oxygenated 10 ≦ n ≦ 20 with carbon number n (B n-1 / A n) is 0.30 or more, B 9 / A 10, B 11 / A 12, B 13 It means that the average value of / A 14 , B 15 / A 16 , B 17 / A 18 and B 19 / A 20 is 0.30 or more. In addition, when the numerical value does not exist in either one or both of the total paraffin amount A n and B n−1 at the defined carbon number n of the hydrocarbon fraction (the value of the total paraffin amount is 0), (B n −1 / A n ) is not calculated, and is not taken into account in the average value of (B n−1 / A n ).

また、被処理油に含まれる脂肪族炭化水素化合物は、水素化処理における反応熱による温度上昇を抑制する役割を担っている。一方、被処理油に含まれる含硫黄炭化水素化合物は、水素化処理における脱酸素活性を向上させる役割を担っている。   Moreover, the aliphatic hydrocarbon compound contained in the to-be-processed oil has the role which suppresses the temperature rise by the heat of reaction in hydroprocessing. On the other hand, the sulfur-containing hydrocarbon compound contained in the oil to be treated has a role of improving the deoxygenation activity in the hydrotreatment.

本発明の軽油基材によれば、上記構成を有することで、ライフサイクルCO排出特性、酸化安定性及び低温流動性の全てを十分に且つバランスよく達成することができる。 According to the light oil base material of the present invention, it is possible to achieve all of life cycle CO 2 emission characteristics, oxidation stability, and low temperature fluidity in a sufficient and balanced manner by having the above configuration.

また、従来の軽油基材の製造方法においては、低温特性の改善等を目的として、ノルマルパラフィンの水素化異性化を行うのが一般的であるという当該分野の技術水準からみて、水素化異性化を経ずに得られる、ノルマルパラフィンの含有量が90質量%以上である本発明の軽油基材によって上記の優れた効果が得られることは、予想外の顕著な効果であるといえる。   Further, in the conventional light oil base material production method, hydroisomerization is generally performed in view of the technical level in the field that normal paraffin hydroisomerization is generally performed for the purpose of improving low-temperature characteristics. It can be said that it is an unexpected remarkable effect that the above-mentioned excellent effect is obtained by the light oil base material of the present invention in which the content of normal paraffin is 90% by mass or more, which is obtained without going through.

本発明においては、動植物油に由来する含酸素炭化水素化合物が脂肪酸類及び脂肪酸エステル類から選ばれる1種以上の化合物であることが好ましく、脂肪酸エステル類は脂肪酸のトリグリセライドであることがより好ましい。   In the present invention, the oxygen-containing hydrocarbon compound derived from animal and vegetable oils is preferably one or more compounds selected from fatty acids and fatty acid esters, and the fatty acid esters are more preferably triglycerides of fatty acids.

また、脂肪族炭化水素化合物としては、予め前記被処理油を水素化処理することによって得られた前記炭化水素留分を、リサイクルしたリサイクル油を好ましく用いることができる。この場合、リサイクル比(リサイクル油の含酸素炭化水素化合物に対する質量比)を0.5〜5倍とすることが好ましい。   In addition, as the aliphatic hydrocarbon compound, recycle oil obtained by recycling the hydrocarbon fraction obtained by hydrotreating the oil to be treated in advance can be preferably used. In this case, the recycle ratio (mass ratio of recycle oil to oxygenated hydrocarbon compound) is preferably 0.5 to 5 times.

また、本発明は、上記本発明の軽油基材を10容量%以上含有する軽油基材と、軽油組成物全量を基準として10〜1000質量ppmの低温流動性向上剤と、を含有し、90%留出温度が360℃以下、硫黄分が10質量ppm以下、酸素分1質量%以下、脂肪酸アルキルエステル分3.5質量%以下、酸価0.13mgKOH/g以下、メタノール分0.01質量%以下、グリセライド分0.01質量%以下、目詰まり点−5℃以下であることを特徴とする軽油組成物を提供する。   The present invention also includes a light oil base material containing 10% by volume or more of the light oil base material of the present invention, and a low-temperature fluidity improver of 10 to 1000 ppm by mass based on the total amount of the light oil composition, 90 % Distillation temperature of 360 ° C. or less, sulfur content of 10 mass ppm or less, oxygen content of 1 mass% or less, fatty acid alkyl ester content of 3.5 mass% or less, acid value of 0.13 mg KOH / g or less, methanol content of 0.01 mass A gas oil composition characterized by having a glyceride content of 0.01% by mass or less and a clogging point of −5 ° C. or less is provided.

以上の通り、本発明によれば、動植物油に由来する含酸素炭化水素化合物を含有する原料を用いて得られる、ライフサイクルCO排出特性及び酸化安定性、低温流動性に優れた軽油基材及び軽油組成物を提供することが可能となる。 As described above, according to the present invention, a light oil base material excellent in life cycle CO 2 emission characteristics, oxidation stability, and low-temperature fluidity obtained by using a raw material containing an oxygen-containing hydrocarbon compound derived from animal and vegetable oils. And a light oil composition can be provided.

以下、本発明の好適な実施形態について詳細に説明する。   Hereinafter, preferred embodiments of the present invention will be described in detail.

本発明においては、動植物油に由来する含酸素炭化水素化合物、脂肪族炭化水素化合物、及び含硫黄炭化水素化合物を含有する被処理油が用いられる。動植物油に由来する物質としては、動植物油由来の油脂成分やその誘導体が、水素化脱炭酸反応が起こりやすいことから好適である。ここで油脂成分には、天然もしくは人工的に生産、製造される動植物油脂及び動植物油成分及び/又はこれらの油脂を由来して生産、製造される成分及びこれらの油脂製品の性能を維持、向上させる目的で添加される成分が包含される。また油脂成分の誘導体には、上記油脂製品を製造する過程で副生される成分や、意図的に誘導体に変換された成分が包含される。   In the present invention, an oil to be treated containing an oxygen-containing hydrocarbon compound, an aliphatic hydrocarbon compound, and a sulfur-containing hydrocarbon compound derived from animal and vegetable oils is used. As substances derived from animal and vegetable oils, oil and fat components derived from animal and vegetable oils and derivatives thereof are preferable because hydrodecarboxylation reaction easily occurs. Here, the oil and fat component maintains and improves the performance of natural and artificially produced and manufactured animal and vegetable oils and animal and vegetable oil components and / or components derived and produced from these oils and fats and these oil and fat products. The component added for the purpose of making it included is included. In addition, the derivative of the fat and oil component includes a component by-produced in the process of producing the fat and oil product and a component intentionally converted into the derivative.

動植物油に由来する油脂成分としては、例えば、牛脂、菜種油、大豆油、パーム油、トウモロコシ油などが挙げられる。本発明においては動植物油に由来する油脂成分として、いかなる油脂を用いてもよく、これら油脂を使用した後の廃油でもよい。ただし、カーボンニュートラルの観点からは植物油脂が好ましく、脂肪酸アルキル鎖炭素数及びその反応性の観点から、菜種油、大豆油及びパーム油がより好ましい。なお、上記の油脂は1種を単独で又は2種以上を混合して用いてもよい。   Examples of fat components derived from animal and vegetable oils include beef tallow, rapeseed oil, soybean oil, palm oil, corn oil and the like. In the present invention, any fats and oils derived from animal and vegetable oils may be used, and waste oil after using these fats and oils may be used. However, vegetable oils and fats are preferable from the viewpoint of carbon neutral, and rapeseed oil, soybean oil, and palm oil are more preferable from the viewpoint of the number of fatty acid alkyl chain carbons and their reactivity. In addition, you may use said fats and oils individually by 1 type or in mixture of 2 or more types.

動植物油に由来する油脂成分の誘導体としては、上記油脂成分の脂肪酸トリグリセリドを構成する脂肪酸やそれらのメチルエステルなどのエステル体に加工されている成分を含んでいてもよい。これらの脂肪酸トリグリセリドを構成する脂肪酸の代表的例としては、飽和脂肪酸と称する分子構造中に不飽和結合を有しない脂肪酸である酪酸(CCOOH)、カプロン酸(C11COOH)、カプリル酸(C15COOH)、カプリン酸(C19COOH)、ラウリン酸(C1123COOH)、ミリスチン酸(C1327COOH)、パルミチン酸(C1531COOH)、ステアリン酸(C1735COOH)、及び不飽和結合を1つもしくは複数有する不飽和脂肪酸であるオレイン酸(C1733COOH)、リノール酸(C1731COOH)、リノレン酸(C1729COOH)、リシノレン酸(C1732(OH)COOH)等が挙げられる Derivatives of fat and oil components derived from animal and vegetable oils may include components processed into ester bodies such as fatty acids constituting the fatty acid triglycerides of the fat and oil components and methyl esters thereof. Representative examples of fatty acids constituting these fatty acid triglycerides include butyric acid (C 3 H 7 COOH) and caproic acid (C 5 H 11 COOH), which are fatty acids having no unsaturated bond in the molecular structure called saturated fatty acid. , Caprylic acid (C 7 H 15 COOH), capric acid (C 9 H 19 COOH), lauric acid (C 11 H 23 COOH), myristic acid (C 13 H 27 COOH), palmitic acid (C 15 H 31 COOH) , Stearic acid (C 17 H 35 COOH), and oleic acid (C 17 H 33 COOH), linoleic acid (C 17 H 31 COOH), linolenic acid (C), which are unsaturated fatty acids having one or more unsaturated bonds 17 H 29 COOH), ricinolenic acid (C 17 H 32 (OH) COOH) and the like.

被処理油に含有される脂肪族炭化水素化合物は、水素化処理における反応熱による温度上昇を抑制する役割を担っている。脂肪族炭化水素化合物としては、直鎖状、分岐状及び環状のいずれであってもよく、またこれらの混合物であってもよい。また、これらの成分を含んだ後述する水素化処理で得られた炭化水素留分、石油精製工程及び化学品製造工程で得られる留分でもよい。特に、本発明では、水素化処理によって得られた留出物から、未反応原料、軽質ガス留分及び重質副生成物を除去した処理油、又は該処理油を精留塔で分留して得られる炭化水素留分が入手しやすいことから、これらの一部を被処理油へリサイクルすることが好ましい。精留塔で分留して得られる炭化水素留分の沸点範囲は150〜350℃が好ましい。   The aliphatic hydrocarbon compound contained in the oil to be treated has a role of suppressing a temperature rise due to reaction heat in the hydrotreatment. The aliphatic hydrocarbon compound may be linear, branched or cyclic, or a mixture thereof. Moreover, the fraction obtained by the hydrocarbon fraction obtained by the hydrogenation process mentioned later containing these components, a petroleum refinery process, and a chemical manufacturing process may be sufficient. In particular, in the present invention, treated oil from which unreacted raw materials, light gas fractions and heavy by-products have been removed from the distillate obtained by hydrotreating, or the treated oil is fractionated in a rectifying column. Since it is easy to obtain the hydrocarbon fraction obtained in this way, it is preferable to recycle a part of these to the oil to be treated. The boiling range of the hydrocarbon fraction obtained by fractional distillation in the rectification column is preferably 150 to 350 ° C.

動植物油に由来する含酸素炭化水素化合物と脂肪族炭化水素化合物との比率は特に限定されないが、例えば両者の比熱が同じであれば1対1の混合であれば温度上昇は動植物油に由来する含酸素炭化水素化合物を単独で反応させる場合の半分となることから、反応器の最高使用温度に応じて比率を定めればよい。ただし、脂肪族炭化水素化合物の比率が大きくなると、動植物油に由来する含酸素炭化水素化合物の濃度が低下して反応性が低下するのと配管等の流量が増加して大きな負荷となるので、動植物油に由来する含酸素炭化水素化合物に対する脂肪族炭化水素化合物の量は5質量倍以下が好ましい。   The ratio of the oxygen-containing hydrocarbon compound and the aliphatic hydrocarbon compound derived from the animal and vegetable oil is not particularly limited. For example, if the specific heat of both is the same, the temperature increase is derived from the animal and vegetable oil if the mixture is one-to-one. Since it becomes half of the case of reacting the oxygen-containing hydrocarbon compound alone, the ratio may be determined according to the maximum operating temperature of the reactor. However, when the ratio of the aliphatic hydrocarbon compound is increased, the concentration of the oxygen-containing hydrocarbon compound derived from the animal and vegetable oil is decreased and the reactivity is decreased, and the flow rate of the piping is increased, resulting in a large load. The amount of the aliphatic hydrocarbon compound with respect to the oxygen-containing hydrocarbon compound derived from animal or vegetable oil is preferably 5 times by mass or less.

さらに、反応器を複数直列に連結し、反応器間において脂肪族炭化水素化合物を追加添加することも可能である。   Furthermore, it is possible to connect a plurality of reactors in series and add an additional aliphatic hydrocarbon compound between the reactors.

また、被処理油に含まれる含硫黄炭化水素化合物は特に制限されないが、具体的には、スルフィド、ジスルフィド、ポリスルフィド、チオール、チオフェン、ベンゾチオフェン、ジベンゾチオフェン及びこれらの誘導体などが挙げられる。被処理油に含まれる含硫黄炭化水素化合物は単一の化合物であってもよく、あるいは2種以上の混合物であってもよい。さらに、硫黄分を含有する石油系炭化水素留分を被処理油に混合してもよい。   The sulfur-containing hydrocarbon compound contained in the oil to be treated is not particularly limited, and specific examples include sulfides, disulfides, polysulfides, thiols, thiophenes, benzothiophenes, dibenzothiophenes, and derivatives thereof. The sulfur-containing hydrocarbon compound contained in the oil to be treated may be a single compound or a mixture of two or more. Furthermore, a petroleum hydrocarbon fraction containing a sulfur content may be mixed with the oil to be treated.

硫黄分を含有する石油系炭化水素留分としては、一般的な石油精製工程で得られる留分を用いることができる。例えば、常圧蒸留装置や減圧蒸留装置から得られる所定の沸点範囲に相当する留分、あるいは、水素化脱硫装置、水素化分解装置、残油直接脱硫装置、流動接触分解装置などから得られる、所定の沸点範囲に相当する留分を使用してもよい。なお、上記の各装置から得られる留分は1種を単独で又は2種以上を混合して用いてもよい。   As the petroleum hydrocarbon fraction containing sulfur, a fraction obtained in a general petroleum refining process can be used. For example, a fraction corresponding to a predetermined boiling range obtained from an atmospheric distillation apparatus or a vacuum distillation apparatus, or obtained from a hydrodesulfurization apparatus, a hydrocracking apparatus, a residual oil direct desulfurization apparatus, a fluid catalytic cracking apparatus, etc. A fraction corresponding to a predetermined boiling range may be used. In addition, you may use the fraction obtained from each said apparatus individually by 1 type or in mixture of 2 or more types.

被処理油に含まれる硫黄分は、動植物油脂に由来する含酸素炭化水素化合物に対して、好ましくは硫黄原子換算として1〜50質量ppmが必要であり、好ましくは5〜30質量ppm、より好ましくは10〜20質量ppmである。硫黄原子換算として含有量が1質量ppm未満であると、脱酸素活性を安定的に維持することが困難となる傾向にある。他方、50質量ppmを超えると、水素化精製工程で排出される軽質ガス中の硫黄濃度が増加するのに加え、水素化精製油に含まれる硫黄分含有量が増加する傾向にあり、ディーゼルエンジン等の燃料として用いる場合にエンジン排ガス浄化装置への悪影響が懸念される。なお、本発明における硫黄分は、JIS K 2541「硫黄分試験方法」又はASTM−5453に記載の方法に準拠して測定される硫黄分の質量含有量を意味する。   The sulfur content contained in the oil to be treated is preferably 1 to 50 ppm by mass, preferably 5 to 30 ppm by mass, in terms of sulfur atom, with respect to the oxygen-containing hydrocarbon compound derived from animal and vegetable oils and fats. Is 10-20 ppm by mass. When the content is less than 1 ppm by mass in terms of sulfur atom, it tends to be difficult to stably maintain the deoxygenation activity. On the other hand, if it exceeds 50 ppm by mass, the sulfur content in the light gas discharged in the hydrorefining process will increase, and the sulfur content in the hydrorefined oil will tend to increase. When used as a fuel such as, there is a concern about the adverse effect on the engine exhaust gas purification device. In addition, the sulfur content in this invention means the mass content of the sulfur content measured based on the method of JISK2541 "Sulfur content test method" or ASTM-5453.

含硫黄炭化水素化合物は、被処理油と予め混合してその混合物を水素化処理装置の反応器に導入してもよく、あるいは被処理油を反応器に導入する際に、反応器の前段において供給してもよい。   The sulfur-containing hydrocarbon compound may be premixed with the oil to be treated and the mixture introduced into the reactor of the hydrotreating apparatus, or when the oil to be treated is introduced into the reactor, You may supply.

本発明にかかる水素化処理においては、アルミニウム、ケイ素、ジルコニウム、ホウ素、チタン及びマグネシウムから選ばれる2種以上の元素を含んで構成される多孔性無機酸化物並びに該多孔性無機酸化物に担持された周期律表第6A族及び第8族の元素から選ばれる1種以上の金属を含有する触媒が好ましく用いられる。   In the hydrogenation treatment according to the present invention, a porous inorganic oxide comprising two or more elements selected from aluminum, silicon, zirconium, boron, titanium and magnesium, and the porous inorganic oxide are supported. A catalyst containing one or more metals selected from Group 6A and Group 8 elements of the periodic table is preferably used.

本発明で用いられる触媒の担体としては、上述のように、アルミニウム、ケイ素、ジルコニウム、ホウ素、チタン及びマグネシウムから選ばれる2種以上を含んで構成される多孔性無機酸化物が好ましく用いられる。かかる多孔性無機酸化物としては、脱酸素活性及び脱硫活性を一層向上できる点から、アルミニウム、ケイ素、ジルコニウム、ホウ素、チタン及びマグネシウムから選ばれる2種以上であることがより好ましく、アルミニウムと他の元素とを含む無機酸化物(酸化アルミニウムと他の酸化物との複合酸化物)が更に好ましい。   As the catalyst support used in the present invention, as described above, a porous inorganic oxide comprising at least two selected from aluminum, silicon, zirconium, boron, titanium and magnesium is preferably used. The porous inorganic oxide is more preferably at least two selected from aluminum, silicon, zirconium, boron, titanium and magnesium from the viewpoint that the deoxygenation activity and desulfurization activity can be further improved. Inorganic oxides containing elements (complex oxides of aluminum oxide and other oxides) are more preferable.

多孔性無機酸化物が構成元素としてアルミニウムを含有する場合、アルミニウムの含有量は、多孔性無機酸化物全量を基準として、アルミナ換算で、好ましくは1〜97質量%、より好ましくは10〜97質量%、更に好ましくは20〜95質量%である。アルミニウムの含有量がアルミナ換算で1質量%未満であると、担体酸性質などの物性が好適でなく、十分な脱酸素活性及び脱硫活性が発揮されない傾向にある。他方、アルミニウムの含有量がアルミナ換算で97質量%を超えると、触媒表面積が不十分となり、活性が低下する傾向にある。   When the porous inorganic oxide contains aluminum as a constituent element, the aluminum content is preferably 1 to 97% by mass, more preferably 10 to 97% by mass in terms of alumina, based on the total amount of the porous inorganic oxide. %, More preferably 20 to 95% by mass. When the aluminum content is less than 1% by mass in terms of alumina, physical properties such as carrier acid properties are not suitable, and sufficient deoxidation activity and desulfurization activity tend not to be exhibited. On the other hand, when the aluminum content exceeds 97% by mass in terms of alumina, the catalyst surface area becomes insufficient and the activity tends to decrease.

アルミニウム以外の担体構成元素である、ケイ素、ジルコニウム、ホウ素、チタン及びマグネシウムを担体に導入する方法は特に制限されず、これらの元素を含有する溶液などを原料として用いればよい。例えば、ケイ素については、ケイ素、水ガラス、シリカゾルなど、ホウ素についてはホウ酸など、リンについては、リン酸やリン酸のアルカリ金属塩など、チタンについては硫化チタン、四塩化チタンや各種アルコキサイド塩など、ジルコニウムについては硫酸ジルコニウムや各種アルコキサイド塩などを用いることができる。   The method for introducing silicon, zirconium, boron, titanium and magnesium, which are carrier constituent elements other than aluminum, is not particularly limited, and a solution containing these elements may be used as a raw material. For example, for silicon, silicon, water glass, silica sol, etc., for boron, boric acid, etc., for phosphorus, phosphoric acid and alkali metal salts of phosphoric acid, etc., for titanium, titanium sulfide, titanium tetrachloride and various alkoxide salts, etc. As for zirconium, zirconium sulfate and various alkoxide salts can be used.

さらに、多孔性無機酸化物は、構成元素としてリンを含有することが好ましい。リンの含有量は、多孔性無機酸化物全量を基準として、好ましくは0.1〜10質量%、より好ましくは0.5〜7質量%、更に好ましくは2〜6質量%である。リンの含有量が0.1質量%未満の場合には十分な脱酸素活性及び脱硫活性が発揮されない傾向にあり、また、10質量%を超えると過度の分解が進行して水素化処理油の収率が低下する恐れがある。   Furthermore, the porous inorganic oxide preferably contains phosphorus as a constituent element. The phosphorus content is preferably 0.1 to 10% by mass, more preferably 0.5 to 7% by mass, and still more preferably 2 to 6% by mass, based on the total amount of the porous inorganic oxide. When the phosphorus content is less than 0.1% by mass, sufficient deoxygenation activity and desulfurization activity tend not to be exhibited, and when it exceeds 10% by mass, excessive decomposition proceeds and hydrotreated oil Yield may be reduced.

上記の酸化アルミニウム以外の担体構成成分の原料は、担体の焼成より前の工程において添加することが好ましい。例えば、アルミニウム水溶液に予め上記原料を添加した後、これらの構成成分を含む水酸化アルミニウムゲルを調製してもよく、調合した水酸化アルミニウムゲルに対して上記原料を添加してもよい。あるいは、市販の酸化アルミニウム中間体やベーマイトパウダーに水もしくは酸性水溶液を添加して混練する工程において上記原料を添加してもよいが、水酸化アルミニウムゲルを調合する段階で共存させることがより好ましい。酸化アルミニウム以外の担体構成成分の効果発現機構は必ずしも解明されたわけではないが、アルミニウムと複合的な酸化物状態を形成していると推察され、このことが担体表面積の増加や活性金属との相互作用を生じることにより、活性に影響を及ぼしていると考えられる。   It is preferable to add the raw materials for the carrier constituents other than the above-described aluminum oxide in the step prior to the firing of the carrier. For example, after adding the said raw material previously to aluminum aqueous solution, the aluminum hydroxide gel containing these structural components may be prepared, and the said raw material may be added with respect to the prepared aluminum hydroxide gel. Alternatively, the raw materials may be added in a step of adding water or an acidic aqueous solution to a commercially available aluminum oxide intermediate or boehmite powder and kneading them, but it is more preferable to coexist at the stage of preparing aluminum hydroxide gel. Although the mechanism of the effect of the carrier constituents other than aluminum oxide has not necessarily been elucidated, it is presumed that it forms a complex oxide state with aluminum, which increases the surface area of the carrier and interacts with the active metal. It is considered that the activity is affected by producing the action.

担体としての上記多孔性無機酸化物には、周期律表第6A族及び第8族の元素から選ばれる1種以上の金属を担持することが好ましい。これらの金属の中でも、コバルト、モリブデン、ニッケル及びタングステンから選ばれる2種以上の金属を組み合わせて用いることが好ましい。好適な組み合せとしては、例えば、コバルト−モリブデン、ニッケル−モリブデン、ニッケル−コバルト−モリブデン、ニッケル−タングステンが挙げられる。これらのうち、ニッケル−モリブデン、ニッケル−コバルト−モリブデン及びニッケル−タングステンの組み合せがより好ましい。水素化処理に際しては、これらの金属を硫化物の状態に転換して使用する。   The porous inorganic oxide as a support preferably supports one or more metals selected from Group 6A and Group 8 elements of the periodic table. Among these metals, it is preferable to use a combination of two or more metals selected from cobalt, molybdenum, nickel and tungsten. Examples of suitable combinations include cobalt-molybdenum, nickel-molybdenum, nickel-cobalt-molybdenum, and nickel-tungsten. Of these, combinations of nickel-molybdenum, nickel-cobalt-molybdenum, and nickel-tungsten are more preferred. In the hydrotreatment, these metals are used after being converted to a sulfide state.

触媒質量を基準とする活性金属の含有量としては、タングステン及びモリブデンの合計担持量の範囲は、酸化物換算で12〜35質量%が好ましく、15〜30質量%がより好ましい。タングステン及びモリブデンの合計担持量が12質量%未満であると、活性点が少なくなり、十分な活性が得られなくなる傾向がある。他方、35質量%を越えると、金属が効果的に分散せず、十分な活性が得られなくなる傾向がある。コバルト及びニッケルの合計担持量の範囲は、酸化物換算で1.0〜15質量%が好ましく、1.5〜12質量%がより好ましい。コバルト及びニッケルの合計担持量が1.0質量%未満であると、十分な助触媒効果が得られず、活性が低下する傾向がある。他方、15質量%を越えると、金属が効果的に分散せず、十分な活性が得られなくなる傾向がある。   As the content of the active metal based on the catalyst mass, the range of the total supported amount of tungsten and molybdenum is preferably 12 to 35% by mass in terms of oxide, and more preferably 15 to 30% by mass. If the total supported amount of tungsten and molybdenum is less than 12% by mass, the active sites tend to decrease and sufficient activity cannot be obtained. On the other hand, if it exceeds 35% by mass, the metal is not effectively dispersed and sufficient activity tends not to be obtained. The range of the total supported amount of cobalt and nickel is preferably 1.0 to 15% by mass and more preferably 1.5 to 12% by mass in terms of oxide. When the total supported amount of cobalt and nickel is less than 1.0% by mass, a sufficient promoter effect cannot be obtained and the activity tends to decrease. On the other hand, if it exceeds 15% by mass, the metal is not effectively dispersed and sufficient activity tends not to be obtained.

これらの活性金属を触媒に含有させる方法は特に限定されず、通常の脱硫触媒を製造する際に適用される公知の方法を用いることができる。通常、活性金属の塩を含む溶液を触媒担体に含浸する方法が好ましく採用される。また、平衡吸着法、Pore−filling法、Incipient−wetness法なども好ましく採用される。例えば、Pore−filling法は、担体の細孔容積を予め測定しておき、これと同じ容積の金属塩溶液を含浸する方法である。なお、含浸方法は特に限定されるものではなく、金属担持量や触媒担体の物性に応じて適当な方法で含浸することができる。   The method for incorporating these active metals into the catalyst is not particularly limited, and a known method applied when producing an ordinary desulfurization catalyst can be used. Usually, a method of impregnating a catalyst carrier with a solution containing a salt of an active metal is preferably employed. In addition, an equilibrium adsorption method, a pore-filling method, an incident-wetness method, and the like are also preferably employed. For example, the pore-filling method is a method in which the pore volume of the carrier is measured in advance and impregnated with a metal salt solution having the same volume. The impregnation method is not particularly limited, and it can be impregnated by an appropriate method according to the amount of metal supported and the physical properties of the catalyst carrier.

本発明において、水素化処理に使用する触媒の種類や組合せは特に限定されない。例えば、一種類の触媒を単独で使用してもよく、活性金属種や担体構成成分の異なる触媒を複数使用してもよい。異なる触媒を複数使用する場合の好適な組み合せとしては、例えば、ニッケル−モリブデンを含有する触媒の後段にコバルト−モリブデンを含有する触媒、ニッケル−モリブデンを含有する触媒の後段にニッケル−コバルト−モリブデンを含有する触媒、ニッケル−タングステンを含有する触媒の後段にニッケル−コバルト−モリブデンを含有する触媒、ニッケル−コバルト−モリブデンを含有する触媒の後段にコバルト−モリブデンを含有する触媒を用いることが挙げられる。これらの組み合せの前段及び/又は後段にニッケル−モリブデン触媒を更に組み合せてもよい。   In the present invention, the type and combination of the catalysts used for the hydrotreatment are not particularly limited. For example, one type of catalyst may be used alone, or a plurality of catalysts having different active metal species and carrier components may be used. As a suitable combination when a plurality of different catalysts are used, for example, a catalyst containing cobalt-molybdenum after the catalyst containing nickel-molybdenum, and nickel-cobalt-molybdenum after a catalyst containing nickel-molybdenum are used. Examples thereof include a catalyst containing nickel, a catalyst containing nickel-cobalt-molybdenum after the catalyst containing nickel-tungsten, and a catalyst containing cobalt-molybdenum after the catalyst containing nickel-cobalt-molybdenum. A nickel-molybdenum catalyst may be further combined before and / or after these combinations.

担体成分が異なる複数の触媒を組み合せる場合には、例えば、担体の総質量を基準として酸化アルミニウムの含有量が30質量%以上であり且つ80質量%未満の触媒の後段に、酸化アルミニウムの含有量が80〜99質量%の範囲にある触媒を用いればよい。   In the case of combining a plurality of catalysts having different support components, for example, the content of aluminum oxide is included in the subsequent stage of the catalyst having an aluminum oxide content of 30% by mass or more and less than 80% by mass based on the total mass of the support. A catalyst having an amount in the range of 80 to 99% by mass may be used.

本発明においては、上記触媒のうちの1種類を単独で使用してもよく、活性金属種や担体構成成分の異なる触媒を複数組み合わせて使用してもよい。複数種の触媒を使用する場合の好適な組み合せとしては、例えば、ニッケル−モリブデンを含有する触媒の後段にコバルト−モリブデンを含有する触媒、ニッケル−モリブデンを含有する触媒の後段にニッケル−コバルト−モリブデンを含有する触媒、ニッケル−タングステンを含有する触媒の後段にニッケル−コバルト−モリブデンを含有する触媒、ニッケル−コバルト−モリブデンを含有する触媒の後段にコバルト−モリブデンを含有する触媒を用いることが挙げられる。これらの組み合せの前段及び/又は後段にニッケル−モリブデン触媒を更に組み合せてもよい。   In the present invention, one of the above catalysts may be used alone, or a plurality of catalysts having different active metal species and carrier constituent components may be used in combination. Suitable combinations when using a plurality of types of catalysts include, for example, a catalyst containing cobalt-molybdenum after the catalyst containing nickel-molybdenum, and a nickel-cobalt-molybdenum after the catalyst containing nickel-molybdenum. A catalyst containing nickel-tungsten, a catalyst containing nickel-cobalt-molybdenum after the catalyst containing nickel-tungsten, and a catalyst containing cobalt-molybdenum after the catalyst containing nickel-cobalt-molybdenum. . A nickel-molybdenum catalyst may be further combined before and / or after these combinations.

さらに、上記の触媒(水素化処理触媒)以外に、必要に応じて被処理油に随伴して流入するスケール分をトラップしたり触媒床の区切り部分で水素化処理触媒を支持したりする目的でガード触媒、脱金属触媒、不活性充填物を用いてもよい。なお、これらは単独又は組み合せて用いることができる。   Furthermore, in addition to the above catalyst (hydrotreating catalyst), for the purpose of trapping the scale component that flows along with the oil to be treated, if necessary, or supporting the hydrotreating catalyst at the separation part of the catalyst bed. A guard catalyst, a metal removal catalyst, or an inert packing may be used. In addition, these can be used individually or in combination.

水素の存在下で上記の被処理油と触媒とを接触させる際の条件は、水素圧力1〜6MPa、液空間速度(LHSV)0.1〜0.7h−1であり、好ましくは、水素圧力2〜4MPa、液空間速度0.2〜0.5h−1であることがより好ましい。水素圧力が6MPa以上においては脱炭酸反応と水素化反応の比率が一定であるが、6MPa未満の場合は圧力の低下に応じて脱炭酸比率が増加し、反応による発熱量を抑制する効果が出現する。ただし、水素圧力1MPa未満では、反応性が低下したり活性が急速に低下したりする傾向がある。一方、液空間速度は0.7h−1以上においては脱炭酸反応と水素化反応の比率が一定であるが、0.7h−1未満の場合は空間速度の低下に応じて脱炭酸比率が増加し、反応による発熱量を抑制する効果が出現する。ただし、上記の下限値未満の場合は、極めて大きな内容積の反応器が必要となり過大な設備投資が必要となる傾向がある。 The conditions for contacting the oil to be treated and the catalyst in the presence of hydrogen are a hydrogen pressure of 1 to 6 MPa and a liquid space velocity (LHSV) of 0.1 to 0.7 h −1 , preferably a hydrogen pressure. It is more preferable that they are 2-4 Mpa and liquid space velocity 0.2-0.5h- 1 . When the hydrogen pressure is 6 MPa or more, the ratio between the decarboxylation reaction and the hydrogenation reaction is constant. When the hydrogen pressure is less than 6 MPa, the decarboxylation ratio increases as the pressure decreases, and the effect of suppressing the amount of heat generated by the reaction appears. To do. However, when the hydrogen pressure is less than 1 MPa, the reactivity tends to decrease or the activity tends to decrease rapidly. On the other hand, the liquid hourly space velocity in 0.7 h -1 above is the ratio of the decarboxylation reaction and the hydrogenation reaction is constant, the decarboxylation ratio according to a decrease in space velocity of less than 0.7 h -1 increase And the effect of suppressing the calorific value by reaction appears. However, if the amount is less than the above lower limit value, a reactor having an extremely large internal volume is required, and excessive capital investment tends to be required.

水素化処理における水素油比(水素/油比)100〜1500NL/Lの範囲であることが好ましく、200〜1200NL/Lの範囲であることがより好ましく、250〜1000NL/Lの範囲であることが特に好ましい。水素油比が上記上限を超える場合には上記水素圧力と液空間速度条件における脱炭酸反応の比率の増加効果を阻害し、また上記下限を下回る場合には十分な水素化反応が進行しないおそれがある。   The hydrogen oil ratio (hydrogen / oil ratio) in the hydrotreatment is preferably in the range of 100 to 1500 NL / L, more preferably in the range of 200 to 1200 NL / L, and in the range of 250 to 1000 NL / L. Is particularly preferred. When the hydrogen oil ratio exceeds the above upper limit, the effect of increasing the ratio of decarboxylation reaction under the above hydrogen pressure and liquid space velocity conditions is inhibited, and when it falls below the above lower limit, there is a possibility that sufficient hydrogenation reaction does not proceed. is there.

水素化処理における反応温度は180〜390℃の範囲であることが好ましく、200〜380℃の範囲であることがより好ましく、250〜365℃の範囲であることが特に好ましい。反応温度が180℃より低い場合には、十分な水素化反応が進行せず、390℃より高い場合には、過度の分解や原料油の重合、その他の副反応が進行するおそれがある。   The reaction temperature in the hydrotreatment is preferably in the range of 180 to 390 ° C, more preferably in the range of 200 to 380 ° C, and particularly preferably in the range of 250 to 365 ° C. When the reaction temperature is lower than 180 ° C., sufficient hydrogenation reaction does not proceed, and when it is higher than 390 ° C., excessive decomposition, polymerization of raw material oil, and other side reactions may proceed.

反応器の形式としては、固定床方式を採用することができる。すなわち、水素は被処理油に対して向流又は並流のいずれの形式を採用することができる。また、複数の反応器を用いて、向流、並流を組み合せた形式としてもよい。一般的な形式としては、ダウンフローであり、気液双並流形式を採用することができる。また、反応器は単独又は複数を組み合せてもよく、一つの反応器内部を複数の触媒床に区分した構造を採用してもよい。   As the type of the reactor, a fixed bed system can be adopted. That is, hydrogen can adopt either a countercurrent or a parallel flow type with respect to the oil to be treated. Moreover, it is good also as a form which combined the countercurrent and the parallel flow using several reactors. As a general format, it is a down flow, and a gas-liquid twin parallel flow format can be adopted. Moreover, the reactor may be used alone or in combination, and a structure in which one reactor is divided into a plurality of catalyst beds may be adopted.

反応器内で水素化処理された水素化処理油は気液分離工程や精留工程等を経て所定の留分を含有する水素化処理油に分画される。例えば、軽油留分や残さ留分に分画される。さらに必要に応じてガス、ナフサ留分、灯油留分を分画することもある。この場合、軽質留分と中間留分とのカット温度は100〜200℃が好ましく、120〜180℃がより好ましく、140〜160℃がさらに好ましい。また、中間留分と重質留分とのカット温度は300〜400℃が好ましく、300〜380℃がより好ましく、300〜360℃がさらに好ましい。また、生成するこのような軽質炭化水素留分の一部を水蒸気改質装置において改質することにより水素を製造することができる。このようにして製造された水素は、水蒸気改質に用いた原料がバイオマス由来炭化水素であることから、カーボンニュートラルという特徴を有しており、環境への負荷を低減することができる。なお、被処理油に含まれている酸素分や硫黄分の反応に伴って水、一酸化炭素、二酸化炭素、硫化水素などが発生する可能性があるが、複数の反応器の間や生成物回収工程に気液分離設備やその他の副生ガス除去装置を設置してもよい。   The hydrotreated oil hydrotreated in the reactor is fractionated into a hydrotreated oil containing a predetermined fraction through a gas-liquid separation process, a rectification process, and the like. For example, it is fractionated into a light oil fraction and a residual fraction. Furthermore, the gas, naphtha fraction, and kerosene fraction may be fractionated as necessary. In this case, the cut temperature of the light fraction and the middle fraction is preferably 100 to 200 ° C, more preferably 120 to 180 ° C, and further preferably 140 to 160 ° C. Moreover, 300-400 degreeC is preferable, as for the cut temperature of a middle fraction and a heavy fraction, 300-380 degreeC is more preferable, and 300-360 degreeC is further more preferable. Moreover, hydrogen can be manufactured by reforming a part of such a light hydrocarbon fraction to be produced in a steam reformer. The hydrogen produced in this way has a characteristic of carbon neutral because the raw material used for steam reforming is a biomass-derived hydrocarbon, and can reduce the burden on the environment. In addition, water, carbon monoxide, carbon dioxide, hydrogen sulfide, etc. may be generated due to the reaction of oxygen and sulfur contained in the oil to be treated. A gas-liquid separation facility or other by-product gas removal device may be installed in the recovery process.

水素ガスは加熱炉を通過前もしくは通過後の被処理油に随伴させて最初の反応器の入口から導入することが一般的であるが、これとは別に、反応器内の温度を制御するとともに、反応器内全体にわたって水素圧力を維持する目的で触媒床の間や複数の反応器の間から水素ガスを導入してもよい。このようにして導入される水素を一般にクエンチ水素と呼ぶ。被処理油に随伴して導入する水素ガスに対するクエンチ水素の割合は、10〜60容量%であることが好ましく、15〜50容量%であることがより好ましい。クエンチ水素の割合が10容量未満であると後段の反応部位での反応が十分に進行しない傾向があり、クエンチ水素の割合が60容積%を超えると反応器入口付近での反応が十分に進行しない傾向がある。   In general, hydrogen gas is introduced from the inlet of the first reactor along with the oil to be treated before or after passing through the heating furnace, but separately from this, the temperature in the reactor is controlled. In order to maintain the hydrogen pressure throughout the reactor, hydrogen gas may be introduced between the catalyst beds or between a plurality of reactors. The hydrogen thus introduced is generally called quench hydrogen. The ratio of quench hydrogen to hydrogen gas introduced along with the oil to be treated is preferably 10 to 60% by volume, and more preferably 15 to 50% by volume. If the rate of quench hydrogen is less than 10 volumes, the reaction at the subsequent reaction site tends not to proceed sufficiently. If the rate of quench hydrogen exceeds 60% by volume, the reaction near the reactor inlet does not proceed sufficiently. Tend.

本発明の軽油基材は、上記のような水素化処理によって得られる炭化水素留分であって、ノルマルパラフィンの含有量が90質量%以上であり、炭化水素留分中の規定炭素数n(10≦n≦20;nは偶数を示す。)における総パラフィン含有量をA(単位:質量%)、炭素数n−1における総パラフィン含有量をBn−1(単位:質量%)、Aに対するBn−1の比を(Bn−1/A)としたとき、10≦n≦20における(Bn−1/A)の平均値が0.30以上のものである。 The light oil base material of the present invention is a hydrocarbon fraction obtained by the hydrogenation treatment as described above, wherein the content of normal paraffin is 90% by mass or more, and the specified carbon number n ( 10 ≦ n ≦ 20; n is an even number.) The total paraffin content in A n (unit: mass%), the total paraffin content in carbon number n−1 is B n-1 (unit: mass%), when the ratio of B n-1 with respect to a n and (B n-1 / a n ), the mean value of the 10 ≦ n ≦ 20 (B n -1 / a n) is of 0.30 or more .

なお、ノルマルパラフィンの含有量が低下すると、軽油基材のセタン価が低下し、軽油製品化したときの実用性能に懸念を生じる恐れがある。   In addition, when content of normal paraffin falls, the cetane number of a light oil base material may fall, and there exists a possibility of raising a concern about the practical performance when it makes a light oil product.

また、10≦n≦20における(Bn−1/A)の平均値は0.30以上であり、好ましくは0.40以上、より好ましくは0.50以上である。当該平均値が0.30に満たない場合は、環境低負荷型環境基材中のパラフィン分布が歪になることによる、基材自体の低温性能悪化、及び基材使用時の軽油組成物における低温流動性向上剤の添加効果が悪化する。 Moreover, the average value of ( Bn-1 / An ) in 10 <= n <= 20 is 0.30 or more, Preferably it is 0.40 or more, More preferably, it is 0.50 or more. When the average value is less than 0.30, the low temperature performance of the base material itself is deteriorated due to the distortion of the paraffin distribution in the environmental low load type environmental base material, and the low temperature in the light oil composition when the base material is used. The effect of adding a fluidity improver deteriorates.

また、本発明の軽油組成物は、本発明の軽油基材を10容量%以上含有する軽油基材と、軽油組成物全量を基準として10〜1000質量ppmの低温流動性向上剤と、を含有し、90%留出温度が360℃以下、硫黄分が10質量ppm以下、酸素分1質量%以下、脂肪酸アルキルエステル分3.5質量%以下、酸価0.13mgKOH/g以下、メタノール分0.01質量%以下、グリセライド分0.01質量%以下、目詰まり点−5℃以下であるという要件を満たす。   Further, the light oil composition of the present invention contains a light oil base material containing 10% by volume or more of the light oil base material of the present invention, and a low temperature fluidity improver of 10 to 1000 mass ppm based on the total amount of the light oil composition. 90% distillation temperature of 360 ° C. or less, sulfur content of 10 mass ppm or less, oxygen content of 1 mass% or less, fatty acid alkyl ester content of 3.5 mass% or less, acid value of 0.13 mg KOH / g or less, methanol content of 0 .01% by mass or less, glyceride content of 0.01% by mass or less, and clogging point of −5 ° C. or less are satisfied.

本発明の軽油組成物は、目的とする軽油組成物の性状が得られる限りにおいて、本発明の軽油基材以外の基材を含有してもよい。かかる基材としては、原油の常圧蒸留装置から得られる直留灯・軽油留分、常圧蒸留装置から得られる直留重質油や残査油を減圧蒸留装置で処理して得られる減圧灯・軽油留分、減圧重質軽油あるいは脱硫重油を接触分解又は水素化分解して得られる接触分解灯・軽油留分、水素化分解灯・軽油留分、これらの石油系炭化水素を水素化精製して得られる水素化精製灯・軽油留分、若しくは水素化脱硫灯・軽油留分等、また、天然ガス、アスファルト、石炭、バイオマスなどを原料にして合成される合成灯・軽油留分等を好ましく使用できる。本発明の軽油組成物では、所定の条件を満たす範疇で、これらの灯・軽油留分基材及び灯油留分基材を複数配合してもよい。   The light oil composition of the present invention may contain a base other than the light oil base of the present invention as long as the properties of the intended light oil composition are obtained. Such base materials include straight-run lamps and light oil fractions obtained from a crude oil atmospheric distillation device, straight-run heavy oil obtained from an atmospheric distillation device, and residual oil obtained by treating with a vacuum distillation device. Catalytic cracking lamps / light oil fractions, hydrocracking lamps / light oil fractions obtained by catalytic cracking or hydrocracking of kerosene / light oil fractions, decompressed heavy gas oils or desulfurized heavy oils, and hydrogenating these petroleum hydrocarbons Hydrorefining lamp / light oil fraction obtained by refining, hydrodesulfurization lamp / light oil fraction, etc., and synthetic light / light oil fraction synthesized from natural gas, asphalt, coal, biomass, etc. Can be preferably used. In the light oil composition of the present invention, a plurality of these kerosene / light oil fraction base materials and kerosene fraction base materials may be blended in a category that satisfies a predetermined condition.

本発明の軽油組成物の目詰まり点(CFPP)は、JIS2号軽油規格である−5℃以下を満たす必要がある。さらに、ディーゼル車のプレフィルタ閉塞防止の点から、−6℃以下であることが好ましく、−7℃以下であることがより好ましい。ここで目詰まり点とはJIS K 2288「軽油−目詰まり点試験方法」により測定される目詰まり点を指す。   The clogging point (CFPP) of the light oil composition of the present invention needs to satisfy −5 ° C. or less which is JIS No. 2 light oil standard. Furthermore, it is preferably −6 ° C. or lower, more preferably −7 ° C. or lower, from the viewpoint of preventing the pre-filter blockage of a diesel vehicle. Here, the clogging point refers to a clogging point measured according to JIS K 2288 “Light oil—clogging point test method”.

本発明の軽油組成物の硫黄分は、エンジンから排出される有害排気成分低減と排ガス後処理装置の性能向上の点から10質量ppm以下であることが必要であり、好ましくは5質量ppm以下、より好ましくは3質量ppm以下、さらに好ましくは1質量ppm以下である。なお、ここでいう硫黄分とは、JIS K2541「硫黄分試験方法」により測定される軽油組成物全量基準の硫黄分の質量含有量を意味する。   The sulfur content of the light oil composition of the present invention needs to be 10 mass ppm or less from the viewpoint of reducing harmful exhaust components discharged from the engine and improving the performance of the exhaust gas aftertreatment device, preferably 5 mass ppm or less, More preferably, it is 3 mass ppm or less, More preferably, it is 1 mass ppm or less. In addition, the sulfur content here means the mass content of the sulfur content based on the total amount of the light oil composition measured by JIS K2541 “Sulfur content test method”.

本発明の軽油組成物の酸素分は、酸化安定性向上の観点から1質量%以下であることが必要であり、好ましくは0.8質量%以下、より好ましくは0.6質量%以下、さらに好ましくは0.4質量%以下、最も好ましくは0.2質量%以下である。なお、酸素分は一般的な元素分析装置で測定することができ、例えば、試料を白金炭素上でCOに転換し、あるいはさらにCOに転換した後に熱伝導度検出器を用いて測定することもできる。 The oxygen content of the light oil composition of the present invention is required to be 1% by mass or less, preferably 0.8% by mass or less, more preferably 0.6% by mass or less, from the viewpoint of improving oxidation stability. Preferably it is 0.4 mass% or less, Most preferably, it is 0.2 mass% or less. The oxygen content can be measured with a general elemental analyzer. For example, the sample is converted to CO on platinum carbon, or further converted to CO 2 and then measured using a thermal conductivity detector. You can also.

本発明の軽油組成物の引火点は、45℃以上であることが好ましい。引火点が45℃に満たない場合には、安全上の理由により軽油組成物として取り扱うことができない。同様の理由により、引火点は54℃以上であることが好ましく、58℃以上であることがより好ましい。なお、本発明でいう引火点はJISK 2265「原油及び石油製品引火点試験方法」で測定される値を示す。   The flash point of the light oil composition of the present invention is preferably 45 ° C. or higher. When the flash point is less than 45 ° C., it cannot be handled as a light oil composition for safety reasons. For the same reason, the flash point is preferably 54 ° C. or higher, more preferably 58 ° C. or higher. In addition, the flash point as used in the field of this invention shows the value measured by JISK2265 "Crude oil and petroleum product flash point test method".

本発明の軽油組成物のセタン指数は、45以上であることが好ましい。セタン指数が45に満たない場合には、排出ガス中のPM、アルデヒド類、あるいはさらにNOxの濃度が高くなる傾向にある。また、同様の理由により、セタン指数は48以上であることが好ましく、51以上であることが最も好ましい。なお、本発明でいうセタン指数とは、JIS K 2280「石油製品−燃料油−オクタン価及びセタン価試験方法並びにセタン指数算出方法」の「8.4変数方程式を用いたセタン指数の算出方法」によって算出される価を意味する。ここで、上記JIS規格におけるセタン指数は、一般的にはセタン価向上剤を添加していない軽油に対して適用されるが、本発明ではセタン価向上剤を添加した軽油組成物についても上記「8.4変数方程式を用いたセタン指数の算出方法」を適用し、当該算出方法により算出される値をセタン指数として表す。   The cetane index of the light oil composition of the present invention is preferably 45 or more. When the cetane index is less than 45, the concentration of PM, aldehydes, or NOx in the exhaust gas tends to increase. For the same reason, the cetane index is preferably 48 or more, and most preferably 51 or more. The cetane index referred to in the present invention is defined by “Calculation method of cetane index using 8.4 variable equations” in JIS K 2280 “Petroleum products-fuel oil-octane number and cetane number test method and cetane index calculation method”. It means the calculated value. Here, the cetane index in the JIS standard is generally applied to light oil to which a cetane number improver is not added, but in the present invention, the above-mentioned " Applying “8.4 Calculation Method of Cetane Index Using Variable Equation”, a value calculated by the calculation method is expressed as a cetane index.

本発明の軽油組成物の15℃における密度は、発熱量確保の点から、750kg/m以上であることが好ましく、760kg/m以上がより好ましく、770kg/m以上がさらに好ましい。また、当該密度は、NOx、PMの排出量を低減する点から、850kg/m以下であることが好ましく、845kg/m以下がより好ましく、840kg/m以下がさらに好ましい。なお、ここでいう密度とは、JIS K 2249「原油及び石油製品の密度試験方法並びに密度・質量・容量換算表」により測定される密度を意味する。 Density at 15 ℃ of the gas oil composition of the present invention, in terms of calorific value ensuring, is preferably 750 kg / m 3 or more, more preferably 760 kg / m 3 or more, more preferably 770 kg / m 3 or more. Further, the density, NOx, from the viewpoint of reducing the emission of PM, it is preferably 850 kg / m 3 or less, more preferably 845 kg / m 3 or less, more preferably 840 kg / m 3 or less. In addition, the density here means the density measured by JIS K 2249 “Density test method and density / mass / capacity conversion table of crude oil and petroleum products”.

本発明の軽油組成物は、HFRR摩耗痕径(WS1.4)が好ましくは460μm以下、より好ましくは430μm以下、さらに好ましくは410μm以下となる潤滑性能を有することが望ましい。HFRR摩耗痕径(WS1.4)が460μmを超える場合は、特に分配型噴射ポンプを搭載したディーゼルエンジンにおいて、運転中のポンプの駆動トルク増、ポンプ各部の摩耗増を引き起こし、排ガス性能、微小粒子性能の悪化のみならずエンジン自体が破壊される恐れがある。また、高圧噴射が可能な電子制御式燃料噴射ポンプにおいても、摺動面等の摩耗が懸念される。なお、本発明でいうHFRR摩耗痕径(WS1.4)とは、社団法人石油学会から発行されている石油学会規格JPI−5S−50−98「軽油−潤滑性試験方法」により測定される値を意味する。   The light oil composition of the present invention desirably has a lubricating performance such that the HFRR wear scar diameter (WS1.4) is preferably 460 μm or less, more preferably 430 μm or less, and even more preferably 410 μm or less. When the HFRR wear scar diameter (WS1.4) exceeds 460 μm, especially in a diesel engine equipped with a distribution type injection pump, it causes an increase in driving torque of the pump during operation and an increase in wear of each part of the pump. The engine itself may be destroyed as well as the performance deterioration. In addition, in an electronically controlled fuel injection pump capable of high-pressure injection, there is a concern about wear on the sliding surface. The HFRR wear scar diameter (WS1.4) as used in the present invention is a value measured by the Petroleum Institute Standard JPI-5S-50-98 “Light Oil-Lubricity Test Method” issued by the Japan Petroleum Institute. Means.

本発明の軽油組成物における芳香族分には特に制限はないが、環境負荷低減効果を高め、NOx及びPM低減の観点から、20容量%以下であることが好ましく、より好ましくは19容量%以下、さらに好ましくは18容量%以下である。なお、本発明でいう芳香族分とは、社団法人石油学会により発行されている石油学会法JPI−5S−49−97「炭化水素タイプ試験方法−高速液体クロマトグラフ法」に準拠され測定された芳香族分の容量百分率(容量%)を意味する。   Although there is no restriction | limiting in particular in the aromatic content in the light oil composition of this invention, it is preferable that it is 20 volume% or less from a viewpoint of improving an environmental impact reduction effect and NOx and PM reduction, More preferably, it is 19 volume% or less. More preferably, it is 18 volume% or less. The aromatic content in the present invention was measured in accordance with the Petroleum Institute Method JPI-5S-49-97 “Hydrocarbon Type Test Method—High Performance Liquid Chromatograph Method” published by the Japan Petroleum Institute. It means the volume percentage (volume%) of aromatic content.

本発明の軽油組成物の水分は、燃料タンク等への部材への悪影響、及びエステル化合物の加水分解抑制の観点から、300容量ppm以下であることが好ましく、250容量ppm以下であることがより好ましく、200容量ppm以下であることがさらに好ましい。なお、ここでいう水分とは、JIS K 2275「水分試験方法(原油及び石油製品)」で規定される水分である。   The water content of the light oil composition of the present invention is preferably 300 ppm by volume or less, more preferably 250 ppm by volume or less, from the viewpoint of adverse effects on members to fuel tanks and the like and suppression of hydrolysis of ester compounds. Preferably, it is 200 volume ppm or less. In addition, the water | moisture content here is the water prescribed | regulated by JISK2275 "moisture test method (crude oil and petroleum products)."

本発明の軽油組成物における蒸留性状としては、90%留出温度が360℃以下であることが必要であり、好ましくは340℃以下、より好ましくは330℃以下、さらに好ましくは320℃以下である。90%留出温度が360℃を超えると、PMや微小粒子の排出量が増加する傾向にある。また、90%留出温度は、好ましくは280℃以上、より好ましくは285℃以上、さらに好ましくは290℃以上、さらにより好ましくは295℃以上である。90%留出温度が280℃に満たないと、燃費向上効果が不十分となり、エンジン出力が低下する傾向にある。なお、ここでいう90%留出温度とは、JIS K 2254「石油製品−蒸留試験方法−常圧法」に準拠して測定される値を意味する。   As a distillation property in the light oil composition of the present invention, the 90% distillation temperature needs to be 360 ° C. or less, preferably 340 ° C. or less, more preferably 330 ° C. or less, and further preferably 320 ° C. or less. . When the 90% distillation temperature exceeds 360 ° C., the amount of PM and fine particles discharged tends to increase. The 90% distillation temperature is preferably 280 ° C. or higher, more preferably 285 ° C. or higher, further preferably 290 ° C. or higher, and even more preferably 295 ° C. or higher. If the 90% distillation temperature is less than 280 ° C., the fuel efficiency improvement effect becomes insufficient and the engine output tends to decrease. The 90% distillation temperature here means a value measured according to JIS K 2254 “Petroleum products—Distillation test method—Normal pressure method”.

本発明の軽油組成物の30℃における動粘度は特に制限はないが、2.5mm/s以上であることが好ましく、2.7mm/s以上であることがより好ましく、2.9mm/s以上であることがさらに好ましい。当該動粘度が2.5mm/sに満たない場合は、燃料噴射ポンプ側の燃料噴射時期制御が困難となる傾向にあり、またエンジンに搭載された燃料噴射ポンプの各部における潤滑性が損なわれるおそれがある。また、本発明の軽油組成物の30℃における動粘度は5mm/s以下であることが好ましく、4.7mm/s以下であることがより好ましく、4.5mm/s以下であることがさらに好ましい。当該動粘度が5mm/sを超えると、燃料噴射システム内部の抵抗が増加して噴射系が不安定化し、排出ガス中のNOx、PMの濃度が高くなってしまう。なお、ここでいう動粘度とは、JIS K 2283「原油及び石油製品−動粘度試験方法及び粘度指数算出方法」により測定される動粘度を意味する。 The kinematic viscosity at 30 ° C. of the light oil composition of the present invention is not particularly limited, but is preferably 2.5 mm 2 / s or more, more preferably 2.7 mm 2 / s or more, and 2.9 mm 2. / S or more is more preferable. If the kinematic viscosity is less than 2.5 mm 2 / s, it tends to be difficult to control the fuel injection timing on the fuel injection pump side, and the lubricity of each part of the fuel injection pump mounted on the engine is impaired. There is a fear. Moreover, kinematic viscosity at 30 ° C. of the gas oil compositions of the present invention is preferably at most 5 mm 2 / s, more preferably not more than 4.7 mm 2 / s, or less 4.5 mm 2 / s Is more preferable. If the kinematic viscosity exceeds 5 mm 2 / s, the resistance inside the fuel injection system increases, the injection system becomes unstable, and the concentrations of NOx and PM in the exhaust gas increase. In addition, kinematic viscosity here means kinematic viscosity measured by JISK2283 "crude oil and petroleum products-kinematic viscosity test method and viscosity index calculation method".

本発明の軽油組成物においては、エンジン部材への悪影響の観点から、酸価は0.13mgKOH/g以下であることが必要である。酸価は混合物内の遊離脂肪酸量を示しているため、この値が大きいと酸性化合物による部材への悪影響が懸念される。そのため、酸価は0.10mgKOH/g以下であることが好ましく、0.08mgKOH/g以下であることがより好ましく、0.05mgKOH/g以下であることがさらに好ましい。なお、ここでいう酸価とは、JIS K 2501「石油製品及び潤滑油−中和価試験方法」により測定される酸価を意味する。   In the light oil composition of the present invention, the acid value is required to be 0.13 mgKOH / g or less from the viewpoint of adverse effects on engine members. Since the acid value indicates the amount of free fatty acid in the mixture, if this value is large, there is a concern that the acidic compound may adversely affect the member. Therefore, the acid value is preferably 0.10 mgKOH / g or less, more preferably 0.08 mgKOH / g or less, and further preferably 0.05 mgKOH / g or less. In addition, an acid value here means the acid value measured by JISK2501 "Petroleum products and lubricating oil-neutralization number test method".

本発明の軽油組成物においては、エンジン燃焼等における燃え切り性の悪化の観点から脂肪酸メチルエステル分は3.5質量%以下であることが必要である。好ましくは2.0質量%以下、より好ましくは1.0質量%以下、さらに好ましくは0.5質量%以下である。なお、ここでいう脂肪酸メチルエステル分とはEN 14103に準拠して測定される脂肪酸メチルエステル分を意味する。   In the light oil composition of the present invention, the fatty acid methyl ester content is required to be 3.5% by mass or less from the viewpoint of deterioration of burnout in engine combustion or the like. Preferably it is 2.0 mass% or less, More preferably, it is 1.0 mass% or less, More preferably, it is 0.5 mass% or less. Here, the fatty acid methyl ester content means the fatty acid methyl ester content measured according to EN 14103.

本発明の軽油組成物においては、燃料噴射系への悪影響の観点から、メタノール分は0.01質量%以下であることが必要である。好ましくは0.008質量%以下、より好ましくは0.006質量%以下、さらに好ましくは0.005質量%以下である。なお、ここでいうメタノール分とはJIS K 2536及びEN 14110に準拠して測定されるメタノール分を意味する。   In the light oil composition of the present invention, the methanol content must be 0.01% by mass or less from the viewpoint of adverse effects on the fuel injection system. Preferably it is 0.008 mass% or less, More preferably, it is 0.006 mass% or less, More preferably, it is 0.005 mass% or less. The methanol content here means a methanol content measured according to JIS K 2536 and EN 14110.

本発明の軽油組成物においては、燃料噴射系への悪影響の観点から、グリセライド分は0.01質量%以下であることが必要である。好ましくは0.008質量%以下、より好ましくは0.006質量%以下、さらに好ましくは0.005質量%以下である。なお、ここでいうグリセライド分とはEN 14105に準拠して測定されるグリセライド分を意味する。   In the light oil composition of the present invention, the glyceride content must be 0.01% by mass or less from the viewpoint of adverse effects on the fuel injection system. Preferably it is 0.008 mass% or less, More preferably, it is 0.006 mass% or less, More preferably, it is 0.005 mass% or less. The glyceride content here means a glyceride content measured in accordance with EN 14105.

上記の混合油には、低温性能を向上させるために低温流動性向上剤が配合される。低温流動性向上剤の種類は特に限定されないが、エチレン−酢酸ビニル共重合体に代表されるエチレン−不飽和エステル共重合体、アルケニルコハク酸アミド、ポリエチレングリコールのジベヘン酸エステルなどの線状の化合物、アルキルフマレート又はアルキルイタコネート−不飽和エステル共重合体などからなるくし形ポリマーなどの低温流動性向上剤、フタル酸、コハク酸、エチレンジアミン四酢酸、ニトリロ酢酸などの酸又はその酸無水物などとヒドロカルビル置換アミンなどとの反応生成物などからなる極性窒素化合物を含有する低温流動性向上剤などを挙げることができ、これらの化合物の1種又は2種以上を組み合わせて使用してもよい。この中でも汎用性の観点から、エチレン−酢酸ビニル共重合体系添加剤、極性窒素化合物を含有する低温流動性向上剤が好ましく使用することができ、ワックス結晶微細化促進及び、ワックスの凝集沈降を防止する点で、極性窒素化合物を含有する低温流動性向上剤の使用がさらに好ましい。   The above mixed oil is blended with a low temperature fluidity improver in order to improve low temperature performance. The type of low-temperature fluidity improver is not particularly limited, but linear compounds such as ethylene-unsaturated ester copolymers represented by ethylene-vinyl acetate copolymers, alkenyl succinic acid amides, and dibehenate esters of polyethylene glycol. , Low temperature fluidity improvers such as comb polymers composed of alkyl fumarate or alkyl itaconate-unsaturated ester copolymers, acids such as phthalic acid, succinic acid, ethylenediaminetetraacetic acid, nitriloacetic acid, or acid anhydrides thereof, etc. And a low-temperature fluidity improver containing a polar nitrogen compound consisting of a reaction product of hydrocarbyl-substituted amine and the like, and one or more of these compounds may be used in combination. Among these, from the viewpoint of versatility, an ethylene-vinyl acetate copolymer additive and a low-temperature fluidity improver containing a polar nitrogen compound can be preferably used to prevent wax crystal refinement and prevent wax aggregation and sedimentation. Therefore, it is more preferable to use a low temperature fluidity improver containing a polar nitrogen compound.

低温流動性向上剤の含有量は、組成物全量を基準として、10〜1000mg/Lであり、好ましくは50〜500mg/L、より好ましくは100〜300mg/Lである。低温流動性向上剤の含有量が前記下限値未満であると、その添加による低温流動性向上効果が不十分となる傾向にある。また、低温流動性向上剤の含有量が前記上限値を超えても、含有量に見合う低温流動性の更なる向上効果は得られない。   The content of the low temperature fluidity improver is 10 to 1000 mg / L, preferably 50 to 500 mg / L, more preferably 100 to 300 mg / L, based on the total amount of the composition. When the content of the low temperature fluidity improver is less than the lower limit, the effect of improving the low temperature fluidity due to the addition tends to be insufficient. Moreover, even if content of a low temperature fluidity improver exceeds the said upper limit, the further improvement effect of the low temperature fluidity commensurate with content is not acquired.

本発明の軽油組成物においては、必要に応じてセタン価向上剤を適量配合し、得られる軽油組成物のセタン価を向上させることができる。セタン価向上剤としては、軽油のセタン価向上剤として知られる各種の化合物を任意に使用することができ、例えば、硝酸エステルや有機過酸化物等が挙げられる。これらのセタン価向上剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いても良い。   In the light oil composition of the present invention, if necessary, an appropriate amount of a cetane number improver can be blended to improve the cetane number of the resulting light oil composition. As the cetane number improver, various compounds known as light oil cetane number improvers can be arbitrarily used, and examples thereof include nitrate esters and organic peroxides. These cetane number improvers may be used alone or in combination of two or more.

本発明においては、上述のセタン価向上剤の中でも硝酸エステルを用いることが好ましい。かかる硝酸エステルには、2−クロロエチルナイトレート、2−エトキシエチルナイトレート、イソプロピルナイトレート、ブチルナイトレート、第一アミルナイトレート、第二アミルナイトレート、イソアミルナイトレート、第一ヘキシルナイトレート、第二ヘキシルナイトレート、n−ヘプチルナイトレート、n−オクチルナイトレート、2−エチルヘキシルナイトレート、シクロヘキシルナイトレート、エチレングリコールジナイトレートなどの種々のナイトレート等が包含されるが、特に炭素数6〜8のアルキルナイトレートが好ましい。   In the present invention, it is preferable to use a nitrate ester among the cetane number improvers described above. Such nitrate esters include 2-chloroethyl nitrate, 2-ethoxyethyl nitrate, isopropyl nitrate, butyl nitrate, primary amyl nitrate, secondary amyl nitrate, isoamyl nitrate, primary hexyl nitrate, Various nitrates such as secondary hexyl nitrate, n-heptyl nitrate, n-octyl nitrate, 2-ethylhexyl nitrate, cyclohexyl nitrate, and ethylene glycol dinitrate are included. An alkyl nitrate of ˜8 is preferred.

セタン価向上剤の含有量は、組成物全量基準で500質量ppm以上であることが好ましく、600質量ppm以上であることがより好ましく、700質量ppm以上であることがさらに好ましく、800質量ppm以上であることが特に好ましく、900質量ppm以上であることが最も好ましい。セタン価向上剤の含有量が500質量ppmに満たない場合は、十分なセタン価向上効果が得られず、ディーゼルエンジン排出ガスのPM、アルデヒド類、さらにはNOxが十分に低減されない傾向にある。また、セタン価向上剤の含有量の上限値は特に限定されないが、軽油組成物全量基準で、1400質量ppm以下であることが好ましく、1250質量ppm以下であることがより好ましく、1100質量ppm以下であることがさらに好ましく、1000質量ppm以下であることが最も好ましい。   The content of the cetane improver is preferably 500 ppm by mass or more based on the total amount of the composition, more preferably 600 ppm by mass or more, further preferably 700 ppm by mass or more, and 800 ppm by mass or more. It is particularly preferable that it is 900 mass ppm or more. When the content of the cetane number improver is less than 500 ppm by mass, a sufficient cetane number improving effect cannot be obtained, and PM, aldehydes, and further NOx in diesel engine exhaust gas tend not to be sufficiently reduced. Further, the upper limit of the content of the cetane number improver is not particularly limited, but is preferably 1400 mass ppm or less, more preferably 1250 mass ppm or less, based on the total amount of the light oil composition, and 1100 mass ppm or less. It is more preferable that it is 1000 mass ppm or less.

セタン価向上剤は、常法に従い合成したものを用いてもよく、また、市販品を用いてもよい。なお、セタン価向上剤と称して市販されているものは、セタン価向上に寄与する有効成分(すなわちセタン価向上剤自体)を適当な溶剤で希釈した状態で入手されるのが通例である。このような市販品を使用して本発明の軽油組成物を調製する場合には、軽油組成物中の当該有効成分の含有量が上述の範囲内となることが好ましい。   As the cetane number improver, one synthesized according to a conventional method may be used, or a commercially available product may be used. In addition, what is marketed as a cetane number improver is usually obtained in a state where an active ingredient contributing to cetane number improvement (that is, cetane number improver itself) is diluted with an appropriate solvent. When preparing the light oil composition of this invention using such a commercial item, it is preferable that content of the said active ingredient in a light oil composition becomes in the above-mentioned range.

本発明の軽油組成物においては、上記セタン価向上剤以外の添加剤を必要に応じて配合することができ、特に、潤滑性向上剤及び/又は清浄剤が好ましく配合される。   In the light oil composition of the present invention, additives other than the cetane number improver can be blended as necessary, and in particular, a lubricity improver and / or a detergent is preferably blended.

潤滑性向上剤としては、例えば、カルボン酸系、エステル系、アルコール系及びフェノール系の各潤滑性向上剤の1種又は2種以上が任意に使用可能である。これらの中でも、カルボン酸系及びエステル系の潤滑性向上剤が好ましい。カルボン酸系の潤滑性向上剤としては、例えば、リノ−ル酸、オレイン酸、サリチル酸、パルミチン酸、ミリスチン酸、ヘキサデセン酸及び上記カルボン酸の2種以上の混合物が例示できる。エステル系の潤滑性向上剤としては、グリセリンのカルボン酸エステルが挙げられる。カルボン酸エステルを構成するカルボン酸は、1種であっても2種以上であってもよく、その具体例としては、リノ−ル酸、オレイン酸、サリチル酸、パルミチン酸、ミリスチン酸、ヘキサデセン酸等がある。   As the lubricity improver, for example, one or more of carboxylic acid-based, ester-based, alcohol-based and phenol-based lubricity improvers can be arbitrarily used. Among these, carboxylic acid-based and ester-based lubricity improvers are preferable. Examples of the carboxylic acid-based lubricity improver include linoleic acid, oleic acid, salicylic acid, palmitic acid, myristic acid, hexadecenoic acid and a mixture of two or more of the above carboxylic acids. Examples of ester-based lubricity improvers include carboxylic acid esters of glycerin. The carboxylic acid constituting the carboxylic acid ester may be one kind or two or more kinds, and specific examples thereof include linoleic acid, oleic acid, salicylic acid, palmitic acid, myristic acid, hexadecenoic acid and the like. There is.

潤滑性向上剤の配合量は、50質量ppm以上300質量ppm以下であることが必要であり、好ましくは75質量ppm以上200質量ppm以下、より好ましくは100質量ppm以上150質量ppm以下である。潤滑性向上剤の配合量が前記の範囲内であると、配合された潤滑性向上剤の効能を有効に引き出すことができ、例えば分配型噴射ポンプを搭載したディーゼルエンジンにおいて、運転中のポンプの駆動トルク増を抑制し、ポンプの摩耗を低減させることができる。   The blending amount of the lubricity improver needs to be 50 mass ppm or more and 300 mass ppm or less, preferably 75 mass ppm or more and 200 mass ppm or less, more preferably 100 mass ppm or more and 150 mass ppm or less. When the blending amount of the lubricity improver is within the above range, the effectiveness of the blended lubricity improving agent can be effectively extracted. For example, in a diesel engine equipped with a distributed injection pump, An increase in driving torque can be suppressed and pump wear can be reduced.

清浄剤としては、例えば、イミド系化合物;ポリブテニルコハク酸無水物とエチレンポリアミン類とから合成されるポリブテニルコハク酸イミドなどのアルケニルコハク酸イミド;ペンタエリスリトールなどの多価アルコールとポリブテニルコハク酸無水物から合成されるポリブテニルコハク酸エステルなどのコハク酸エステル;ジアルキルアミノエチルメタクリレート、ポリエチレングリコールメタクリレート、ビニルピロリドンなどとアルキルメタクリレートとのコポリマーなどの共重合系ポリマー、カルボン酸とアミンの反応生成物等の無灰清浄剤等が挙げられ、中でもアルケニルコハク酸イミド及びカルボン酸とアミンとの反応生成物が好ましい。これらの清浄剤は、1種を単独で又は2種以上を組み合わせて使用することができる。   Examples of the detergent include imide compounds; alkenyl succinimides such as polybutenyl succinimides synthesized from polybutenyl succinic anhydrides and ethylene polyamines; polyhydric alcohols such as pentaerythritol and polybutyls. Succinic acid esters such as polybutenyl succinic acid ester synthesized from tenyl succinic anhydride; copolymer polymers such as dialkylaminoethyl methacrylate, polyethylene glycol methacrylate, vinyl pyrrolidone and alkyl methacrylate copolymers, carboxylic acids and amines Ashless detergents such as reaction products of alkenyl succinic acid imide and reaction products of carboxylic acid and amine are preferred. These detergents can be used individually by 1 type or in combination of 2 or more types.

アルケニルコハク酸イミドを使用する例としては、分子量1000〜3000程度のアルケニルコハク酸イミドを単独使用する場合と、分子量700〜2000程度のアルケニルコハク酸イミドと分子量10000〜20000程度のアルケニルコハク酸イミドとを混合して使用する場合とがある。カルボン酸とアミンとの反応生成物を構成するカルボン酸は1種であっても2種以上であってもよく、その具体例としては、炭素数12〜24の脂肪酸及び炭素数7〜24の芳香族カルボン酸等が挙げられる。炭素数12〜24の脂肪酸としては、リノール酸、オレイン酸、パルミチン酸、ミリスチン酸等が挙げられるが、これらに限定されるものではない。また、炭素数7〜24の芳香族カルボン酸としては、安息香酸、サリチル酸等が挙げられるが、これらに限定されるものではない。また、カルボン酸とアミンとの反応生成物を構成するアミンは、1種であっても2種以上であってもよい。ここで用いられるアミンとしては、オレイルアミンが代表的であるが、これに限定されるものではなく、各種アミンが使用可能である。   Examples of using an alkenyl succinimide include a case where an alkenyl succinimide having a molecular weight of about 1000 to 3000 is used alone, an alkenyl succinimide having a molecular weight of about 700 to 2000, and an alkenyl succinimide having a molecular weight of about 10,000 to 20000. May be used in combination. The carboxylic acid constituting the reaction product of the carboxylic acid and the amine may be one type or two or more types. Specific examples thereof include fatty acids having 12 to 24 carbon atoms and carbon atoms having 7 to 24 carbon atoms. An aromatic carboxylic acid etc. are mentioned. Examples of the fatty acid having 12 to 24 carbon atoms include linoleic acid, oleic acid, palmitic acid, myristic acid and the like, but are not limited thereto. In addition, examples of the aromatic carboxylic acid having 7 to 24 carbon atoms include benzoic acid and salicylic acid, but are not limited thereto. Moreover, the amine which comprises the reaction product of carboxylic acid and an amine may be 1 type, or may be 2 or more types. The amine used here is typically oleylamine, but is not limited thereto, and various amines can be used.

清浄剤の配合量は特に制限されないが、清浄剤を配合した効果、具体的には、燃料噴射ノズルの閉塞抑制効果を引き出すためには、清浄剤の配合量を組成物全量基準で30質量ppm以上とすることが好ましく、60質量ppm以上とすることがより好ましく、80質量ppm以上とすることがさらに好ましい。30質量ppmに満たない量を添加しても効果が現れない可能性がある。一方、配合量が多すぎても、それに見合う効果が期待できず、逆にディーゼルエンジン排出ガス中のNOx、PM、アルデヒド類等を増加させる恐れがあることから、清浄剤の配合量は300質量ppm以下であることが好ましく、180質量ppm以下であることがより好ましい。   The blending amount of the cleaning agent is not particularly limited, but in order to bring out the effect of blending the cleaning agent, specifically, the effect of suppressing clogging of the fuel injection nozzle, the blending amount of the cleaning agent is 30 mass ppm based on the total amount of the composition. It is preferable to set it as the above, It is more preferable to set it as 60 mass ppm or more, It is further more preferable to set it as 80 mass ppm or more. Even if an amount less than 30 ppm by mass is added, the effect may not appear. On the other hand, if the amount is too large, an effect commensurate with that cannot be expected, and conversely, NOx, PM, aldehydes, etc. in the diesel engine exhaust gas may increase, so the amount of detergent contained is 300 mass. It is preferably not more than ppm, and more preferably not more than 180 mass ppm.

なお、先のセタン価向上剤の場合と同様、潤滑性向上剤又は清浄剤と称して市販されているものは、それぞれ潤滑性向上又は清浄に寄与する有効成分が適当な溶剤で希釈された状態で入手されるのが通例である。このような市販品を本発明の軽油組成物に配合する際には、軽油組成物中の当該有効成分の含有量が上述の範囲内となることが好ましい。   As in the case of the previous cetane improver, those commercially available as a lubricity improver or a detergent are those in which the active ingredients that contribute to improving lubricity or cleaning are diluted with an appropriate solvent, respectively. It is usually obtained at When such a commercial product is blended in the light oil composition of the present invention, the content of the active ingredient in the light oil composition is preferably within the above range.

また、本発明における軽油組成物の性能をさらに高める目的で、後述するその他の公知の燃料油添加剤(以下、便宜上「その他の添加剤」という。)を単独で、又は数種類組み合わせて添加することもできる。その他の添加剤としては、例えば、エチレン−酢酸ビニル共重合体、アルケニルコハク酸アミドなどの低温流動性向上剤;フェノール系、アミン系などの酸化防止剤;サリチリデン誘導体などの金属不活性化剤;ポリグリコールエーテルなどの氷結防止剤;脂肪族アミン、アルケニルコハク酸エステルなどの腐食防止剤;アニオン系、カチオン系、両性系界面活性剤などの帯電防止剤;アゾ染料などの着色剤;シリコン系などの消泡剤等が挙げられる。   Further, for the purpose of further enhancing the performance of the light oil composition in the present invention, other known fuel oil additives (hereinafter referred to as “other additives” for convenience) to be described later are added alone or in combination of several kinds. You can also. Other additives include, for example, low-temperature fluidity improvers such as ethylene-vinyl acetate copolymer and alkenyl succinic acid amide; antioxidants such as phenols and amines; metal deactivators such as salicylidene derivatives; Anti-icing agents such as polyglycol ethers; corrosion inhibitors such as aliphatic amines and alkenyl succinic acid esters; antistatic agents such as anionic, cationic and amphoteric surfactants; colorants such as azo dyes; Antifoaming agents and the like.

その他の添加剤の添加量は任意に決めることができるが、添加剤個々の添加量は、軽油組成物全量基準でそれぞれ好ましくは0.5質量%以下、より好ましくは0.2質量%以下である。   The addition amount of other additives can be arbitrarily determined, but the addition amount of each additive is preferably 0.5% by mass or less, more preferably 0.2% by mass or less, based on the total amount of the light oil composition. is there.

以下、実施例及び比較例に基づいて本発明をさらに詳細に説明するが、本発明は以下の実施例に何ら限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated further in detail based on an Example and a comparative example, this invention is not limited to a following example at all.

[触媒の調製]
<触媒A>
濃度5質量%のアルミン酸ナトリウム水溶液3000gに水ガラス3号18.0gを加え、65℃に保温した容器に入れた。他方、65℃に保温した別の容器において濃度2.5質量%の硫酸アルミニウム水溶液3000gにリン酸(濃度85%)6.0gを加えた溶液を調製し、これに前述のアルミン酸ナトリウムを含む水溶液を滴下した。混合溶液のpHが7.0になる時点を終点とし、得られたスラリー状の生成物をフィルターに通して濾取し、ケーキ状のスラリーを得た。
[Preparation of catalyst]
<Catalyst A>
18.0 g of water glass No. 3 was added to 3000 g of an aqueous sodium aluminate solution having a concentration of 5% by mass, and the mixture was placed in a container kept at 65 ° C. On the other hand, in another container kept at 65 ° C., a solution in which 6.0 g of phosphoric acid (concentration 85%) is added to 3000 g of an aluminum sulfate aqueous solution having a concentration of 2.5% by mass is prepared, and this contains sodium aluminate as described above. An aqueous solution was added dropwise. The time when the pH of the mixed solution reached 7.0 was set as the end point, and the resulting slurry product was filtered through a filter to obtain a cake slurry.

ケーキ状のスラリーを還流冷却器を取り付けた容器に移し、蒸留水150mlと27%アンモニア水溶液10gを加え、75℃で20時間加熱攪拌した。該スラリーを混練装置に入れ、80℃以上に加熱し水分を除去しながら混練し、粘土状の混練物を得た。得られた混練物を押出し成形機によって直径1.5mmシリンダーの形状に押し出し、110℃で1時間乾燥した後、550℃で焼成し、成形担体を得た。   The cake-like slurry was transferred to a container equipped with a reflux condenser, 150 ml of distilled water and 10 g of 27% aqueous ammonia solution were added, and the mixture was heated and stirred at 75 ° C. for 20 hours. The slurry was put in a kneading apparatus and heated to 80 ° C. or higher and kneaded while removing moisture to obtain a clay-like kneaded product. The obtained kneaded material was extruded into a shape of a cylinder having a diameter of 1.5 mm by an extrusion molding machine, dried at 110 ° C. for 1 hour, and then fired at 550 ° C. to obtain a molded carrier.

得られた成形担体50gをナス型フラスコに入れ、ロータリーエバポレータ−で脱気しながら三酸化モリブデン17.3g、硝酸ニッケル(II)6水和物13.2g、リン酸(濃度85%)3.9g及びリンゴ酸4.0gを含む含浸溶液をフラスコ内に注入した。含浸した試料は120℃で1時間乾燥した後、550℃で焼成し、触媒Aを得た。調製した触媒Aの物性を表1に示す。   2. 50 g of the obtained shaped carrier was put into an eggplant-shaped flask, and while degassing with a rotary evaporator, 17.3 g of molybdenum trioxide, 13.2 g of nickel (II) nitrate hexahydrate, phosphoric acid (concentration 85%) An impregnation solution containing 9 g and 4.0 g malic acid was poured into the flask. The impregnated sample was dried at 120 ° C. for 1 hour and then calcined at 550 ° C. to obtain Catalyst A. Table 1 shows the physical properties of the prepared catalyst A.

Figure 2009275113
Figure 2009275113

[軽油基材の製造]
(実施例1)
実施例1においては、表2に示す性状を有する植物油脂(パーム油)と、該植物油脂に対して質量比1.0の脂肪族炭化水素化合物とを混合し、その混合油に硫黄化合物(DMDS;ジメチルジサルファイド)をパーム油に対して5質量ppm(硫黄原子換算)添加して被処理油を調製した。なお、本実施例で用いた脂肪族炭化水素化合物は、予め上記被処理油について後述する条件で水素化処理を行い、得られた炭化水素留分をリサイクルしたリサイクル油である。
[Manufacture of light oil base]
Example 1
In Example 1, vegetable oil (palm oil) having the properties shown in Table 2 and an aliphatic hydrocarbon compound having a mass ratio of 1.0 with respect to the vegetable oil are mixed, and a sulfur compound ( DMDS (dimethyl disulfide) was added to the palm oil in an amount of 5 ppm by mass (in terms of sulfur atoms) to prepare an oil to be treated. In addition, the aliphatic hydrocarbon compound used in the present Example is a recycle oil obtained by subjecting the oil to be treated to a hydrotreatment under the conditions described later and recycling the obtained hydrocarbon fraction.

上記の被処理油を表3に示す反応条件1で水素化処理を行い、精留塔で沸点範囲200〜350℃の留分を分留し、目的の軽油基材を得た。得られた軽油基材の諸性状を表4に示す。なお、表3中の「リサイクル比」とは、被処理油中の植物油に対するリサイクル油(脂肪族炭化水素化合物)の質量比を意味する。また、触媒の反応器への充填量は50ccとした。   The oil to be treated was hydrotreated under the reaction condition 1 shown in Table 3, and a fraction having a boiling point range of 200 to 350 ° C. was fractionated in a rectifying column to obtain a target light oil base material. Table 4 shows various properties of the obtained light oil base. In addition, the “recycling ratio” in Table 3 means the mass ratio of the recycled oil (aliphatic hydrocarbon compound) to the vegetable oil in the oil to be treated. The amount of catalyst charged into the reactor was 50 cc.

(比較例1)
表3に示す反応条件2で水素化処理を行ったこと以外は実施例1と同様にして、軽油基材を製造した。得られた軽油基材の諸性状を表4に示す。
(Comparative Example 1)
A light oil base was produced in the same manner as in Example 1 except that the hydrogenation treatment was performed under the reaction condition 2 shown in Table 3. Table 4 shows various properties of the obtained light oil base.

(比較例2)
表3に示す反応条件3で水素化処理を行ったこと以外は実施例1と同様にして、軽油基材を製造した。得られた軽油基材の諸性状を表4に示す。
(Comparative Example 2)
A light oil base was produced in the same manner as in Example 1 except that the hydrogenation treatment was performed under the reaction condition 3 shown in Table 3. Table 4 shows various properties of the obtained light oil base.

(比較例3)
表3に示す植物油脂をエステル化して植物油脂のアルキルエステル化物を得た。この植物油脂のアルキルエステル化物は、植物油脂とメタノールとの反応により得られたメチルエステル化合物であり、ここではアルカリ触媒(ナトリウムメチラート)の存在下で70℃、1時間程度の撹拌を行い、アルキルアルコールと直接反応させてエステル化合物を得るエステル交換反応を行った。得られた植物油脂メチルエステルの性状を表5に示す。
(Comparative Example 3)
Vegetable oils and fats shown in Table 3 were esterified to obtain alkyl esterified products of vegetable oils and fats. The alkyl esterified product of vegetable oil is a methyl ester compound obtained by the reaction of vegetable oil and methanol. Here, stirring is performed at 70 ° C. for about 1 hour in the presence of an alkali catalyst (sodium methylate). A transesterification reaction was performed by directly reacting with an alkyl alcohol to obtain an ester compound. Table 5 shows the properties of the obtained vegetable oil methyl ester.

また、表5には、後述する軽油組成物の製造に用いた、原油の常圧蒸留装置から得られる直留灯・軽油留分を水素化精製して得られる水素化精製灯・軽油留分(水素化精製油1、2)の性状を併せて示す。   Table 5 also shows a hydrorefining lamp / light oil fraction obtained by hydrorefining a straight-run light / light oil fraction obtained from a crude oil atmospheric distillation apparatus used in the production of the light oil composition described below. The properties of the hydrorefined oils 1 and 2 are also shown.

Figure 2009275113
Figure 2009275113

Figure 2009275113
Figure 2009275113

Figure 2009275113
Figure 2009275113

Figure 2009275113
Figure 2009275113

[軽油組成物の調製]
(実施例2、3、比較例4〜7)
実施例2、3及び比較例4〜7においては、表4に示した水素化処理油1〜3並びに表5に示した植物油脂メチルエステル及び水素化精製油1、2を表6、7に示す割合で混合し、該軽油基材混合物に低温流動性向上剤(エチレン−酢酸ビニル共重合体)を表6、7に示す濃度で添加して軽油組成物を調製した。各軽油組成物の15℃における密度、30℃における動粘度、引火点、硫黄分、酸素分、曇り点、目詰まり点、(曇り点-目詰まり点)、蒸留性状、セタン価、10%残油の残留炭素分、脂肪酸メチルエステル分、メタノール分、グリセライド分、酸価を表6、7に示す。
[Preparation of light oil composition]
(Examples 2 and 3, Comparative Examples 4 to 7)
In Examples 2 and 3 and Comparative Examples 4 to 7, the hydrotreated oils 1 to 3 shown in Table 4 and the vegetable oil methyl ester and the hydrorefined oils 1 and 2 shown in Table 5 are shown in Tables 6 and 7, respectively. A light oil composition was prepared by adding a low temperature fluidity improver (ethylene-vinyl acetate copolymer) at a concentration shown in Tables 6 and 7 to the light oil base material mixture. Density at 15 ° C., kinematic viscosity at 30 ° C., flash point, sulfur content, oxygen content, cloud point, clogging point, (cloud point-clogging point), distillation properties, cetane number, 10% remaining Tables 6 and 7 show the residual carbon content, fatty acid methyl ester content, methanol content, glyceride content, and acid value of the oil.

なお、燃料油の性状は以下の方法により測定した。
総パラフィン量及びノルマルパラフィン量は、上述の通り、ガスクロマトグラフ・飛行時間質量分析計(GC−TOFMS)を用いることによって得た。本発明における測定装置及び測定条件を以下に示す。
(GC部)
装置:HEWLETT PACKARD製、HP6890 Series GC System & Injector
カラム:A glient HP−5(30m×0.32mmφ、0.25μm−film)
キャリアガス:He、1.4mL/分(一定流量)
注入口温度:320℃
注入モード:スプリット(スプリット比=1:100)
オーブン温度:50℃にて5分間保持し、5℃/分で昇温し、320℃にて6分間保持する。
注入量:1μL
(TOFMS部)
装置:日本電子製、JMS−T100GC
対抗電極電圧:10.0kV
イオン化法:FI+(電界イオン化)
GCインターフェース温度:250℃
測定質量範囲:35〜500。
密度は、JIS K 2249「原油及び石油製品の密度試験方法並びに密度・質量・容量換算表」により測定される密度を指す。
動粘度は、JIS K 2283「原油及び石油製品−動粘度試験方法及び粘度指数算出方法」により測定される動粘度を指す。
引火点はJIS K 2265「原油及び石油製品引火点試験方法」で測定される値を示す。
硫黄分は、JIS K 2541「硫黄分試験方法」により測定される軽油組成物全量基準の硫黄分の質量含有量を指す。
酸素分は元素分析法により測定した。
曇り点は、JIS K 2269「原油及び石油製品の流動点並びに石油製品曇り点試験方法」により測定される曇り点を意味する。
目詰まり点は、JIS K 2288「軽油−目詰まり点試験方法」により測定される目詰まり点を指す。
蒸留性状は、全てJIS K 2254「石油製品−蒸留試験方法」によって測定される値である。
芳香族分は、社団法人石油学会により発行されている石油学会法JPI−5S−49−97「炭化水素タイプ試験方法−高速液体クロマトグラフ法」に準拠され測定された芳香族含有量の容量百分率(容量%)を意味する。
酸価とは、JIS K 2501「石油製品及び潤滑油−中和価試験方法」により測定される酸価を意味する。
セタン価は、JIS K 2280「石油製品−燃料油−オクタン価及びセタン価試験方法並びにセタン指数算出方法」の「7.セタン価試験方法」に準拠して測定されるセタン価を意味する。
10%残油の残留炭素分は、JIS K 2270「原油及び石油製品−残留炭素分試験方法」により測定される10%残油の残留炭素分を意味する。
脂肪酸メチルエステル分は、EN14103に準拠して測定される脂肪酸メチルエステル分を意味する。
トリグリセライド分は、EN14105に準拠して測定される値を示す。
The properties of the fuel oil were measured by the following method.
As described above, the total paraffin amount and normal paraffin amount were obtained by using a gas chromatograph / time-of-flight mass spectrometer (GC-TOFMS). The measurement apparatus and measurement conditions in the present invention are shown below.
(GC department)
Equipment: HEWLETT PACKARD, HP6890 Series GC System & Injector
Column: A client HP-5 (30 m × 0.32 mmφ, 0.25 μm-film)
Carrier gas: He, 1.4 mL / min (constant flow)
Inlet temperature: 320 ° C
Injection mode: split (split ratio = 1: 100)
Oven temperature: held at 50 ° C. for 5 minutes, heated at 5 ° C./minute, and held at 320 ° C. for 6 minutes.
Injection volume: 1 μL
(TOFMS Department)
Device: JEOL Ltd., JMS-T100GC
Counter electrode voltage: 10.0 kV
Ionization method: FI + (field ionization)
GC interface temperature: 250 ° C
Measurement mass range: 35-500.
The density refers to a density measured according to JIS K 2249 “Determination method of density of crude oil and petroleum products and density / mass / capacity conversion table”.
The kinematic viscosity refers to a kinematic viscosity measured according to JIS K 2283 “Crude oil and petroleum products—Kinematic viscosity test method and viscosity index calculation method”.
The flash point indicates a value measured according to JIS K 2265 “Crude oil and petroleum product flash point test method”.
The sulfur content refers to the mass content of the sulfur content based on the total amount of the gas oil composition measured by JIS K2541 “Sulfur content test method”.
The oxygen content was measured by elemental analysis.
The cloud point means a cloud point measured by JIS K 2269 “Crude point of petroleum and petroleum products and petroleum product cloud point test method”.
The clogging point refers to a clogging point measured by JIS K 2288 “Light oil—clogging point test method”.
All the distillation properties are values measured by JIS K 2254 "Petroleum products-Distillation test method".
The aromatic content is the volume percentage of the aromatic content measured according to the Petroleum Institute Method JPI-5S-49-97 “Hydrocarbon Type Test Method—High Performance Liquid Chromatograph Method” published by the Japan Petroleum Institute. (Capacity%).
The acid value means an acid value measured according to JIS K 2501 “Petroleum products and lubricants—neutralization number test method”.
The cetane number means a cetane number measured according to “7. Cetane number test method” of JIS K 2280 “Petroleum products—fuel oil—octane number and cetane number test method and cetane index calculation method”.
The residual carbon content of 10% residual oil means the residual carbon content of 10% residual oil measured by JIS K 2270 “Crude oil and petroleum products—residual carbon content test method”.
The fatty acid methyl ester content means the fatty acid methyl ester content measured according to EN14103.
A triglyceride content shows the value measured based on EN14105.

[ライフサイクルCOの評価]
ライフサイクルCOは、ディーゼルエンジン搭載車両における軽油組成物の燃焼に伴い発生したCO(以下、「Tank to Wheel CO」という。
)と、採掘から車両タンクへの燃料給油までに発生したCO(以下、「Well to Tank CO」という。)と分けて算出した。
Tank to Wheel COは、上記車両試験を行ったときのCO排出量、走行燃費及び燃料密度に基づいて、各軽油組成物単位発熱量当たりの排出量として算出した。
また、Well to Tank COは、原料及び原油ソースの採掘、輸送、加工、配送、車両への給油までの一連の流れにおけるCO排出量の総和として算出した。なお、Well to Tank COの算出にあたっては、下記(1B)〜(5B)に示す二酸化炭素の排出量を加味して演算を行った。かかる演算に必要となるデータとしては、本発明者らが有する製油所運転実績データを用いた。
(1B)各種処理装置、ボイラー等設備の燃料使用に伴う二酸化炭素の排出量。
(2B)水素を使用する処理においては、水素製造装置における改質反応に伴う二酸化炭素の排出量。
(3B)接触分解装置等の連続触媒再生を伴う装置を経由する場合は、触媒再生に伴う二酸化炭素の排出量。
(4B)軽油組成物を、横浜で製造又は陸揚げし、横浜から仙台まで配送し、仙台で車両に給油したときの二酸化炭素の排出量。
(5B)動植物油脂及び動植物油脂由来の成分は原産地をマレーシア及びその周辺地域とし、製造を横浜で行うとした際の二酸化炭素の排出量。
なお、動植物油脂及び動植物油脂由来の成分を使用した場合、いわゆる京都議定書においてはこれらの燃料に起因する二酸化炭素は排出量として計上されないルールが適用される。本計算においては、燃焼時に発生する「Tank to Wheel CO」に対してこれを適用させた。
得られた結果を表6、7に示す。
[Evaluation of life cycle CO 2 ]
The life cycle CO 2 is referred to as CO 2 generated by combustion of the light oil composition in a vehicle equipped with a diesel engine (hereinafter referred to as “Tank to Wheel CO 2 ”).
) And CO 2 generated from mining to fueling the vehicle tank (hereinafter referred to as “Well to Tank CO 2 ”).
Tank to Wheel CO 2 was calculated as the emission amount per unit calorific value of each light oil composition based on the CO 2 emission amount, the running fuel consumption, and the fuel density when the vehicle test was performed.
Well to Tank CO 2 was calculated as the sum of CO 2 emissions in a series of flows from mining, transportation, processing, delivery and refueling of raw materials and crude oil sources. In calculating Well to Tank CO 2 , calculation was performed in consideration of the carbon dioxide emission shown in the following (1B) to (5B). As data necessary for such calculation, refinery operation performance data possessed by the present inventors was used.
(1B) Carbon dioxide emissions associated with the use of fuel in various processing equipment, boilers and other facilities.
(2B) In the treatment using hydrogen, the amount of carbon dioxide emission accompanying the reforming reaction in the hydrogen production apparatus.
(3B) Carbon dioxide emission associated with catalyst regeneration when passing through an apparatus with continuous catalyst regeneration, such as a catalytic cracker.
(4B) Carbon dioxide emissions when a light oil composition is manufactured or unloaded in Yokohama, delivered from Yokohama to Sendai, and refueled in Sendai.
(5B) The amount of carbon dioxide emission when animal and vegetable oils and fats and components derived from animal and vegetable oils and fats are produced in Malaysia and the surrounding area and manufactured in Yokohama.
In addition, when using animal and vegetable oils and fats and components derived from animal and vegetable oils and fats, the so-called Kyoto Protocol applies a rule in which carbon dioxide resulting from these fuels is not counted as emissions. In this calculation, this was applied to “Tank to Wheel CO 2 ” generated during combustion.
The obtained results are shown in Tables 6 and 7.

(酸化安定性試験)
115℃、酸素バブリング下、16時間の条件で燃料を加速劣化させ、試験前後での酸化を測定した。なお、ここでいう酸価とは、JIS K 2501「石油製品及び潤滑油−中和価試験方法」により測定される酸価を意味する。得られた結果を表6、7に示す。
(Oxidation stability test)
The fuel was accelerated and deteriorated at 115 ° C. under oxygen bubbling for 16 hours, and the oxidation before and after the test was measured. In addition, an acid value here means the acid value measured by JISK2501 "Petroleum products and lubricating oil-neutralization number test method". The obtained results are shown in Tables 6 and 7.

Figure 2009275113
Figure 2009275113

Figure 2009275113
Figure 2009275113

表6、7から明らかなように、実施例2、3においては、90%留出温度が360℃以下、引火点45℃以上、セタン価が50以上、目詰まり点−5℃以下、(曇り点−目詰まり点)の値が+5℃以上、硫黄分が10質量ppm以下、酸素分1質量%以下、トリグリセライド分0.01質量%以下、脂肪酸アルキルエステル分3.5質量%以下、酸価0.13mgKOH/g以下、且つ酸化安定性試験後の酸価増加量が0.12mgKOH/g以下の軽油組成物を容易にかつ確実に得ることができた。一方、上記特定の軽油基材(実施例1)を用いずに軽油組成物を調製した比較例4〜7においては、本発明の目的とする軽油組成物は得られなかった。   As is apparent from Tables 6 and 7, in Examples 2 and 3, 90% distillation temperature is 360 ° C. or lower, flash point 45 ° C. or higher, cetane number is 50 or higher, clogging point −5 ° C. or lower (cloudiness) (Point-clogging point) value is + 5 ° C. or higher, sulfur content is 10 mass ppm or less, oxygen content is 1 mass% or less, triglyceride content is 0.01 mass% or less, fatty acid alkyl ester content is 3.5 mass% or less, acid value A light oil composition having an acid value increase of 0.12 mgKOH / g or less after an oxidation stability test of 0.13 mgKOH / g or less could be obtained easily and reliably. On the other hand, in the comparative examples 4-7 which prepared the light oil composition, without using the said specific light oil base material (Example 1), the light oil composition made into the objective of this invention was not obtained.

Claims (4)

水素の存在下、動植物油に由来する含酸素炭化水素化合物、脂肪族炭化水素化合物、及び含硫黄炭化水素化合物を含有する被処理油を水素化処理することによって得られる炭化水素留分であって、ノルマルパラフィンの含有量が90質量%以上であり、前記炭化水素留分中の規定炭素数n(10≦n≦20;nは偶数を示す。)における総パラフィン含有量をA(単位:質量%)、炭素数n−1における総パラフィン含有量をBn−1(単位:質量%)、Aに対するBn−1の比を(Bn−1/A)としたとき、10≦n≦20における(Bn−1/A)の平均値が0.30以上であることを特徴とする軽油基材。 A hydrocarbon fraction obtained by hydrotreating an oil to be treated containing oxygen-containing hydrocarbon compounds, aliphatic hydrocarbon compounds, and sulfur-containing hydrocarbon compounds derived from animal and vegetable oils in the presence of hydrogen, The content of normal paraffin is 90% by mass or more, and the total paraffin content in the defined carbon number n (10 ≦ n ≦ 20; n represents an even number) in the hydrocarbon fraction is A n (unit: mass%), B n-1 the total paraffin content in the carbon number n-1 (unit: mass%), when the ratio of B n-1 with respect to a n and (B n-1 / a n ), 10 The light oil base material whose average value of ( Bn-1 / An ) in <= n <= 20 is 0.30 or more. 前記動植物油に由来する含酸素炭化水素化合物が脂肪酸類及び脂肪酸エステル類から選ばれる1種以上の化合物であることを特徴とする、請求項1に記載の軽油基材。   The light oil base material according to claim 1, wherein the oxygen-containing hydrocarbon compound derived from the animal and vegetable oil is at least one compound selected from fatty acids and fatty acid esters. 前記脂肪酸エステル類が脂肪酸のトリグリセライドであることを特徴とする、請求項1又は2に記載の軽油基材。   The light oil base material according to claim 1 or 2, wherein the fatty acid esters are fatty acid triglycerides. 請求項1〜3のいずれか1項に記載の軽油基材を10容量%以上含有する軽油基材と、軽油組成物全量を基準として10〜1000質量ppmの低温流動性向上剤と、を含有し、90%留出温度が360℃以下、硫黄分が10質量ppm以下、酸素分1質量%以下、脂肪酸アルキルエステル分3.5質量%以下、酸価0.13mgKOH/g以下、メタノール分0.01質量%以下、グリセライド分0.01質量%以下、目詰まり点−5℃以下であることを特徴とする軽油組成物。   A light oil base material containing 10% by volume or more of the light oil base material according to any one of claims 1 to 3, and a low-temperature fluidity improver of 10 to 1000 ppm by mass based on the total amount of the light oil composition. 90% distillation temperature of 360 ° C. or less, sulfur content of 10 mass ppm or less, oxygen content of 1 mass% or less, fatty acid alkyl ester content of 3.5 mass% or less, acid value of 0.13 mg KOH / g or less, methanol content of 0 A gas oil composition characterized by being 0.01 mass% or less, a glyceride content of 0.01 mass% or less, and a clogging point of -5 ° C or less.
JP2008127615A 2008-05-14 2008-05-14 Gas oil base and gas oil composition Active JP5091762B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008127615A JP5091762B2 (en) 2008-05-14 2008-05-14 Gas oil base and gas oil composition
PCT/JP2009/058664 WO2009139325A1 (en) 2008-05-14 2009-05-08 Gas oil base material and gas oil compositions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008127615A JP5091762B2 (en) 2008-05-14 2008-05-14 Gas oil base and gas oil composition

Publications (2)

Publication Number Publication Date
JP2009275113A true JP2009275113A (en) 2009-11-26
JP5091762B2 JP5091762B2 (en) 2012-12-05

Family

ID=41318695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008127615A Active JP5091762B2 (en) 2008-05-14 2008-05-14 Gas oil base and gas oil composition

Country Status (2)

Country Link
JP (1) JP5091762B2 (en)
WO (1) WO2009139325A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101234121B1 (en) 2010-07-16 2013-02-19 에스케이이노베이션 주식회사 Preparing method of organic phase change material from animal and vegetable oil

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104772165B (en) * 2014-04-22 2018-09-11 北京林业大学 A kind of hydrogenation catalyst and its synthetic method based on ZIF-8 materials

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59108088A (en) * 1982-11-10 1984-06-22 Honda Motor Co Ltd Production of paraffin hydrocarbon
JP2003171670A (en) * 2001-12-07 2003-06-20 Kawaken Fine Chem Co Ltd Method for producing hydrocarbons and catalyst for producing hydrocarbons
WO2008157465A2 (en) * 2007-06-15 2008-12-24 E. I. Du Pont De Nemours And Company Catalytic process for converting renewable resources into paraffins for use as diesel blending stocks
WO2010068904A2 (en) * 2008-12-12 2010-06-17 E. I. Du Pont De Nemours And Company Process for making linear dicarboxylic acids from renewable resources

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59108088A (en) * 1982-11-10 1984-06-22 Honda Motor Co Ltd Production of paraffin hydrocarbon
JP2003171670A (en) * 2001-12-07 2003-06-20 Kawaken Fine Chem Co Ltd Method for producing hydrocarbons and catalyst for producing hydrocarbons
WO2008157465A2 (en) * 2007-06-15 2008-12-24 E. I. Du Pont De Nemours And Company Catalytic process for converting renewable resources into paraffins for use as diesel blending stocks
WO2010068904A2 (en) * 2008-12-12 2010-06-17 E. I. Du Pont De Nemours And Company Process for making linear dicarboxylic acids from renewable resources

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101234121B1 (en) 2010-07-16 2013-02-19 에스케이이노베이션 주식회사 Preparing method of organic phase change material from animal and vegetable oil

Also Published As

Publication number Publication date
WO2009139325A1 (en) 2009-11-19
JP5091762B2 (en) 2012-12-05

Similar Documents

Publication Publication Date Title
JP5288740B2 (en) Method for producing light oil composition
JP5072008B2 (en) Method for producing light oil composition
US20120209038A1 (en) Fuel oil base and aviation fuel composition containing same
WO2007064015A1 (en) Gas oil composition
JP4648618B2 (en) Light oil composition
WO2008117856A1 (en) Gas oil composition
JP5121137B2 (en) Light oil composition
JP5117089B2 (en) Method for producing light oil composition
JP5072430B2 (en) Method for producing light oil composition
JP5072010B2 (en) Light oil composition
WO2007132939A1 (en) Gas-oil composition
JP5072444B2 (en) Method for producing light oil composition
JP5072007B2 (en) Method for producing light oil composition
JP5091762B2 (en) Gas oil base and gas oil composition
JP5121138B2 (en) Light oil composition
JP5288742B2 (en) Method for producing light oil composition
JP5072609B2 (en) Method for producing light oil composition
JP4979269B2 (en) Method for producing A heavy oil composition
JP5072006B2 (en) Method for producing light oil composition
JP5288741B2 (en) Method for producing light oil composition
JP5072009B2 (en) Light oil composition
JP5117088B2 (en) Method for producing light oil composition
JP2008231201A (en) A-type heavy oil composition
WO2009020056A1 (en) Gas oil composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120612

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120813

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120911

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120914

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150921

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5091762

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250