WO2009020056A1 - Gas oil composition - Google Patents

Gas oil composition Download PDF

Info

Publication number
WO2009020056A1
WO2009020056A1 PCT/JP2008/063823 JP2008063823W WO2009020056A1 WO 2009020056 A1 WO2009020056 A1 WO 2009020056A1 JP 2008063823 W JP2008063823 W JP 2008063823W WO 2009020056 A1 WO2009020056 A1 WO 2009020056A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
less
mass
volume
gas oil
Prior art date
Application number
PCT/JP2008/063823
Other languages
French (fr)
Japanese (ja)
Inventor
Akira Koyama
Yasutoshi Iguchi
Hideshi Iki
Original Assignee
Nippon Oil Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2007206460A external-priority patent/JP5288741B2/en
Priority claimed from JP2007206461A external-priority patent/JP5288742B2/en
Application filed by Nippon Oil Corporation filed Critical Nippon Oil Corporation
Publication of WO2009020056A1 publication Critical patent/WO2009020056A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/04Liquid carbonaceous fuels essentially based on blends of hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/04Liquid carbonaceous fuels essentially based on blends of hydrocarbons
    • C10L1/08Liquid carbonaceous fuels essentially based on blends of hydrocarbons for compression ignition
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/06Gasoil
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Definitions

  • the present invention relates to an environmentally low load light oil base produced using animal and vegetable fats and / or triglyceride-containing hydrocarbons derived from animal and vegetable fats and oils, and atmospheric pressure obtained by treating crude oil and the like with an atmospheric distillation device.
  • a hydrocracked gas oil fraction obtained by further hydrocracking a vacuum gas oil obtained by processing a light residual oil in a vacuum distillation unit (hereinafter referred to as a hydrocracked gas oil fraction purified from raw oil) )
  • a dewaxed light oil base obtained by further hydrodewaxing a light oil fraction obtained by treating crude oil etc.
  • Conventional gas oil base materials include straight-run diesel oil obtained from crude oil atmospheric distillation equipment, hydrotreated or hydrodesulfurized, and straight-run kerosene obtained from crude oil distillation equipment using hydrogen. Those subjected to hydrotreating or hydrodesulfurization are known.
  • Conventional diesel oil compositions are manufactured by blending one or more of the above diesel oil base and kerosene base. In addition, these light oil compositions are blended with additives such as cetane improvers and cleaners as needed (for example, Non-Patent Document 1 (Sonichi Konishi, “Introduction to Fuel Engineering”, Bund, 1 9 9 March 1, p. 1 3 6-1 4 4).
  • Patent Document 1 Japanese Patent Laid-Open No. 2 0 03-1-7 1 6 70 discloses a method for producing hydrocarbons using natural fats and oils or derivatives thereof and edible waste oil as raw materials. Characterized by reacting natural fats and oils, waste natural fats and oils or derivatives thereof with activated hydrogen in the presence of a catalyst selected from the group consisting of metal catalysts, alloy catalysts, metal-supported catalysts and alloy-supported catalysts. A method for producing hydrocarbons is disclosed.
  • Patent Document 2 Japanese Patent Publication No. 2 0 0 5—5 3 8 2 0 4) discloses plants and / or plants.
  • a fuel composition for diesel engines containing from 0.1 to 99% by volume of components or mixture of components prepared from biological raw materials of animal or fish origin and from 0 to 20% by volume of components containing oxygen A fuel composition is disclosed. Both components are said to be mixed with diesel components based on crude oil and / or fractions from the Fitzish Tropsch process.
  • Patent Document 3 Japanese Patent Laid-Open No. 2000-184-88 discloses a methyl ester or an ethyl ester of a saturated or unsaturated fatty acid having 6 to 20 carbon atoms constituting the fatty acid. Or an environmentally friendly diesel fuel composition comprising a mixture thereof.
  • BDF is mainly a mixture of fatty acid alkyl esters made from natural animal and vegetable oils and fats. Influence of aromatic compounds and exhaust gas aftertreatment catalysts that are considered to have a large contribution to soot formation in exhaust gas Because it contains almost no sulfur, which is said to be large, and itself is an oxygen-containing compound with oxygen in the molecule, it is attracting attention as a promising candidate for alternative fuels. In addition, because it is plant-derived, it is positioned as one of the renewable energies, so the international carbon dioxide reduction protocol concluded in 1997, the so-called Kyoto Protocol, emits carbon dioxide caused by BDF. BDF also has a policy merit in that it is a rule that is not recorded as a quantity.
  • fatty acid alkyl esters made from natural animal and vegetable oils and fats are inherently heavy components, and the burn-off property of engine combustion and the like deteriorates, and there is a concern of increasing unburned hydrocarbon emissions during combustion.
  • fatty acid alkyl esters are acid-containing Because it is an elemental compound, there is a concern of increasing emissions of aldehydes during combustion.
  • BDF containing a large amount of fatty acid alkyl ester having many saturated fatty acid groups it is solid even at room temperature, so it is inferior in handling as a fuel, and it is difficult to ensure fluidity at low temperatures.
  • fatty acid glyceride which is a raw material when purifying fatty acid alkyl esters, alkyl alcohol and a glycerin mixture which is a by-product are extremely concerned about adverse effects on engine members and fuel injection systems.
  • fatty acid alkylesters made from natural animal and plant fats and oils are used to provide gas oil compositions that have excellent low-temperature performance, life cycle CO 2 emission characteristics and oxidation stability as well as reduction of harmful exhaust components. These performance improvements cannot be achieved simultaneously with the use of a BDF mixture. Furthermore, because these engine performances are closely related to other fuel properties, it is very difficult to design a high-quality fuel that can simultaneously achieve these required performances at a high level, and as a commercial fuel oil There are no examples or knowledge that fully satisfy the required performance and consider practical manufacturing methods.
  • the present invention has been made in view of such a situation, and an object of the present invention is to provide an environment-friendly light oil base material produced using raw materials of animal and vegetable fats and oils and / or triglyceride-containing hydrocarbons derived from animal and vegetable fats and oils.
  • the object is to provide an excellent gas oil composition.
  • the first aspect of the present invention is [A] a mixture of animal and vegetable oils and / or animal and plant oils and fats-derived components containing a sulfur-containing hydrocarbon compound so that the sulfur content is 1 mass ppm to 2 mass% in the presence of hydrogen.
  • the present invention relates to a gas oil composition
  • a gas oil composition comprising gas oil base materials A and B characterized by the above.
  • the second aspect of the present invention is: [ ⁇ '] Petroleum-based base material having animal and vegetable oils and fats and 10 to 90% by volume of components derived from straw or animal and vegetable oils and a light oil fraction refined from crude oil in the presence of hydrogen.
  • An oil to be treated mixed with 90 to 10% by volume is combined with a porous inorganic oxide composed of two or more elements selected from aluminum, silicon, zirconium, boron, titanium and magnesium.
  • a periodic catalyst supported by the porous inorganic oxide a catalyst containing one or more metals selected from Group 6 Group 8 and Group 8 elements;
  • a catalyst containing one or more metals selected from Group 6 Group 8 and Group 8 elements By contacting under conditions of hydrogen pressure 2 to 13 MPa, liquid space velocity 0.1 to 3.0 h 1 , hydrogen / oil ratio 150 to 1500 NL / L, reaction temperature 150 to 480 ° C Distillate to be produced (environmental low-load gas oil base) 10-90% by volume, (i ') Atmospheric residual oil obtained by treating crude oil, etc. with atmospheric distillation equipment, then treated with vacuum distillation equipment Hydrocracked gas oil fraction obtained by further hydrocracking the vacuum gas oil obtained in this way
  • the present invention relates to a light oil composition
  • a light oil composition comprising light oil bases A ′ and B ′, which is characterized by C or less.
  • an environmentally low-load gas oil base produced using animal and vegetable fats and / or triglyceride-containing hydrocarbons derived from animal and vegetable fats and oils, and a hydrocracked gas oil fraction purified from crude oil and the like. It is difficult to achieve with conventional diesel oil compositions by mixing dewaxed diesel oil base material refined from Z or crude oil, etc., diesel oil refined from crude oil, etc., and petroleum hydrotreated oil having kerosene fraction A light oil composition having excellent life cycle CO 2 emission characteristics and oxidation stability and good low-temperature performance is provided.
  • the environment-friendly light oil base material is a low-sulfur, low-oxygen fraction obtained by hydrotreating a predetermined raw material oil.
  • Predetermined feedstock oils and animals Mixed oil (treated oil) obtained by mixing sulfur-containing hydrocarbon compounds with components derived from animal and vegetable oils and fats so that the sulfur content is 1 mass ppm to 2 mass%, or animal and vegetable oils and fats or animal or vegetable oils and fats
  • This is a mixed oil (treated oil) obtained by mixing 10 to 90% by volume of a derived component and 90 to 10% by volume of a petroleum base material having a light oil fraction refined from crude oil or the like.
  • the animal and vegetable oil and / or animal and vegetable oil / fat-derived component in the present invention refers to an animal and vegetable oil and / or fat that is produced or manufactured naturally or artificially and / or a component that is produced and produced from these oil and fat.
  • animal fats and animal oil ingredients include beef tallow, milk fat (butter), pork tallow, sheep fat, whale oil, fish oil, liver oil, etc.
  • vegetable oil and vegetable oil ingredients include coconut palm, olive palm, olive Examples include seeds and other parts such as bananas, rapeseed (rapeseed flowers), rice bran, sunflower, cottonseed, corn, soybeans, sesame seeds, flax, etc. No problem.
  • raw oils may be solid or liquid, but it is preferable to use vegetable oils and plant oils as raw materials because of their ease of handling, high carbon dioxide absorption capacity and high productivity.
  • waste oils obtained by using these animal oils and plant oils for consumer use, industrial use, food use, etc. can also be used as raw materials after adding a step of removing impurities.
  • a typical composition of the fatty acid portion of glyceride compounds contained in animal and vegetable oils and fats and components derived from animal and vegetable fats and oils is butyric acid (C 3 H 7) , a fatty acid having no unsaturated bond in the molecular structure called saturated fatty acid.
  • the hydrocarbon part of these fatty acids in natural substances is generally linear, but it is a structure having a side chain, that is, an isomer, as long as the properties defined in the present invention are satisfied in the present invention. Can also be used. Further, the position of the unsaturated bond in the molecule of the unsaturated fatty acid is the same in nature as long as it satisfies the properties defined in the present invention. Not only those that have been confirmed to exist in general, but also those that have been set at any position by chemical synthesis can be used.
  • Animal and vegetable oils and fats and components derived from animal and vegetable oils have one or more of these fatty acids, and the fatty acids they have vary depending on the raw material.
  • coconut oil has a relatively large amount of saturated fatty acids such as lauric acid and myristic acid
  • soybean oil has a large amount of unsaturated fatty acids such as oleic acid and linoleic acid.
  • Sulfur-containing hydrocarbon compounds that are mixed with animal and vegetable oils and / or animal and vegetable oil-derived components to form treated oils are not particularly limited. Phen, dibenzothiophene and their derivatives.
  • the sulfur-containing hydrocarbon compound contained in the oil to be treated may be a single compound or a mixture of two or more. Alternatively, a petroleum hydrocarbon fraction containing a sulfur content may be used instead of the sulfur-containing hydrocarbon compound.
  • the mixing ratio of the sulfur-containing hydrocarbon compound is such that the sulfur content of the oil to be treated is 1 mass P pm to 2 mass%, preferably 10 mass p 111 to 1 mass%.
  • the hydrogenation conditions of the raw oil (treated oil) are as follows: hydrogen pressure 2 to 13 MPa, liquid space velocity 0.:! To 3.0 h 1 , hydrogen / oil ratio 1 50 to: I 500 NLZL . It is desirable to carried out at a hydrogen pressure 3 ⁇ 12MP a, liquid hourly space velocity 0. 2 to 2 O h one 1, and more preferably conditions such hydrogen / oil ratio 200 ⁇ 1200NL / L, the hydrogen pressure 4 ⁇ : L 0 More desirable conditions are 5 MPa, liquid space velocity 0.25 to 1.0 h 1 , hydrogen oil ratio 300 to: L 00 NLZL.
  • the reaction temperature is preferably in the range of 150 to 480 ° C, preferably 220 to 400 ° C, more preferably 260, in order to obtain the desired decomposition rate of the heavy feedstock oil fraction or the desired fraction yield. Set in the range of ⁇ 360 ° C.
  • the reaction temperature is less than the lower limit. If not, the reaction may not proceed sufficiently. If the upper limit is exceeded, decomposition proceeds excessively and the liquid product fraction tends to decrease.
  • the type of hydrotreating reactor may be a fixed bed system.
  • hydrogen can take either a countercurrent or a cocurrent flow with respect to the raw material oil, or a combination of countercurrent and cocurrent flow having a plurality of reaction towers.
  • a general format is downflow, and a gas-liquid twin-cocurrent format can be used.
  • the reactors may be used singly or in combination, and a structure in which one reactor is divided into a plurality of catalyst beds may be adopted.
  • the distillate hydrotreated in the reactor is fractionated into predetermined fractions through a gas-liquid separation process, a rectification process, and the like. At this time, if sulfur is contained in the water or feedstock produced during the reaction, hydrogen sulfide may be generated. However, there is a possibility that hydrogen sulfide is generated between the reactors and in the product recovery process. Liquid separation equipment and other by-product gas removal equipment may be installed.
  • hydrogen gas is introduced from the inlet of the first reactor before or after passing through the heating furnace, but separately from this, the temperature in the reactor is controlled and reaction is possible as much as possible.
  • it may be introduced between several reactors between the catalyst beds.
  • the hydrogen thus introduced is referred to as quench hydrogen.
  • the ratio of the quench hydrogen to hydrogen introduced accompany the feedstock is desirably 1 0-6 0 volume 0/0, more preferably from 1 5 to 5 0 volume. / 0 . If the ratio of quench hydrogen is lower than the lower limit, the reaction at the subsequent reaction site may not proceed sufficiently, and if it exceeds the upper limit, the reaction near the reactor inlet may not proceed sufficiently. .
  • a porous inorganic oxide comprising two or more elements selected from aluminum, silicon, zirconium, boron, titanium and magnesium is used.
  • it is a porous inorganic oxide containing alumina, and other carrier constituents include silica, titania, zircoure, polya, and magnesia.
  • it is a composite oxide containing at least one kind selected from alumina and other constituent components.
  • phosphorus may be included as another component.
  • the total content of components other than alumina is preferably 1 to 20% by weight, and more preferably 2 to 15% by weight. If the total content of components other than alumina is less than 1% by weight, sufficient catalyst surface area can be obtained.
  • the acidity of the carrier may increase, leading to a decrease in activity due to coke formation.
  • phosphorus is included as a carrier constituent, its content is preferably 1 to 5% by weight in terms of oxide, and more preferably 2 to 3.5% by weight.
  • the raw materials that are precursors of silica, titania, zircoua, polya, and magnesia, which are carrier constituents other than alumina, and use a solution containing general silicon, titanium, zirconium, boron, and magnesium.
  • a solution containing general silicon, titanium, zirconium, boron, and magnesium can do.
  • key substances such as key acid, water glass, and silica sol
  • titanium, titanium sulfate, titanium tetrachloride and various alkoxide salts for zirconium, zirconium sulfate, various alkoxide salts, for boron, for boric acid, etc.
  • magnesium nitrate or the like can be used.
  • phosphorus, phosphoric acid or phosphoric acid metal salt of phosphoric acid can be used.
  • the raw materials for the carrier component other than alumina be added in any step prior to the firing of the carrier.
  • it may be added to an aqueous aluminum solution in advance and then an aluminum hydroxide gel containing these components, or may be added to a prepared aluminum hydroxide gel, or water may be added to a commercially available alumina intermediate or bermite powder.
  • an acidic aqueous solution may be added to the kneading step, but a method of coexisting at the stage of preparing aluminum hydroxide gel is more desirable.
  • the active metal of the hydrogenation catalyst contains at least one metal selected from Group 6A and Group 8 metals of the periodic table, preferably two types selected from Groups 6A and 8 Contains the above metals.
  • Co-Mo, Ni-Mo, Nii-Co-Mo, Ni-W, etc. are used for hydrogenation by converting these metals to the sulfide state. It is preferable to do.
  • the active metal content is, for example, the total supported amount of W and Mo is preferably 12 to 35% by weight, more preferably 15 to 30% by weight based on the catalyst weight in terms of oxide conversion. is there. If the total loading of W and Mo is less than 12% by weight, The activity may decrease, and if it exceeds 35% by weight, the metal may not be effectively dispersed, and the activity may decrease as well. Further, the total supported amount of O 0 and] ⁇ 1 is preferably 1.5 to 10% by weight, more preferably 2 to 8% by weight based on the catalyst weight in terms of oxide. If the total supported amount of Co and Ni is less than 1.5% by weight, a sufficient cocatalyst effect may not be obtained and the activity may be reduced.
  • the metal may not be effectively dispersed and may be similarly active.
  • the method of incorporating the active metal into the catalyst is not particularly limited, and a known method applied when producing a normal desulfurization catalyst can be used.
  • a method in which a catalyst carrier is impregnated with a solution containing an active metal salt is preferably employed.
  • an equilibrium adsorption method, a pore-fi 1 1 ing method, an incipient-wetness method, and the like are preferably employed.
  • the pore-fi 1 1 ing method is a method in which the pore volume of the support is measured in advance and impregnated with the same volume of metal salt solution, but the impregnation method is not particularly limited. However, it can be impregnated by an appropriate method depending on the amount of metal supported and the physical properties of the catalyst carrier.
  • an environmentally low-load diesel fuel base material is produced by hydrotreating the oil to be treated, which is a mixture of animal and vegetable oils and fats and Z or animal and vegetable oils and components, and containing sulfur-containing hydrocarbon compounds under specified conditions. Is done.
  • the first light oil composition of the present invention comprises: [A] 10 to 90% by volume of the environmentally low load light oil base produced as described above, and (i) treatment of crude oil and the like with an atmospheric distillation apparatus.
  • the hydrocracked gas oil fraction (boiling range: 2 ° 0 to 3 5 0) obtained by further hydrocracking the vacuum gas oil obtained by subsequently treating the atmospheric residue oil obtained by the subsequent distillation with a vacuum distillation apparatus ° C) 9 0 ⁇ 10 capacity.
  • Gas oil base A-1 obtained by mixing / 0 and / or (ii) a dehydration obtained by further hydrodewaxing a light oil fraction obtained by treating crude oil or the like with an atmospheric distillation apparatus.
  • a light oil base material A 9 consisting of light oil base material A-2 obtained by mixing 90 to 10% by volume of wax light oil base material into 9 to 30% by volume of [B] light refined from crude oil, etc. It consists of light oil bases A and B, which are mixed with 5 to 70% by volume of petroleum hydrotreated oil (light oil base B) obtained by hydrotreating an oil fraction.
  • the hydrocracked gas oil fraction is obtained by further hydrocracking the reduced pressure gas oil obtained by processing the atmospheric residue oil obtained by processing crude oil, etc. with an atmospheric distillation device, followed by the reduced pressure distillation device. This is a fraction having a boiling range of 200 to 350 ° C.
  • the hydrocracking treatment method is not particularly limited, but a heavy feedstock such as vacuum gas oil is passed over a catalyst having a dual function of cracking and hydrogenation under high-temperature and high-pressure hydrogen conditions,
  • Examples of the hydrocracking method include desulfurization and denitrogenation as well as hydrocracking.
  • the resolution of the catalyst tends to be attributed to the porous solid acid support.
  • As the solid acid carrier there are used amorphous carriers such as silica-alumina, silica-magnesia, silica-zircoua, silica-titania, and crystalline carriers such as zeolite modified with various modifications. Hydrogenation ability is demonstrated by supporting two or three kinds of metals such as Ni, Co, Mo, W, Pd, Pt, etc., but in particular, Co-Mo, Ni-Mo N i—W are preferred.
  • the hydrogen pressure in hydrocracking is usually 5 MPa to 20 MPa, preferably 8 MPa to 15 MPa.
  • the reaction temperature is usually 350 ° C or higher and 430 ° C or lower.
  • the liquid space velocity is usually 0.1 / h or more and 1. OZh or less, preferably 0.2 / h or more and 0.4 Zh or less.
  • the dewaxed light oil base material is obtained by removing the wax from the light oil base material.
  • a normal paraffin component having 20 or more carbon atoms is preferably 15% by volume or less, more preferably. Is 12% by volume or less, more preferably 10% by volume or less.
  • the cloud point of the dewaxed light oil base is preferably in the range of 120 ° C to 15 ° C.
  • the method of hydrodewaxing treatment is not particularly limited.
  • a dewaxing catalyst such as zeolite is used, and the pressure is 3 to 7 MPa in the range of 310 ° C to 380 ° C. It can be performed at a liquid hourly space velocity (LHSV) of 1 hr.
  • LHSV liquid hourly space velocity
  • the mixing ratio of the low-energy diesel oil base and hydrocracked diesel oil fraction in light oil base A-1 is preferably 20 to 80% by volume: 80 to 20% by volume, and 40 to 60% by volume: 60 to 40% by volume is more preferred.
  • Light oil base material A The mixing ratio of the environmentally low load light oil base material and the dewaxed light oil base material in A-2 is 20-80 volume%: preferably 80 to 20 volume 0/0, 40-60 volume%: 60-4 0% by volume is more preferable.
  • Petroleum hydrotreated oil (light oil base material B) having a gas oil fraction refined from crude oil, etc. is a straight-run gas oil obtained from a crude oil atmospheric distillation unit, or a straight distillation obtained from an atmospheric distillation device.
  • Petroleum systems such as vacuum gas oil obtained by treating heavy oil and residual oil with a vacuum distillation unit, catalytic cracking gas oil obtained by catalytic cracking or hydrocracking of vacuum heavy gas oil or desulfurized heavy oil, or hydrocracked gas oil Examples include hydrotreated gas oil or hydrodesulfurized gas oil obtained by hydrotreating hydrocarbons (petroleum hydrocarbons having a gas oil fraction).
  • These petroleum-based hydrotreated oils can be constituted by blending a plurality of light oil fraction base materials and kerosene fraction base materials within a range that satisfies a predetermined condition.
  • the hydrotreating conditions of the above-mentioned feedstock are usually as follows: reaction temperature 170 to 320 ° C, hydrogen pressure 2 to 10 MPa, LHSV0.:! To 2 h-hydrogen / Oil ratio is 100-800NL / L.
  • the reaction temperature is preferably 1 75 ° C to 300 ° C, hydrogen pressure 2.5 to 8 MPa, LH SV 0.2 to 1.5 h 1 , hydrogen / oil ratio 150 to 600 NL / L, more preferably
  • the reaction temperature is 1-80 ° C to 280 ° C, the hydrogen pressure is 3 to 7 MPa, the LHS VO.
  • the apparatus for hydrotreating the feedstock may be of any configuration, and the reaction towers may be used alone or in combination, and hydrogen may be additionally injected between the reaction towers. You may have hydrogen removal equipment.
  • Hydrogen can take either a countercurrent or cocurrent flow format with respect to the feedstock oil, or may have a plurality of reaction towers and a combination of countercurrent and cocurrent flow.
  • the general format is downflow, and the gas-liquid twin-cocurrent format is preferred.
  • Hydrogen gas may be injected into the middle stage of the reaction tower as a tent to remove reaction heat or increase the hydrogen partial pressure.
  • the catalyst used for the hydrotreatment is a catalyst in which a hydrogenation active metal is supported on a porous carrier.
  • An inorganic oxide is mentioned as a porous support
  • Specific inorganic oxides include alumina, titania, zircoa, polya, silica, or zeolite, and in the present invention, at least one of titania, zircoa, polya, silica, and zeolite is composed of alumina. What you have is good.
  • the production method is not particularly limited, but any preparation method can be employed using raw materials in various sols, salt compounds and the like corresponding to each element.
  • a composite hydroxide or composite oxide such as silica alumina, silica zirconia, alumina titania, silica titia, and alumina polya, it is prepared in the form of alumina gel or other hydroxides or in an appropriate solution.
  • the ratio of alumina to other oxides is a force capable of taking an arbitrary ratio with respect to the porous carrier, preferably 90 mass ° / 0 or less of alumina, more preferably 60 mass% or less, more preferably 40 mass%. It is below mass%.
  • Zeolite is a crystalline aluminosilicate, such as faujasite, pentasil, mordenite, etc., which has been ultra-stabilized by prescribed hydrothermal treatment and / or acid treatment, or contains alumina in zeolite The amount can be adjusted.
  • faujasite and mordenite particularly preferably Y type and beta type.
  • Y-type is preferably ultra-stabilized.
  • Zeolite super-stabilized by hydrothermal treatment has a new pore structure in the range of 20 to 10 OA in addition to the original microporous structure of 2 OA or less. A pore is formed.
  • Known conditions can be used for the hydrothermal treatment conditions.
  • the active metal of the catalyst used for the hydrotreatment is at least one metal selected from Group 6A metals of the periodic table. Preferably, it is at least one selected from Mo and W.
  • the active metal may be a combination of a Group 6A metal and a Group 8 metal. Specifically, it is a combination of Mo or W and C0 or Ni.
  • Co—Mo, Co — W, N i—M o, N i—W, C o _N i—M o, C o One N i—W, etc. can be used.
  • a general inorganic salt or a complex salt compound can be used as the metal source.
  • any of the loading methods used in usual hydrogenation catalysts such as impregnation method and ion exchange method can be used. If multiple metals are supported, they can be supported simultaneously using a mixed solution. Alternatively, it may be supported sequentially using a single solution.
  • the metal solution may be an aqueous solution or an organic solvent.
  • Metal loading may be carried out after the completion of the entire process of preparing the porous support, and there is a further gel blending process after pre-loading on the appropriate oxide, composite oxide, zeolite in the intermediate process of porous support preparation. Let's heat concentrate and knead.
  • the amount of active metal supported is not particularly limited, but the total amount of metal is 0.1 to 10 mass relative to the catalyst mass. / 0 , preferably 0.1 to 5 to 5% by mass, more preferably 0.2 to 3% by mass.
  • the catalyst is preferably used after a preliminary reduction treatment in a hydrogen stream.
  • a gas containing hydrogen is circulated and heat of 200 ° C. or higher is given in accordance with a predetermined procedure, the active metal on the catalyst is reduced and hydrogenation activity is expressed.
  • a petroleum oil hydrotreated oil (light oil base material B) is produced by hydrotreating a light oil fraction refined from crude oil or the like.
  • the first light oil composition of the present invention comprises the light oil base A and the light oil base B, and the mixing ratio of the light oil base A: the light oil base B is 95 to 30% by volume: 5 to 70. a volume%, preferably 90 to 35 volume 0/0: a 10-65 volume%, more preferably 85 to 40 volume%: 1 5-60 volume% Dearu.
  • the second light oil composition of the present invention comprises: [A,] a petroleum-based oil having 10 to 90% by volume of the aforementioned vegetable oil and / or animal and vegetable oil-derived component and a light oil fraction refined from the aforementioned crude oil or the like. Porous oil composed of two or more elements selected from aluminum, silicon, zirconium, boron, titanium, and magnesium.
  • hydrocracked gas oil fraction (boiling range: 200 to 350 ° C) obtained by further hydrocracking the vacuum gas oil obtained by treating the pressure residue oil with a vacuum distillation device Mixed Gas oil base material obtained by combining A'-1 and / or (ii ') Dewaxed gas oil obtained by further hydrodewaxing a gas oil fraction obtained by treating crude oil etc. with an atmospheric distillation unit Diesel oil base material A'_2 obtained by mixing 90 ⁇ 10% by volume of the base material. Diesel oil base material A '_ 2 to 95 ⁇ 30% by volume. [ ⁇ '] Kerosene fraction purified from crude oil etc. Petroleum hydrotreated oil (light oil base material B ′) obtained by raw material treatment is mixed with 5 to 70 vol% of light oil base materials A ′ and B ′ satisfying predetermined performance.
  • the hydrogenation conditions for producing an environmentally light diesel base material by hydrotreating the oil to be treated mixed with / 0 are derived from the animal and plant oils and / or animal and plant oils and fats in the first aspect of the present invention.
  • the same conditions as those used when hydrotreating the oil to be treated, in which sulfur-containing hydrocarbon compounds are mixed as components, are adopted.
  • the mixing ratio of the components derived from vegetable oils and / or animal and vegetable oils and oil-based hydrocarbons (petroleum base materials) having a light oil fraction refined from crude oil, etc. is preferably 20 to 80% by volume: 80 to 20% by volume 0 / 0 , more preferably 40 to 60% by volume: 60 to 40% by volume.
  • Light oil base material A ' The mixing ratio of the low environmental load type light oil base material and the hydrocracked light oil fraction is preferably 20 to 80% by volume: 80 to 20% by volume, and 40 to 60% by volume: 60 to 40 Volume% is more preferable.
  • Gas oil base material A '- 2 in the environment friendly base gas oil mixing ratio of dewaxing the gas oil fraction 20 to 80 volume%: preferably 80 to 20 volume 0/0, 40-60 volume%: 60 ⁇ 40% by volume is more preferred.
  • Petroleum hydrotreated oil (gas oil base B ') with kerosene fraction refined from crude oil, etc., is hydrocracked produced with straight-run kerosene obtained by atmospheric distillation of crude oil, hydrocracked diesel oil
  • Examples include hydrotreated kerosene obtained by hydrotreating petroleum hydrocarbons such as kerosene (petroleum hydrocarbons having a kerosene fraction).
  • Hydrotreating conditions described above feedstocks is generally a reaction temperature two hundred and twenty to three hundred fifty ° C, the hydrogen pressure l ⁇ 6MP a, LHSV0 1 ⁇ :. LO h one 1, hydrogen / Oil ratio is 10 to 300 NL / L.
  • the apparatus for hydrotreating the feedstock may be of any configuration, and the reaction towers may be used alone or in combination, and hydrogen may be additionally injected between the reaction towers. You may have hydrogen removal equipment.
  • Hydrogen can take either a countercurrent or cocurrent flow format with respect to the feedstock oil, or may have a plurality of reaction towers and a combination of countercurrent and cocurrent flow.
  • the general format is downflow, and the gas-liquid twin-cocurrent format is preferred.
  • Hydrogen gas may be injected into the middle column of the reaction tower as a quench for the purpose of removing reaction heat or increasing the hydrogen partial pressure.
  • the catalyst used for the hydrotreatment is a catalyst in which a hydrogenation active metal is supported on a porous carrier.
  • An inorganic oxide is used as the porous carrier.
  • Specific inorganic oxides include alumina, titania, zircoia, polya, silica, or zeolite.
  • at least one of titaair, zircoa, polya, silica, and zeolite is composed of alumina. What you have is good.
  • the production method is not particularly limited, but any preparation method can be employed using raw materials in various sols, salt compounds and the like corresponding to each element.
  • a composite hydroxide or composite oxide such as silica alumina, silica zirconia, alumina titania, silica titania, or alumina polya
  • it is prepared in the form of alumina gel or other hydroxides or in an appropriate solution.
  • the ratio of alumina to other oxides is a force S that can take an arbitrary ratio with respect to the porous carrier, preferably 90% by mass or less, more preferably 60% by mass or less, more preferably 40% by mass of alumina. It is below mass%.
  • Zeolite is a crystalline aluminosilicate, faujasite, pentaci And those that have been super-stabilized by a predetermined hydrothermal treatment and / or acid treatment, or those in which the alumina content in the zeolite is adjusted can be used.
  • a predetermined hydrothermal treatment and / or acid treatment or those in which the alumina content in the zeolite is adjusted
  • Preferably used are faujasite and mordenite, particularly preferably Y type and beta type.
  • Y-type is preferably ultra-stabilized.
  • Zeolite super-stabilized by hydrothermal treatment has a new structure in the range of 20 to 10 OA in addition to the original microporous structure called micropores below 2 OA. A pore is formed.
  • Known conditions can be used for the hydrothermal treatment conditions.
  • the active metal of the catalyst used for the hydrotreatment is at least one metal selected from Group 6A metals of the periodic table. Preferably, it is at least one selected from Mo and W.
  • the active metal may be a combination of a Group 6A metal and a Group 8 metal, specifically a combination of Mo or W and Co or Ni, for example, Co—Mo, Co — W, N i—M o, N i—W, C o—N i—M o, C o One N i—W, etc. can be used.
  • a general inorganic salt or a complex salt compound can be used.
  • any of the loading methods used in usual hydrogenation catalysts such as impregnation method and ion exchange method can be used.
  • a plurality of metals when a plurality of metals are supported, they may be supported simultaneously using a mixed solution, or may be sequentially supported using a single solution.
  • the metal solution may be an aqueous solution or an organic solvent.
  • Metal loading may be performed after the completion of the entire process for preparing the porous support, or after further supporting on the appropriate oxide, composite oxide or zeolite in the intermediate process for preparing the porous support. Alternatively, heat concentration and kneading may be performed.
  • the amount of active metal supported is not particularly limited, but is 0.1 to 10% by mass, preferably 0.15 to 5% by mass in terms of the total amount of metal with respect to the catalyst mass. / 0 , more preferably 0.2 to 3% by mass.
  • the catalyst is preferably used after a preliminary reduction treatment in a hydrogen stream.
  • a gas containing hydrogen is circulated and heat of 200 ° C. or higher is given in accordance with a predetermined procedure, the active metal on the catalyst is reduced and hydrogenation activity is expressed.
  • a kerosene fraction refined from crude oil or the like is hydrotreated to produce petroleum hydrotreated oil (light oil base material B ′).
  • the second light oil composition of the present invention comprises the light oil base material A ′ and the light oil base material B ′, and the mixing ratio of the light oil base material A ′: the light oil base material B ′ is 95 to 30% by volume: 5-70 a capacity 0/0, preferably from 90 to 35 volume percent is: 1 5-60 volume%: a 10 to 65 volume 0/0, and more preferable properly is 85-40% by volume.
  • the light oil composition of the present invention comprises the above-mentioned base material, has a 90% distillation temperature of 360 ° C. or less, a sulfur content of 10 mass p pni or less, and an oxygen content of 1 mass. /.
  • a fatty acid alkyl es ether fraction 3.5 wt 0/0 or less, a total acid number 0.1 3MgK_ ⁇ _HZg hereinafter methanol content 0.01 wt% or less, glyceride fraction 0.01 mass. /.
  • the following is a light oil composition having a clogging point of 1 ° C. or less.
  • the clogging point (CFPP) of the light oil composition of the present invention must satisfy the JIS No. 2 light oil standard — 5 ° C or less, and from the standpoint of preventing pre-filter clogging of diesel vehicles.
  • the temperature is preferably 6 ° C or lower, more preferably 17 ° C or lower.
  • the clogging point refers to the clogging point measured by JI S K 2288 “Test method for light oil clogging point”.
  • the pour point of the gas oil composition of the present invention needs to satisfy 17.5 ° C or less which is the J I S 2 gas oil standard. Further, from the viewpoint of low temperature startability or low temperature drivability, and also from the viewpoint of maintaining the injection performance of the electronically controlled fuel injection pump, it is preferably 110 ° C or lower.
  • the pour point means the pour point measured according to JISK 2269 “Pour point of crude oil and petroleum products and cloud point test method of petroleum products”.
  • the sulfur content of the gas oil composition of the present invention is required to be 10 mass ppm or less, preferably 5 mass p from the viewpoint of reducing harmful exhaust components discharged from the engine and improving the performance of the exhaust gas aftertreatment device. pm or less, more preferably 3 mass p pm or less, and even more preferably 1 mass p pm or less.
  • the sulfur content here means the mass content of the sulfur content based on the total amount of the gas oil composition measured by JIS K 2541 “Sulfur content test method”.
  • the oxygen content of the light oil composition of the present invention needs to be 1% by mass or less from the viewpoint of improving oxidation stability, preferably 0.8% by mass or less, more preferably 0.6% by mass or less, More preferably 0.4 mass% or less, most preferably 0.2 mass% or less It is.
  • the oxygen content can be measured with a general elemental analyzer. For example, the sample is converted to co on platinum carbon, or further converted to co 2 and then measured using a thermal conductivity detector. You can also.
  • the flash point of the light oil composition of the present invention is preferably 45 ° C or higher. If the flash point is less than 45 ° C, it cannot be handled as a light oil composition for safety reasons. For the same reason, the flash point is preferably 54 ° C or higher, more preferably 58 ° C or higher.
  • the flash point in the present invention is a value measured by J I S K 2 2 6 5 “Crude oil and petroleum product flash point test method”.
  • the cetane index of the light oil composition of the present invention is preferably 45 or more.
  • the concentration of PM, aldehydes, or N O X in the exhaust gas tends to increase.
  • the cetane index is preferably 48 or more, and most preferably 51 or more.
  • the cetane index referred to in the present invention refers to the cetane index using the 8.4 variable equation of JISK 2280 “Petroleum product-fuel oil-octane number and cetane number test method and cetane index calculation method”. It means the value calculated by “Calculation method”.
  • the cetane index in the above JIS standard is generally applied to light oil to which no cetane number improver is added.
  • the cetane index is also applied to a light oil composition to which a cetane number improver is added. Applying the above “8.4 Calculation method of cetane index using variable equation”, the value calculated by this calculation method is expressed as cetane index.
  • the cetane number in the light oil composition of the present invention is preferably 52 or more, more preferably 54 or more, and further preferably 55 or more. If the cetane number is less than 52, the concentration of NOx, PM and aldehydes in the exhaust gas tends to be high. Further, from the viewpoint of reducing black smoke in the exhaust gas, the cetane number is preferably 90 or less, more preferably 88 or less, and even more preferably 85 or less. In the light oil composition of the present invention, an appropriate amount of a cetane number improver can be blended as necessary to improve the cetane number of the obtained light oil composition.
  • the cetane number here is measured in accordance with “7. Cetane number test method” in JISK 2280 “Petroleum products / Fuel oil / octane number / cetane number test method and cetane index calculation method”. Means cetane number.
  • the density of the light oil composition of the present invention at 15 ° C is 7500 k from the viewpoint of securing the calorific value. is preferably GZm 3 or more, more preferably 760 k gZm 3 or more, 7 7 0 kg / m 3 or more is more preferable. Further, the density, NOx, from the viewpoint of reducing the emissions of PM, 8 50 preferably kg Roh m 3 or less, more preferably 845 k gZ m 3 or less, 840 kg / m 3 or less Is more preferable.
  • the density here means the density measured according to JISK 2249 “Density test method and density / mass / capacity conversion table for crude oil and petroleum products”.
  • the light oil composition of the present invention has a lubricating performance such that the HFRR wear scar diameter (WS 1.4) is preferably 460 ⁇ m or less, more preferably 430 ⁇ m or less, and further preferably 410 ⁇ m or less. desirable.
  • the HFRR wear scar diameter (WS 1.4) exceeds 46 0; / m, especially in a diesel engine equipped with a distributed injection pump, the driving torque of the pump during operation will increase and the wear of each part of the pump will increase. Cause deterioration of exhaust gas performance and fine particle performance as well as the engine itself may be destroyed. There is also concern about wear on the sliding surface of electronically controlled fuel injection pumps capable of high-pressure injection.
  • the HFRR wear scar diameter (WS 1.4) referred to in the present invention is measured by the Petroleum Institute Standard JPI-5 S-50-98 “Light Oil-Lubricity Test Method” published by the Japan Petroleum Institute. Value.
  • the aromatic content in the light oil composition of the present invention is not particularly limited, but it is preferably 20% by volume or less, more preferably from the viewpoint of enhancing the environmental impact reduction effect and reducing NOx and PM. 19% by volume or less, more preferably 18% by volume or less.
  • the aromatic content in the present invention is measured in accordance with the Petroleum Institute Method JPI-5 S-49-97 “Hydrocarbon Type Test Method—High Performance Liquid Chromatograph Method” published by the Japan Petroleum Institute. It means the volume percentage of the aromatic content (capacity. / 0 ).
  • the water content of the light oil composition of the present invention is preferably not more than 300 volumes p pm from the viewpoint of adverse effects on the components to the fuel tank and the like, and suppression of hydrolysis of ester compounds, and is preferably 250 volumes p pm More preferably, it is more preferably 200 capacity or less.
  • the moisture here is the moisture specified in JISK 2275 5 “Moisture test method (crude oil and petroleum products) j”.
  • the distillation property in the light oil composition of the present invention requires that the 90% by volume distillation temperature be 360 ° C or less, preferably 340 ° C or less, more preferably 3 30 ° C or lower, more preferably 320 ° C or lower.
  • the 90 volume% distillation temperature is preferably 280 ° C or higher, more preferably 285 ° C or higher, more preferably 290 ° C or higher, and even more preferably 295 ° C or higher. If the 90% volume distillation temperature is less than 280 ° C, the fuel efficiency improvement effect will be insufficient and the engine output will tend to decrease.
  • the 90% by volume distillation temperature here means a value measured in accordance with JISK 2254 "Petroleum product one distillation test method one atmospheric pressure method".
  • the kinematic viscosity at 30 ° C of the gas oil composition of the present invention is preferably 5 mm 2 / s or more, 2. more preferably 7 mm 2 / s or more, 2 More preferably, it is 9 mm 2 / s or more. If the kinematic viscosity is less than 2.5 mm 2 / "s, it tends to be difficult to control the fuel injection timing on the fuel injection pump side, and the lubricity of each part of the fuel injection pump mounted on the engine is poor.
  • the kinematic viscosity at 30 ° C of the light oil composition of the present invention is preferably 5 mm 2 // s or less, more preferably 4.7 mm 2 ks or less, 4. More preferably 5 mm 2 / s or less If the kinematic viscosity exceeds 5 mm 2 / s, the internal resistance of the fuel injection system increases, the injection system becomes unstable, and NO in the exhaust gas The concentration of x and PM will become high
  • the kinematic viscosity here means the kinematic viscosity measured by JISK 2283 “Crude oil and petroleum products kinematic viscosity test method and viscosity index calculation method”.
  • the carbon content of 10% residual oil in the light oil composition of the present invention is not particularly limited. From the viewpoint of reducing fine particles and soot, and maintaining the performance of the exhaust gas aftertreatment device mounted on the engine, 0.1% by mass or less is preferable, 0.08% by mass or less is more preferable, and 0.06% by mass. It is more preferable that the value is 0 or less.
  • the residual carbon content of 10% residual oil here refers to the residual carbon content of 10% residual oil as measured by JISK 2270 “Testing method for residual carbon content of crude oil and petroleum products”.
  • the total acid value is 0.13 mgK0H / g or less from the viewpoint of adverse effects on engine members.
  • the total acid value indicates the amount of free fatty acids in the mixture. There is concern about the sound. Therefore, the total acid value is preferably 0.1 Omg KOHZg or less, more preferably 0.08 mgKOH / g or less, and further preferably 0.05 mg KOHZg or less.
  • the total acid value here means the total acid value measured by JISK 2501 “Testing method for neutralization of petroleum products and lubricants”.
  • the fatty acid alkyl ester content is required to be 3.5% by mass or less from the viewpoint of deterioration of burn-out property in the engine combustion and the like. Preferably it is 2.0 mass% or less, More preferably, it is 1.0 mass% or less, More preferably, it is 0.5 mass% or less.
  • the fatty acid alkyl ester content means the fatty acid alkyl ester content measured according to EN 14103.
  • the methanol content must be 0.01% by mass or less from the viewpoint of adverse effects on the fuel injection system.
  • methanol content means the methanol content measured according to JIS K 2536 and EN 14110.
  • the amount of dalyceride needs to be 0.01% by mass or less. Preferably it is 0.008 mass% or less, More preferably, it is 0.006 mass% or less, More preferably, it is 0.005 mass% or less.
  • glyceride content means glyceride content measured according to EN 14105.
  • an appropriate amount of a cetane number improver can be blended as necessary to improve the cetane number of the resulting light oil composition.
  • cetane number improver various compounds known as light oil cetane number improvers can be arbitrarily used, and examples thereof include nitrates and organic peroxides. One of these cetane number improvers may be used alone, or two or more thereof may be used in combination.
  • nitrate ester among the cetane number improvers described above.
  • nitrate esters include 2-chloroethyl nitrate, 2-ethoxytyl nitrate, isopropyl nitrate, butyl nitrate, primary amyl nitrate, secondary amyl nitrate, isoamyl nitrate, Various nitriles such as primary hexyl nitrate, secondary hexyl nitrate, n-heptyl nitrite, n-octatinoleate, 2-ethenolehexenolate nitrate, cyclohexenolate nitrate, ethylene glycol ⁇ geninate In particular, an alkyl nitrate having 6 to 8 carbon atoms is preferable.
  • the content of the cetane number improver is preferably not less than 500 ppm by mass, more preferably not less than 600 ppm by mass, and more preferably not less than 700 ppm by mass. It is particularly preferably 800 ppm by mass or more, and most preferably 900 ppm by mass or more. If the content of cetane improver is less than 500 ppm by mass, sufficient cetane number improvement effect will not be obtained, and PM, aldehydes, and even NOx in diesel engine exhaust gas will not be reduced sufficiently. There is a tendency.
  • the upper limit of the content of the cetane number improver is not particularly limited, but it is preferably 1400 mass ppm or less, preferably 1250 massppm or less, based on the total amount of the light oil composition. More preferably, it is more preferably 110 mass 111 or less, and most preferably 100 mass ppm or less.
  • cetane number improver one synthesized according to a conventional method may be used, or a commercially available product may be used.
  • what is marketed as a cetane number improver is usually obtained by diluting an active ingredient that contributes to improving the cetane number (ie, the cetane number improver itself) with an appropriate solvent.
  • the content of the active ingredient in the light oil composition is preferably within the above range.
  • additives other than the cetane number improver can be blended as necessary, and in particular, a lubricity improver and / or a detergent is preferably blended.
  • lubricity improver for example, one or more of carboxylic acid-based, ester-based, alcohol-based, and phenol-based lubricity improvers can be arbitrarily used. Among these, carboxylic acid-based and ester-based lubricity improvers are preferable.
  • carboxylic acid-based lubricity improver examples include linoleic acid, oleic acid, salicylic acid, palmitic acid, myristic acid, hexadecenoic acid and a mixture of two or more of the above carboxylic acids.
  • Ester-based lubricity improvers include glycerin carboxylic acid esters.
  • the carboxylic acid constituting the carboxylic acid ester may be one kind or two or more kinds. Specific examples thereof include linoleic acid, oleic acid, salicylic acid, palmitic acid, myristic acid, hexadecenoic acid, etc. There is.
  • the blending amount of the lubricity improver is not particularly limited as long as the HFRR wear scar diameter (WS 1.4) is within the above-mentioned preferable range, but is preferably 35 mass ppm or more based on the total amount of the composition. More preferably, it is 50 mass p pm or more.
  • the blending amount of the lubricity improver is within the above range, the effectiveness of the blended lubricity improver can be effectively extracted. For example, in a diesel engine equipped with a distributed injection pump, The increase in driving torque of the pump inside can be suppressed, and pump wear can be reduced.
  • the upper limit of the amount added is preferably not more than 150 mass p pm on the basis of the total amount of the composition because an effect commensurate with the amount of addition cannot be obtained even if it is added more than that, and it is preferable that the upper limit of the amount is 10 mass p pm The following is more preferable.
  • the detergent examples include imide compounds; alkenyl succinic acid imides such as polybutyric succinic acid imide synthesized from polybutyric succinic anhydride and ethylene polyamines; pentaerythritol, etc. Estenoles of succinic acid such as polybutyrsuccinic acid ester synthesized from polyhydric alcohols of polybutene succinic anhydride; copolymers of dianoloxy ⁇ / aminoamino ⁇ methacrylate, polyethyleneglycol ⁇ / methacrylate, burpyrrolidone, etc. and alkyl methacrylate And ashless detergents such as a reaction product of carboxylic acid and amine. Among them, alkenyl succinic acid imide and a reaction product of carboxylic acid and amine are preferable. These detergents can be used alone or in combination of two or more.
  • alkenyl succinic acid imide examples include alkenyl succinic acid having a molecular weight of about 1 000 to 3000, and alkenyl succinic acid having a molecular weight of about 700 to 2000 and a molecular weight of 1 Sometimes used in admixture with alkenyl succinic acid imide of about 0000-20000.
  • the carboxylic acid constituting the reaction product of the carboxylic acid and the amine may be one type or two or more types. Specific examples thereof include a fatty acid having 1 to 24 carbon atoms and a carbon number of 7 -24 aromatic carboxylic acids and the like. C 1-2 fatty acids Examples thereof include, but are not limited to, linoleic acid, oleic acid, palmitic acid, myristic acid, and the like. Examples of the aromatic carboxylic acid having 7 to 24 carbon atoms include benzoic acid and salicylic acid, but are not limited thereto. Further, the amine constituting the reaction product of the carboxylic acid and the amine may be one type or two or more types. The amine used here is typically oleiramine, but is not limited thereto, and various amines can be used.
  • the amount of the detergent is not particularly limited, but in order to bring out the effect of incorporating the detergent, specifically, the effect of suppressing the clogging of the fuel injection nozzle, the amount of the detergent is based on the total amount of the composition. It is preferably at least ppm by mass, more preferably at least 60 ppm by mass, and even more preferably at least 80 ppm by mass. There is a possibility that the effect does not appear even if an amount less than 30 mass p pm is added. On the other hand, if the amount is too large, a corresponding effect cannot be expected.On the other hand, there is a risk of increasing NO x, PM, aldehydes, etc. in the diesel engine exhaust gas. Is preferably 300 ppm by mass or less, more preferably 180 ppm by mass or less.
  • the active ingredients that contribute to improving lubricity or cleaning were diluted with an appropriate solvent in those sold as lubricity improvers or detergents. It is customary to obtain it in the state.
  • the content of the active ingredient in the light oil composition is preferably within the above range.
  • additives include, for example, low-temperature fluidity improvers such as ethylene vinyl acetate copolymer and alkenyl succinic acid amides; antioxidants such as phenols and amines; and metal inertness such as salicylidene derivatives.
  • Anti-icing agents such as polydalicol ethers; Corrosion inhibitors such as aliphatic amines and alkenyl succinic acid esters; Antistatic agents such as ayuonic, cationic and amphoteric surfactants; Coloring of azo dyes Agents: Silicon-based antifoaming agents and the like.
  • the addition amount of other additives can be arbitrarily determined.
  • the addition amount of each additive is preferably 0.5% by mass or less, more preferably 0.2% by mass or less, based on the total amount of the light oil composition. is there.
  • an environmentally low load type light oil base material made from animal and vegetable oils and / or ingredients derived from animal and vegetable oils, it has excellent life cycle CO 2 emission characteristics and oxidation stability, and excellent low-temperature fluidity.
  • a light oil composition is provided.
  • D MDS dimethyl disulphide
  • the oil to be treated in which 80% by volume of the vegetable oil having the properties shown in Table 1 is mixed with 20% by volume of the petroleum-based light oil base material having the properties shown in Table 1 is reacted under the reaction conditions shown in Table 2.
  • the environmentally low load type light oil base material shown in 3 was prepared.
  • Table 3 shows the properties of fatty acid alkyl esters obtained by esterifying the vegetable oils shown in Table 1. These fatty acid alkyl esters are methyl ester compounds obtained by reaction with methanol. Here, the fatty acid alkyl esters are stirred in the presence of an alkali catalyst (sodium methylate) at 70 ° C for about 1 hour. A transesterification reaction in which an ester compound was obtained by contact reaction was used.
  • an alkali catalyst sodium methylate
  • the blending ratio of the blended diesel oil composition and the blended diesel oil composition density at 15 ° C, kinematic viscosity at 30 ° C, flash point, sulfur content, oxygen content, distillation properties, good Results of measurement of aromatic content, cetane number and cetane index, residual carbon content of 10% residual oil, moisture, clogging point, oxidation stability test (acid value before and after accelerated test), and life cycle c
  • the properties of fuel oil were measured by the following method.
  • Density refers to the density measured by J I S K 2 2 4 9 “Density test method for crude oil and petroleum products and density 'mass-capacity conversion table”.
  • Kinematic viscosity refers to the kinematic viscosity measured by J I S K 2 2 8 3 “Crude oil and petroleum products – kinematic viscosity test method and viscosity index calculation method”.
  • Sulfur content refers to the mass content of the sulfur content based on the total amount of light oil composition measured by J I S K 2 5 4 1 “Sulfur content test method”.
  • the oxygen content was measured by elemental analysis.
  • the aromatic content is measured according to the Petroleum Institute method JPI-5S-4 9-9 7 "Hydrocarbon type test method-High performance liquid chromatograph method" published by the Japan Petroleum Institute. Means volume percentage (volume%) of quantity.
  • Moisture means the moisture specified in JIS K 2 27 5 “Moisture test method (crude oil and petroleum products)”.
  • the flash point is the value measured by J I S K 2 2 6 5 “Crude oil and petroleum product flash point test method”.
  • the total acid value means the total acid value measured by JI S K 2 5 0 1 “Testing method for neutralization of petroleum products and lubricants”.
  • the clogging point is the clogging point measured by JI S K 2 2 8 8 “Test method for light oil clogging point”.
  • the cetane index was calculated according to ⁇ Calculation method of cetane index using 8.4 variable equations '' in JISK 2280 “Petroleum products—Fuel oil one octane number and cetane number test method and cetane index calculation method”. Refers to the value.
  • the cetane number is J I S K
  • Life Cycle CO 2 includes a co 2 generated due to combustion of the gas oil compositions in a vehicle equipped with a diesel engine, is calculated by dividing the co 2 generated from mining to the fuel oil supply to the vehicle tank.
  • Tank to Wheel C0 2 CO 2 generated by combustion
  • C_ ⁇ 2 (hereinafter referred to as "Well to Tank C0 2”.) That occurred to the fuel oil supply to the vehicle tank from mining, mining of raw materials and crude oil source, transport, processing, delivery, oil supply to the car both It was calculated as the sum of CO 2 emissions in the series of flows up to. In calculating “rWell to Tank C0 2 ”, the calculation was performed taking into account the carbon dioxide emissions shown in (1 B) to (5 B) below. As data necessary for such calculation, refinery operation performance data possessed by the present inventors was used.
  • the fuel was accelerated and degraded under conditions of 15 hours at 15 ° C and oxygen publishing, and oxidation before and after the test was measured.
  • the total acid value here means the total acid value measured according to JISK 25 01 “Testing method for neutralization of petroleum products and lubricants”.
  • the light oil compositions used in the examples and comparative examples are as shown in Table 4 and Table 5.
  • Petroleum hydrotreating which is a water environment low load type light oil base, a methyl esterified vegetable oil, and a petroleum base It is produced by blending oil at a specific ratio.
  • the environmentally low-loading diesel oil base material, and the environmentally low-loading diesel oil base material and petroleum-based hydrotreated oil are mixed and used in the range defined by the present invention.
  • 95% distillation temperature is 360 ° C or less
  • sulfur content is 10 mass ppm or less
  • oxygen content is 1 mass% or less
  • fatty acid methyl ester content is 3.5 mass% or less
  • Total acid value increase 0.13 mgKOH / g or less

Abstract

A gas oil composition obtained by mixing 5-70 vol.% hydrotreated petroleum oil with 95-30 vol.% gas oil base obtained by mixing a hydrocracked gas oil fraction and/or a dewaxed gas oil base with an environmentally friendly gas oil base produced by contacting a raw oil with a catalyst comprising a given porous inorganic oxide and an active metal under given reaction conditions, the raw oil being one obtained by mixing an animal/vegetable fat and/or an ingredient derived from an animal/vegetable fat with a sulfur-containing hydrocarbon compound. The gas oil composition has a 90% running temperature of 360°C or lower, sulfur content of 10 mass ppm or lower, oxygen content of 1 mass% or lower, fatty acid/alkyl ester content of 3.5 mass% or lower, total acid value of 0.13 mg-KOH/g or less, methanol content of 0.01 mass% or lower, glyceride content of 0.01 mass% or lower, and cold filter plugging point of -5°C or lower. The gas oil composition is excellent in life-cycle CO2 emission characteristics and oxidative stability and in member stability.

Description

軽 油 組成 物  Gas oil composition
[技術分野] [Technical field]
本発明は、 動植物油脂および/または動植物油脂由来成分であるトリグリセリ ド含有炭化水素を原料として製造された環境低負荷型軽油基材と、 原油等を常圧 蒸留装置で処理して得られる常圧明残渣油を続いて減圧蒸留装置で処理して得られ る減圧軽油をさらに水素化分解処理して得られる水素化分解軽油留分 (以降、 原 油等から精製された水素化分解軽油留分田ともいう。 ) 及び 又は原油等を常圧蒸 留装置で処理して得られる軽油留分を更に水素化脱ろう処理して得られる脱ろう 軽油基材 (以降、 原油等から精製された脱ろう軽油基材ともいう。 ) 、 および原 油等から精製された軽油、 灯油留分を有する石油系水素化処理油を混合すること によって得られる、 ライフサイクル c o 2排出特性および酸化安定性に優れ、 且 つ低温流動性に優れた軽油組成物に関するものである。 The present invention relates to an environmentally low load light oil base produced using animal and vegetable fats and / or triglyceride-containing hydrocarbons derived from animal and vegetable fats and oils, and atmospheric pressure obtained by treating crude oil and the like with an atmospheric distillation device. A hydrocracked gas oil fraction obtained by further hydrocracking a vacuum gas oil obtained by processing a light residual oil in a vacuum distillation unit (hereinafter referred to as a hydrocracked gas oil fraction purified from raw oil) ) And / or a dewaxed light oil base obtained by further hydrodewaxing a light oil fraction obtained by treating crude oil etc. with an atmospheric distillation unit (hereinafter referred to as refined degassed from crude oil etc.) It is also referred to as a wax-based diesel oil base.) Excellent life cycle co 2 emission characteristics and oxidation stability obtained by mixing diesel oil refined from raw oil, etc., and petroleum-based hydrotreated oil with kerosene fraction , And low temperature It relates excellent gas oil composition kinematic properties.
[背景技術] [Background]
従来、 軽油の基材としては、 原油の常圧蒸留装置から得られる直留軽油に水素 化処理や水素化脱硫処理を施したもの、 原油の常圧蒸留装置から得られる直留灯 油に水素化処理や水素化脱硫処理を施したもの等が知られている。 従来の軽油組 成物は上記軽油基材及ぴ灯油基材を 1種または 2種以上配合することにより製造 されている。 また、 これらの軽油組成物には、 必要に応じてセタン価向上剤や清 浄剤等の添加剤が配合される (例えば、 非特許文献 1 (小西誠一著, 「燃料工学 概論」 , 裳華房, 1 9 9 1年 3月, p . 1 3 6 - 1 4 4 ) 参照。 ) 。  Conventional gas oil base materials include straight-run diesel oil obtained from crude oil atmospheric distillation equipment, hydrotreated or hydrodesulfurized, and straight-run kerosene obtained from crude oil distillation equipment using hydrogen. Those subjected to hydrotreating or hydrodesulfurization are known. Conventional diesel oil compositions are manufactured by blending one or more of the above diesel oil base and kerosene base. In addition, these light oil compositions are blended with additives such as cetane improvers and cleaners as needed (for example, Non-Patent Document 1 (Sonichi Konishi, “Introduction to Fuel Engineering”, Bund, 1 9 9 March 1, p. 1 3 6-1 4 4).
特許文献 1 (特開 2 0 0 3— 1 7 1 6 7 0号公報) には、 天然油脂類あるいは その誘導体及び食用廃油等を原料とする炭化水素類の製造方法を提供することを 目的として、 天然油脂、 廃天然油脂またはその誘導体と、 活性化した水素とを金 属触媒、 合金触媒、 金属担持触媒および合金担持触媒からなる群より選ばれる触 媒の存在下反応させることを特徴とする炭化水素類の製造方法が開示されている。 また特許文献 2 (特表 2 0 0 5— 5 3 8 2 0 4号公報) には、 植物および/ま たは動物および または魚を起源とする生物学的原材料から調製される成分また は成分の混合物を 0 . 1〜9 9容量%および酸素を含む成分を 0〜 2 0容量%含 むディーゼルエンジン用燃料組成物が開示されている。 ここで両成分は、 フイツ シャ一一トロプシュ工程からの粗油および/または画分に基づくディーゼル成分 と混合されるとされている。 Patent Document 1 (Japanese Patent Laid-Open No. 2 0 03-1-7 1 6 70) discloses a method for producing hydrocarbons using natural fats and oils or derivatives thereof and edible waste oil as raw materials. Characterized by reacting natural fats and oils, waste natural fats and oils or derivatives thereof with activated hydrogen in the presence of a catalyst selected from the group consisting of metal catalysts, alloy catalysts, metal-supported catalysts and alloy-supported catalysts. A method for producing hydrocarbons is disclosed. Patent Document 2 (Japanese Patent Publication No. 2 0 0 5—5 3 8 2 0 4) discloses plants and / or plants. For diesel engines containing from 0.1 to 99% by volume of components or mixture of components prepared from biological raw materials of animal or fish origin and from 0 to 20% by volume of components containing oxygen A fuel composition is disclosed. Both components are said to be mixed with diesel components based on crude oil and / or fractions from the Fitzish Tropsch process.
また、 特許文献 3 (特開 2 0 0 4— 1 8 9 8 8 5号公報) には、 脂肪酸を構成 する炭素数が 6から 2 0までの飽和又は不飽和脂肪酸のメチルエステル又はェチ ルエステル、 あるいはそれらの混合物からなる環境対応型ディーゼル燃料組成物 が開示されている。  Patent Document 3 (Japanese Patent Laid-Open No. 2000-184-88) discloses a methyl ester or an ethyl ester of a saturated or unsaturated fatty acid having 6 to 20 carbon atoms constituting the fatty acid. Or an environmentally friendly diesel fuel composition comprising a mixture thereof.
しかしながら、 ライフサイクル C 0 2排出特性、 酸化安定性、 低温性能といつ た要求性能を高水準で同時に達成できる高品質の燃料を設計することは非常に困 難であり、 なおかつ市販燃料油として求められている諸性能を十分満たし、 また 現実的な製造方法については開示されていない。 However, it is very difficult to design a high-quality fuel that can simultaneously achieve the required performance at the same time as life cycle C 0 2 emission characteristics, oxidation stability, and low-temperature performance. However, it does not disclose a practical manufacturing method that satisfies the various performances.
ところで、 近年、 早急な大気環境改善及び環境負荷低減を目指して、 内燃機関 用燃料である軽油中の硫黄分及び芳香族含有量の低減が求められている。 また同 時に地球温暖化問題に対応するため、一層の燃費向上に貢献しかつ二酸化炭素(C o 2 ) 削減に効果的な燃料性状が求められており、 その解決手段の 1つとして合 成燃料や再生可能エネルギーであるバイオディーゼル燃料 (以降 B D Fとも表記 する。 ) を代替燃料として用いることが検討されている。 By the way, in recent years, reduction of sulfur content and aromatic content in light oil, which is a fuel for internal combustion engines, has been demanded with the aim of promptly improving the air environment and reducing the environmental load. At the same time, in order to respond to the global warming problem, there is a need for fuel properties that contribute to further fuel economy and are effective in reducing carbon dioxide (C o 2 ). And biodiesel fuel, which is a renewable energy (hereinafter also referred to as BDF), is being studied as an alternative fuel.
B D Fは天然の動植物油脂を原料にした脂肪酸アルキルエステル混合物が主で あり、 排出ガス中のすす生成寄与度が大きいとされている芳香族化合物分や排出 ガス後処理触媒への被毒等の影響が大きいとされている硫黄分をほとんど含まず、 またそれ自身が分子中に酸素を持つた含酸素化合物であるため、 代替燃料の有力 な候補として着目されている。 また、 植物由来であることから再生可能エネルギ 一と位置づけられているため、 1 9 9 7年に締結された国際間での二酸化炭素削 減プロトコル、 いわゆる京都議定書においては B D F起因の二酸化炭素は排出量 として計上されないルールである点も、 B D Fは政策的なメリットを有している。 しかしながら、 天然の動植物油脂を原料とした脂肪酸アルキルエステルは本来 重質な成分が多く、 エンジン燃焼等における燃え切り性が悪くなり、 燃焼時の未 燃炭化水素排出を増加させる懸念がある。 また、 脂肪酸アルキルエステルは含酸 素化合物であるため、 燃焼時のアルデヒ ド類の排出を增加させる懸念がある。 飽 和脂肪酸基を多く有する脂肪酸アルキルエステルを多く含有する B D Fの場合は、 常温でも固体であるために燃料としての取り扱いに劣り、 また低温時の流動性能 も確保することが困難である。 不飽和脂肪酸基を多く含有する B D Fの場合は、 その化学組成上酸化安定性に劣り、 色相の劣化ゃスラッジの生成およびエンジン 部材への悪影響が懸念されている。 更には、 脂肪酸アルキルエステルを精製する 際の原料である脂肪酸グリセライド、 アルキルアルコール及ぴ副生成物であるグ リセリン混合物はェンジン部材や燃料噴射系への悪影響が極めて懸念されている ものである。 BDF is mainly a mixture of fatty acid alkyl esters made from natural animal and vegetable oils and fats. Influence of aromatic compounds and exhaust gas aftertreatment catalysts that are considered to have a large contribution to soot formation in exhaust gas Because it contains almost no sulfur, which is said to be large, and itself is an oxygen-containing compound with oxygen in the molecule, it is attracting attention as a promising candidate for alternative fuels. In addition, because it is plant-derived, it is positioned as one of the renewable energies, so the international carbon dioxide reduction protocol concluded in 1997, the so-called Kyoto Protocol, emits carbon dioxide caused by BDF. BDF also has a policy merit in that it is a rule that is not recorded as a quantity. However, fatty acid alkyl esters made from natural animal and vegetable oils and fats are inherently heavy components, and the burn-off property of engine combustion and the like deteriorates, and there is a concern of increasing unburned hydrocarbon emissions during combustion. In addition, fatty acid alkyl esters are acid-containing Because it is an elemental compound, there is a concern of increasing emissions of aldehydes during combustion. In the case of BDF containing a large amount of fatty acid alkyl ester having many saturated fatty acid groups, it is solid even at room temperature, so it is inferior in handling as a fuel, and it is difficult to ensure fluidity at low temperatures. In the case of BDF containing many unsaturated fatty acid groups, its chemical composition is inferior in oxidative stability, and there is concern about the deterioration of hue and the generation of sludge and adverse effects on engine parts. Furthermore, fatty acid glyceride, which is a raw material when purifying fatty acid alkyl esters, alkyl alcohol and a glycerin mixture which is a by-product are extremely concerned about adverse effects on engine members and fuel injection systems.
これらの傾向は既存の軽油等には見られなかった傾向であり、 そのため B D F 単独で使用する場合だけでなく、 既存の軽油等に混合して使用する場合において も同様に問題となっており、 B D F自体の性状に留意するだけでなく、 既存軽油 との混合使用時においても酸化安定性や低温性能、 燃焼性等に従来以上に留意す る必要がある。  These tendencies were not seen in existing diesel oils, and as such, not only when using BDF alone, but also when mixing with existing diesel oil, etc. In addition to paying attention to the properties of the BDF itself, it is necessary to pay more attention to oxidation stability, low-temperature performance, combustibility, etc. than before when mixing with existing light oil.
従って、 有害排気成分の低減と共にライフサイクル C O 2排出特性およぴ酸化 安定性に優れ、 良好な低温性能を有する軽油組成物の提供に関して、 天然の動植 物油脂を原料にした脂肪酸アルキルェステル混合物である B D Fの使用では、 こ れらの性能改善を同時に達成することはできない。 さらに、 これらのエンジン性 能は他の燃料性状とも密接に関連するため、 これらの要求性能を高水準で同時に 達成できる高品質の燃料を設計することは非常に困難であり、 なおかつ市販燃料 油として求められている諸性能を十分満たし、 また現実的な製造方法の検討を踏 まえた例、 知見は存在していない。 Therefore, fatty acid alkylesters made from natural animal and plant fats and oils are used to provide gas oil compositions that have excellent low-temperature performance, life cycle CO 2 emission characteristics and oxidation stability as well as reduction of harmful exhaust components. These performance improvements cannot be achieved simultaneously with the use of a BDF mixture. Furthermore, because these engine performances are closely related to other fuel properties, it is very difficult to design a high-quality fuel that can simultaneously achieve these required performances at a high level, and as a commercial fuel oil There are no examples or knowledge that fully satisfy the required performance and consider practical manufacturing methods.
[発明の開示] [Disclosure of the Invention]
本発明は、 かかる実状に鑑みてなされたものであり、 その目的は、 動植物油脂 および または動植物油脂由来成分であるトリグリセリ ド含有炭化水素を原料と して製造された環境低負荷型軽油基材と、 原油等から精製された水素化分解軽油 留分及び/又は原油等から精製された脱ろう軽油基材、 および原油等から精製さ れた軽油、 灯油留分を有する石油系水素化処理油を混合することによって得られ る、 ライフサイクル c o 2排出特性および酸化安定性に優れ、 且つ低温流動性に 優れた軽油組成物を提供することにある。 The present invention has been made in view of such a situation, and an object of the present invention is to provide an environment-friendly light oil base material produced using raw materials of animal and vegetable fats and oils and / or triglyceride-containing hydrocarbons derived from animal and vegetable fats and oils. Hydrocracked gas oil fraction refined from crude oil, etc. and / or dewaxed gas oil base refined from crude oil, etc., and petroleum hydrotreated oil having kerosene fraction, light oil refined from crude oil, etc. Excellent life cycle co 2 emission characteristics and oxidation stability obtained by mixing, and low temperature fluidity The object is to provide an excellent gas oil composition.
本発明者らは、 上記課題を解決するために鋭意研究した結果、 本発明を完成す るに至った。  As a result of intensive studies to solve the above problems, the present inventors have completed the present invention.
すなわち、 本発明の第 1は、 〔A〕 水素の存在下、 動植物油脂および/または 動植物油脂由来成分に含硫黄炭化水素化合物を硫黄分が 1質量 p p m〜 2質量% となるように混合した被処理油と、 アルミニウム、 ケィ素、 ジルコニウム、 ホウ 素、 チタン及びマグネシウムから選ばれる 2種以上の元素を含んで構成される多 孔性無機酸化物並びに該多孔性無機酸化物に担持された周期律表第 6 A族及び第 8族の元素から選ばれる 1種以上の金属を含有する触媒とを、 水素圧力 2〜1 3 MP a、液空間速度 0. :!〜 3. 0 h— 水素/油比 1 50〜1 500NL/L、 反応温度 1 50〜480°Cの条件下で接触させることによって製造される留分 That is, the first aspect of the present invention is [A] a mixture of animal and vegetable oils and / or animal and plant oils and fats-derived components containing a sulfur-containing hydrocarbon compound so that the sulfur content is 1 mass ppm to 2 mass% in the presence of hydrogen. A processing oil, a porous inorganic oxide comprising two or more elements selected from aluminum, potassium, zirconium, boron, titanium and magnesium, and a periodic rule supported by the porous inorganic oxide Table 6 A catalyst containing one or more metals selected from Group A and Group 8 elements, hydrogen pressure 2 to 13 MPa, liquid space velocity 0.:! To 3.0 h— hydrogen / Fraction produced by contacting under conditions of oil ratio 1 50-1 500 NL / L, reaction temperature 1 50-480 ° C
(環境低負荷型軽油基材) 10〜90容量%と、 ( i) 原油等を常圧蒸留装置で 処理して得られる常圧残渣油を続いて減圧蒸留装置で処理して得られる減圧軽油 をさらに水素化分解処理して得られる水素化分解軽油留分 (沸点範囲: 200〜 350 °C) 90〜 10容量%とを混合することで得られる軽油基材 A— 1および または (ii) 原油等を常圧蒸留装置で処理して得られる軽油留分を更に水素化 脱ろう処理して得られる脱ろう軽油基材 90〜10容量%とを混合することで得 られる軽油基材 A— 2からなる軽油基材 A 95〜30容量%に、 〔B〕 原油等か ら精製された軽油留分を水素化処理して得られる石油系水素化処理油 (軽油基材 B)を 5〜70容量%混合することで得られる、 90%留出温度が 360°C以下、 硫黄分が 10質量 p pm以下、 酸素分 1質量。/。以下、 脂肪酸アルキルエステル分 3. 5質量%以下、 全酸価 0. 13mg KOHZg以下、 メタノール分 0. 01 質量%以下、 グリセライド分 0. 01質量%以下、 目詰まり点一 5°C以下である ことを特徴とする軽油基材 Aおよび Bからなる軽油組成物に関するものである。 また、 本発明の第 2は、 〔Α' 〕 水素の存在下、 動植物油脂および Ζまたは動 植物油脂由来成分 10〜90容量%と原油等から精製された軽油留分を有する石 油系基材 90〜10容量%とを混合した被処理油を、 アルミニウム、 ケィ素、 ジ ルコニゥム、 ホウ素、 チタン及ぴマグネシウムから選ばれる 2種以上の元素を含 んで構成される多孔性無機酸化物並ぴに該多孔性無機酸化物に担持された周期律 表第 6 Α族及ぴ第 8族の元素から選ばれる 1種以上の金属を含有する触媒とを、 水素圧力 2〜 1 3MP a、 液空間速度 0. 1〜3. 0 h 1、 水素/油比 1 50〜 1500NL/L、 反応温度 150〜480 °Cの条件下で接触させることによつ て製造される留分 (環境低負荷型軽油基材) 10〜90容量%に、 ( i ' ) 原油 等を常圧蒸留装置で処理して得られる常圧残渣油を続いて減圧蒸留装置で処理し て得られる減圧軽油をさらに水素化分解処理して得られる水素化分解軽油留分(Environmental low load gas oil base) 10-90% by volume, (i) Vacuum gas oil obtained by processing crude oil, etc. with atmospheric distillation equipment, followed by treatment with vacuum distillation equipment Oil base material A-1 obtained by further mixing hydrocracked gas oil fraction obtained by further hydrocracking (boiling range: 200-350 ° C) 90-10% by volume or (ii) Diesel oil base obtained by mixing 90 to 10% by volume of a dewaxed light oil base obtained by further hydrotreating and dewaxing a light oil fraction obtained by treating crude oil etc. with an atmospheric distillation unit A— Gas oil base material A consisting of 2 to 95-30% by volume [B] Petroleum hydrotreated oil (light oil base material B) obtained by hydrotreating a light oil fraction refined from crude oil, etc. 90% distillation temperature obtained by mixing 70% by volume, 360 ° C or less, sulfur content is 10 mass ppm or less, oxygen content is 1 mass. /. The fatty acid alkyl ester content is 3.5 mass% or less, the total acid value is 0.13 mg KOHZg or less, the methanol content is 0.01 mass% or less, the glyceride content is 0.01 mass% or less, and the clogging point is 5 ° C or less. The present invention relates to a gas oil composition comprising gas oil base materials A and B characterized by the above. The second aspect of the present invention is: [Α '] Petroleum-based base material having animal and vegetable oils and fats and 10 to 90% by volume of components derived from straw or animal and vegetable oils and a light oil fraction refined from crude oil in the presence of hydrogen. An oil to be treated mixed with 90 to 10% by volume is combined with a porous inorganic oxide composed of two or more elements selected from aluminum, silicon, zirconium, boron, titanium and magnesium. A periodic catalyst supported by the porous inorganic oxide, a catalyst containing one or more metals selected from Group 6 Group 8 and Group 8 elements; By contacting under conditions of hydrogen pressure 2 to 13 MPa, liquid space velocity 0.1 to 3.0 h 1 , hydrogen / oil ratio 150 to 1500 NL / L, reaction temperature 150 to 480 ° C Distillate to be produced (environmental low-load gas oil base) 10-90% by volume, (i ') Atmospheric residual oil obtained by treating crude oil, etc. with atmospheric distillation equipment, then treated with vacuum distillation equipment Hydrocracked gas oil fraction obtained by further hydrocracking the vacuum gas oil obtained in this way
(沸点範囲: 200〜350°C) を 90〜10容量%混合することで得られる軽 油基材 A' — 1およびノまたは (ii' ) 原油等を常圧蒸留装置で処理して得られ る軽油留分を更に水素化脱ろう処理して得られる脱ろう軽油基材を 90〜 10容 量%混合することで得られる軽油基材 A, 一 2からなる軽油基材 A, 95〜30 容量%に、 〔Β' 〕 原油等から精製された灯油留分を水素化処理して得られる石 油系水素化処理油 (軽油基材 B' ) を 5〜70容量%混合することで得られる、 90%留出温度が 360°C以下、 硫黄分が 10質量 p pm以下、 酸素分 1質量。 /0 以下、 脂肪酸アルキルエステル分 3. 5質量%以下、 全酸価0. 13mgKOH /g以下、 メタノール分 0. 01質量%以下、 グリセライド分 0. 01質量%以 下、 目詰まり点一 5 °C以下であることを特徴とする軽油基材 A' および B' から なる軽油組成物に関するものである。 (Oil boiling range: 200-350 ° C) obtained by mixing 90 to 10% by volume of light oil base material A'-1 and NO or (ii ') obtained by treating crude oil etc. with atmospheric distillation equipment Gas oil base A obtained by mixing 90 to 10% by volume of a dewaxed light oil base obtained by further hydrodewaxing a diesel oil fraction, light oil base A consisting of 12, 95-30 Obtained by mixing 5 to 70% by volume of petroleum oil hydrotreated oil (light oil base B ') obtained by hydrotreating kerosene fraction refined from crude oil etc. 90% distillation temperature is 360 ° C or less, sulfur content is 10 mass ppm or less, oxygen content is 1 mass. / 0 or less, Fatty acid alkyl ester content 3.5 mass% or less, Total acid value 0.13 mgKOH / g or less, Methanol content 0.01 mass% or less, Glyceride content 0.01 mass% or less, Clogging point 1 ° The present invention relates to a light oil composition comprising light oil bases A ′ and B ′, which is characterized by C or less.
[発明の効果] [The invention's effect]
本発明によれば、 動植物油脂および/または動植物油脂由来成分であるトリグ リセリ ド含有炭化水素を原料として製造された環境低負荷型軽油基材と、 原油等 から精製された水素化分解軽油留分及び Z又は原油等から精製された脱ろう軽油 基材、 および原油等から精製された軽油、 灯油留分を有する石油系水素化処理油 を混合することによって、 従来の軽油組成物では実現が困難であったライフサイ クル CO 2排出特性および酸化安定性に優れ、 良好な低温性能を有する軽油組成 物が提供される。 According to the present invention, an environmentally low-load gas oil base produced using animal and vegetable fats and / or triglyceride-containing hydrocarbons derived from animal and vegetable fats and oils, and a hydrocracked gas oil fraction purified from crude oil and the like. It is difficult to achieve with conventional diesel oil compositions by mixing dewaxed diesel oil base material refined from Z or crude oil, etc., diesel oil refined from crude oil, etc., and petroleum hydrotreated oil having kerosene fraction A light oil composition having excellent life cycle CO 2 emission characteristics and oxidation stability and good low-temperature performance is provided.
[発明を実施するための最良の形態] [Best Mode for Carrying Out the Invention]
以下、 本発明について詳細に説明する。  Hereinafter, the present invention will be described in detail.
本発明にかかる環境低負荷型軽油基材は、 所定の原料油を水素化処理して得ら れる低硫黄、 低酸素の留分である。 所定の原料油は、 動植物油脂および または 動植物油脂由来成分に、 含硫黄炭化水素化合物を硫黄分が 1質量 p pm〜2質量 %となるように混合して得られる混合油 (被処理油) 、 もしくは動植物油脂およ ぴノまたは動植物油脂由来成分 1 0〜90容量%と原油等から精製された軽油留 分を有する石油系基材 90〜 1 0容量%とを混合して得られる混合油(被処理油) である。 The environment-friendly light oil base material according to the present invention is a low-sulfur, low-oxygen fraction obtained by hydrotreating a predetermined raw material oil. Predetermined feedstock oils and animals Mixed oil (treated oil) obtained by mixing sulfur-containing hydrocarbon compounds with components derived from animal and vegetable oils and fats so that the sulfur content is 1 mass ppm to 2 mass%, or animal and vegetable oils and fats or animal or vegetable oils and fats This is a mixed oil (treated oil) obtained by mixing 10 to 90% by volume of a derived component and 90 to 10% by volume of a petroleum base material having a light oil fraction refined from crude oil or the like.
本発明における動植物油脂および/または動植物油脂由来成分とは、 天然もし くは人工的に生産、 製造される動植物油脂および/またはこれらの油脂を由来し て生産、 製造される成分をいう。 動物油脂および動物油の原料としては、 牛脂、 牛乳脂質 (バター) 、 豚脂、 羊脂、 鯨油、 魚油、 肝油等が挙げられ、 植物油脂お よび植物油原料としては、 ココヤシ、パームヤシ、 ォリーブ、 べにばな、菜種 (菜 の花) 、 米ぬか、 ひまわり、 綿実、 とうもろこし、 大豆、 ごま、 アマ二等の種子 部及びその他の部分が挙げられるが、 これ以外の油脂、 油であっても使用に問題 はない。 これらの原料油に関してはその状態が固体、 液体であることは問わない が、 取り扱いの容易さおよび二酸化炭素吸収能や生産性の高さから植物油脂、 植 物油を原料とする方が好ましい。 また、 本発明においては、 これらの動物油、 植 物油を民生用、 産業用、 食用等で使用した廃油も雑物等の除去工程を加えた後に 原料とすることができる。  The animal and vegetable oil and / or animal and vegetable oil / fat-derived component in the present invention refers to an animal and vegetable oil and / or fat that is produced or manufactured naturally or artificially and / or a component that is produced and produced from these oil and fat. Examples of animal fats and animal oil ingredients include beef tallow, milk fat (butter), pork tallow, sheep fat, whale oil, fish oil, liver oil, etc. Examples of vegetable oil and vegetable oil ingredients include coconut palm, olive palm, olive Examples include seeds and other parts such as bananas, rapeseed (rapeseed flowers), rice bran, sunflower, cottonseed, corn, soybeans, sesame seeds, flax, etc. No problem. These raw oils may be solid or liquid, but it is preferable to use vegetable oils and plant oils as raw materials because of their ease of handling, high carbon dioxide absorption capacity and high productivity. In the present invention, waste oils obtained by using these animal oils and plant oils for consumer use, industrial use, food use, etc. can also be used as raw materials after adding a step of removing impurities.
動植物油脂および動植物油脂由来成分中に含有されるグリセライド化合物の脂 肪酸部分の代表的な組成としては、 飽和脂肪酸と称する分子構造中に不飽和結合 を有しない脂肪酸である酪酸 (C3H7COOH) 、 カプロン酸 (CsH COO H) 、 力プリル酸 (C7H15COOH) 、 力プリン酸 (C9H19COOH) 、 ラ ゥリン酸 (CuH^COOH) 、 ミリスチン酸 (C13H27COOH) 、 パルミ チン酸 (C15H31COOH) 、 ステアリン酸 (C17H35COOH) 、 及ぴ不飽 和結合を 1つもしくは複数有する不飽和脂肪酸であるォレイン酸(C17H33CO OH) 、 リノール酸 (C17H31COOH) 、 リノレン酸 (C17H29COOH) 、 リシノレン酸 (C17H32 (OH) COOH) 等が挙げられる。 自然界の物質にお けるこれら脂肪酸の炭化水素部は一般に直鎖であることが多いが、 本発明におい て本発明で規定する性状を満たす限りで、 側鎖を有する構造、 すなわち異性体で あっても使用することができる。 また、 不飽和脂肪酸における分子中の不飽和結 合の位置も、 本発明において本発明で規定する性状を満たす限りで、 自然界で一 般に存在確認されているものだけでなく、 化学合成によって任意の位置に設定さ れたものも使用することができる。 A typical composition of the fatty acid portion of glyceride compounds contained in animal and vegetable oils and fats and components derived from animal and vegetable fats and oils is butyric acid (C 3 H 7) , a fatty acid having no unsaturated bond in the molecular structure called saturated fatty acid. COOH), caproic acid (CsH COO H), force prillic acid (C 7 H 15 COOH), force puric acid (C 9 H 19 COOH), lauric acid (CuH ^ COOH), myristic acid (C 13 H 27 COOH ), Palmitic acid (C 15 H 31 COOH), stearic acid (C 17 H 35 COOH), and oleic acid (C 17 H 33 CO OH), an unsaturated fatty acid having one or more unsaturated bonds Linoleic acid (C 17 H 31 COOH), linolenic acid (C 17 H 29 COOH), ricinolenic acid (C 17 H 32 (OH) COOH) and the like. The hydrocarbon part of these fatty acids in natural substances is generally linear, but it is a structure having a side chain, that is, an isomer, as long as the properties defined in the present invention are satisfied in the present invention. Can also be used. Further, the position of the unsaturated bond in the molecule of the unsaturated fatty acid is the same in nature as long as it satisfies the properties defined in the present invention. Not only those that have been confirmed to exist in general, but also those that have been set at any position by chemical synthesis can be used.
動植物油脂およぴ動植物油脂由来成分はこれらの脂肪酸を 1種または複数種有 しており、 原料によ'つてその有する脂肪酸類は異なっている。 例えば、 ココヤシ 油はラウリン酸、 ミリスチン酸等の飽和脂肪酸を比較的多く有しているが、 大豆 油はォレイン酸、 リノール酸等の不飽和脂肪酸を多く有している。  Animal and vegetable oils and fats and components derived from animal and vegetable oils have one or more of these fatty acids, and the fatty acids they have vary depending on the raw material. For example, coconut oil has a relatively large amount of saturated fatty acids such as lauric acid and myristic acid, while soybean oil has a large amount of unsaturated fatty acids such as oleic acid and linoleic acid.
動植物油脂および/または動植物油脂由来成分に混合して被処理油を形成する 含硫黄炭化水素化合物としては特に制限されないが、 具体的には、 スルフイ ド、 ジスノレフィ ド、 ポリスノレフィ ド、 チオール、 チォフェン、 ベンゾチ才フェン、 ジ ベンゾチオフヱン及びこれらの誘導体などが挙げられる。 被処理油に含まれる含 硫黄炭化水素化合物は単一の化合物であってもよく、 あるいは 2種以上の混合物 であってもよい。 あるいはまた、 前記の含硫黄炭化水素化合物の代わりに硫黄分 を含有する石油系炭化水素留分を用いても良い。  Sulfur-containing hydrocarbon compounds that are mixed with animal and vegetable oils and / or animal and vegetable oil-derived components to form treated oils are not particularly limited. Phen, dibenzothiophene and their derivatives. The sulfur-containing hydrocarbon compound contained in the oil to be treated may be a single compound or a mixture of two or more. Alternatively, a petroleum hydrocarbon fraction containing a sulfur content may be used instead of the sulfur-containing hydrocarbon compound.
含硫黄炭化水素化合物の配合割合は、 被処理油の硫黄分が 1質量 P pm〜2質 量%、 好ましくは 10質量 p 111〜1質量%となるように配合する。  The mixing ratio of the sulfur-containing hydrocarbon compound is such that the sulfur content of the oil to be treated is 1 mass P pm to 2 mass%, preferably 10 mass p 111 to 1 mass%.
原料油 (被処理油) の水素化条件としては、 水素圧力 2〜1 3MP a、 液空間 速度 0. :!〜 3. 0 h 1、 水素/油比 1 50〜 : I 500 NLZLの条件下で行わ れることが望ましく、水素圧力 3〜12MP a、液空間速度 0. 2〜2. O h一 1、 水素/油比 200〜1200NL/Lといった条件がより望ましく、 水素圧力 4 〜 : L 0. 5 MP a、 液空間速度 0. 25〜1. 0 h 1、 水素油比 300〜 : L 00 0 NLZLといった条件がさらに望ましい。 これらの条件はいずれも反応活性を 左右する因子であり、 例えば、 水素圧力および水素 油比が前記下限値に満たな い場合には反応性の低下や急速な活性低下を招く恐れがあり、 水素圧力おょぴ水 素/油比が前記上限値を超える場合には圧縮機等の過大な設備投資を要する恐れ がある。 液空間速度は低いほど反応に有利な傾向にあるが、 前記下限未満の場合 は極めて大きな反応塔容積が必要となり過大な設備投資となる傾向にあり、他方、 前記上限を超えている場合は反応が十分進行しなくなる傾向にある。 The hydrogenation conditions of the raw oil (treated oil) are as follows: hydrogen pressure 2 to 13 MPa, liquid space velocity 0.:! To 3.0 h 1 , hydrogen / oil ratio 1 50 to: I 500 NLZL . it is desirable to carried out at a hydrogen pressure 3~12MP a, liquid hourly space velocity 0. 2 to 2 O h one 1, and more preferably conditions such hydrogen / oil ratio 200~1200NL / L, the hydrogen pressure 4 ~: L 0 More desirable conditions are 5 MPa, liquid space velocity 0.25 to 1.0 h 1 , hydrogen oil ratio 300 to: L 00 NLZL. These conditions are factors that influence the reaction activity.For example, if the hydrogen pressure and the hydrogen oil ratio do not satisfy the lower limit values, there is a risk of causing a decrease in reactivity or a rapid decrease in activity. If the pressure hydrogen / oil ratio exceeds the above upper limit, excessive capital investment such as compressors may be required. The lower the liquid space velocity, the more advantageous the reaction. However, when the liquid space velocity is less than the lower limit, a very large reaction tower volume is required, which tends to result in excessive capital investment. Tend not to progress sufficiently.
反応温度は目的とする原料油重質留分の分解率あるいは目的とする留分収率を 得るため 150〜480°Cの範囲が好ましく、 望ましくは 220〜400°C、 さ らに望ましくは 260〜360°Cの範囲に設定する。 反応温度が前記下限値に満 たない場合には、 反応が十分に進行しなくなる恐れがあり、 前記上限値を超える 場合には過度に分解が進行し、 液生成物留率の低下を招く傾向にある。 The reaction temperature is preferably in the range of 150 to 480 ° C, preferably 220 to 400 ° C, more preferably 260, in order to obtain the desired decomposition rate of the heavy feedstock oil fraction or the desired fraction yield. Set in the range of ~ 360 ° C. The reaction temperature is less than the lower limit. If not, the reaction may not proceed sufficiently. If the upper limit is exceeded, decomposition proceeds excessively and the liquid product fraction tends to decrease.
水素化処理の反応器の形式は、 固定床方式であってもよい。 すなわち、 水素は 原料油に対して向流または並流のいずれの形式をとることもでき、 また、 複数の 反応塔を有し向流、 並流を組み合わせた形式のものでもよい。 一般的な形式とし てはダウンフローであり、 気液双並流形式を採用することができる。 また、 反応 器は単独または複数を組み合わせてもよく、 一つの反応器内部を複数の触媒床に 区分した構造を採用しても良い。 本発明において、 反応器内で水素化処理された 留出油は気液分離工程、 精留工程等を経て所定の留分に分画される。 このとき、 反応に伴い生成する水分あるいは原料油に硫黄分が含まれてレ、る場合には硫化水 素が発生する可能性があるが、 複数の反応器の間や生成物回収工程に気液分離設 備やその他の副生ガス除去装置を設置しても良い。  The type of hydrotreating reactor may be a fixed bed system. In other words, hydrogen can take either a countercurrent or a cocurrent flow with respect to the raw material oil, or a combination of countercurrent and cocurrent flow having a plurality of reaction towers. A general format is downflow, and a gas-liquid twin-cocurrent format can be used. The reactors may be used singly or in combination, and a structure in which one reactor is divided into a plurality of catalyst beds may be adopted. In the present invention, the distillate hydrotreated in the reactor is fractionated into predetermined fractions through a gas-liquid separation process, a rectification process, and the like. At this time, if sulfur is contained in the water or feedstock produced during the reaction, hydrogen sulfide may be generated. However, there is a possibility that hydrogen sulfide is generated between the reactors and in the product recovery process. Liquid separation equipment and other by-product gas removal equipment may be installed.
一般的に水素ガスは加熱炉を通過前あるいは通過後の原料油に随伴して最初の 反応器の入口から導入するが、 これとは別に、 反応器内の温度を制御するととも に、 できるだけ反応器内全体に渡って水素圧力を維持する目的で触媒床の間ゃ複 数の反応器の間に導入してもよい。 このようにして導入される水素をクェンチ水 素と呼称する。 このとき、 原料油に随伴して導入する水素に対するクェンチ水素 との割合は望ましくは 1 0〜6 0容量0 /0、 より望ましくは 1 5〜5 0容量。 /0であ る。 クェンチ水素の割合が前記下限値より低い場合には後段反応部位での反応が 十分進行しない恐れがあり、 前記上限値を超える場合には反応器入口付近での反 応が十分進行しない恐れがある。 In general, hydrogen gas is introduced from the inlet of the first reactor before or after passing through the heating furnace, but separately from this, the temperature in the reactor is controlled and reaction is possible as much as possible. In order to maintain the hydrogen pressure throughout the reactor, it may be introduced between several reactors between the catalyst beds. The hydrogen thus introduced is referred to as quench hydrogen. In this case, the ratio of the quench hydrogen to hydrogen introduced accompany the feedstock is desirably 1 0-6 0 volume 0/0, more preferably from 1 5 to 5 0 volume. / 0 . If the ratio of quench hydrogen is lower than the lower limit, the reaction at the subsequent reaction site may not proceed sufficiently, and if it exceeds the upper limit, the reaction near the reactor inlet may not proceed sufficiently. .
水素化触媒の担体としては、 アルミニウム、 ケィ素、 ジルコニウム、 ホウ素、 チタン及ぴマグネシウムから選ばれる 2種以上の元素を含んで構成される多孔性 の無機酸化物が用いられる。一般的にはアルミナを含む多孔性無機酸化物であり、 その他の担体構成成分としてはシリカ、 チタニア、 ジルコユア、 ポリア、 マグネ シァなどが挙げられる。 望ましくはアルミナとその他構成成分から選ばれる少な くとも 1種類以上を含む複合酸化物である。 また、 このほかの成分として、 リン を含んでいてもよい。 アルミナ以外の成分の合計含有量は 1〜2 0重量%である ことが好ましく、 2〜1 5重量%であることがより望ましい。 アルミナ以外の成 分の合計含有量が 1重量%に満たない場合は、 十分な触媒表面積を得ることが出 来ず、 活性が低くなる恐れがあり、 また 2 0重量%を超える場合は、 担体の酸性 質が上昇し、 コーク生成による活性低下を招く恐れがある。 リンを担体構成成分 として含む場合には、 その含有量は、 酸化物換算で 1〜5重量%であることが望 ましく、 2〜3 . 5重量%がさらに望ましい。 As the support for the hydrogenation catalyst, a porous inorganic oxide comprising two or more elements selected from aluminum, silicon, zirconium, boron, titanium and magnesium is used. Generally, it is a porous inorganic oxide containing alumina, and other carrier constituents include silica, titania, zircoure, polya, and magnesia. Desirably, it is a composite oxide containing at least one kind selected from alumina and other constituent components. Moreover, phosphorus may be included as another component. The total content of components other than alumina is preferably 1 to 20% by weight, and more preferably 2 to 15% by weight. If the total content of components other than alumina is less than 1% by weight, sufficient catalyst surface area can be obtained. However, if the amount exceeds 20% by weight, the acidity of the carrier may increase, leading to a decrease in activity due to coke formation. When phosphorus is included as a carrier constituent, its content is preferably 1 to 5% by weight in terms of oxide, and more preferably 2 to 3.5% by weight.
アルミナ以外の担体構成成分である、シリカ、チタニア、ジルコユア、ポリア、 マグネシアの前駆体となる原料は特に限定されず、 一般的なケィ素、 チタン、 ジ ルコェゥム、 ボロン、 マグネシウムを含む溶液を用いることができる。 例えば、 ケィ素についてはケィ酸、 水ガラス、 シリカゾルなど、 チタンについては硫酸チ タン、 四塩化チタンや各種アルコキサイド塩など、 ジルコニウムについては硫酸 ジルコニウム、 各種アルコキサイド塩など、 ボロンについてはホウ酸など、 マグ ネシゥムについては硝酸マグネシウムなどを用いることができる。リンとしては、 リン酸あるいはリン酸のアル力リ金属塩などを用いることができる。  There are no particular limitations on the raw materials that are precursors of silica, titania, zircoua, polya, and magnesia, which are carrier constituents other than alumina, and use a solution containing general silicon, titanium, zirconium, boron, and magnesium. Can do. For example, for key substances, such as key acid, water glass, and silica sol, for titanium, titanium sulfate, titanium tetrachloride and various alkoxide salts, for zirconium, zirconium sulfate, various alkoxide salts, for boron, for boric acid, etc. For Nesium, magnesium nitrate or the like can be used. As phosphorus, phosphoric acid or phosphoric acid metal salt of phosphoric acid can be used.
これらのアルミナ以外の担体構成成分の原料は、 担体の焼成より前のいずれか の工程において添加する方法が望ましい。 例えば、 予めアルミニウム水溶液に添 加した後にこれらの構成成分を含む水酸化アルミニウムゲルとしてもよく、 調合 した水酸化アルミニウムゲルに添加してもよく、 あるいは市販のアルミナ中間体 やべ一マイトパウダーに水あるいは酸性水溶液を添加して混練する工程に添加し てもよいが、 水酸化アルミニウムゲルを調合する段階で共存させる方法がより望 ましい。 これらのアルミナ以外の担体構成成分の効果発現機構は解明できていな いが、 アルミニウムと複合的な酸化物状態を形成していると思われ、 このことが 担体表面積の増加や、 活性金属となんらかの相互作用を生じることにより、 活性 に影響を及ぼしていることが考えられる。  It is desirable that the raw materials for the carrier component other than alumina be added in any step prior to the firing of the carrier. For example, it may be added to an aqueous aluminum solution in advance and then an aluminum hydroxide gel containing these components, or may be added to a prepared aluminum hydroxide gel, or water may be added to a commercially available alumina intermediate or bermite powder. Alternatively, an acidic aqueous solution may be added to the kneading step, but a method of coexisting at the stage of preparing aluminum hydroxide gel is more desirable. Although the mechanism of the effect of these carrier constituents other than alumina has not been elucidated, it is thought that they form a complex oxide state with aluminum, which increases the surface area of the carrier, and some sort of active metal. It is considered that the activity is affected by the interaction.
水素化触媒の活性金属としては、 周期律表第 6 A族および第 8族金属から選ば れる少なくとも一種類の金属を含有し、 望ましくは第 6 A族および第 8族から選 択される二種類以上の金属を含有している。 例えば、 C o— M o、 N i— M o、 N i— C o—M o、 N i— Wなどが挙げられ、 水素化に際しては、 これらの金属 を硫化物の状態に転換して使用することが好ましい。  The active metal of the hydrogenation catalyst contains at least one metal selected from Group 6A and Group 8 metals of the periodic table, preferably two types selected from Groups 6A and 8 Contains the above metals. For example, Co-Mo, Ni-Mo, Nii-Co-Mo, Ni-W, etc. are used for hydrogenation by converting these metals to the sulfide state. It is preferable to do.
活性金属の含有量は、 例えば、 Wと M oの合計担持量は、 望ましくは酸化物換 算で触媒重量に対して 1 2〜3 5重量%、 より望ましくは 1 5〜 3 0重量%であ る。 Wと M oの合計担持量が 1 2重量%に満たない場合、 活性点数の減少により 活性が低下する可能性があり、 3 5重量%を超える場合には、 金属が効果的に分 散せず、 同様に活性の低下を招く可能性がある。 また、 〇 0と]^ 1の合計担持量 は、 望ましくは酸化物換算で触媒重量に対して 1 . 5〜1 0重量%、 より望まし くは 2〜8重量%である。 C oと N iの合計担持量が 1 . 5重量%未満の場合に は充分な助触媒効果が得られず活性が低下してしまう恐れがあり、 1 0重量%よ り多い場合には、 金属が効果的に分散せず、 同様に活性を招く可能性がある。 水素化触媒のいずれの触媒において、 活性金属を触媒に含有させる方法は特に 限定されず、 通常の脱硫触媒を製造する際に適用される公知の方法を用いること ができる。 通常は、 活性金属の塩を含む溶液を触媒担体に含浸する方法が好まし く採用される。 また平衡吸着法、 P o r e— f i 1 1 i n g法、 I n c i p i e n t - w e t n e s s法なども好ましく採用される。 例えば、 P o r e— f i 1 1 i n g法は、 担体の細孔容積を予め測定しておき、 これと同じ容積の金属塩溶 液を含浸する方法であるが、 含浸方法は特に限定されるものではなく、 金属担持 量や触媒担体の物性に応じて適当な方法で含浸することができる。 The active metal content is, for example, the total supported amount of W and Mo is preferably 12 to 35% by weight, more preferably 15 to 30% by weight based on the catalyst weight in terms of oxide conversion. is there. If the total loading of W and Mo is less than 12% by weight, The activity may decrease, and if it exceeds 35% by weight, the metal may not be effectively dispersed, and the activity may decrease as well. Further, the total supported amount of O 0 and] ^ 1 is preferably 1.5 to 10% by weight, more preferably 2 to 8% by weight based on the catalyst weight in terms of oxide. If the total supported amount of Co and Ni is less than 1.5% by weight, a sufficient cocatalyst effect may not be obtained and the activity may be reduced. If it is more than 10% by weight, The metal may not be effectively dispersed and may be similarly active. In any catalyst of the hydrogenation catalyst, the method of incorporating the active metal into the catalyst is not particularly limited, and a known method applied when producing a normal desulfurization catalyst can be used. Usually, a method in which a catalyst carrier is impregnated with a solution containing an active metal salt is preferably employed. In addition, an equilibrium adsorption method, a pore-fi 1 1 ing method, an incipient-wetness method, and the like are preferably employed. For example, the pore-fi 1 1 ing method is a method in which the pore volume of the support is measured in advance and impregnated with the same volume of metal salt solution, but the impregnation method is not particularly limited. However, it can be impregnated by an appropriate method depending on the amount of metal supported and the physical properties of the catalyst carrier.
上記のようにして、 動植物油脂および Zまたは動植物油脂由来成分に含硫黄炭 化水素化合物を混合した被処理油を、 所定条件下に水素化処理することにより環 境低負荷型軽油基材が製造される。 本発明の第 1の軽油組成物は、 〔A〕 前記で製造された環境低負荷型軽油基材 1 0〜9 0容量%と、 ( i ) 原油等を原油等を常圧蒸留装置で処理して得られる 常圧残渣油を続いて減圧蒸留装置で処理して得られる減圧軽油をさらに水素化分 解処理して得られる水素化分解軽油留分 (沸点範囲: 2◦ 0〜3 5 0 °C) 9 0〜 1 0容量。 /0とを混合することにより得られる軽油基材 A— 1および/または(ii) 原油等を常圧蒸留装置で処理して得られる軽油留分を更に水素化脱ろう処理して 得られる脱ろう軽油基材 9 0〜 1 0容量%とを混合することで得られる軽油基材 A— 2からなる軽油基材 A 9 5〜3 0容量%に、 〔B〕 原油等から精製された軽 油留分を水素化処理して得られる石油系水素化処理油 (軽油基材 B ) を 5〜7 0 容量%混合して所定の性能を満たした軽油基材 Aおよび Bからなる。 上記水素化分解軽油留分は、 原油等を常圧蒸留装置で処理して得られる常圧残 渣油を続いて減圧蒸留装置で処理して得られる減圧軽油等をさらに水素化分解処 理して得られる沸点範囲が 200〜350°Cの留分である。 As described above, an environmentally low-load diesel fuel base material is produced by hydrotreating the oil to be treated, which is a mixture of animal and vegetable oils and fats and Z or animal and vegetable oils and components, and containing sulfur-containing hydrocarbon compounds under specified conditions. Is done. The first light oil composition of the present invention comprises: [A] 10 to 90% by volume of the environmentally low load light oil base produced as described above, and (i) treatment of crude oil and the like with an atmospheric distillation apparatus. The hydrocracked gas oil fraction (boiling range: 2 ° 0 to 3 5 0) obtained by further hydrocracking the vacuum gas oil obtained by subsequently treating the atmospheric residue oil obtained by the subsequent distillation with a vacuum distillation apparatus ° C) 9 0 ~ 10 capacity. Gas oil base A-1 obtained by mixing / 0 and / or (ii) a dehydration obtained by further hydrodewaxing a light oil fraction obtained by treating crude oil or the like with an atmospheric distillation apparatus. A light oil base material A 9 consisting of light oil base material A-2 obtained by mixing 90 to 10% by volume of wax light oil base material into 9 to 30% by volume of [B] light refined from crude oil, etc. It consists of light oil bases A and B, which are mixed with 5 to 70% by volume of petroleum hydrotreated oil (light oil base B) obtained by hydrotreating an oil fraction. The hydrocracked gas oil fraction is obtained by further hydrocracking the reduced pressure gas oil obtained by processing the atmospheric residue oil obtained by processing crude oil, etc. with an atmospheric distillation device, followed by the reduced pressure distillation device. This is a fraction having a boiling range of 200 to 350 ° C.
水素化分解処理方法としては、 特に限定されるものではないが、 減圧軽油等の 重質な原料油を、 高温高圧水素条件下で、 分解と水素化の二元機能を持つ触媒上 に通し、 水素化分解と共に脱硫、 脱窒素等を行う水素化分解する方法が挙げられ る。 触媒の分解能は、 多孔性の固体酸担体に起因する傾向にある。 固体酸担体と しては、 シリカ一アルミナ、 シリカ一マグネシア、 シリカ一ジルコユア、 シリカ ーチタニア等のアモルファス系担体、 各種の改質ゃ変性が施されたゼォライト等 の結晶系担体が用いられる。 水素化能は、 N i、 C o、 Mo、 W、 P d、 P t等 の金属を 2〜 3種類組み合わせて担持されることにより発揮されるが、 中でも C o -Mo , N i—Mo、 N i— Wの組み合わせが好ましい。  The hydrocracking treatment method is not particularly limited, but a heavy feedstock such as vacuum gas oil is passed over a catalyst having a dual function of cracking and hydrogenation under high-temperature and high-pressure hydrogen conditions, Examples of the hydrocracking method include desulfurization and denitrogenation as well as hydrocracking. The resolution of the catalyst tends to be attributed to the porous solid acid support. As the solid acid carrier, there are used amorphous carriers such as silica-alumina, silica-magnesia, silica-zircoua, silica-titania, and crystalline carriers such as zeolite modified with various modifications. Hydrogenation ability is demonstrated by supporting two or three kinds of metals such as Ni, Co, Mo, W, Pd, Pt, etc., but in particular, Co-Mo, Ni-Mo N i—W are preferred.
水素化分解における水素圧力は、 通常、 5 MP a以上 20 MP a以下、 好まし くは 8MP a以上 1 5MP a以下である。 また、 反応温度は、 通常、 350°C以 上 430°C以下である。 液空間速度は、 通常、 0. 1/h以上 1. OZh以下、 好ましくは 0. 2/h以上 0. 4 Zh以下である。  The hydrogen pressure in hydrocracking is usually 5 MPa to 20 MPa, preferably 8 MPa to 15 MPa. The reaction temperature is usually 350 ° C or higher and 430 ° C or lower. The liquid space velocity is usually 0.1 / h or more and 1. OZh or less, preferably 0.2 / h or more and 0.4 Zh or less.
本発明における脱ろう軽油基材とは、 軽油基材からワックス分を除去したもの であり、 具体的には炭素数 20以上のノルマルパラフィン成分を 1 5容量%以下 としたものが好ましく、 より好ましくは 12容量%以下、 さらに好ましくは 10 容量%以下である。 炭素数 20以上のノルマルパラフィン成分が上記範囲を超え ると、 製品軽油の低温流動性が不十分となり、 曇り点や流動点が十分低下しない 場合がある。 また、 脱ろう軽油基材の曇り点としては一 20°C〜一 5°Cの範囲で あることが好ましい。  In the present invention, the dewaxed light oil base material is obtained by removing the wax from the light oil base material. Specifically, a normal paraffin component having 20 or more carbon atoms is preferably 15% by volume or less, more preferably. Is 12% by volume or less, more preferably 10% by volume or less. When the normal paraffin component having 20 or more carbon atoms exceeds the above range, the low temperature fluidity of the product gas oil becomes insufficient, and the cloud point and pour point may not be sufficiently lowered. The cloud point of the dewaxed light oil base is preferably in the range of 120 ° C to 15 ° C.
水素化脱ろう処理の方法としては特に限定されず、 例えばゼォライト系等の脱 ろう触媒を用い、 310°C〜 380°Cの範囲で 3〜 7MP aの圧力下、 1. 0〜 2. O h r一1の液空間速度 (LHSV) で行うことができる。 The method of hydrodewaxing treatment is not particularly limited. For example, a dewaxing catalyst such as zeolite is used, and the pressure is 3 to 7 MPa in the range of 310 ° C to 380 ° C. It can be performed at a liquid hourly space velocity (LHSV) of 1 hr.
軽油基材 A— 1における環境低負荷型軽油基材と水素化分解軽油留分の混合割 合は、 20〜 80容量%: 80〜 20容量%が好ましく、 40〜 60容量%: 6 0〜40容量%がより好ましい。  The mixing ratio of the low-energy diesel oil base and hydrocracked diesel oil fraction in light oil base A-1 is preferably 20 to 80% by volume: 80 to 20% by volume, and 40 to 60% by volume: 60 to 40% by volume is more preferred.
軽油基材 A— 2における環境低負荷型軽油基材と脱ろう軽油基材の混合割合は、 20〜 80容量%: 80〜 20容量0 /0が好ましく、 40〜 60容量%: 60〜 4 0容量%がより好ましい。 Light oil base material A—The mixing ratio of the environmentally low load light oil base material and the dewaxed light oil base material in A-2 is 20-80 volume%: preferably 80 to 20 volume 0/0, 40-60 volume%: 60-4 0% by volume is more preferable.
原油等から精製された軽油留分を有する石油系水素化処理油 (軽油基材 B) と しては、 原油の常圧蒸留装置から得られる直留軽油、 常圧蒸留装置から得られる 直留重質油や残查油を減圧蒸留装置で処理して得られる減圧軽油、 減圧重質軽油 あるいは脱硫重油を接触分解または水素化分解して得られる接触分解軽油または 水素化分解軽油等の石油系炭化水素 (軽油留分を有する石油系炭化水素) を水素 化処理して得られる水素化処理軽油若しくは水素化脱硫軽油等が挙げられる。 これらの石油系水素化処理油は、 所定の条件を満たす範囲で、 複数の軽油留分 基材及ぴ灯油留分基材を配合して構成することができる。  Petroleum hydrotreated oil (light oil base material B) having a gas oil fraction refined from crude oil, etc. is a straight-run gas oil obtained from a crude oil atmospheric distillation unit, or a straight distillation obtained from an atmospheric distillation device. Petroleum systems such as vacuum gas oil obtained by treating heavy oil and residual oil with a vacuum distillation unit, catalytic cracking gas oil obtained by catalytic cracking or hydrocracking of vacuum heavy gas oil or desulfurized heavy oil, or hydrocracked gas oil Examples include hydrotreated gas oil or hydrodesulfurized gas oil obtained by hydrotreating hydrocarbons (petroleum hydrocarbons having a gas oil fraction). These petroleum-based hydrotreated oils can be constituted by blending a plurality of light oil fraction base materials and kerosene fraction base materials within a range that satisfies a predetermined condition.
上述の原料油(軽油留分を有する石油系炭化水素)の水素化処理条件は、通常、 反応温度 1 70〜320°C、水素圧力 2〜1 0MP a、 LHSV0. :!〜 2 h— 水素/油比 1 00〜800NL/Lである。 好ましくは反応温度 1 75°C〜30 0°C、 水素圧力 2. 5〜 8MP a、 LH S V 0. 2〜1. 5 h 1、 水素/油比 1 50〜600NL/Lであり、 さらに好ましくは反応温度 1 80°C〜280°C、 水素圧力 3〜7MP a、 LHS VO. 3〜1. 2 h 1、 水素 Z油比 1 50〜 50 ONL/Lである。 反応温度は低温ほど水素化反応には有利であるが、 脱硫反応 には好ましくない。 水素圧力、 水素 Z油比は高いほど脱硫、 水素化反応とも促進 される力 経済的に最適点が存在する。 L H S Vは低いほど反応に有利であるが、 低すぎる場合には極めて大きな反応塔容積が必要となり過大な設備投資となるの で不利である。 The hydrotreating conditions of the above-mentioned feedstock (petroleum hydrocarbons having a gas oil fraction) are usually as follows: reaction temperature 170 to 320 ° C, hydrogen pressure 2 to 10 MPa, LHSV0.:! To 2 h-hydrogen / Oil ratio is 100-800NL / L. The reaction temperature is preferably 1 75 ° C to 300 ° C, hydrogen pressure 2.5 to 8 MPa, LH SV 0.2 to 1.5 h 1 , hydrogen / oil ratio 150 to 600 NL / L, more preferably The reaction temperature is 1-80 ° C to 280 ° C, the hydrogen pressure is 3 to 7 MPa, the LHS VO. 3 to 1.2 h 1 , and the hydrogen Z oil ratio 1 50 to 50 ONL / L. The lower the reaction temperature, the more advantageous for the hydrogenation reaction, but not for the desulfurization reaction. The higher the hydrogen pressure and hydrogen Z oil ratio, the more accelerated the desulfurization and hydrogenation reaction. The lower the LHSV, the better the reaction. However, if it is too low, a very large reaction column volume is required, which is disadvantageous because of excessive capital investment.
原料油を水素化処理する装置はいかなる構成でもよく、 反応塔は単独でもまた は複数を組み合わせてもよく、 複数の反応塔の間に水素を追加注入してもよく、 気液分離操作や硫化水素除去設備を有していてもよい。  The apparatus for hydrotreating the feedstock may be of any configuration, and the reaction towers may be used alone or in combination, and hydrogen may be additionally injected between the reaction towers. You may have hydrogen removal equipment.
水素化処理装置の反応形式は、 固定床方式が好ましく採用される。 水素は原料 油に対して、 向流または並流のいずれの形式をとることができ、 また、 複数の反 応塔を有し、 向流、 並流を組み合わせた形式のものでもよい。 一般的な形式とし てはダウンフローであり、 気液双並流形式が好ましい。 反応塔の中段には反応熱 の除去、 あるいは水素分圧を上げる目的で水素ガスをタエンチとして注入しても よい。 水素化処理に用いる触媒は水素化活性金属を多孔質担体に担持したものである。 多孔質担体としては無機酸化物が挙げられる。 具体的な無機酸化物としては、 ァ ルミナ、 チタニア、 ジルコユア、 ポリア、 シリカ、 あるいはゼォライトがあり、 本発明ではこのうちチタニア、 ジルコユア、 ポリア、 シリカ、 ゼォライ トのうち 少なくとも 1種類とアルミナによって構成されているものがよい。 その製造法は 特に限定されないが、 各元素に対応した各種ゾル、 塩化合物などの状態の原料を 用いて任意の調製法を採用することができる。 さらには一且シリカアルミナ、 シ リカジルコニァ、 アルミナチタニア、 シリカチタユア、 アルミナポリアなどの複 合水酸化物あるいは複合酸化物を調製した後に、 アルミナゲルやその他水酸化物 の状態あるいは適当な溶液の状態で調製工程の任意の工程で添加して調製しても よい。 アルミナと他の酸化物との比率は多孔質担体に対して任意の割合を取り得 る力、好ましくはアルミナが 9 0質量 °/0以下、さらに好ましくは 6 0質量%以下、 より好ましくは 4 0質量%以下である。 As the reaction mode of the hydrotreating apparatus, a fixed bed system is preferably adopted. Hydrogen can take either a countercurrent or cocurrent flow format with respect to the feedstock oil, or may have a plurality of reaction towers and a combination of countercurrent and cocurrent flow. The general format is downflow, and the gas-liquid twin-cocurrent format is preferred. Hydrogen gas may be injected into the middle stage of the reaction tower as a tent to remove reaction heat or increase the hydrogen partial pressure. The catalyst used for the hydrotreatment is a catalyst in which a hydrogenation active metal is supported on a porous carrier. An inorganic oxide is mentioned as a porous support | carrier. Specific inorganic oxides include alumina, titania, zircoa, polya, silica, or zeolite, and in the present invention, at least one of titania, zircoa, polya, silica, and zeolite is composed of alumina. What you have is good. The production method is not particularly limited, but any preparation method can be employed using raw materials in various sols, salt compounds and the like corresponding to each element. Furthermore, after preparing a composite hydroxide or composite oxide such as silica alumina, silica zirconia, alumina titania, silica titia, and alumina polya, it is prepared in the form of alumina gel or other hydroxides or in an appropriate solution. You may add and prepare in arbitrary processes of a process. The ratio of alumina to other oxides is a force capable of taking an arbitrary ratio with respect to the porous carrier, preferably 90 mass ° / 0 or less of alumina, more preferably 60 mass% or less, more preferably 40 mass%. It is below mass%.
ゼォライトは結晶性アルミノシリケートであり、 フォージャサイ ト、 ペンタシ ル、 モルデナィ トなどが挙げられ、 所定の水熱処理および/または酸処理によつ て超安定化したもの、 あるいはゼォライ ト中のアルミナ含有量を調整したものを 用いることができる。 好ましくはフォージャサイト、 モルデナイト、 特に好まし くは Y型、 ベータ型が用いられる。 Y型は超安定化したものが好ましく、 水熱処 理により超安定化したゼォライトは本来の 2 O A以下のミクロ細孔と呼ばれる細 孔構造に加え、 2 0〜 1 0 O Aの範囲に新たな細孔が形成される。 水熱処理条件 は公知の条件を用いることができる。  Zeolite is a crystalline aluminosilicate, such as faujasite, pentasil, mordenite, etc., which has been ultra-stabilized by prescribed hydrothermal treatment and / or acid treatment, or contains alumina in zeolite The amount can be adjusted. Preferably used are faujasite and mordenite, particularly preferably Y type and beta type. Y-type is preferably ultra-stabilized. Zeolite super-stabilized by hydrothermal treatment has a new pore structure in the range of 20 to 10 OA in addition to the original microporous structure of 2 OA or less. A pore is formed. Known conditions can be used for the hydrothermal treatment conditions.
水素化処理に用いる触媒の活性金属としては周期律表第 6 A族金属から選ばれ る少なくとも 1種類の金属である。 好ましくは M oおよび Wから選ばれる少なく とも 1種類である。 活性金属としては第 6 A族金属と第 8族金属を組み合わせた ものでよく、 具体的には M oまたは Wと、 C 0または N i の組み合わせであり、 例えば C o— M o、 C o— W、 N i— M o、 N i— W、 C o _ N i—M o、 C o 一 N i—Wなどの組み合わせを採用することができる。 金属源としては一般的な 無機塩、 錯塩化合物を用いることができ、 担持方法としては含浸法、 イオン交換 法など通常の水素化触媒で用いられる担持方法のいずれの方法も用いることがで きる。 また、 複数の金属を担持する場合には混合溶液を用いて同時に担持しても よく、 または単独溶液を用いて逐次担持してもよい。 金属溶液は水溶液でもよく 有機溶剤を用いてもよい。 The active metal of the catalyst used for the hydrotreatment is at least one metal selected from Group 6A metals of the periodic table. Preferably, it is at least one selected from Mo and W. The active metal may be a combination of a Group 6A metal and a Group 8 metal. Specifically, it is a combination of Mo or W and C0 or Ni. For example, Co—Mo, Co — W, N i—M o, N i—W, C o _N i—M o, C o One N i—W, etc. can be used. As the metal source, a general inorganic salt or a complex salt compound can be used. As the loading method, any of the loading methods used in usual hydrogenation catalysts such as impregnation method and ion exchange method can be used. If multiple metals are supported, they can be supported simultaneously using a mixed solution. Alternatively, it may be supported sequentially using a single solution. The metal solution may be an aqueous solution or an organic solvent.
金属担持は、 構成されている多孔質担体の調製全工程終了後に行ってもよく、 多孔質担体調製中間工程における適当な酸化物、 複合酸化物、 ゼォライトに予め 担持した後に更なるゲル調合工程あるレ、は加熱濃縮、 混練を行ってもょレ、。  Metal loading may be carried out after the completion of the entire process of preparing the porous support, and there is a further gel blending process after pre-loading on the appropriate oxide, composite oxide, zeolite in the intermediate process of porous support preparation. Let's heat concentrate and knead.
活性金属の担持量は特に限定されないが、 触媒質量に対し金属量合計で 0. 1 〜 10質量。 /0、 好ましくは 0. 1 5〜5質量%、 さらに好ましくは 0. 2〜3質 量%である。 The amount of active metal supported is not particularly limited, but the total amount of metal is 0.1 to 10 mass relative to the catalyst mass. / 0 , preferably 0.1 to 5 to 5% by mass, more preferably 0.2 to 3% by mass.
触媒は、 水素気流下において予備還元処理を施した後に用いるのが好ましい。 一般的には水素を含むガスを流通し、 200°C以上の熱を所定の手順に従って与 えることにより触媒上の活性金属が還元され、水素化活性を発現することになる。 上記のようにして、 原油等から精製された軽油留分を水素化処理して石油系水 素化処理油 (軽油基材 B) が製造される。  The catalyst is preferably used after a preliminary reduction treatment in a hydrogen stream. In general, when a gas containing hydrogen is circulated and heat of 200 ° C. or higher is given in accordance with a predetermined procedure, the active metal on the catalyst is reduced and hydrogenation activity is expressed. As described above, a petroleum oil hydrotreated oil (light oil base material B) is produced by hydrotreating a light oil fraction refined from crude oil or the like.
本発明の第 1の軽油組成物は、 前記軽油基材 Aと前記軽油基材 Bからなり、 そ の混合割合は、 軽油基材 A:軽油基材 Bが 95〜 30容量%: 5〜 70容量%で あり、 好ましくは 90〜 35容量0 /0: 10〜 65容量%であり、 より好ましくは 85〜40容量%: 1 5〜60容量%でぁる。 また本発明の第 2の軽油組成物は、 〔A, 〕 前述の植物油脂および/または動 植物油脂由来成分 10〜90容量%に、 前述の原油等から精製された軽油留分を 有する石油系炭化水素(石油系基材) 90〜10容量%とを混合した被処理油を、 アルミニウム、 ケィ素、 ジルコニウム、 ホウ素、 チタン及びマグネシウムから選 ばれる 2種以上の元素を含んで構成される多孔性無機酸化物並びに該多孔性無機 酸化物に担持された周期律表第 6 A族及び第 8族の元素から選ばれる 1種以上の 金属を含有する触媒とを、 水素圧力 2〜13MP a、 液空間速度 0. 1〜3. 0 h -1、 水素/油比 1 50〜1 500NL/L、 反応温度 1 50〜480°Cの条件 下で接触させることによって製造される留分 (環境低負荷型軽油基材) 10〜9 0容量%に、 ( ) 原油等を常圧蒸留装置で処理して得られる常圧残渣油を続 いて減圧蒸留装置で処理して得られる減圧軽油をさらに水素化分解処理して得ら れる水素化分解軽油留分 (沸点範囲: 200〜350°C) を 90〜10容量%混 合することで得られる軽油基材 A' — 1および または (ii' ) 原油等を常圧蒸 留装置で処理して得られる軽油留分を更に水素化脱ろう処理して得られる脱ろう 軽油基材を 90〜10容量%混合することで得られる軽油基材 A ' _ 2からなる 軽油基材 A' 95〜30容量%に、 〔Β' 〕 原油等から精製された灯油留分を水 素化処理して得られる石油系水素化処理油 (軽油基材 B' ) 5〜70容量%混合 し、 所定の性能を満たした軽油基材 A' および B' からなる。 The first light oil composition of the present invention comprises the light oil base A and the light oil base B, and the mixing ratio of the light oil base A: the light oil base B is 95 to 30% by volume: 5 to 70. a volume%, preferably 90 to 35 volume 0/0: a 10-65 volume%, more preferably 85 to 40 volume%: 1 5-60 volume% Dearu. In addition, the second light oil composition of the present invention comprises: [A,] a petroleum-based oil having 10 to 90% by volume of the aforementioned vegetable oil and / or animal and vegetable oil-derived component and a light oil fraction refined from the aforementioned crude oil or the like. Porous oil composed of two or more elements selected from aluminum, silicon, zirconium, boron, titanium, and magnesium. An inorganic oxide and a catalyst containing one or more metals selected from Group A and Group 8 elements of the periodic table supported on the porous inorganic oxide, hydrogen pressure 2 to 13 MPa, liquid Fraction produced by contacting under the conditions of space velocity 0.1 to 3.0 h- 1 , hydrogen / oil ratio 1 50 to 1 500 NL / L, reaction temperature 1 50 to 480 ° C (environmental low load Type light oil base) 10 ~ 90% by volume, () Normal obtained by processing crude oil etc. with atmospheric distillation equipment 90 to 10% by volume of hydrocracked gas oil fraction (boiling range: 200 to 350 ° C) obtained by further hydrocracking the vacuum gas oil obtained by treating the pressure residue oil with a vacuum distillation device Mixed Gas oil base material obtained by combining A'-1 and / or (ii ') Dewaxed gas oil obtained by further hydrodewaxing a gas oil fraction obtained by treating crude oil etc. with an atmospheric distillation unit Diesel oil base material A'_2 obtained by mixing 90 ~ 10% by volume of the base material. Diesel oil base material A '_ 2 to 95 ~ 30% by volume. [Β'] Kerosene fraction purified from crude oil etc. Petroleum hydrotreated oil (light oil base material B ′) obtained by raw material treatment is mixed with 5 to 70 vol% of light oil base materials A ′ and B ′ satisfying predetermined performance.
前述の植物油脂および/または動植物油脂由来成分 10〜90容量。 /0に、 前述 の原油等から精製された軽油留分を有する石油系炭化水素 (石油系基材) 90〜10 to 90 volumes of the aforementioned vegetable oil and / or animal and vegetable oil-derived component. / 0 , petroleum-based hydrocarbons (petroleum-based base materials) with light oil fractions refined from the aforementioned crude oil, etc. 90〜
10容量。 /0とを混合した被処理油を、 水素化処理して環境低負荷型軽油基材を製 造する際の水素化条件は、 本発明の第 1における動植物油脂および/または動植 物油脂由来成分に含硫黄炭化水素化合物を混合した被処理油を、 水素化処理する 際の条件と同様の条件が採用される。 10 capacity. The hydrogenation conditions for producing an environmentally light diesel base material by hydrotreating the oil to be treated mixed with / 0 are derived from the animal and plant oils and / or animal and plant oils and fats in the first aspect of the present invention. The same conditions as those used when hydrotreating the oil to be treated, in which sulfur-containing hydrocarbon compounds are mixed as components, are adopted.
植物油脂および/または動植物油脂由来成分と原油等から精製された軽油留分 を有する石油系炭化水素 (石油系基材) の混合割合は、 好ましくは 20〜 80容 量%: 80〜 20容量0 /0であり、 より好ましくは 40〜 60容量%: 60〜 40 容量%である。 The mixing ratio of the components derived from vegetable oils and / or animal and vegetable oils and oil-based hydrocarbons (petroleum base materials) having a light oil fraction refined from crude oil, etc. is preferably 20 to 80% by volume: 80 to 20% by volume 0 / 0 , more preferably 40 to 60% by volume: 60 to 40% by volume.
軽油基材 A' — 1における環境低負荷型軽油基材と水素化分解軽油留分の混合 割合は、 20〜 80容量%: 80〜 20容量%が好ましく、 40〜 60容量%: 60〜40容量%がより好ましい。  Light oil base material A '— The mixing ratio of the low environmental load type light oil base material and the hydrocracked light oil fraction is preferably 20 to 80% by volume: 80 to 20% by volume, and 40 to 60% by volume: 60 to 40 Volume% is more preferable.
軽油基材 A' — 2における環境低負荷型軽油基材と脱ろう軽油留分の混合割合 は、 20〜 80容量%: 80〜 20容量0 /0が好ましく、 40〜 60容量%: 60 〜40容量%がより好ましい。 Gas oil base material A '- 2 in the environment friendly base gas oil mixing ratio of dewaxing the gas oil fraction, 20 to 80 volume%: preferably 80 to 20 volume 0/0, 40-60 volume%: 60 ~ 40% by volume is more preferred.
原油等から精製された灯油留分を有する石油系水素化処理油 (軽油基材 B' ) としては、 原油の常圧蒸留により得られる直留灯油、 水素化分解軽油と共に製造 される水素化分解灯油等の石油系炭化水素 (灯油留分を有する石油系炭化水素) を水素化処理して得られる水素化処理灯油などが挙げられる。  Petroleum hydrotreated oil (gas oil base B ') with kerosene fraction refined from crude oil, etc., is hydrocracked produced with straight-run kerosene obtained by atmospheric distillation of crude oil, hydrocracked diesel oil Examples include hydrotreated kerosene obtained by hydrotreating petroleum hydrocarbons such as kerosene (petroleum hydrocarbons having a kerosene fraction).
上述の原料油(灯油留分を有する石油系炭化水素)の水素化処理条件は、通常、 反応温度 220〜350°C、水素圧力 l〜6MP a、LHSV0. 1〜: L O h一1、 水素/油比 10〜300NL/Lである。 好ましくは反応温度 250°C〜34 0°C、 水素圧力 2〜5MP a、 LHSV1〜: L O h 水素/油比 30〜200 N L/ Lであり、 さらに好ましくは反応温度 2 7 0 °C〜3 3 0 °C、 水素圧力 2〜 4 M P a、 L H S V 2〜: L O h - 1 水素/油比 5 0〜2 0 0 N L // Lである。 反 応温度は低温ほど水素化反応には有利であるが、 脱硫反応には好ましくない。 水 素圧力、 水素/油比は高いほど脱硫、 水素化反応とも促進されるが、 経済的に最 適点が存在する。 L H S Vは低いほど反応に有利であるが、 低すぎる場合には極 めて大きな反応塔容積が必要となり過大な設備投資となるので不利である。 Hydrotreating conditions described above feedstocks (petroleum hydrocarbon having a kerosene fraction) is generally a reaction temperature two hundred and twenty to three hundred fifty ° C, the hydrogen pressure l~6MP a, LHSV0 1~:. LO h one 1, hydrogen / Oil ratio is 10 to 300 NL / L. Preferably reaction temperature 250 ° C ~ 340 ° C, hydrogen pressure 2 ~ 5MPa, LHSV1 ~: LO h hydrogen / oil ratio 30 ~ 200 NL / L, more preferably reaction temperature 27O 0 C to 3 30 0 C, hydrogen pressure 2 to 4 MPa, LHSV 2 to: LO h- 1 hydrogen / oil ratio 5 0 to 2 0 0 NL // L. The lower the reaction temperature, the more advantageous for the hydrogenation reaction, but not for the desulfurization reaction. The higher the hydrogen pressure and the hydrogen / oil ratio, the more desulfurization and hydrogenation reactions are promoted, but there is an economically optimal point. The lower the LHSV is, the better the reaction is. However, if it is too low, a very large reaction column volume is required, which is disadvantageous because it requires excessive capital investment.
原料油を水素化処理する装置はいかなる構成でもよく、 反応塔は単独でもまた は複数を組み合わせてもよく、 複数の反応塔の間に水素を追加注入してもよく、 気液分離操作や硫化水素除去設備を有していてもよい。  The apparatus for hydrotreating the feedstock may be of any configuration, and the reaction towers may be used alone or in combination, and hydrogen may be additionally injected between the reaction towers. You may have hydrogen removal equipment.
水素化処理装置の反応形式は、 固定床方式が好ましく採用される。 水素は原料 油に対して、 向流または並流のいずれの形式をとることができ、 また、 複数の反 応塔を有し、 向流、 並流を組み合わせた形式のものでもよい。 一般的な形式とし てはダウンフローであり、 気液双並流形式が好ましい。 反応塔の中段には反応熱 の除去、 あるいは水素分圧を上げる目的で水素ガスをクェンチとして注入しても よい。  As the reaction mode of the hydrotreating apparatus, a fixed bed system is preferably adopted. Hydrogen can take either a countercurrent or cocurrent flow format with respect to the feedstock oil, or may have a plurality of reaction towers and a combination of countercurrent and cocurrent flow. The general format is downflow, and the gas-liquid twin-cocurrent format is preferred. Hydrogen gas may be injected into the middle column of the reaction tower as a quench for the purpose of removing reaction heat or increasing the hydrogen partial pressure.
水素化処理に用いる触媒は水素化活性金属を多孔質担体に担持したものである。 多孔質担体としては無機酸化物が用いられる。 具体的な無機酸化物としては、 ァ ルミナ、 チタニア、 ジルコユア、 ポリア、 シリカ、 あるいはゼォライ トがあり、 本発明ではこのうちチタエア、 ジルコユア、 ポリア、 シリカ、 ゼォライトのうち 少なくとも 1種類とアルミナによって構成されているものがよい。 その製造法は 特に限定されないが、 各元素に対応した各種ゾル、 塩化合物などの状態の原料を 用いて任意の調製法を採用することができる。 さらには一旦シリカアルミナ、 シ リカジルコニァ、 アルミナチタニア、 シリカチタニア、 アルミナポリアなどの複 合水酸化物あるいは複合酸化物を調製した後に、 アルミナゲルやその他水酸化物 の状態あるいは適当な溶液の状態で調製工程の任意の工程で添加して調製しても よい。 アルミナと他の酸化物との比率は多孔質担体に対して任意の割合を取りう る力 S、好ましくはアルミナが 9 0質量%以下、さらに好ましくは 6 0質量%以下、 より好ましくは 4 0質量%以下である。 これらの条件、 触媒は原料油の性状を満 たす限りにおいて特に限定されるものではない。  The catalyst used for the hydrotreatment is a catalyst in which a hydrogenation active metal is supported on a porous carrier. An inorganic oxide is used as the porous carrier. Specific inorganic oxides include alumina, titania, zircoia, polya, silica, or zeolite. In the present invention, at least one of titaair, zircoa, polya, silica, and zeolite is composed of alumina. What you have is good. The production method is not particularly limited, but any preparation method can be employed using raw materials in various sols, salt compounds and the like corresponding to each element. In addition, once a composite hydroxide or composite oxide such as silica alumina, silica zirconia, alumina titania, silica titania, or alumina polya is prepared, it is prepared in the form of alumina gel or other hydroxides or in an appropriate solution. You may add and prepare in arbitrary processes of a process. The ratio of alumina to other oxides is a force S that can take an arbitrary ratio with respect to the porous carrier, preferably 90% by mass or less, more preferably 60% by mass or less, more preferably 40% by mass of alumina. It is below mass%. These conditions and the catalyst are not particularly limited as long as the properties of the feedstock are satisfied.
ゼォライ トは結晶性アルミノシリケートであり、 フォージャサイト、 ペンタシ ル、 モルデナイトなどが挙げられ、 所定の水熱処理および または酸処理によつ て超安定化したもの、 あるいはゼォライ ト中のアルミナ含有量を調整したものを 用いることができる。 好ましくはフォージャサイト、 モルデナイト、 特に好まし くは Y型、 ベータ型が用いられる。 Y型は超安定化したものが好ましく、 水熱処 理により超安定化したゼォライトは本来の 2 O A以下のミクロ細孔と呼ばれる細 孔構造に加え、 2 0〜1 0 O Aの範囲に新たな細孔が形成される。 水熱処理条件 は公知の条件を用いることができる。 Zeolite is a crystalline aluminosilicate, faujasite, pentaci And those that have been super-stabilized by a predetermined hydrothermal treatment and / or acid treatment, or those in which the alumina content in the zeolite is adjusted can be used. Preferably used are faujasite and mordenite, particularly preferably Y type and beta type. Y-type is preferably ultra-stabilized. Zeolite super-stabilized by hydrothermal treatment has a new structure in the range of 20 to 10 OA in addition to the original microporous structure called micropores below 2 OA. A pore is formed. Known conditions can be used for the hydrothermal treatment conditions.
水素化処理に用いる触媒の活性金属としては周期律表第 6 A族金属から選ばれ る少なくとも 1種類の金属である。 好ましくは M oおよび Wから選ばれる少なく とも 1種類である。 活性金属としては第 6 A族金属と第 8族金属を組み合わせた ものでよく、 具体的には M oまたは Wと、 C oまたは N iの組み合わせであり、 例えば C o— M o、 C o— W、 N i— M o、 N i— W、 C o— N i— M o、 C o 一 N i—Wなどの組み合わせを採用することができる。 金属源としては一般的な 無機塩、 錯塩化合物を用いることができ、 担持方法としては含浸法、 イオン交換 法など通常の水素化触媒で用いられる担持方法のいずれの方法も用いることがで きる。 また、 複数の金属を担持する場合には混合溶液を用いて同時に担持しても よく、 または単独溶液を用いて逐次担持してもよい。 金属溶液は水溶液でもよく 有機溶剤を用いてもよい。  The active metal of the catalyst used for the hydrotreatment is at least one metal selected from Group 6A metals of the periodic table. Preferably, it is at least one selected from Mo and W. The active metal may be a combination of a Group 6A metal and a Group 8 metal, specifically a combination of Mo or W and Co or Ni, for example, Co—Mo, Co — W, N i—M o, N i—W, C o—N i—M o, C o One N i—W, etc. can be used. As the metal source, a general inorganic salt or a complex salt compound can be used. As the loading method, any of the loading methods used in usual hydrogenation catalysts such as impregnation method and ion exchange method can be used. Further, when a plurality of metals are supported, they may be supported simultaneously using a mixed solution, or may be sequentially supported using a single solution. The metal solution may be an aqueous solution or an organic solvent.
金属担持は、 構成されている多孔質担体の調製全工程終了後に行ってもよく、 多孔質担体調製中間工程における適当な酸化物、 複合酸化物、 ゼォライ トに予め 担持した後に更なるゲル調合工程あるいは加熱濃縮、 混練を行ってもよい。  Metal loading may be performed after the completion of the entire process for preparing the porous support, or after further supporting on the appropriate oxide, composite oxide or zeolite in the intermediate process for preparing the porous support. Alternatively, heat concentration and kneading may be performed.
活性金属の担持量は特に限定されないが、 触媒質量に対し金属量合計で 0 . 1 〜 1 0質量%、 好ましくは 0 . 1 5〜5質量。 /0、 さらに好ましくは 0 . 2〜3質 量%である。 The amount of active metal supported is not particularly limited, but is 0.1 to 10% by mass, preferably 0.15 to 5% by mass in terms of the total amount of metal with respect to the catalyst mass. / 0 , more preferably 0.2 to 3% by mass.
触媒は、 水素気流下において予備還元処理を施した後に用いるのが好ましい。 一般的には水素を含むガスを流通し、 2 0 0 °C以上の熱を所定の手順に従って与 えることにより触媒上の活性金属が還元され、水素化活性を発現することになる。 上記のようにして、 原油等から精製された灯油留分を水素化処理して石油系水 素化処理油 (軽油基材 B ' ) が製造される。 本発明の第 2の軽油組成物は、前記軽油基材 A ' と前記軽油基材 B 'からなり、 その混合割合は、 軽油基材 A' :軽油基材 B' が 95〜30容量%: 5〜70容 量0 /0であり、 好ましくは 90〜 35容量%: 10〜 65容量0 /0であり、 より好ま しくは 85〜40容量%: 1 5〜60容量%である。 本発明の軽油組成物は、 前述の基材から構成され、 90%留出温度が 360°C 以下、 硫黄分が 10質量 p pni以下、 酸素分 1質量。/。以下、 脂肪酸アルキルエス テル分 3. 5質量0 /0以下、全酸価 0. 1 3mgK〇HZg以下、メタノール分 0. 01質量%以下、 グリセライド分 0. 01質量。 /。以下、 目詰まり点一 5 °C以下で ある軽油組成物である。 The catalyst is preferably used after a preliminary reduction treatment in a hydrogen stream. In general, when a gas containing hydrogen is circulated and heat of 200 ° C. or higher is given in accordance with a predetermined procedure, the active metal on the catalyst is reduced and hydrogenation activity is expressed. As described above, a kerosene fraction refined from crude oil or the like is hydrotreated to produce petroleum hydrotreated oil (light oil base material B ′). The second light oil composition of the present invention comprises the light oil base material A ′ and the light oil base material B ′, and the mixing ratio of the light oil base material A ′: the light oil base material B ′ is 95 to 30% by volume: 5-70 a capacity 0/0, preferably from 90 to 35 volume percent is: 1 5-60 volume%: a 10 to 65 volume 0/0, and more preferable properly is 85-40% by volume. The light oil composition of the present invention comprises the above-mentioned base material, has a 90% distillation temperature of 360 ° C. or less, a sulfur content of 10 mass p pni or less, and an oxygen content of 1 mass. /. Hereinafter, a fatty acid alkyl es ether fraction 3.5 wt 0/0 or less, a total acid number 0.1 3MgK_〇_HZg hereinafter methanol content 0.01 wt% or less, glyceride fraction 0.01 mass. /. The following is a light oil composition having a clogging point of 1 ° C. or less.
本発明の軽油組成物の目詰まり点 (CFPP) は、 J I S 2号軽油規格である — 5 °C以下を満たすことが必要であり、 さらに、 ディーゼル車のプレフィルタ閉 塞防止の点から、 一 6°C以下であることが好ましく、 一 7°C以下であることがよ り好ましい。 ここで目詰まり点とは、 J I S K 2288 「軽油一目詰まり点 試験方法」 により測定される目詰まり点を指す。  The clogging point (CFPP) of the light oil composition of the present invention must satisfy the JIS No. 2 light oil standard — 5 ° C or less, and from the standpoint of preventing pre-filter clogging of diesel vehicles. The temperature is preferably 6 ° C or lower, more preferably 17 ° C or lower. Here, the clogging point refers to the clogging point measured by JI S K 2288 “Test method for light oil clogging point”.
また、 本発明の軽油組成物の流動点は、 J I S 2号軽油規格である一 7. 5°C 以下を満たす必要がある。 さらに、 低温始動性ないしは低温運転性の観点、 並び に電子制御式燃料噴射ポンプにおける噴射性能維持の観点から、 一 10°C以下で あることが好ましい。 ここで流動点とは、 J I S K 2269 「原油及ぴ石油 製品の流動点並びに石油製品曇り点試験方法」 により測定される流動点を意味す る。  In addition, the pour point of the gas oil composition of the present invention needs to satisfy 17.5 ° C or less which is the J I S 2 gas oil standard. Further, from the viewpoint of low temperature startability or low temperature drivability, and also from the viewpoint of maintaining the injection performance of the electronically controlled fuel injection pump, it is preferably 110 ° C or lower. Here, the pour point means the pour point measured according to JISK 2269 “Pour point of crude oil and petroleum products and cloud point test method of petroleum products”.
本発明の軽油組成物の硫黄分は、 エンジンから排出される有害排気成分低減と 排ガス後処理装置の性能向上の点から 10質量 p pm以下であることが必要であ り、 好ましくは 5質量 p pm以下、 より好ましくは 3質量 p pm以下、 さらに好 ましくは 1質量 p pm以下である。なお、ここでいう硫黄分とは、 J I S K 2 541 「硫黄分試験方法」 により測定される軽油組成物全量基準の硫黄分の質量 含有量を意味する。  The sulfur content of the gas oil composition of the present invention is required to be 10 mass ppm or less, preferably 5 mass p from the viewpoint of reducing harmful exhaust components discharged from the engine and improving the performance of the exhaust gas aftertreatment device. pm or less, more preferably 3 mass p pm or less, and even more preferably 1 mass p pm or less. In addition, the sulfur content here means the mass content of the sulfur content based on the total amount of the gas oil composition measured by JIS K 2541 “Sulfur content test method”.
本発明の軽油組成物の酸素分は、 酸化安定性向上の観点から 1質量%以下であ ることが必要であり、 好ましくは 0. 8質量%以下、 より好ましくは 0. 6質量 %以下、 さらに好ましくは 0. 4質量%以下、 最も好ましくは 0. 2質量%以下 である。 なお、 酸素分は一般的な元素分析装置で測定することができ、 例えば、 試料を白金炭素上で c oに転換し、 あるいはさらに c o 2に転換した後に熱伝導 度検出器を用いて測定することもできる。 The oxygen content of the light oil composition of the present invention needs to be 1% by mass or less from the viewpoint of improving oxidation stability, preferably 0.8% by mass or less, more preferably 0.6% by mass or less, More preferably 0.4 mass% or less, most preferably 0.2 mass% or less It is. The oxygen content can be measured with a general elemental analyzer. For example, the sample is converted to co on platinum carbon, or further converted to co 2 and then measured using a thermal conductivity detector. You can also.
本発明の軽油組成物の引火点は、 4 5 °C以上であることが好ましい。 引火点が 4 5 °Cに満たない場合には、 安全上の理由により軽油組成物として取り扱うこと ができない。 同様の理由により、 引火点は 5 4 °C以上であることが好ましく、 5 8 °C以上であることがより好ましレ、。なお、本発明でいう引火点は J I S K 2 2 6 5 「原油及び石油製品引火点試験方法」 で測定される値を示す。  The flash point of the light oil composition of the present invention is preferably 45 ° C or higher. If the flash point is less than 45 ° C, it cannot be handled as a light oil composition for safety reasons. For the same reason, the flash point is preferably 54 ° C or higher, more preferably 58 ° C or higher. The flash point in the present invention is a value measured by J I S K 2 2 6 5 “Crude oil and petroleum product flash point test method”.
本発明の軽油組成物のセタン指数は、 4 5以上であることが好ましい。 セタン 指数が 4 5に満たない場合には、 排出ガス中の P M、 アルデヒ ド類、 あるいはさ らに N O Xの濃度が高くなる傾向にある。 また、 同様の理由により、 セタン指数 は 4 8以上であることが好ましく、 5 1以上であることが最も好ましい。 なお、 本発明でいうセタン指数とは、 J I S K 2 2 8 0 「石油製品一燃料油ーォク タン価及ぴセタン価試験方法並びにセタン指数算出方法」 の 「8 . 4変数方程式 を用いたセタン指数の算出方法」 によって算出される価を意味する。 ここで、 上 記 J I S規格におけるセタン指数は、 一般的にはセタン価向上剤を添加していな い軽油に対して適用されるが、 本発明ではセタン価向上剤を添加した軽油組成物 についても上記 「8 . 4変数方程式を用いたセタン指数の算出方法」 を適用し、 当該算出方法により算出される値をセタン指数として表す。  The cetane index of the light oil composition of the present invention is preferably 45 or more. When the cetane index is less than 45, the concentration of PM, aldehydes, or N O X in the exhaust gas tends to increase. For the same reason, the cetane index is preferably 48 or more, and most preferably 51 or more. The cetane index referred to in the present invention refers to the cetane index using the 8.4 variable equation of JISK 2280 “Petroleum product-fuel oil-octane number and cetane number test method and cetane index calculation method”. It means the value calculated by “Calculation method”. Here, the cetane index in the above JIS standard is generally applied to light oil to which no cetane number improver is added. However, in the present invention, the cetane index is also applied to a light oil composition to which a cetane number improver is added. Applying the above “8.4 Calculation method of cetane index using variable equation”, the value calculated by this calculation method is expressed as cetane index.
本発明の軽油組成物におけるセタン価は、 好ましくは 5 2以上であり、 より好 ましくは 5 4以上であり、 さらに好ましくは 5 5以上である。 セタン価が 5 2に 満たない場合には、 排出ガス中の N O x、 P M及ぴアルデヒ ド類の濃度が高くな りやすい。 また、 排ガス中の黒煙低減の観点から、 セタン価は 9 0以下であるこ とが好ましく、 8 8以下であることがより好ましく、 8 5以下であることがさら に好ましい。 また本発明の軽油組成物においては、 必要に応じてセタン価向上剤 を適量配合し、得られる軽油組成物のセタン価を向上させることができる。なお、 ここでいぅセタン価とは、 J I S K 2 2 8 0 「石油製品一燃料油一オクタン 価及びセタン価試験方法並びにセタン指数算出方法」 の 「7 . セタン価試験方法」 に準拠して測定されるセタン価を意味する。  The cetane number in the light oil composition of the present invention is preferably 52 or more, more preferably 54 or more, and further preferably 55 or more. If the cetane number is less than 52, the concentration of NOx, PM and aldehydes in the exhaust gas tends to be high. Further, from the viewpoint of reducing black smoke in the exhaust gas, the cetane number is preferably 90 or less, more preferably 88 or less, and even more preferably 85 or less. In the light oil composition of the present invention, an appropriate amount of a cetane number improver can be blended as necessary to improve the cetane number of the obtained light oil composition. The cetane number here is measured in accordance with “7. Cetane number test method” in JISK 2280 “Petroleum products / Fuel oil / octane number / cetane number test method and cetane index calculation method”. Means cetane number.
本発明の軽油組成物の 1 5 °Cにおける密度は、 発熱量確保の点から、 7 5 0 k gZm3以上であることが好ましく、 760 k gZm3以上がより好ましく、 7 7 0 k g/m3以上がさらに好ましい。 また、 当該密度は、 NOx、 PMの排出量 を低減する点から、 8 50 k gノ m3以下であることが好ましく、 845 k gZ m3以下であることがより好ましく、 840 k g/m3以下がさらに好ましい。 な お、 ここでいう密度とは、 J I S K 2249 「原油及び石油製品の密度試験 方法並びに密度 ·質量 ·容量換算表」 により測定される密度を意味する。 The density of the light oil composition of the present invention at 15 ° C is 7500 k from the viewpoint of securing the calorific value. is preferably GZm 3 or more, more preferably 760 k gZm 3 or more, 7 7 0 kg / m 3 or more is more preferable. Further, the density, NOx, from the viewpoint of reducing the emissions of PM, 8 50 preferably kg Roh m 3 or less, more preferably 845 k gZ m 3 or less, 840 kg / m 3 or less Is more preferable. The density here means the density measured according to JISK 2249 “Density test method and density / mass / capacity conversion table for crude oil and petroleum products”.
本発明の軽油組成物は、 HFRR摩耗痕径 (WS 1. 4) が好ましくは 460 β m以下、 より好ましくは 430 μ m以下、 さらに好ましくは 41 0 μ m以下と なる潤滑性能を有することが望ましい。 HFRR摩耗痕径 (WS 1. 4) が 46 0;/mを超える場合は、 特に分配型噴射ポンプを搭載したディーゼルエンジンに おいて、 運転中のポンプの駆動トルク增、 ポンプ各部の摩耗增を引き起こし、 排 ガス性能、微小粒子性能の悪化のみならずエンジン自体が破壊される恐れがある。 また、 高圧噴射が可能な電子制御式燃料噴射ポンプにおいても、 摺動面等の摩耗 が懸念される。  The light oil composition of the present invention has a lubricating performance such that the HFRR wear scar diameter (WS 1.4) is preferably 460 βm or less, more preferably 430 μm or less, and further preferably 410 μm or less. desirable. When the HFRR wear scar diameter (WS 1.4) exceeds 46 0; / m, especially in a diesel engine equipped with a distributed injection pump, the driving torque of the pump during operation will increase and the wear of each part of the pump will increase. Cause deterioration of exhaust gas performance and fine particle performance as well as the engine itself may be destroyed. There is also concern about wear on the sliding surface of electronically controlled fuel injection pumps capable of high-pressure injection.
なお、 本発明でいう HFRR摩耗痕径 (WS 1. 4) とは、 社団法人石油学会 から発行されている石油学会規格 J P I— 5 S— 50— 98 「軽油一潤滑性試験 方法」 により測定される値を意味する。  The HFRR wear scar diameter (WS 1.4) referred to in the present invention is measured by the Petroleum Institute Standard JPI-5 S-50-98 “Light Oil-Lubricity Test Method” published by the Japan Petroleum Institute. Value.
本発明の軽油組成物における芳香族分には特に制限はないが、 環境負荷低減効 果を高め、 NO X及び PM低減の観点から、 20容量%以下であることが好まし く、 より好ましくは 1 9容量%以下、 さらに好ましくは 1 8容量%以下である。 なお、 本発明でいう芳香族分とは、 社団法人石油学会により発行されている石油 学会法 J P I— 5 S— 49— 97 「炭化水素タイプ試験方法一高速液体クロマト グラフ法」 に準拠され測定された芳香族分の容量百分率 (容量。 /0) を意味する。 本発明の軽油組成物の水分は、 燃料タンク等への部材への悪影響、 及ぴエステ ル化合物の加水分解抑制の観点から、 300容量 p pm以下であることが好まし く、 250容量 p pm以下であることがより好ましく、 200容量 1!1以下で あることがさらに好ましい。 なお、 ここでいう水分とは、 J I S K 227 5 「水分試験方法 (原油及び石油製品) j で規定される水分である。 The aromatic content in the light oil composition of the present invention is not particularly limited, but it is preferably 20% by volume or less, more preferably from the viewpoint of enhancing the environmental impact reduction effect and reducing NOx and PM. 19% by volume or less, more preferably 18% by volume or less. The aromatic content in the present invention is measured in accordance with the Petroleum Institute Method JPI-5 S-49-97 “Hydrocarbon Type Test Method—High Performance Liquid Chromatograph Method” published by the Japan Petroleum Institute. It means the volume percentage of the aromatic content (capacity. / 0 ). The water content of the light oil composition of the present invention is preferably not more than 300 volumes p pm from the viewpoint of adverse effects on the components to the fuel tank and the like, and suppression of hydrolysis of ester compounds, and is preferably 250 volumes p pm More preferably, it is more preferably 200 capacity or less. The moisture here is the moisture specified in JISK 2275 5 “Moisture test method (crude oil and petroleum products) j”.
本発明の軽油組成物における蒸留性状としては、 90容量%留出温度が 36 0°C以下であることが必要であり、 好ましくは 340°C以下、 より好ましくは 3 30°C以下、 さらに好ましくは 320°C以下である。 90容量%留出温度が 36 0°Cを超えると、 PMや微小粒子の排出量が増加する傾向にある。 また、 90容 量%留出温度は、 好ましくは 280 °C以上、 より好ましくは 285 °C以上、 さら に好ましくは 290°C以上、 さらにより好ましくは 295°C以上である。 90容 量%留出温度が 280°Cに満たないと、 燃費向上効果が不十分となり、 エンジン 出力が低下する傾向にある。 なお、 ここでいう 90容量%留出温度とは、 J I S K 2254 「石油製品一蒸留試験方法一常圧法」 に準拠して測定される値を 意味する。 The distillation property in the light oil composition of the present invention requires that the 90% by volume distillation temperature be 360 ° C or less, preferably 340 ° C or less, more preferably 3 30 ° C or lower, more preferably 320 ° C or lower. When the 90 vol% distillation temperature exceeds 360 ° C, the emission of PM and fine particles tends to increase. The 90 volume% distillation temperature is preferably 280 ° C or higher, more preferably 285 ° C or higher, more preferably 290 ° C or higher, and even more preferably 295 ° C or higher. If the 90% volume distillation temperature is less than 280 ° C, the fuel efficiency improvement effect will be insufficient and the engine output will tend to decrease. The 90% by volume distillation temperature here means a value measured in accordance with JISK 2254 "Petroleum product one distillation test method one atmospheric pressure method".
本発明の軽油組成物の 30°Cにおける動粘度については特に制限はないが、 2. 5mm2/ s以上であることが好ましく、 2. 7 mm 2/ s以上であることがより 好ましく、 2. 9mm2/s以上であることがさらに好ましい。 当該動粘度が 2. 5 mm2/" sに満たない場合は、 燃料噴射ポンプ側の燃料噴射時期制御が困難と なる傾向にあり、 またエンジンに搭載された燃料噴射ポンプの各部における潤滑 性が損なわれるおそれがある。 また、 本発明の軽油組成物の 30°Cにおける動粘 度は 5mm2// s以下であることが好ましく、 4. 7 mm 2ノ s以下であることが より好ましく、 4. 5 mm2/ s以下であることがさらに好ましい。 当該動粘度 が 5 mm2/ sを超えると、 燃料噴射システム内部の抵抗が増加して噴射系が不 安定化し、 排出ガス中の NO x、 PMの濃度が高くなつてしまう。 なお、 ここで いう動粘度とは、 J I S K 2283 「原油及び石油製品一動粘度試験方法及 び粘度指数算出方法」 により測定される動粘度を意味する。 There is no particular restriction on the kinematic viscosity at 30 ° C of the gas oil composition of the present invention, 2. is preferably 5 mm 2 / s or more, 2. more preferably 7 mm 2 / s or more, 2 More preferably, it is 9 mm 2 / s or more. If the kinematic viscosity is less than 2.5 mm 2 / "s, it tends to be difficult to control the fuel injection timing on the fuel injection pump side, and the lubricity of each part of the fuel injection pump mounted on the engine is poor. Further, the kinematic viscosity at 30 ° C of the light oil composition of the present invention is preferably 5 mm 2 // s or less, more preferably 4.7 mm 2 ks or less, 4. More preferably 5 mm 2 / s or less If the kinematic viscosity exceeds 5 mm 2 / s, the internal resistance of the fuel injection system increases, the injection system becomes unstable, and NO in the exhaust gas The concentration of x and PM will become high The kinematic viscosity here means the kinematic viscosity measured by JISK 2283 “Crude oil and petroleum products kinematic viscosity test method and viscosity index calculation method”.
本発明の軽油組成物における 10%残油の残留炭素分については特に制限はな いが、 微小粒子や ΡΜ低減の観点、 並びにエンジンに搭載される排ガス後処理装 置の性能維持の観点から、 0. 1質量%以下であることが好ましく、 0. 08質 量%以下であることがより好ましく、 0. 06質量。 /0以下であることがさらに好 ましい。 なお、 ここでいう 10%残油の残留炭素分とは、 J I S K 2270 「原油及び石油製品一残留炭素分試験方法」 により測定される 10%残油の残留 炭素分を意味する。 The carbon content of 10% residual oil in the light oil composition of the present invention is not particularly limited. From the viewpoint of reducing fine particles and soot, and maintaining the performance of the exhaust gas aftertreatment device mounted on the engine, 0.1% by mass or less is preferable, 0.08% by mass or less is more preferable, and 0.06% by mass. It is more preferable that the value is 0 or less. The residual carbon content of 10% residual oil here refers to the residual carbon content of 10% residual oil as measured by JISK 2270 “Testing method for residual carbon content of crude oil and petroleum products”.
本発明の軽油組成物においては、 エンジン部材への悪影響の観点から、 全酸価 は 0. 13mgK〇H/g以下であることが必要である。 全酸価は混合物内の遊 離脂肪酸量を示しているため、 この値が大きいと酸性化合物による部材への悪影 響が懸念される。 そのため、 全酸価は 0. 1 Omg KOHZg以下であることが 好ましく、 0. 08mgKOH/g以下であることがより好ましく、 0. 05m g KOHZg以下であることがさらに好ましい。 なお、 ここでいう全酸価とは、 J I S K 2501 「石油製品及び潤滑油一中和価試験方法」 により測定され る全酸価を意味する。 In the light oil composition of the present invention, it is necessary that the total acid value is 0.13 mgK0H / g or less from the viewpoint of adverse effects on engine members. The total acid value indicates the amount of free fatty acids in the mixture. There is concern about the sound. Therefore, the total acid value is preferably 0.1 Omg KOHZg or less, more preferably 0.08 mgKOH / g or less, and further preferably 0.05 mg KOHZg or less. The total acid value here means the total acid value measured by JISK 2501 “Testing method for neutralization of petroleum products and lubricants”.
本発明の軽油組成物においては、 ェンジン燃焼等における燃え切り性の悪化の 観点から脂肪酸アルキルエステル分は 3.5質量%以下であることが必要である。 好ましくは 2. 0質量%以下、 より好ましくは 1. 0質量%以下、 さらに好まし くは 0. 5質量%以下である。 なお、 ここでいう脂肪酸アルキルエステル分とは EN 14103に準拠して測定される脂肪酸アルキルエステル分を意味する。 本発明の軽油組成物においては、 燃料噴射系への悪影響の観点から、 メタノー ル分は 0. 01質量%以下であることが必要である。 好ましくは 0. 008質量 %以下、 より好ましくは 0. 006質量%以下、 さらに好ましくは 0. 005質 量%以下である。 なお、 ここでいうメタノール分とは J I S K 2536およ び EN 141 10に準拠して測定されるメタノール分を意味する。  In the light oil composition of the present invention, the fatty acid alkyl ester content is required to be 3.5% by mass or less from the viewpoint of deterioration of burn-out property in the engine combustion and the like. Preferably it is 2.0 mass% or less, More preferably, it is 1.0 mass% or less, More preferably, it is 0.5 mass% or less. Here, the fatty acid alkyl ester content means the fatty acid alkyl ester content measured according to EN 14103. In the light oil composition of the present invention, the methanol content must be 0.01% by mass or less from the viewpoint of adverse effects on the fuel injection system. Preferably it is 0.008 mass% or less, More preferably, it is 0.006 mass% or less, More preferably, it is 0.005 mass% or less. The methanol content here means the methanol content measured according to JIS K 2536 and EN 14110.
本発明の軽油組成物においては、 燃料噴射系への悪影響の観点から、 ダリセラ イド分は 0. 01質量%以下であることが必要である。 好ましくは 0. 008質 量%以下、 より好ましくは 0. 006質量%以下、 さらに好ましくは 0. 005 質量%以下である。 なお、 ここでいぅグリセライド分とは EN 14105に準 拠して測定されるグリセライド分を意味する。  In the light oil composition of the present invention, from the viewpoint of adverse effects on the fuel injection system, the amount of dalyceride needs to be 0.01% by mass or less. Preferably it is 0.008 mass% or less, More preferably, it is 0.006 mass% or less, More preferably, it is 0.005 mass% or less. Here, glyceride content means glyceride content measured according to EN 14105.
本発明の軽油組成物においては、 必要に応じてセタン価向上剤を適量配合し、 得られる軽油組成物のセタン価を向上させることができる。  In the light oil composition of the present invention, an appropriate amount of a cetane number improver can be blended as necessary to improve the cetane number of the resulting light oil composition.
セタン価向上剤としては、 軽油のセタン価向上剤として知られる各種の化合物 を任意に使用することができ、 例えば、 硝酸エステルや有機過酸化物等が挙げら れる。 これらのセタン価向上剤は、 1種を単独で用いてもよく、 2種以上を組み 合わせて用いても良い。  As the cetane number improver, various compounds known as light oil cetane number improvers can be arbitrarily used, and examples thereof include nitrates and organic peroxides. One of these cetane number improvers may be used alone, or two or more thereof may be used in combination.
本発明においては、 上述のセタン価向上剤の中でも硝酸エステルを用いること が好ましい。 かかる硝酸エステルには、 2—クロロェチルナイトレート、 2—ェ トキシェチルナイ トレート、 イソプロピルナイ トレート、 プチルナイ トレート、 第一ァミルナイトレート、 第二ァミルナイトレート、 イソアミルナイ トレート、 第一へキシルナイトレート、 第二へキシルナイトレート、 n—ヘプチルナイ トレ ート、 n—オタチノレナイ トレート、 2—ェチノレへキシノレナイ トレート、 シクロへ キシノレナイ トレート、 エチレングリコー <ジナィ トレートなどの種々のナイ トレ ート等が包含されるが、 特に炭素数 6〜 8のアルキルナイトレートが好ましい。 セタン価向上剤の含有量は、 組成物全量基準で 5 0 0質量 p p m以上であるこ とが好ましく、 6 0 0質量 p p m以上であることがより好ましく、 7 0 0質量 p p m以上であることがさらに好ましく、 8 0 0質量 p p m以上であることが特に 好ましく、 9 0 0質量 p p m以上であることが最も好ましい。 セタン価向上剤の 含有量が 5 0 0質量 p p mに満たない場合は、 十分なセタン価向上効果が得られ ず、 ディーゼルエンジン排出ガスの P M、 アルデヒ ド類、 さらには N O xが十分 に低減されない傾向にある。 また、 セタン価向上剤の含有量の上限値は特に限定 されないが、 軽油組成物全量基準で、 1 4 0 0質量 p p m以下であることが好ま しく、 1 2 5 0質量 p p m以下であることがより好ましく、 1 1 0 0質量 111 以下であることがさらに好ましく、 1 0 0 0質量 p p m以下であることが最も好 ましい。 In the present invention, it is preferable to use a nitrate ester among the cetane number improvers described above. Such nitrate esters include 2-chloroethyl nitrate, 2-ethoxytyl nitrate, isopropyl nitrate, butyl nitrate, primary amyl nitrate, secondary amyl nitrate, isoamyl nitrate, Various nitriles such as primary hexyl nitrate, secondary hexyl nitrate, n-heptyl nitrite, n-octatinoleate, 2-ethenolehexenolate nitrate, cyclohexenolate nitrate, ethylene glycol <geninate In particular, an alkyl nitrate having 6 to 8 carbon atoms is preferable. The content of the cetane number improver is preferably not less than 500 ppm by mass, more preferably not less than 600 ppm by mass, and more preferably not less than 700 ppm by mass. It is particularly preferably 800 ppm by mass or more, and most preferably 900 ppm by mass or more. If the content of cetane improver is less than 500 ppm by mass, sufficient cetane number improvement effect will not be obtained, and PM, aldehydes, and even NOx in diesel engine exhaust gas will not be reduced sufficiently. There is a tendency. In addition, the upper limit of the content of the cetane number improver is not particularly limited, but it is preferably 1400 mass ppm or less, preferably 1250 massppm or less, based on the total amount of the light oil composition. More preferably, it is more preferably 110 mass 111 or less, and most preferably 100 mass ppm or less.
セタン価向上剤は、 常法に従い合成したものを用いてもよく、 また、 市販品を 用いてもよい。 なお、 セタン価向上剤と称して市販されているものは、 セタン価 向上に寄与する有効成分 (すなわちセタン価向上剤自体) を適当な溶剤で希釈し た状態で入手されるのが通例である。 このような市販品を使用して本発明の軽油 組成物を調製する場合には、 軽油組成物中の当該有効成分の含有量が上述の範囲 内となることが好ましい。  As the cetane number improver, one synthesized according to a conventional method may be used, or a commercially available product may be used. In addition, what is marketed as a cetane number improver is usually obtained by diluting an active ingredient that contributes to improving the cetane number (ie, the cetane number improver itself) with an appropriate solvent. . When the light oil composition of the present invention is prepared using such a commercially available product, the content of the active ingredient in the light oil composition is preferably within the above range.
本発明の軽油組成物においては、 上記セタン価向上剤以外の添加剤を必要に応 じて配合することができ、 特に、 潤滑性向上剤および/または清浄剤が好ましく 配合される。  In the light oil composition of the present invention, additives other than the cetane number improver can be blended as necessary, and in particular, a lubricity improver and / or a detergent is preferably blended.
潤滑性向上剤としては、 例えば、 カルボン酸系、 エステル系、 アルコール系お よびフエノール系の各潤滑性向上剤の 1種又は 2種以上が任意に使用可能である。 これらの中でも、 カルボン酸系及ぴエステル系の潤滑性向上剤が好ましい。  As the lubricity improver, for example, one or more of carboxylic acid-based, ester-based, alcohol-based, and phenol-based lubricity improvers can be arbitrarily used. Among these, carboxylic acid-based and ester-based lubricity improvers are preferable.
カルボン酸系の潤滑性向上剤としては、 例えば、 リノール酸、 ォレイン酸、 サ リチル酸、 パルミチン酸、 ミリスチン酸、 へキサデセン酸及び上記カルボン酸の 2種以上の混合物が例示できる。 エステル系の潤滑性向上剤としては、 グリセリンのカルボン酸エステルが挙げ られる。 カルボン酸エステルを構成するカルボン酸は、 1種であっても 2種以上 であってもよく、 その具体例としては、 リノール酸、 ォレイン酸、 サリチル酸、 パルミチン酸、 ミ リスチン酸、 へキサデセン酸等がある。 Examples of the carboxylic acid-based lubricity improver include linoleic acid, oleic acid, salicylic acid, palmitic acid, myristic acid, hexadecenoic acid and a mixture of two or more of the above carboxylic acids. Ester-based lubricity improvers include glycerin carboxylic acid esters. The carboxylic acid constituting the carboxylic acid ester may be one kind or two or more kinds. Specific examples thereof include linoleic acid, oleic acid, salicylic acid, palmitic acid, myristic acid, hexadecenoic acid, etc. There is.
潤滑性向上剤の配合量は、 HFRR摩耗痕径 (WS 1. 4) が前述の好ましい 範囲内であれば特に制限されないが、 組成物全量基準で 35質量 p pm以上であ ることが好ましく、 50質量 p pm以上であることがより好ましい。 潤滑性向上 剤の配合量が前記の範囲内であると、 配合された潤滑性向上剤の効能を有効に引 き出すことができ、 例えば分配型噴射ポンプを搭載したディーゼルエンジンにお いて、 運転中のポンプの駆動トルク増を抑制し、 ポンプの摩耗を低減させること ができる。 また、 配合量の上限値は、 それ以上加えても添加量に見合う効果が得 られないことから、 組成物全量基準で 1 50質量 p pm以下であることが好まし く、 1 05質量 p pm以下であることがより好ましい。  The blending amount of the lubricity improver is not particularly limited as long as the HFRR wear scar diameter (WS 1.4) is within the above-mentioned preferable range, but is preferably 35 mass ppm or more based on the total amount of the composition. More preferably, it is 50 mass p pm or more. When the blending amount of the lubricity improver is within the above range, the effectiveness of the blended lubricity improver can be effectively extracted. For example, in a diesel engine equipped with a distributed injection pump, The increase in driving torque of the pump inside can be suppressed, and pump wear can be reduced. In addition, the upper limit of the amount added is preferably not more than 150 mass p pm on the basis of the total amount of the composition because an effect commensurate with the amount of addition cannot be obtained even if it is added more than that, and it is preferable that the upper limit of the amount is 10 mass p pm The following is more preferable.
清浄剤としては、 例えば、 ィミ ド系化合物;ポリブテュルコハク酸無水物とェ チレンポリアミン類とから合成されるポリブテュルコハク酸ィミ ドなどのァルケ ニルコハク酸ィミ ド;ペンタエリスリ トールなどの多価アルコールとポリブテ- ルコハク酸無水物から合成されるポリブテュルコハク酸ェステルなどのコハク酸 エステノレ ; ジァノレキ^ /ァミノエチ ^メタクリレート、 ポリエチレングリコー^/メ タクリレート、 ビュルピロリ ドンなどとアルキルメタクリレートとのコポリマー などの共重合系ポリマー、 カルボン酸とアミンの反応生成物等の無灰清浄剤等が 挙げられ、 中でもァルケニルコハク酸イミ ド及びカルボン酸とァミンとの反応生 成物が好ましい。 これらの清浄剤は、 1種を単独で又は 2種以上を組み合わせて 使用することができる。  Examples of the detergent include imide compounds; alkenyl succinic acid imides such as polybutyric succinic acid imide synthesized from polybutyric succinic anhydride and ethylene polyamines; pentaerythritol, etc. Estenoles of succinic acid such as polybutyrsuccinic acid ester synthesized from polyhydric alcohols of polybutene succinic anhydride; copolymers of dianoloxy ^ / aminoamino ^ methacrylate, polyethyleneglycol ^ / methacrylate, burpyrrolidone, etc. and alkyl methacrylate And ashless detergents such as a reaction product of carboxylic acid and amine. Among them, alkenyl succinic acid imide and a reaction product of carboxylic acid and amine are preferable. These detergents can be used alone or in combination of two or more.
アルケニルコハク酸ィミ ドを使用する例としては、 分子量 1 000〜 3000 程度のァルケ-ルコハク酸ィミ ドを単独使用する場合と、 分子量 700〜200 0程度のアルケニルコハク酸ィミ ドと分子量 1 0000〜 20000程度のアル ケニルコハク酸イミ ドとを混合して使用する場合とがある。  Examples of using alkenyl succinic acid imide are alkenyl succinic acid having a molecular weight of about 1 000 to 3000, and alkenyl succinic acid having a molecular weight of about 700 to 2000 and a molecular weight of 1 Sometimes used in admixture with alkenyl succinic acid imide of about 0000-20000.
カルボン酸とァミンとの反応生成物を構成するカルボン酸は 1種であっても 2 種以上であってもよく、 その具体例としては、 炭素数 1 2〜 24の脂肪酸おょぴ 炭素数 7〜24の芳香族カルボン酸等が挙げられる。 炭素数 1 2〜24の脂肪酸 としては、 リノール酸、 ォレイン酸、 パルミチン酸、 ミリスチン酸等が挙げられ るが、 これらに限定されるものではない。 また、 炭素数 7〜 2 4の芳香族カルボ ン酸としては、 安息香酸、 サリチル酸等が挙げられるが、 これらに限定されるも のではない。 また、 カルボン酸とァミンとの反応生成物を構成するァミンは、 1 種であっても 2種以上であってもよい。 ここで用いられるァミンとしては、 ォレ ィルァミンが代表的であるが、 これに限定されるものではなく、 各種ァミンが使 用可能である。 The carboxylic acid constituting the reaction product of the carboxylic acid and the amine may be one type or two or more types. Specific examples thereof include a fatty acid having 1 to 24 carbon atoms and a carbon number of 7 -24 aromatic carboxylic acids and the like. C 1-2 fatty acids Examples thereof include, but are not limited to, linoleic acid, oleic acid, palmitic acid, myristic acid, and the like. Examples of the aromatic carboxylic acid having 7 to 24 carbon atoms include benzoic acid and salicylic acid, but are not limited thereto. Further, the amine constituting the reaction product of the carboxylic acid and the amine may be one type or two or more types. The amine used here is typically oleiramine, but is not limited thereto, and various amines can be used.
清浄剤の配合量は特に制限されないが、 清浄剤を配合した効果、 具体的には、 燃料噴射ノズルの閉塞抑制効果を引き出すためには、 清浄剤の配合量を組成物全 量基準で 3 0質量 p p m以上とすることが好ましく、 6 0質量 p p m以上とする ことがより好ましく、 8 0質量 p p m以上とすることがさらに好ましい。 3 0質 量 p p mに満たない量を添加しても効果が現れない可能性がある。 一方、 配合量 が多すぎても、 それに見合う効果が期待できず、 逆にディーゼルエンジン排出ガ ス中の N O x、 P M、 アルデヒ ド類等を増加させる恐れがあることから、 清浄剤 の配合量は 3 0 0質量 p p m以下であることが好ましく、 1 8 0質量 p p m以下 であることがより好ましい。  The amount of the detergent is not particularly limited, but in order to bring out the effect of incorporating the detergent, specifically, the effect of suppressing the clogging of the fuel injection nozzle, the amount of the detergent is based on the total amount of the composition. It is preferably at least ppm by mass, more preferably at least 60 ppm by mass, and even more preferably at least 80 ppm by mass. There is a possibility that the effect does not appear even if an amount less than 30 mass p pm is added. On the other hand, if the amount is too large, a corresponding effect cannot be expected.On the other hand, there is a risk of increasing NO x, PM, aldehydes, etc. in the diesel engine exhaust gas. Is preferably 300 ppm by mass or less, more preferably 180 ppm by mass or less.
なお、 先のセタン価向上剤の場合と同様、 潤滑性向上剤又は清浄剤と称して巿 販されているものは、 それぞれ潤滑性向上または清浄に寄与する有効成分が適当 な溶剤で希釈された状態で入手されるのが通例である。 このような市販品を本発 明の軽油組成物に配合する際には、 軽油組成物中の当該有効成分の含有量が上述 の範囲内となることが好ましい。  As in the case of the cetane improver described above, the active ingredients that contribute to improving lubricity or cleaning were diluted with an appropriate solvent in those sold as lubricity improvers or detergents. It is customary to obtain it in the state. When such a commercial product is blended in the light oil composition of the present invention, the content of the active ingredient in the light oil composition is preferably within the above range.
また、 本発明における軽油組成物の性能をさらに高める目的で、 後述するその 他の公知の燃料油添加剤 (以下、便宜上「その他の添加剤」 という。 ) を単独で、 または数種類組み合わせて添加することもできる。 その他の添加剤としては、 例 えば、 エチレン一酢酸ビニル共重合体、 アルケニルコハク酸アミ ドなどの低温流 動性向上剤; フエノール系、 ァミン系などの酸化防止剤;サリチリデン誘導体な どの金属不活性化剤;ポリダリコールエーテルなどの氷結防止剤;脂肪族ァミン、 アルケニルコハク酸エステルなどの腐食防止剤;ァユオン系、 カチオン系、 両性 系界面活性剤などの帯電防止剤;ァゾ染料などの着色剤; シリコン系などの消泡 剤等が挙げられる。 その他の添加剤の添加量は任意に決めることができるが、 添加剤個々の添加量 は、 軽油組成物全量基準でそれぞれ好ましくは 0 , 5質量%以下、 より好ましく は 0 . 2質量%以下である。 Further, for the purpose of further enhancing the performance of the light oil composition in the present invention, other known fuel oil additives (hereinafter referred to as “other additives” for convenience) to be described later are added alone or in combination of several kinds. You can also. Other additives include, for example, low-temperature fluidity improvers such as ethylene vinyl acetate copolymer and alkenyl succinic acid amides; antioxidants such as phenols and amines; and metal inertness such as salicylidene derivatives. Anti-icing agents such as polydalicol ethers; Corrosion inhibitors such as aliphatic amines and alkenyl succinic acid esters; Antistatic agents such as ayuonic, cationic and amphoteric surfactants; Coloring of azo dyes Agents: Silicon-based antifoaming agents and the like. The addition amount of other additives can be arbitrarily determined. The addition amount of each additive is preferably 0.5% by mass or less, more preferably 0.2% by mass or less, based on the total amount of the light oil composition. is there.
[産業上の利用可能性] [Industrial applicability]
本発明により、 動植物油脂および/または動植物油脂由来成分を原料として製 造された環境低負荷型軽油基材を用いて、 ライフサイクル C O 2排出特性および 酸化安定性に優れ、 且つ低温流動性に優れた軽油組成物が提供される。 According to the present invention, using an environmentally low load type light oil base material made from animal and vegetable oils and / or ingredients derived from animal and vegetable oils, it has excellent life cycle CO 2 emission characteristics and oxidation stability, and excellent low-temperature fluidity. A light oil composition is provided.
[実施例] [Example]
以下、 実施例及ぴ比較例に基づいて本発明をさらに詳細に説明するが、 本発明 はこれらの実施例に何ら限定されるものではない。  EXAMPLES Hereinafter, although this invention is demonstrated further in detail based on an Example and a comparative example, this invention is not limited to these Examples at all.
(実施例 1〜 6および比較例:!〜 4 ) (Examples 1 to 6 and comparative examples:! To 4)
表 1に示す性状を有する植物油脂に含硫黄炭化水素化合物としてジメチルジサ ルファイ ド (D MD S ) を 5質量 p p m添加した被処理油を表 2に示す反応条件 で反応させ、 表 3に示す環境低負荷型軽油基材を調製した。  The oil to be treated with 5 mass ppm of dimethyl disulphide (D MDS) as a sulfur-containing hydrocarbon compound added to vegetable oils and fats having the properties shown in Table 1 is reacted under the reaction conditions shown in Table 2. A loaded light oil base was prepared.
また、 表 1に示す性状を有する植物油脂 8 0容量%に表 1に示す性状を有する 石油系軽油基材 2 0容量%を混合した被処理油を表 2に示す反応条件で反応させ、 表 3に示す環境低負荷型軽油基材を調製した。  In addition, the oil to be treated in which 80% by volume of the vegetable oil having the properties shown in Table 1 is mixed with 20% by volume of the petroleum-based light oil base material having the properties shown in Table 1 is reacted under the reaction conditions shown in Table 2. The environmentally low load type light oil base material shown in 3 was prepared.
また、 表 1に示す植物油脂をエステル化して得た脂肪酸アルキルエステルの性 状を表 3に示す。 これらの脂肪酸アルキルエステルはメタノールとの反応により 得られたメチルエステル化合物であり、 ここではアルカリ触媒 (ナトリウムメチ ラート) の存在下で 7 0 °C、 1時間程度の撹拌を行い、 アルキルアルコールと直 接反応させてエステル化合物を得るエステル交換反応を用いた。  Table 3 shows the properties of fatty acid alkyl esters obtained by esterifying the vegetable oils shown in Table 1. These fatty acid alkyl esters are methyl ester compounds obtained by reaction with methanol. Here, the fatty acid alkyl esters are stirred in the presence of an alkali catalyst (sodium methylate) at 70 ° C for about 1 hour. A transesterification reaction in which an ester compound was obtained by contact reaction was used.
表 3に示した環境低負荷型軽油基材、 植物油脂のメチルエステル化物および石 油系基材である石油系水素化精製油、 水素化分解軽油、 脱ろう軽油基材を調合し て軽油組成物を製造した (実施例 1〜6および比較例 1〜4 ) 。  Light oil composition by blending the low environmental load diesel oil base shown in Table 3, methyl esterified vegetable oil and petroleum oil hydrorefined oil, hydrocracked diesel oil, and dewaxed diesel oil base A product was produced (Examples 1 to 6 and Comparative Examples 1 to 4).
調合した軽油組成物の調合比率、及びこの調合した軽油組成物に対して、 1 5 °C における密度、 3 0 °Cにおける動粘度、 引火点、 硫黄分、 酸素分、 蒸留性状、 芳 香族分、セタン価及びセタン指数、 1 0 %残油の残留炭素分、水分、 目詰まり点、 酸化安定性試験 (加速試験前後の酸価) を測定した結果、 またライフサイクル cThe blending ratio of the blended diesel oil composition and the blended diesel oil composition, density at 15 ° C, kinematic viscosity at 30 ° C, flash point, sulfur content, oxygen content, distillation properties, good Results of measurement of aromatic content, cetane number and cetane index, residual carbon content of 10% residual oil, moisture, clogging point, oxidation stability test (acid value before and after accelerated test), and life cycle c
0 2排出量の計算結果を表 4および表 5に示す。 0 2 Emissions calculation results are shown in Table 4 and Table 5.
なお、 燃料油の性状は以下の方法により測定した。  The properties of fuel oil were measured by the following method.
密度は、 J I S K 2 2 4 9 「原油及び石油製品の密度試験方法並びに密度' 質量 ·容量換算表」 により測定される密度を指す。  Density refers to the density measured by J I S K 2 2 4 9 “Density test method for crude oil and petroleum products and density 'mass-capacity conversion table”.
動粘度は、 J I S K 2 2 8 3 「原油及び石油製品—動粘度試験方法及び粘 度指数算出方法」 により測定される動粘度を指す。  Kinematic viscosity refers to the kinematic viscosity measured by J I S K 2 2 8 3 “Crude oil and petroleum products – kinematic viscosity test method and viscosity index calculation method”.
硫黄分は、 J I S K 2 5 4 1 「硫黄分試験方法」 により測定される軽油組 成物全量基準の硫黄分の質量含有量を指す。  Sulfur content refers to the mass content of the sulfur content based on the total amount of light oil composition measured by J I S K 2 5 4 1 “Sulfur content test method”.
酸素分は元素分析法により測定した。  The oxygen content was measured by elemental analysis.
蒸留性状は、 全て J I S Κ 2 2 5 4 「石油製品一蒸留試験方法」 によって 測定される値である。  Distillation properties are all values measured by J I S Κ 2 2 5 4 “Petroleum product one distillation test method”.
芳香族分は、 社団法人石油学会により発行されている石油学会法 J P I - 5 S - 4 9 - 9 7 「炭化水素タイプ試験方法一高速液体クロマトグラフ法」 に準拠さ れ測定された芳香族含有量の容量百分率 (容量%) を意味する。  The aromatic content is measured according to the Petroleum Institute method JPI-5S-4 9-9 7 "Hydrocarbon type test method-High performance liquid chromatograph method" published by the Japan Petroleum Institute. Means volume percentage (volume%) of quantity.
水分は、 J I S K 2 2 7 5 「水分試験方法 (原油及ぴ石油製品) 」 で規定 される水分を意味する。  Moisture means the moisture specified in JIS K 2 27 5 “Moisture test method (crude oil and petroleum products)”.
引火点は J I S K 2 2 6 5 「原油及び石油製品引火点試験方法」で測定され る値を示す。  The flash point is the value measured by J I S K 2 2 6 5 “Crude oil and petroleum product flash point test method”.
全酸価とは、 J I S K 2 5 0 1 「石油製品及び潤滑油一中和価試験方法」 により測定される全酸価を意味する。  The total acid value means the total acid value measured by JI S K 2 5 0 1 “Testing method for neutralization of petroleum products and lubricants”.
目詰まり点とは J I S K 2 2 8 8 「軽油一目詰まり点試験方法」 により測 定される目詰まり点を指す。  The clogging point is the clogging point measured by JI S K 2 2 8 8 “Test method for light oil clogging point”.
セタン指数は、 J I S K 2 2 8 0 「石油製品—燃料油一オクタン価及ぴセ タン価試験方法並びにセタン指数算出方法」 の 「8 . 4変数方程式を用いたセタ ン指数の算出方法」 によって算出した価を指す。 なお、 セタン価は、 J I S K The cetane index was calculated according to `` Calculation method of cetane index using 8.4 variable equations '' in JISK 2280 “Petroleum products—Fuel oil one octane number and cetane number test method and cetane index calculation method”. Refers to the value. The cetane number is J I S K
2 2 8 0 「石油製品一燃料油ーォクタン価及びセタン価試験方法並びにセタン 指数算出方法」 の 「7 . セタン価試験方法」 に準拠して測定されるセタン価を意 味する。 2 2 8 0 Refers to the cetane number measured in accordance with “7. Cetane Number Test Method” in “Petroleum Products / Fuel Oil-Octane Number and Cetane Number Test Method and Cetane Index Calculation Method”. Taste.
(ライフサイクル co2算出) (Life cycle co 2 calculation)
ライフサイクル CO 2は、 ディーゼルエンジン搭載車両における軽油組成物の 燃焼に伴い発生した co2と、 採掘から車両タンクへの燃料給油までに発生した co2と分けて算出した。 Life Cycle CO 2 includes a co 2 generated due to combustion of the gas oil compositions in a vehicle equipped with a diesel engine, is calculated by dividing the co 2 generated from mining to the fuel oil supply to the vehicle tank.
燃焼に伴い発生した CO 2 (以下、 「Tank to Wheel C02」 という。 ) は、 上記 車両試験を行ったときの CO 2排出量、 走行燃費及び燃料密度に基づいて、 各軽 油組成物単位発熱量当たりの排出量として算出した。 CO 2 generated by combustion (hereinafter referred to as “Tank to Wheel C0 2 ”) is based on CO 2 emissions, fuel consumption and fuel density when the above vehicle test is performed. Calculated as emissions per calorific value.
また、 採掘から車両タンクへの燃料給油までに発生した C〇2 (以下、 「Well to Tank C02」 という。 ) は、 原料及び原油ソースの採掘、 輸送、 加工、 配送、 車 両への給油までの一連の流れにおける CO 2排出量の総和として算出した。 なお、 rWell to Tank C02」 の算出にあたっては、 下記 (1 B) 〜 (5 B) に示す二酸 化炭素の排出量を加味して演算を行った。 かかる演算に必要となるデータとして は、 本発明者らが有する製油所運転実績データを用いた。 In addition, C_〇 2 (hereinafter referred to as "Well to Tank C0 2".) That occurred to the fuel oil supply to the vehicle tank from mining, mining of raw materials and crude oil source, transport, processing, delivery, oil supply to the car both It was calculated as the sum of CO 2 emissions in the series of flows up to. In calculating “rWell to Tank C0 2 ”, the calculation was performed taking into account the carbon dioxide emissions shown in (1 B) to (5 B) below. As data necessary for such calculation, refinery operation performance data possessed by the present inventors was used.
(1 B) 各種処理装置、 ボイラー等設備の燃料使用に伴う二酸化炭素の排出量。 (1 B) Carbon dioxide emissions associated with the use of fuel in various processing equipment and boilers.
(2 B) 水素を使用する処理においては、 水素製造装置における改質反応に伴う 二酸化炭素の排出量。 (2 B) In the treatment using hydrogen, the amount of carbon dioxide emitted during the reforming reaction in the hydrogen production equipment.
(3 B) 接触分解装置等の連続触媒再生を伴う装置を経由する場合は、 触媒再生 に伴う二酸化炭素の排出量。  (3 B) Carbon dioxide emissions associated with catalyst regeneration when passing through equipment that involves continuous catalyst regeneration such as catalytic cracking equipment.
(4 B) 軽油組成物を、 横浜で製造又は陸揚げし、 横浜から仙台まで配送し、 仙 台で車両に給油したときの二酸化炭素の排出量。  (4 B) Carbon dioxide emissions when diesel oil compositions are manufactured or unloaded in Yokohama, delivered from Yokohama to Sendai, and refueled in Sendai.
(5 B) 動植物油脂および動植物油脂由来の成分は原産地をマレーシアおよびそ の周辺地域とし、 製造を横浜で行うとした際の二酸化炭素の排出量。  (5 B) The amount of carbon dioxide emissions when animal and vegetable oils and components derived from animal and vegetable oils and fats are produced in Malaysia and the surrounding area and manufactured in Yokohama.
なお、 動植物油脂および動植物油脂由来の成分を使用した場合、 いわゆる京都 議定書においてはこれらの燃料に起因する二酸化炭素は排出量として計上されな いルールが適用される。 本計算においては、 燃焼時に発生する 「Tank to Wheel C02」 に対してこれを適用させた。 In addition, when using animal and vegetable fats and ingredients derived from animal and vegetable fats and oils, the so-called Kyoto Protocol rules that carbon dioxide derived from these fuels is not counted as emissions. In this calculation, this was applied to “Tank to Wheel C0 2 ” generated during combustion.
このようにして算出した ("Tank to Wheel C02」 と 「Well to Tank C02」 、 並び にこれらの総和であるライフサイクル C02 (L C) の各排出量をそれぞれ表 4 およぴ表 5に示す。 なお、 比較例 1を 100とし、 各結果を相対的に比較、 定量 化した数値もあわせて示す。 The emissions calculated in this way (“Tank to Wheel C0 2 ” and “Well to Tank C0 2 ”, and their total life cycle C0 2 (LC) are shown in Table 4. It is shown in Table 5. In addition, the comparative example 1 is set to 100, and the results of comparing and quantifying each result are also shown.
(酸化安定性試験) (Oxidation stability test)
1 15°C、 酸素パブリング下、 16時間の条件で燃料を加速劣化させ、 試験前 後での酸化を測定した。なお、ここでいう全酸価とは、 J I S K 2501 「石 油製品及び潤滑油一中和価試験方法」 により測定される全酸価を意味する。 実施例および比較例で使用した軽油組成物は、 表 4および表 5に示すとおり、 水環境低負荷型軽油基材、 植物油脂のメチルエステル化物および石油系基材であ る石油系水素化処理油を特定の割合で調合して製造したものである。 1 The fuel was accelerated and degraded under conditions of 15 hours at 15 ° C and oxygen publishing, and oxidation before and after the test was measured. The total acid value here means the total acid value measured according to JISK 25 01 “Testing method for neutralization of petroleum products and lubricants”. The light oil compositions used in the examples and comparative examples are as shown in Table 4 and Table 5. Petroleum hydrotreating, which is a water environment low load type light oil base, a methyl esterified vegetable oil, and a petroleum base It is produced by blending oil at a specific ratio.
表 4および表 5から明らかなように、 環境低負荷型軽油基材、 および環境低負 荷型軽油基材と石油系水素化処理油とを混合して使用し、 本発明で規定される範 囲内で配合した実施例 1〜6においては、 95%留出温度が 360°C以下、 硫黄 分が 10質量 p pm以下、 酸素分 1質量%以下、 脂肪酸メチルエステル分 3. 5 質量%以下、 全酸価増加量 0. 13mgKOH/g以下、 メタノール分 0. 01 質量。 /0以下、 かつグリセライド分 0. 01質量%以下、 目詰まり点一 5°C以下と いう性状を満足し、 且つライフサイクルでの二酸化炭素排出量が少ない軽油組成 物を容易にかつ確実に得ることができた。 一方、 上記特定の環境低負荷型軽油基 材を用いずに軽油組成物を調製した比較例 1〜4においては、 本発明の目的とす る軽油組成物は必ずしも得られない。 As is clear from Table 4 and Table 5, the environmentally low-loading diesel oil base material, and the environmentally low-loading diesel oil base material and petroleum-based hydrotreated oil are mixed and used in the range defined by the present invention. In Examples 1 to 6 blended in the range, 95% distillation temperature is 360 ° C or less, sulfur content is 10 mass ppm or less, oxygen content is 1 mass% or less, fatty acid methyl ester content is 3.5 mass% or less, Total acid value increase 0.13 mgKOH / g or less, methanol content 0.01 mass. Easily and reliably obtain a light oil composition that satisfies the properties of 0 or less, glyceride content of 0.01 mass% or less, and a clogging point of 5 ° C or less and low carbon dioxide emissions in the life cycle. I was able to. On the other hand, in Comparative Examples 1 to 4 in which a light oil composition was prepared without using the specific environment-friendly light oil base, the light oil composition that is the object of the present invention is not necessarily obtained.
2008/063823 表 1 2008/063823 Table 1
Figure imgf000031_0001
Figure imgf000031_0001
表 2 Table 2
Figure imgf000031_0002
表 3
Figure imgf000031_0002
Table 3
Figure imgf000032_0001
Figure imgf000032_0001
表 4 Table 4
Figure imgf000033_0001
表 5
Figure imgf000033_0001
Table 5
Figure imgf000034_0001
Figure imgf000034_0001

Claims

請 求 の 範 囲 The scope of the claims
1. 〔A〕 水素の存在下、 動植物油脂および/まナこは動植物油脂由来成分に 含硫黄炭化水素化合物を硫黄分が 1質量 p p m〜 2質量%となるように混合した 被処理油と、 アルミニウム、 ケィ素、 ジルコニウム、 ホウ素、 チタン及びマグネ シゥムから選ばれる 2種以上の元素を含んで構成される多孔性無機酸化物並びに 該多孔性無機酸化物に担持された周期律表第 6 A族及び第 8族の元素から選ばれ る 1種以上の金属を含有する触媒とを、水素圧力 2〜1 3MP a、液空間速度 0. 1〜 3. 0 h"\ 水素/油比 1 50〜1 500NL/L、 反応温度 1 50〜48 0°Cの条件下で接触させることによって製造される留分(環境低負荷型軽油基材) 10〜90容量%と、 ( i) 原油等を常圧蒸留装置で処理して得られる常圧残渣 油を続いて減圧蒸留装置で処理して得られる減圧軽油をさらに水素化分解処理し て得られる水素化分解軽油留分 (沸点範囲: 200〜350°C) 90〜10容量 %とを混合することで得られる軽油基材 A— 1および Zまたは (ii) 原油等を常 圧蒸留装置で処理して得られる軽油留分を更に水素化脱ろう処理して得られる脱 ろう軽油基材 90〜 10容量%とを混合することで得られる軽油基材 A— 2から なる軽油基材 A95〜30容量%に、 〔B〕 原油等から精製された軽油留分を水 素化処理して得られる石油系水素化処理油 (軽油基材 B) を 5〜70容量%混合 することで得られる、 90%留出温度が 360°C以下、 硫黄分が 10質量 p pm 以下、 酸素分 1質量%以下、 脂肪酸アルキルエステル分 3. 5質量%以下、 全酸 価 0. 13mgK〇HZg以下、 メタノール分 0. 01質量。 /0以下、 グリセライ ド分 0. 01質量%以下、 目詰まり点一 5 °C以下であることを特徴とする軽油基 材 Aおよび Bからなる軽油組成物。 1. [A] In the presence of hydrogen, to-be-treated oil in which animal and vegetable oils and / or manakos are mixed with animal and vegetable oil and fat-containing sulfur-containing hydrocarbon compounds so that the sulfur content is 1 mass ppm to 2 mass%, A porous inorganic oxide containing two or more elements selected from aluminum, silicon, zirconium, boron, titanium and magnesium, and a periodic table 6A group supported on the porous inorganic oxide And a catalyst containing one or more metals selected from Group 8 elements, hydrogen pressure 2 to 13 MPa, liquid space velocity 0.1 to 3.0 h "\ hydrogen / oil ratio 1 50 to 1) 500 NL / L, reaction temperature: 1 to 90% by volume of a fraction produced by contact under conditions of 50 to 480 ° C (environmental low load gas oil base), and (i) crude oil, etc. Atmospheric pressure residue oil obtained by treatment with a pressure distillation apparatus, and further reduced pressure gas oil obtained by treatment with a vacuum distillation apparatus is further hydrogenated. Hydrocracked gas oil fraction obtained by cracking (boiling range: 200 to 350 ° C) Light oil base materials A-1 and Z obtained by mixing 90 to 10% by volume or (ii) crude oil, etc. It consists of a light oil base A-2 obtained by mixing 90 to 10% by volume of a dewaxed light oil base obtained by further hydrodewaxing a light oil fraction obtained by treatment with an atmospheric distillation apparatus. Gas oil base material A 95 to 30% by volume [B] 5 to 70% by volume of petroleum hydrotreated oil (light oil base material B) obtained by hydrotreating light oil fraction refined from crude oil, etc. 90% distillation temperature is 360 ° C or less, sulfur content is 10 mass ppm or less, oxygen content is 1 mass% or less, fatty acid alkyl ester content is 3.5 mass% or less, and total acid value is 0.13 mgK. ○ HZg or less, Methanol content 0.01 mass / 0 or less, Glyceride content 0.01 mass% or less, Clogging point 1 5 ° C or less A gas oil composition comprising gas oil base materials A and B.
2. 〔Α' 〕 水素の存在下、 動植物油脂および/または動植物油脂由来成分 10〜90容量。 /0と原油等から精製された軽油留分を有する石油系基材 90〜1 0容量%とを混合した被処理油を、 アルミニウム、 ケィ素、 ジルコェゥム、 ホウ 素、 チタン及びマグネシウムから選ばれる 2種以上の元素を含んで構成される多 孔性無機酸化物並びに該多孔性無機酸化物に担持された周期律表第 6 Α族及び第 8族の元素から選ばれる 1種以上の金属を含有する触媒とを、 水素圧力 2〜1 3 MP a、液空間速度 0. :!〜 3. 0 h_1、水素/油比 1 50〜1 500NLZL、 反応温度 1 50〜480°Cの条件下で接触させることによって製造される留分2. [Α '] Animal and vegetable oils and / or animal and vegetable oil and fat-derived components in the presence of hydrogen 10 to 90 volumes. / 0 and petroleum base material with light oil fraction refined from crude oil etc. 90 ~ 10% by volume is selected from Aluminum, Ca, Zirconium, Boron, Titanium and Magnesium 2 Contains one or more metals selected from Group 6 and Group 8 elements of the Periodic Table supported by porous inorganic oxides composed of more than one element and the porous inorganic oxides The catalyst to be used, hydrogen pressure 2 ~ 1 3 MP a, liquid hourly space velocity 0.:! ~ 3. 0 h _1 , hydrogen / oil ratio of 1 50~1 500NLZL, fraction is prepared by contacting under the conditions of reaction temperature 1 50 to 480 ° C
(環境低負荷型軽油基材) 10〜90容量%に、 ( i ' ) 原油等を常圧蒸留装置 で処理して得られる常圧残渣油を続いて減圧蒸留装置で処理して得られる減圧軽 油をさらに水素化分解処理して得られる水素化分解軽油留分 (沸点範囲: 200 〜350°C) を 90〜10容量%混合することで得られる軽油基材 A' — 1およ ぴノまたは (ii' ) 原油等を常圧蒸留装置で処理して得られる軽油留分を更に水 素化脱ろう処理して得られる脱ろう軽油基材を 90〜 10容量%混合することで 得られる軽油基材 A' — 2からなる軽油基材 A' 95〜30容量%に、 〔Β' 〕 原油等から精製された灯油留分を水素化処理して得られる石油系水素化処理油(Environmental low load gas oil base) 10-90% by volume, (i ') Reduced pressure obtained by treating crude oil etc. with atmospheric distillation equipment and then with atmospheric distillation equipment Diesel oil base A'-1 obtained by mixing 90 to 10% by volume of hydrocracked gas oil fraction (boiling range: 200 to 350 ° C) obtained by further hydrocracking gas oil Or (ii ') Obtained by mixing 90 to 10% by volume of a dewaxed gas oil base obtained by further hydrodewaxing a gas oil fraction obtained by treating crude oil or the like with an atmospheric distillation apparatus. Petroleum hydrotreated oil obtained by hydrotreating kerosene fraction refined from crude oil, etc. to 95-30% by volume of diesel fuel base A '— 2
(軽油基材 Β, ) を 5〜70容量%混合することで得られる、 90%留出温度が 360°C以下、 硫黄分が 10質量 p pm以下、 酸素分 1質量%以下、 脂肪酸アル キルエステル分 3. 5質量%以下、 全酸価 0. 13mgKOH/g以下、 メタノ ール分 0. 01質量%以下、 グリセライド分 0. 01質量%以下、 目詰まり点一 5 °C以下であることを特徴とする軽油基材 A ' および B' からなる軽油組成物。 90% distillation temperature is 360 ° C or less, sulfur content is 10 mass ppm or less, oxygen content is 1 mass% or less, and fatty acid alkyl is obtained by mixing 5 to 70 vol% (light oil base material Β,). Ester content 3.5% by mass or less, total acid value 0.13mgKOH / g or less, methanol content 0.01% by mass or less, glyceride content 0.01% by mass or less, clogging point 1 ° C or less A gas oil composition comprising gas oil bases A ′ and B ′ characterized by
PCT/JP2008/063823 2007-08-08 2008-07-25 Gas oil composition WO2009020056A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2007206460A JP5288741B2 (en) 2007-08-08 2007-08-08 Method for producing light oil composition
JP2007-206460 2007-08-08
JP2007-206461 2007-08-08
JP2007206461A JP5288742B2 (en) 2007-08-08 2007-08-08 Method for producing light oil composition

Publications (1)

Publication Number Publication Date
WO2009020056A1 true WO2009020056A1 (en) 2009-02-12

Family

ID=40341290

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/063823 WO2009020056A1 (en) 2007-08-08 2008-07-25 Gas oil composition

Country Status (1)

Country Link
WO (1) WO2009020056A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11643610B2 (en) 2017-12-19 2023-05-09 ExxonMobil Technology and Engineering Company Dewaxed diesel fuel composition

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005538204A (en) * 2002-09-06 2005-12-15 フォータム オイル オサケ ユキチュア Diesel fuel composition containing components based on biological raw materials obtained by hydrogenating and decomposing fatty acids
WO2007064015A1 (en) * 2005-11-30 2007-06-07 Nippon Oil Corporation Gas oil composition
JP2007153927A (en) * 2005-11-30 2007-06-21 Nippon Oil Corp Hydro-refining method and hydro-refined oil
JP2007153928A (en) * 2005-11-30 2007-06-21 Nippon Oil Corp Method for producing low environmental load type fuel and low environmental load type fuel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005538204A (en) * 2002-09-06 2005-12-15 フォータム オイル オサケ ユキチュア Diesel fuel composition containing components based on biological raw materials obtained by hydrogenating and decomposing fatty acids
WO2007064015A1 (en) * 2005-11-30 2007-06-07 Nippon Oil Corporation Gas oil composition
JP2007153927A (en) * 2005-11-30 2007-06-21 Nippon Oil Corp Hydro-refining method and hydro-refined oil
JP2007153928A (en) * 2005-11-30 2007-06-21 Nippon Oil Corp Method for producing low environmental load type fuel and low environmental load type fuel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11643610B2 (en) 2017-12-19 2023-05-09 ExxonMobil Technology and Engineering Company Dewaxed diesel fuel composition

Similar Documents

Publication Publication Date Title
JP5288740B2 (en) Method for producing light oil composition
WO2007064015A1 (en) Gas oil composition
JP5072008B2 (en) Method for producing light oil composition
JP2007321054A (en) Gas oil composition
JP5121137B2 (en) Light oil composition
WO2008117856A1 (en) Gas oil composition
JP5117089B2 (en) Method for producing light oil composition
JP5072430B2 (en) Method for producing light oil composition
KR101371788B1 (en) Gas-oil composition
JP5072444B2 (en) Method for producing light oil composition
JP5072010B2 (en) Light oil composition
JP5121138B2 (en) Light oil composition
WO2007132938A1 (en) Gas-oil composition
JP5288742B2 (en) Method for producing light oil composition
JP5072007B2 (en) Method for producing light oil composition
JP5072609B2 (en) Method for producing light oil composition
JP5288741B2 (en) Method for producing light oil composition
JP4979269B2 (en) Method for producing A heavy oil composition
JP5072006B2 (en) Method for producing light oil composition
JP5091762B2 (en) Gas oil base and gas oil composition
WO2009020056A1 (en) Gas oil composition
JP5072009B2 (en) Light oil composition
JP5117088B2 (en) Method for producing light oil composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08792036

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08792036

Country of ref document: EP

Kind code of ref document: A1