JP2009272041A - Lithium-ion secondary battery - Google Patents

Lithium-ion secondary battery Download PDF

Info

Publication number
JP2009272041A
JP2009272041A JP2008118561A JP2008118561A JP2009272041A JP 2009272041 A JP2009272041 A JP 2009272041A JP 2008118561 A JP2008118561 A JP 2008118561A JP 2008118561 A JP2008118561 A JP 2008118561A JP 2009272041 A JP2009272041 A JP 2009272041A
Authority
JP
Grant status
Application
Patent type
Prior art keywords
lithium
active material
electrode active
positive electrode
ion secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008118561A
Other languages
Japanese (ja)
Other versions
JP5462445B2 (en )
Inventor
Tsutomu Atsugi
Hiroyuki Imai
Fukuyoshi Morimoto
Shinji Saito
Takehiko Sawai
浩之 今井
勉 厚木
副吉 森本
岳彦 澤井
慎治 齊藤
Original Assignee
Mitsubishi Materials Corp
Mitsubishi Materials Electronic Chemicals Co Ltd
Sei Kk
エス・イー・アイ株式会社
三菱マテリアル株式会社
三菱マテリアル電子化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage
    • Y02E60/12Battery technologies with an indirect contribution to GHG emissions mitigation
    • Y02E60/122Lithium-ion batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lithium-ion secondary battery enabling a heightened input and output with low-resistance and high-current charge/discharge and control of exothermic heat for safety. <P>SOLUTION: The lithium-ion secondary battery, in which a positive electrode material including a positive electrode active substance composed of a lithium-containing compound and a negative electrode material including a negative electrode active substance enabled to store and release lithium ions are laminated or wound around through a separator and are sealed up together with nonaqueous electrolyte solution in which lithium salt is dissolved, is characterized by fine carbon fiber adhered in a mesh state on particle surfaces of the positive electrode active substance and the negative electrode active substance, and it is desirable if all or a part of the surface of the fine carbon fiber are modified with a hydrophilic group. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、低抵抗で大電流の充放電における高入出力化と安全上の発熱抑制を可能にしたリチウムイオン二次電池に関する。 The present invention relates to a lithium-ion secondary battery enables high output of the heat generation limit safety during charge and discharge of a large current at low resistance.

従来、携帯電話やノート型パソコン等のポータブル電子機器の発達に伴い、小型軽量でかつ高容量の二次電池が必要とされている。 Conventional, with the development of portable electronic devices such as mobile phones and notebook computers, there is a need for a secondary battery of small, lightweight and high capacity. 現在、この要求に応える高容量二次電池として、正極材にLiCoO 2等のリチウム含有遷移金属酸化物を用い、負極活物質に炭素系材料を用いたリチウムイオン二次電池が商品化されている。 Currently, as a high-capacity secondary battery to meet such a demand, a lithium-containing transition metal oxides such as LiCoO 2 in the positive electrode material, a lithium ion secondary battery using the carbon material have been commercialized in the negative electrode active material . 上記リチウムイオン二次電池はエネルギ密度が高く、かつ小型、軽量化が図れることから、ポータブル電子機器の電源として多く利用されている。 The lithium ion secondary battery has a high energy density, and small, since the weight reduction can be achieved, are widely used as power sources for portable electronic devices.

さらに近年は、リチウムイオン二次電池は、民生用用途に限らず、バイク、車載等の産業用用途に展開されつつあり、リチウムイオン二次電池について高容量化および高入出力化が求められている。 Further in recent years, lithium ion secondary battery is not limited to civilian applications, bikes, are being deployed in industrial applications vehicle such as a high capacity and high output of the obtained for lithium ion secondary batteries there. そのために電池の反応物質として使用されている正極の複合金属リチウム酸化物や負極の炭素材自体の高容量化や高入出力化が図られると共に、電池設計面から電極比表面積の増加による見掛け充放電の電流密度の低減化、さらにはセパレータの薄形化等によるセパレータ抵抗の低減などによって大電流充放電時の高容量化ならびに耐久性の工夫がなされてきた。 With high capacity and high output of the complex metal lithium oxide and the negative electrode carbon material itself of the positive electrode used for the as a reactant of the battery is achieved, apparent charge due to the increase of the electrode specific surface area from cell design surface reduction of the discharge current density, more high capacity and durability for improvement in the time of large current charge and discharge have been made, such as by reducing the separator resistance by thinning or the like of the separator.

現在のリチウム電池に用いられている正極活物質の電子伝導性はさほど高くなく、半導体に属するものが多いので、電極の導電性を確保するため、正極活物質粉末に導電材の粉末を加え、結着剤(バインダー)によってペーストにした正極合剤を金属箔に塗布して正極材が形成されている。 The electronic conductivity of the cathode active material used in the current lithium battery not so high, because many of them belonging to the semiconductor, for securing the conductivity of the electrode, the powder of the conductive material in the positive electrode active material powder was added, binder a positive electrode mixture was paste by (a binder) is applied to the metal foil positive electrode material is formed. 従来、この導電剤にはカーボン、アセチレンブラック、グラファイト等が用いられている。 Conventionally used carbon, acetylene black, graphite or the like to the conductive material.

例えば、特開2000−208147号公報(特許文献1)には、正極活物質粒子の表面に微細なカーボンブラック粉末が付着し、正極活物質粒子の隙間に天然黒鉛と炭素繊維が充填された正極構造が記載されている。 Positive example, Japanese 2000-208147 (Patent Document 1), a fine carbon black powder is attached to the surface of the positive electrode active material particles, natural graphite and carbon fibers are filled in the gap of the positive electrode active material particles structure have been described. また、特開2006−86116号公報(特許文献2)には、正極活物質と共に炭素系導電材を含む正極構造が記載されており、該炭素系導電材としてナノサイズの炭素繊維が用いられている。 Further, Japanese Patent 2006-86116 (Patent Document 2), a cathode active material have been described positive electrode structure comprising a carbon-based conductive material with, in the carbon fiber nano-sized is used as carbon Motokei conductive material there. さらに、特開2004−220909号公報(特許文献3)には、正極活物質粒子の間にカーボンナノファイバーを充填した正極構造が記載されている。 Further, Japanese 2004-220909 (Patent Document 3), a positive electrode structure filled with carbon nanofibers between the positive electrode active material particles.

また、特開2008−66053号公報(特許文献4)には、負極活物質として、コアの炭素粒子の表面や内部に形成された特殊構造の繊維状炭素繊維との極微細孔を有する複合炭素材を用いることによって出力特性および低温特性の改善を図ったものが記載されている。 Further, JP-A-2008-66053 (Patent Document 4), as the negative electrode active material, a composite carbonitride having very fine pores of the fibrous carbon fiber of the special structure formed on the surface or inside of the carbon particles of the core those for improving the output characteristic and low-temperature characteristics by using a material is described.

電池の高率放電特性は正極中の導電材の含有量を増すことによって高めることができるが、導電材の含有量が多くなると、相対的に正極中のリチウム含有遷移金属酸化物の含有量が低下し、放電容量が減少すると云う問題を生じる。 Although high-rate discharge characteristics of the battery can be enhanced by increasing the content of the conductive material in the positive electrode, the content of the conductive material increases, the content of the lithium-containing transition metal oxide in a relatively positive electrode reduced, resulting in a problem that the discharge capacity decreases. また、導電材として従来使用されているカーボン、アセチレンブラック、グラファイトなど、および通常のカーボンナノファイバー、カーボンナノチューブを正極材に分散させるためには分散剤が使用され、その分散剤が、反応中に分解してガスが発生するなどの問題があった。 Also, carbon is conventionally used as a conductive material, acetylene black, graphite, etc., and conventional carbon nanofibers, dispersant for dispersing the carbon nanotubes in the cathode material is used, the dispersing agent is present in the reaction decomposed gas there was a problem, such as generated.

さらに、従来の導電材として用いられる炭素系材料は正極活物質の粒子相互の隙間に充填されており、このため比較的多量の導電材を必要としている。 Further, the carbon-based material used as a conventional electrically conductive material is filled into the particle gaps between the positive electrode active material, it is in need of this relatively large amount of the conductive material. また、コアの炭素粒子とその表面や粒子内部に形成された特殊構造の繊維状炭素からなる極微細孔を有する複合炭素材を負極活物質として用いるものは、その極微細孔の制御が難しいなどの問題がある。 Moreover, those using a composite carbon material having a very fine pore consisting of fibrous carbon of the special structure formed of carbon particles of the core and on the surface and inside the particle as a negative electrode active material, such as it is difficult to control the very fine pores there is a problem.

また、これまでに提案されてきた高容量化や高入出力化に対する改善手段は、容量を増大できるが、大電流の充放電でのサイクル寿命性能や安全性という観点では、産業用の用途への適用を考慮した場合に問題がある。 Moreover, improved means for high capacity and high output of which have been proposed so far can increase the capacity, in terms of cycle life performance and safety in the charge and discharge of a large current, the application of the industrial there is a problem when considering the application of the.
特開2000−208147号公報 JP 2000-208147 JP 特開2006−086116号公報 JP 2006-086116 JP 特開2004−220909号公報 JP 2004-220909 JP 特開2008−066053号公報 JP 2008-066053 JP

本発明の目的は、低抵抗で大電流の充放電における高入出力化と安全上の発熱抑制を可能にしたリチウムイオン二次電池を提供することにある。 An object of the present invention is to provide a lithium ion secondary battery enables high output of the heat generation limit safety during charge and discharge of a large current at low resistance.

本発明によれば、以下の構成によって上記課題を解決したリチウムイオン二次電池が提供される。 According to the present invention, a lithium ion secondary battery which has solved the above problems is provided by the following arrangement.
〔1〕リチウム含有化合物からなる正極活物質を含む正極材と、リチウムイオンの吸蔵・放出が可能な負極活物質を含む負極材とが、セパレータを介して積層あるいは捲回され、非水電解液と共に密封され、該非水電解液にリチウム塩が溶解されているリチウムイオン二次電池において、正極活物質および負極活物質の粒子表面に微細炭素繊維が網目状に付着していることを特徴とするリチウムイオン二次電池。 [1] A positive electrode material containing a positive electrode active material composed of a lithium-containing compound, a negative electrode material containing a negative electrode active material capable of intercalating and deintercalating lithium ions are laminated or wound via a separator, a non-aqueous electrolyte solution sealed with a lithium ion secondary battery lithium salt nonaqueous electrolyte is dissolved, the fine carbon fibers on the surface of the particles of the cathode active material and the anode active material is equal to or adhering to the mesh-like lithium ion secondary battery.
〔2〕微細炭素繊維の表面の全部または一部が親水性基で修飾されている上記[1]に記載するリチウムイオン二次電池。 [2] a lithium ion secondary battery in which all or part of the surface of the fine carbon fibers are described in [1], which is modified with a hydrophilic group.
〔3〕平均粒径60nm〜10μmの正極活物質、平均粒径3μm〜7μmの負極活物質に対して平均繊維径1nm〜100nmおよびアスペクト比5以上の微細炭素繊維が網目状に付着している上記[1]または上記[2]に記載するリチウムイオン二次電池。 [3] The positive electrode active material having an average particle size of 60Nm~10myuemu, average fiber diameter 1nm~100nm and aspect ratio of 5 or more of the fine carbon fiber for a negative electrode active material having an average particle size 3μm~7μm is attached to the mesh-like lithium-ion secondary battery according to [1] or [2].
〔4〕微細炭素繊維の含有量が、正極活物質または負極活物質100質量部に対し、0.5質量部〜15質量部である上記[1]〜上記[3]の何れかに記載するリチウムイオン二次電池。 [4] the content of the fine carbon fibers, to positive electrode active material or negative electrode active material 100 parts by weight, according to any one of [1] to [3] above is 0.5 part by weight to 15 parts by weight lithium ion secondary battery.
〔5〕正極材および負極材が活物質より微細な炭素粉末をさらに含有する上記[1]〜上記[4]の何れかに記載するリチウムイオン二次電池。 [5] positive electrode material and negative electrode material is a lithium-ion secondary battery according to any one of [1] to [4] above, further containing a fine carbon powder from the active material.
〔6〕正極活物質がリチウム含有遷移金属酸化物粒子である上記[1]〜上記[5]の何れかに記載するリチウムイオン二次電池。 [6] [1] a positive electrode active material is a lithium-containing transition metal oxide particles-lithium ion secondary battery according to any one of [5].
〔7〕正極活物質のリチウム含有遷移金属酸化物がLiCoO 2 、Li(Ni x /Mn y /Co z )O 2 (x+y+z=1)、LiMn 24 、LiCoPO 4 、LiFePO 4 、LiNiVO 4 、LiCoVO 4 、LiMnCoO 4 、LiMnCrO 4 、LiMn 1.5 Ni 0.54からなる群より選ばれた少なくとも1種、または上記組成の一部を金属元素で置換した非化学量論的化合物からなる群より選ばれた少なくとも1種の何れか又は双方を含む化合物である上記[6]に記載するリチウムイオン二次電池。 [7] The lithium-containing transition metal oxide positive electrode active material is LiCoO 2, Li (Ni x / Mn y / Co z) O 2 (x + y + z = 1), LiMn 2 O 4, LiCoPO 4, LiFePO 4 consists LiNiVO 4, LiCoVO 4, LiMnCoO 4 , LiMnCrO 4, LiMn 1.5 Ni 0.5 O 4 at least one selected from the group consisting of, or non-stoichiometric compounds a portion of the composition was replaced with a metal element at least one lithium ion secondary battery according to [6] is any or compounds containing both selected from the group.
〔8〕負極活物質が天然黒鉛、人造黒鉛、合成黒鉛、メソカーボンマイクロビーズ、有機物の黒鉛化材料、石炭、コークス、PAN系炭素繊維、ピッチ系炭素繊維、またはLi 4 Ti 512 、あるいはSn、Si等の合金系である上記[1]〜上記[7]の何れかに記載するリチウムイオン二次電池。 [8] the negative electrode active material is natural graphite, artificial graphite, synthetic graphite, mesocarbon microbeads, graphitized materials of organic, coal, coke, PAN-based carbon fibers, pitch-based carbon fiber or Li 4 Ti 5 O 12, or, sn, the [1] is an alloy system such as Si ~ a lithium ion secondary battery according to any one of [7].

本発明のリチウムイオン二次電池は、正極活物質および負極活物質として粒子表面に微細炭素繊維が網目状に分散して付着したものを用いているので、比較的少量の炭素繊維量で高い導電性を有し、従って、正極中のリチウム含有化合物の含有量を十分に確保することができるので、充放電容量が大きく、電池の出力を高めることができる。 The lithium ion secondary battery of the present invention, since the positive and negative electrode active materials as the fine carbon fibers on the particle surface is used as the adhering dispersed in a network form, high conductivity with a relatively small amount of carbon fiber content have sex, therefore, since the content of the lithium-containing compound in the positive electrode can be sufficiently secured, charge and discharge capacity is large, it is possible to increase the output of the battery.

また、本発明のリチウムイオン二次電池は、活物質表面の微細炭素繊維は酸処理によって親水化し、表面に親水基が修飾したものを用いることによって、分散剤を用いずに活物質表面に均一な網目構造の炭素繊維膜を形成することができ、分散剤に起因するガス発生の問題がなく、サイクル寿命や安全性の高い電池を得ることができる。 The lithium ion secondary battery of the present invention, fine carbon fibers of the active material surface is hydrophilized by acid treatment, by using what hydrophilic groups are modified on the surface, uniform surface of the active material without using a dispersing agent carbon fiber film network structure can be formed, there is no gas generation problems due to the dispersant, it is possible to obtain a high cycle life and safety cell.

本発明のリチウムイオン二次電池において、好ましくは、平均粒径60nm〜10μmの正極活物質粒子、および平均粒径3μm〜7μm負極活物質に対して、微細炭素繊維として平均繊維径1nm〜100nmおよびアスペクト比5以上のカーボンナノファイバーを用いることによって、活物質の粒子表面に微細炭素繊維の均一な網目層を形成することができ、少量の炭素繊維量、例えば、活物質100質量部に対して、微細炭素繊維の含有量が0.5〜15質量部、好ましくは1〜10質量部の含有量によって、充放電容量および出力特性やサイクル特性に優れる二次電池を得ることができる。 In the lithium ion secondary battery of the present invention, preferably, the positive electrode active material particles having an average particle diameter 60Nm~10myuemu, and with respect to the average particle diameter 3μm~7μm anode active material, the average fiber diameter 1nm~100nm and as fine carbon fibers by using an aspect ratio of 5 or more carbon nanofibers, on the surface of the particles of the active material can form a uniform network layer of fine carbon fibers, small amounts of carbon fiber content, for example, with respect to the active material 100 parts by weight , the content is 0.5 to 15 parts by weight of the fine carbon fibers can be preferably the amount of 1 to 10 parts by weight, to obtain a secondary battery excellent in charge and discharge capacity and output characteristics and cycle characteristics.

本発明のリチウムイオン二次電池は、好ましくは、正極材および負極材が活物質より微細な炭素粉末をさらに含有することによって微細炭素粉末が活物質の粒子相互の隙間に入り込み、例えば、炭素粉末の含有量が正極活物質100質量部に対して0.5〜5質量部、好ましくは1〜3質量部の炭素粉末を含有することによって正極材および負極材の導電性をさらに向上させることができる。 The lithium ion secondary battery of the present invention, preferably, the fine carbon powder by positive electrode material and negative electrode material further contains a fine carbon powder from the active material enters the gap between the particles mutual active material, e.g., carbon powder 0.5-5 parts by mass with respect to the content of the positive electrode active material 100 parts by weight, preferably to further improve the conductivity of the positive electrode material and negative electrode material by containing carbon powder 1-3 parts by weight it can.

本発明の正極材は、正極活物質としてリチウム含有化合物が用いられ、主としてリチウム含有遷移金属酸化物粒子が用いられる。 Positive electrode material of the present invention, a lithium-containing compound is used as a positive electrode active material, lithium-containing transition metal oxide particles are mainly used. 具体的には、例えば、LiCoO 2 、Li(Ni x /Mn y /Co z )O 2 (x+y+z=1)、LiMn 24 、LiCoPO 4 、LiFePO 4 、LiNiVO 4 、LiCoVO 4 、LiMnCoO 4 、LiMnCrO 4 、LiMn 1.5 Ni 0.54からなる群より選ばれた少なくとも1種、または上記組成の一部を金属元素で置換した化合物を用いる。 Specifically, for example, LiCoO 2, Li (Ni x / Mn y / Co z) O 2 (x + y + z = 1), LiMn 2 O 4, LiCoPO 4, LiFePO 4, LiNiVO 4, LiCoVO 4, LiMnCoO 4, LiMnCrO 4, LiMn 1.5 Ni 0.5 O 4 at least one selected from the group consisting of or a compound in which a part of the above composition were replaced with metal elements. また、Li含有繊維金属酸化粒子以外にLiTiS 2等の硫化物も用いることができる。 It can also be used sulfide 2 such LiTiS Besides Li-containing fiber metal oxide particles. これらのリチウム含有化合物を用いることによって、充放電サイクルに優れたリチウムイオン電池を得ることができる。 By using these lithium-containing compounds, it is possible to obtain excellent lithium ion battery charge and discharge cycles.

本発明の負極材は、負極活物質としてリチウムイオンを吸蔵・放出することができる物質が用いられる。 The negative electrode material of the present invention, materials capable of occluding and releasing lithium ions as the negative electrode active material is used. 具体的には、例えば、主としてグラファイト系として天然黒鉛、人造黒鉛、合成黒鉛、メソカーボンマイクロビーズ、有機物の黒鉛化材料、炭素系材料としては、石炭、コークス、PAN系炭素繊維、ピッチ系炭素繊維を好適に用いることができ、非炭素系材料としては、Si系、Sn系、Ti系などLi吸蔵材を好適に用いることができる。 Specifically, for example, primarily natural graphite, artificial graphite as a graphite-based, synthetic graphite, mesocarbon microbeads, graphitized materials of organic, as the carbonaceous material, coal, coke, PAN-based carbon fibers, pitch-based carbon fibers may be used suitably as the non-carbon-based material, Si-based, Sn-based, it can be suitably used Ti-based, such as Li-absorbing material.

以下、本発明を実施形態に基づいて具体的に説明する。 It will be specifically described based on an embodiment of the present invention.
本発明のリチウムイオン二次電池は、リチウム含有化合物からなる正極活物質を含む正極材と、リチウムイオンの吸蔵・放出が可能な負極活物質を含む負極材とが、セパレータを介して積層あるいは捲回されて、非水電解液と共に密封され、該非水電解液にリチウム塩が溶解されているリチウムイオン二次電池において、正極活物質および負極活物質の粒子表面に微細炭素繊維が網目状に付着していることを特徴とするリチウムイオン二次電池である。 The lithium ion secondary battery of the present invention includes a positive electrode material containing a positive electrode active material composed of a lithium-containing compound, a negative electrode material containing a negative electrode active material capable of intercalating and deintercalating lithium ions, laminated or wound via a separator wound and is sealed with a non-aqueous electrolyte solution, deposited in the lithium ion secondary battery lithium salt nonaqueous electrolyte is dissolved, the fine carbon fibers in a mesh shape on the particle surfaces of the positive and negative electrode active materials is a lithium ion secondary battery, characterized that.

リチウムイオン二次電池の構造の一例を図1に示す。 An example of a structure of the lithium ion secondary battery shown in FIG. 図示するように、容器10の内部に正極材11と負極材12が交互に積層された積層体14が非水電解液と共に密封されている。 As illustrated, the laminate 14 cathode material 11 and anode material 12 in the container 10 are alternately laminated is sealed with a non-aqueous electrolyte solution. 正極材11は、正極活物質と導電材が結着剤のペースト中に含有され、基本的に該ペーストをアルミニウム合金箔の両面に塗布して形成されている。 Positive electrode 11, positive electrode active material and the conductive material is contained in the paste binder, it is formed by applying basically the paste on both surfaces of an aluminum alloy foil. 正極活物質には主としてリチウムイオン源となるリチウム遷移金属複酸化物粉末などが用いられている。 Lithium transition metal complex oxide powder mainly comprising a lithium ion source to the positive electrode active material is used. 負極材12は、負極活物質が結着剤のペースト中に含有され、基本的には該ペーストを銅合金箔の両面に塗布して形成されている。 Negative electrode material 12, negative electrode active material is contained in the paste of the binder is basically formed by coating the paste on both sides of a copper alloy foil. 負極活物質にはリチウムイオンを吸蔵・放出することができる黒鉛粉末などが用いられている。 Such as graphite powder capable of occluding and releasing lithium ions is used for the negative electrode active material. また、必要に応じ、導電性を高めるために炭素粉末が黒鉛粉末と共にペースト中に含まれている。 If necessary, carbon powder to enhance conductivity is contained in the paste together with the graphite powder.

正極材11と負極材12は帯状をなし、セパレータ13を介してロール状に積層されている。 Cathode material 11 and anode material 12 forms a strip, are stacked in a roll with a separator 13. セパレータ13にはポリオレフィン系樹脂等の多孔質フィルムが用いられている。 The separator 13 is used is a porous film such as a polyolefin resin. セパレータ13を介して積層された一対の正極材11と負極材12は絶縁材(図示省略)を介して捲回積層されており、このロール状の積層体14は非水電解質と共に上記容器10に収納されている。 A pair of cathode material 11 and anode material 12 which are layered with a separator 13 are laminated Kai wound through an insulating material (not shown), the laminate 14 of this rolled in the container 10 with a non-aqueous electrolyte It is housed. 該積層体14の頭部側には捲回中心軸にリードを接続して正極20が形成されており、積層体14の底部側はリードを介して負極21が形成されている。 The head side of the laminate 14 is formed with a positive electrode 20 was connected to a lead to the winding center axis, the bottom side of the stack 14 is the anode 21 through the lead form.

非水電解液としてはエチレンカーボネイト(EC)などの有機溶媒中にリチウム塩として6フッ化リン酸リチウム(LiPF 6 )などを溶解したものなどが用いられている。 Non-aqueous such as those prepared by dissolving and lithium hexafluorophosphate as a lithium salt in an organic solvent such as ethylene carbonate (EC) (LiPF 6) is used as the electrolyte. なお、図示する構造は一例であり、本発明のリチウムイオン二次電池の構造は図示するものに限らない。 The structure illustrated is an example, the structure of the lithium ion secondary battery of the present invention is not limited to those illustrated.

本発明のリチウムイオン二次電池は、正極活物質の粒子表面、および負極活物質の粒子表面に微細炭素繊維が網目状に付着していることを特徴とする。 The lithium ion secondary battery of the present invention, the particle surface of the positive electrode active material, and the particle surface of the negative electrode active material fine carbon fibers, characterized in that attached to the mesh-like. この微細炭素繊維は平均繊維径1nm〜100nmおよびアスペクト比5以上のカーボンナノファイバーが好ましい。 The fine carbon fibers preferably have an average fiber diameter 1nm~100nm and aspect ratio of 5 or more carbon nanofibers. 該カーボンナノファイバーは、良好な導電性が得られるように、該ファイバー粉末の圧密体の体積抵抗値1.0Ωcm以下、X線回折測定によるグラファイト層の[002]面の積層間隔が0.35nm以下であるものが好ましい。 The carbon nanofibers as good conductivity is obtained, the fiber volume resistivity of the compacted body of powdered 1.0Ωcm or less, laminated distance [002] face of the graphite layer by X-ray diffraction measurement is 0.35nm in it it is preferable below. 正極活物質および負極活物質の粒子表面に微細炭素繊維による均一な網目状被膜が形成されることによって、導電性が格段に向上する。 By uniform reticulated coating the particle surface of the positive electrode active material and the anode active material according to the fine carbon fibers are formed, conductivity is remarkably improved.

上記微細炭素繊維はその表面を酸化処理によって親水化し、表面に親水基を修飾させたものが好ましい。 The fine carbon fiber is hydrophilized the surface by oxidation treatment, it is preferable obtained by modifying a hydrophilic group on the surface. 一般に炭素粉末や炭素繊維は水中で凝集する傾向が強く、均一に分散させるのが困難であるため、従来の炭素粉末や炭素繊維は分散剤を必要とする。 Generally carbon powder or carbon fibers have a strong tendency to aggregate in water, because to uniformly disperse difficult, the conventional carbon powder or carbon fibers require a dispersant. 一方、表面に親水基を有する微細炭素繊維は分散剤を用いずに水溶液中で均一に分散するので、分散剤を必要とせずに活物質表面に均一な網目構造の炭素繊維膜を形成することができる。 On the other hand, since the fine carbon fibers having a hydrophilic group on the surface is uniformly dispersed in an aqueous solution without using a dispersing agent, to form a carbon fiber layer having a uniform network structure surface of the active material without the need for a dispersing agent can.

酸化処理の方法は乾式法および湿式法のいずれでもよい。 The method of oxidation treatment can be either a dry method and a wet method. 例えば、微細炭素繊維に硫酸などの硫黄含有強酸を添加し、硝酸などの酸化剤を加え、このスラリーを加熱下で攪拌した後、濾過し、残留する酸を洗浄して除去すればよい。 For example, the addition of sulfur-containing strong acid such as sulfuric acid in the fine carbon fibers, adding an oxidizing agent such as nitric acid, after stirring the slurry under heating, filtered, may be removed by washing the residual acid. この酸化処理によって微細炭素繊維の表面にカルボニル基やカルボキシル基あるいはニトロ基などの極性官能基が形成されるので親水化することができる。 Since polar functional groups such as carbonyl group or a carboxyl group or a nitro group on the surface of the fine carbon fibers by this oxidation process is formed can be made hydrophilic.

表面を酸化処理して親水化した微細炭素繊維を有機溶剤や水などの分散媒に分散させ、この分散液に結着剤と共に電極活物質(正極活物質および負極活物質)を加えることによって、電極活物質の粒子表面に分散状態を維持した微細炭素繊維が付着し、均一な網目状の被膜が形成される。 The fine carbon fibers hydrophilic by oxidizing the surface are dispersed in a dispersion medium such as an organic solvent or water, by adding an electrode active material (positive electrode active material and the negative electrode active material) together with a binder to the dispersion, fine carbon fibers remain dispersed on the particle surfaces of the electrode active material is adhered, uniform mesh film is formed.

結着剤としてはポリフッ化ビニリデン(PVdF)、カルボキシメチルセルロース(CMC)、スチレンブタジエン共重合体エマルジョン(SBR)、ポリビニールアルコール(PVA)、シリコンエマルジョンなどが用いられる。 Examples of the binder polyvinylidene fluoride (PVdF), carboxymethylcellulose (CMC), styrene-butadiene copolymer emulsion (SBR), polyvinyl alcohol (PVA), silicon emulsion is used. 結着剤の量は、活物質100質量部に対して0.5〜10質量部が適当であり、1〜5質量部が好ましい。 The amount of binder, 0.5 to 10 parts by mass is appropriate for the active material to 100 parts by mass, 1 to 5 parts by weight is preferred. この量が0.5質量部より少ないと付着不良になりやすく、10質量部より多いと結着剤によって導電性低下の影響が現れるようになるので適当ではない。 This amount tends to be poor adhesion is less than 0.5 part by weight are not suitable since become appear effects of conductive decreased by more and binder than 10 parts by weight.

本発明のリチウムイオン二次電池において、正極活物質には主としてリチウムイオン源となるリチウム含有酸化物が用いられる。 In the lithium ion secondary battery of the present invention, lithium-containing oxides mainly composed of a lithium ion source to the positive electrode active material is used. 例えば、リチウム含有遷移金属酸化物が用いられる。 For example, lithium-containing transition metal oxide is used. 具体的には、例えば、LiCoO 2 、Li(Ni x /Mn y /Co z )O 2 (x+y+z=1)、LiMn 24 、LiCoPO 4 、LiFePO 4 、LiNiVO 4 、LiCoVO 4 、LiMnCoO 4 、LiMnCrO 4 、LiMn 1.5 Ni 0.54からなる群より選ばれた少なくとも1種、または上記組成の一部を金属元素で置換した非化学量論的化合物からなる群より選ばれた少なくとも1種の何れか又は双方を含む化合物を用いることができる。 Specifically, for example, LiCoO 2, Li (Ni x / Mn y / Co z) O 2 (x + y + z = 1), LiMn 2 O 4, LiCoPO 4, LiFePO 4, LiNiVO 4, LiCoVO 4, LiMnCoO 4, LiMnCrO 4, LiMn 1.5 Ni 0.5 O 4 at least one selected from the group consisting of, or at least a portion of the composition selected from the group consisting of non-stoichiometric compounds substituted with a metal element It may be a compound containing either or both species.

例示される上記リチウム含有遷移金属酸化物のうち、LiFePO 4または該化合物のFeの一部を金属元素で置換した化合物は、他のリチウム含有遷移金属酸化物粒子に比して、一次粒子径が50〜100nmであって、凝集二次粒子径が1〜3μmと極めて小さく、本発明の微細炭素繊維の導電材として微細網目を形成しやすく、より好ましい。 Among the lithium-containing transition metal oxides exemplified compounds a part of Fe of LiFePO 4 or the compound was replaced by a metal element, relative to other lithium-containing transition metal oxide particles, the primary particle size a 50 to 100 nm, agglomerated secondary particle size is extremely small as 1 to 3 [mu] m, easily forming a fine mesh as a conductive material of the fine carbon fiber of the present invention, more preferable.

負極活物質としては、主として天然黒鉛、人造黒鉛、合成黒鉛、メソカーボンマイクロビーズ、有機物の黒鉛化材料、石炭、コークス、PAN系炭素繊維、ピッチ系炭素繊維などの炭素材料を用いることができる。 As the negative electrode active material, it can be used mainly natural graphite, artificial graphite, synthetic graphite, mesocarbon microbeads, graphitized materials of organic, coal, coke, PAN-based carbon fiber, a carbon material such as pitch-based carbon fibers.

正極活物質粒子は平均粒径60nm〜10μmのものが好ましく、負極活物質粒子は平均粒径3μm〜7μmのものが好ましい。 The positive electrode active material particles preferably have an average particle size 60Nm~10myuemu, the anode active material particles preferably have an average particle diameter of ranges from 3 m to 7 m. この粒子径の活物質粒子に対して平均繊維径1nm〜100nmおよびアスペクト比5以上の微細炭素繊維を用い、1μm以下の活物質には平均繊維径が数十nmの微細炭素繊維を用いるとよい。 Using the average fiber diameter 1nm~100nm and aspect ratio of 5 or more carbon fibers relative to the active material particles in this particle size, the following active material 1μm or the average fiber diameter is used several tens nm of the fine carbon fibers .

微細炭素繊維の含有量は、正極活物質または負極活物質100質量部に対し、0.5質量部〜15質量部が適当である。 The content of the fine carbon fibers, to positive electrode active material or negative electrode active material 100 parts by mass, suitably to 15 parts by weight 0.5 parts by weight. 微細炭素繊維の含有量が0.5質量部よりすくないと導電性を十分に高めることができず、15質量部より多いと、例えば、正極活物質の含有量が相対的に少なくなるので好ましくない。 Can not be the content of the fine carbon fiber is sufficiently enhanced than not combing when the conductive 0.5 part by weight, the more than 15 parts by weight, for example, since the content of the positive electrode active material is relatively reduced undesirable .

微細炭素繊維と共に活物質よりも微細な炭素粉末、例えば平均一次粒径10nmのカーボンブラック等を併用することができる。 Fine carbon powder than the active material with the fine carbon fibers, for example, can be used in combination of carbon black having an average primary particle diameter of 10 nm. 微細な炭素粉末を併用することによって、この炭素粉末が活物質の粒子相互の隙間に入り込み導電性をさらに高めることができる。 By a combination of fine carbon powder, carbon powder can be further enhanced conductive enter the particle gaps between the active material. 上記炭素粉末は、微細炭素繊維と共に、あるは微細炭素繊維の添加前後に、分散液に添加すればよい。 The carbon powder, together with the fine carbon fibers, before or after a certain addition of the fine carbon fibers may be added to the dispersion.

炭素粉末の含有量は、活物質100質量部に対して0.5〜5質量部が適当であり、1〜3質量部が好ましい。 The content of the carbon powder is 0.5 to 5 parts by weight is appropriate for the active material to 100 parts by mass, 1 to 3 parts by weight is preferred. この量が0.5質量部より少ないと炭素粉末を併用する効果が乏しく、5質量部より多いと微細炭素繊維との合計量が多くなり正極活物質の量が相対的に少なくなるので好ましくない。 This amount is poor effect of combined use fewer carbon powder than 0.5 part by weight, since the amount of the total amount is large becomes positive electrode active material is more than 5 parts by weight with fine carbon fiber is relatively small is not preferable . また、微細炭素繊維を用いる利点を高めるには該炭素粉末の量は微細炭素繊維の量より少ないほうが好ましい。 The amount of the carbon powder to enhance the benefits of using the fine carbon fiber is preferably lesser than the amount of the fine carbon fibers.

上記炭素粉末としては、導電性カーボンブラック、ケッチェンブラック、アセチレンブラック、石炭、コークス、ポリアクリロニトリル系炭素繊維、ピッチ系炭素繊維、有機物の炭素化品、天然黒鉛、人造黒鉛、合成黒鉛、メソカーボンマイクロビーズ、有機物の黒鉛化品および黒鉛繊維などからなる粉末を用いることができる。 As the carbon powder, conductive carbon black, Ketjen black, acetylene black, coal, coke, polyacrylonitrile-based carbon fibers, pitch-based carbon fibers, organic carbonization products, natural graphite, artificial graphite, synthetic graphite, mesocarbon it can be used microbeads, powder made of graphitized products and graphite fibers organics.

正極材および負極材の製造方法の一例を以下に示す。 An example of a positive electrode material and negative electrode material manufacturing method described below.
〔微細炭素繊維分散液の製造〕 Production of the fine carbon fiber dispersion]
カーボンナノファイバー(CNF:平均繊維径20nm)を硝酸(濃度60%)と硫酸(濃度95%以上)の混合液にCNF:硝酸:硫酸=1重量部:5重量部:15重量部の割合で混合し、加熱して表面酸化処理を行った。 Carbon nanofibers: a mixed solution of sulfuric acid and (CNF average fiber diameter 20 nm) nitric acid (concentration 60%) (concentration of 95%) CNF: nitric acid: sulfuric acid = 1 part by weight: 5 parts by weight: a ratio of 15 parts by weight mixed, was heated to a surface oxidation treatment. 得られた溶液を濾過し、数回水洗を行って残留する酸を洗い流した。 The resulting solution was filtered to wash away the acid remaining several times to washing with water. その後、乾燥して粉末化し、その粉末をN-メチルピロリドン(NMP)に溶解させてCNF分散液を調製する。 Thereafter, dried and powdered, the powder was dissolved in N- methylpyrrolidone (NMP) to prepare a CNF dispersion.

〔正極材の作製〕 Preparation of positive electrode]
正極活物質粉末(リチウム含有遷移金属酸化物粉末:LiFePO 4等)を、結着剤(ポリフッ化ビニリデン:PVdF等)と共に、上記CNF分散液に加えて攪拌することによって正極活物質粉末表面にCNFが均一に網目状に付着した正極活物質スラリーを調製する。 The positive electrode active material powder: the (lithium-containing transition metal oxide powder LiFePO 4, etc.), binder: with (polyvinylidene fluoride PVdF or the like), the positive electrode active material powder surface by stirring in addition to the CNF dispersion CNF uniformly to prepare a positive electrode active material slurry adhering to the mesh shape. この正極活物質スラリーをアルミニウム箔(正極集電体)の両面に塗布乾燥し、圧延して正極フィルムを作製し、この正極フィルムを切断して正極を作製する。 The positive electrode active material slurry was coated and dried on both surfaces of an aluminum foil (positive electrode collector), rolled to produce a positive electrode film, to produce a positive electrode was cut this positive electrode film.

〔負極材の作製〕 Preparation of the negative electrode material]
負極活物質(黒鉛粉末等)を、結着剤(PVdF等)と共に、上記CNF分散液に加えて攪拌することによって黒鉛粉末表面にCNFが均一に網目状に付着した負極活物質スラリーを調製する。 Negative electrode active material (graphite powder or the like), a binder with (PVdF, etc.), to prepare a negative active material slurry adhering to the CNF is uniformly reticulated graphite powder surface by stirring in addition to the CNF dispersion . この負極活物質スラリーを銅箔(負極集電体)の両面に塗布乾燥し、圧延して負極フィルムを作製し、この負極フィルムを切断して負極を作製する。 The negative active material slurry was coated and dried on both surfaces of a copper foil (negative electrode collector), it rolled to produce a negative electrode film, to prepare a negative electrode by cutting the negative electrode film.

〔電池の作製〕 Preparation of Battery]
上記正極および負極を、ポリエチレン製セパレータを介し捲回して電極群とし、この電極群を円筒形の電池容器に挿入し、電解液を所定量注入して密封することによって円筒形リチウムイオン二次電池を得ることができる。 The positive and negative electrodes, an electrode group by winding via a polyethylene separator, the electrode group was inserted into a battery container of a cylindrical, cylindrical lithium ion secondary battery by sealing an electrolytic solution is a predetermined amount injected it is possible to obtain. 電解液にはEC、DMC、DECを体積比で25:60:15に混合した溶液中に6フッ化リン酸リチウム(LiPF 6 )を1モル/リットル溶解し、さらにその溶液にビニレンカーボネートを添加たものなどを用いることができる。 The electrolyte solution EC, DMC, 6 lithium hexafluorophosphate in a solution obtained by mixing the 25:60:15 a DEC at a volume ratio (LiPF 6) was dissolved 1 mol / liter, further addition of vinylene carbonate to the solution etc. can be used with.

〔正極の作製〕 Preparation of Positive Electrode
鉄燐酸リチウム粉末(D50:100nm)を正極活物質とし、この活物質90質量部に、導電材2質量部と、結着剤のポリフッ化ビニリデン8質量部を混合した。 Iron lithium phosphate powder: a (D50 100 nm) as the positive electrode active material, 90 parts by weight of the active material, a conductive material, 2 parts by mass were mixed 8 parts by weight of polyvinylidene fluoride binder. 導電材として直径10〜20nm、長さ0.1〜10μm、比表面積150〜200m 2 /g、表面の一部を親水性基により置換したカーボンナノチューブを用いた。 Conductive material as the diameter: 10 to 20 nm, length 0.1 to 10 [mu] m, a specific surface area of 150 to 200 m 2 / g, a portion of the surface with carbon nanotube substituted with a hydrophilic group. これに分散溶媒としてN−メチルピロリドンを添加し混練して正極合剤(スラリ)を作製した。 To prepare a positive electrode mixture (slurry) was added and kneaded with N- methylpyrrolidone as a dispersion solvent to this. このスラリを厚さ20μmのアルミニウム箔の両面に塗布し乾燥後に圧延し裁断して厚さ約150μmの正極を作製した。 To produce a positive electrode having a thickness of about 150μm in this slurry was applied to both surfaces of an aluminum foil having a thickness of 20μm was rolled after drying cut.

〔負極の作製〕 Preparation of negative electrode]
活物質として黒鉛粉末(D50:5μm)94質量部を用い、これに導電材1質量部と、結着剤のポリフッ化ビニリデン5質量部を混合した。 Graphite powder as the active material (D50: 5 [mu] m) with 94 parts by mass, and the conductive material 1 part by weight To this was mixed with 5 parts by mass of polyvinylidene fluoride binder. 導電材は正極と同様のものを用いた。 Conductive material used was the same as the positive electrode. これに分散溶媒としてN−メチルピロリドンを添加し混練して負極合剤(スラリ)を作製した。 To prepare a negative electrode mixture (slurry) was added and kneaded with N- methylpyrrolidone as a dispersion solvent to this. このスラリを厚さ10μmの銅箔の両面に塗布し乾燥後に圧延し裁断して厚さ約110μmの負極を作製した。 To produce a negative electrode having a thickness of about 110μm was rolled and cut after the slurry was applied to both sides of a copper foil having a thickness of 10μm and dried.

〔電池の作製〕 Preparation of Battery]
上記正極および負極を、厚さ20μmのポリエチレン製セパレータを介し捲回して電極群とし、この電極群を円筒形の電池容器に挿入し、電解液を所定量注入後、密封して円筒形リチウムイオン二次電池を作製した。 The positive and negative electrodes, an electrode group by winding via a polyethylene separator having a thickness of 20 [mu] m, and inserting the electrode group into the battery container of a cylindrical, after a predetermined amount injecting an electrolyte solution, sealed and cylindrical lithium ion a secondary battery was fabricated. 電解液にはEC、DMC、DECを体積比で25:60:15に混合した溶液中に6フッ化リン酸リチウム(LiPF 6 )を1モル/リットル溶解し、さらにその溶液にビニレンカーボネートを添加たものを用いた。 The electrolyte solution EC, DMC, 6 lithium hexafluorophosphate in a solution obtained by mixing the 25:60:15 a DEC at a volume ratio (LiPF 6) was dissolved 1 mol / liter, further addition of vinylene carbonate to the solution It was what was used. この電池の設計容量は1000mAhである。 Design capacity of the battery is 1000mAh.

〔試験例1〕 Test Example 1
導電材として直径100〜200nm、長さ5μm、比表面積20m 2 /g、表面に親水性基を有していないカーボンナノチューブ材料を用いた以外は実施例1と同様にして円筒形のリチウムイオン電池を得た。 Diameter 100~200nm as the conductive material, length 5 [mu] m, a specific surface area of 20 m 2 / g, the surface Similarly cylindrical lithium ion battery except for using the carbon nanotube material having no hydrophilic group Example 1 It was obtained. この電池の設計容量は実施例1と同様に1000mAhである。 Design capacity of the battery is 1000mAh as in Example 1.

〔試験例2〕 Test Example 2
負極材としてD50が15μmの黒鉛粉末を用い、かつ比較例1で用いた導電材を使用したこと以外は実施例1と同様にして円筒形のリチウムイオン電池を得た。 D50 is used graphite powder 15μm negative electrode material, and except for using a conductive material used in Comparative Example 1 to obtain lithium-ion batteries Similarly cylindrical first embodiment. この電池の設計容量は実施例1と同様に1000mAhである。 Design capacity of the battery is 1000mAh as in Example 1.

〔試験例3〕 [Test Example 3]
実施例1で使用した導電材を正極材および負極材にそれぞれ0.3質量%添加したこと以外は試験例1と同様にして円筒形のリチウムイオン電池を得た。 To obtain a lithium ion battery of a cylindrical conductive material as used in Example 1 except for adding each 0.3 wt% to the positive electrode material and negative electrode material in the same manner as in Test Example 1. この電池の設計容量は1000mAhである。 Design capacity of the battery is 1000mAh.

〔試験例4〕 Test Example 4]
実施例1で使用した導電材を正極材および負極材にそれぞれ15質量%添加したこと以外は上記試験例1と同様にして活物質スラリーの調製を試みたが、活物質スラリーを作ることができず、電池を作製できなかった。 Tried to prepare the active material slurry conductive material used in Example 1 except for adding each 15% by weight in the positive electrode material and negative electrode material in the same manner as in Test Example 1, it is possible to make the active material slurry It not, was not able to produce a battery. 従って、導電材(微細炭素繊維)の含有量は15質量%より少ないものが適当である。 Accordingly, the content of the conductive material (carbon fibers) is suitably those less than 15 wt%.

実施例1および試験例1〜3の電池について充放電試験を行い、放電レート試験容量および電流―電圧特性より算出した直流抵抗値を比較した。 Subjected to charge-discharge test for batteries of Examples 1 and Test Examples 1 to 3, a discharge rate test capacity and current - comparing direct current resistance value calculated from the voltage characteristic.

〔容量試験〕 [Capacity test]
4.0V充電状態の電池を、それぞれ5時間率(0.2C、0.2A)、1時間率(1C、1A)、1/2時間率(2C、2A)、1/3時間率(3C、3A)、および1/5時間率(5C、5A)にて終止電圧である2.0Vまで放電し、電流値と時間の積にて容量を求めた。 The battery of 4.0V charge state, respectively 5-hour rate (0.2 C, 0.2 A), 1 hour rate (1C, 1A), 1/2-hour rate (2C, 2A), 1/3-hour rate (3C , 3A), and 1/5 hour rate (5C, and discharged to 2.0V is end voltage at 5A), to determine the capacity at the product of the current value and time. 放電レート容量試験の結果を図2に示す。 The results of the discharge rate capacity test is shown in FIG. 容量についてはそれぞれの電池での5時間率放電容量を100%ととして基準値とし、各放電率時の容量を5時間率容量に対する比率としてプロットした。 A reference value for 5-hour rate discharging capacity as 100% in each of the batteries for the volume were plotted capacity during each discharge rate as a percentage of 5-hour rate capacity.

図2に示すように、試験例3は導電材の量が少なく、放電時の電極内での電子伝導抵抗が大きくなり、大電流放電時には容量が低下するので、導電材の含有量は0.3質量%より多いものが適当である。 As shown in FIG. 2, Test Example 3 has less amount of conductive material, electron conduction resistance in the electrode during discharge increases, the capacitance decreases at the time of large current discharge, the content of the conductive material is 0. more than 3% by weight as is appropriate. 試験例1は実施例1に比べて放電電流が高くなると容量維持率が低下するので、導電材として用いる微細炭素繊維は表面を親水化処理したものが好ましい。 Since Test Example 1 the discharge current becomes higher capacity retention rate is lowered as compared with Example 1, fine carbon fiber used as the conductive material is preferably one hydrophilic treatment of the surface.

本発明の実施例1は、導電材として用いる微細炭素繊維の導電性に加えて、正極活物質粒子および負極活物質粒子の粒子どうしの接触が良好であり、高い導電性を有するので、大電流放電時の容量が大きい。 Example 1 of the present invention, in addition to the conductive fine carbon fiber to be used as the conductive material, the contact of the particles with each other of the positive electrode active material particles and the negative electrode active material particles is good, because it has a high conductivity, a large current capacity at the time of discharge is large. また、実施例1の電池は、5C放電時の発熱は試験例1〜3の電池に比べて約5℃低く、電子伝導性が放熱性を良好にして電池の発熱抑制効果も有していることが確認された。 Further, the battery of Example 1, the heat generation during 5C discharge about 5 ° C. lower than the batteries of Test Examples 1 to 3, the electron conductivity also has heat generation suppressing effect of the good in to the battery heat dissipation it has been confirmed.

〔直流抵抗比較試験〕 [DC resistance comparative test]
25℃±2℃の雰囲気温度にて、電池の有する容量の50%の容量を1時間率(1A)定電流にて放電し、次いで0.2A、1A、2A、3A、5Aそれぞれの電流で10秒間放電して10秒後の電池電圧を測定した。 At ambient temperature of 25 ° C. ± 2 ° C., and discharged 50% of the capacity of the capacitance of the battery at 1 hour rate (1A) constant current, then 0.2 A, 1A, 2A, 3A, 5A at respective current discharge to 10 seconds to measure the battery voltage after 10 seconds. その際、各10秒間の放電後にはそれぞれの電流で放電した電気容量に相当する電気量を1A電流にてそれぞれの所定量の充電を行い、かつ10分間の休止期間を設けて試験を行った。 At that time, after the discharge of each 10 seconds charges the respective predetermined amounts electricity quantity corresponding to the electric capacity was discharged at each current at 1A current, and tested to provide a rest period of 10 minutes . 得られた電圧値を用いて横軸に電流、縦軸に電圧の相関プロットを描き、その一次近似直線関係の傾きを求めてその値を直流抵抗とした。 The resulting current on the horizontal axis using the voltage value, draw a correlation plot of the voltage on the vertical axis, and the value and the DC resistance seeking inclination of the primary approximate straight line relationship. この結果を表1に示した。 The results are shown in Table 1.

表1に示すように、電池の直流抵抗値は実施例1が最も小さく、正極および負極における導電性が最も優れていることが分かる。 As shown in Table 1, the DC resistance of the cell is the smallest in Example 1, it can be seen that conductivity in the positive electrode and the negative electrode is most excellent. この直流抵抗値が小さいことは、大電流を発生するでき、その結果として大きな電池出力を得ることができる。 That the DC resistance value is small, can generate a large current, it is possible to obtain a large battery output as a result. 従って本発明の電池は高容量化のみではなく、電池の発熱抑制効果を有すると共に高入出力電池であることが分かる。 Thus the battery of the present invention is not only higher capacity, it is understood that the high output battery which has a heat generation suppressing effect of the battery.

上記効果は、本実施例の正極鉄燐酸リチウムに限らず、コバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウム、さらにはこれらの複合金属リチウム酸化物や他のリチウム含有化合物等に対しても、また負極が黒鉛のみならず非晶質炭素材、合金系材料、酸化物材料に対しても同様の効果が得られた。 The above effect is not limited to positive Gokutetsu lithium phosphate of the present embodiment, lithium cobaltate, lithium nickelate, lithium manganate, and even against such these composite metallic lithium oxide or other lithium-containing compound, anode not only graphite amorphous carbon material, an alloy material, obtained similar effects with respect to the oxide material.

カーボンナノファイバー(CNF:平均繊維径20nm)を硝酸(濃度60%)と硫酸(濃度95%以上)の混合液にCNF:硝酸:硫酸=1重量部:5重量部:15重量部の割合で混合し、加熱して表面酸化処理を行った。 Carbon nanofibers: a mixed solution of sulfuric acid and (CNF average fiber diameter 20 nm) nitric acid (concentration 60%) (concentration of 95%) CNF: nitric acid: sulfuric acid = 1 part by weight: 5 parts by weight: a ratio of 15 parts by weight mixed, was heated to a surface oxidation treatment. 得られた溶液を濾過し、数回水洗を行って残留する酸を洗い流した。 The resulting solution was filtered to wash away the acid remaining several times to washing with water. その後、乾燥して粉末化し、その粉末をN-メチルピロリドン(NMP)に溶解させてCNF分散液を得た。 Thereafter, dried and powdered to obtain a CNF dispersion by dissolving the powder in N- methylpyrrolidone (NMP). 一方、平均粒径15μmのLiCoO 2 (容量140mAh/g)およびポリフッ化ビニリデン(PVdF)を固形分重量比で1:1となるように混合した。 On the other hand, the average particle size 15μm of LiCoO 2 (the capacity 140 mAh / g) and poly (vinylidene fluoride) (PVdF) at a solid weight ratio of 1 were mixed so that the 1. この混合物を上記CNF分散液に加え、LiCoO 2とPVdFとCNFとを100重量部:5重量部:5重量部の割合に調整し、攪拌して正極活物質含有スラリーを調製した。 The mixture was added to the CNF dispersion, 100 parts by weight of the LiCoO 2 and PVdF and CNF: 5 parts by weight: was adjusted to a ratio of 5 parts by weight, to prepare a stirred solution positive electrode active material-containing slurry. このスラリーをアルミニウム箔の両面に塗布して乾燥した後に圧延して厚さ0.09cmの正極材フィルムを作製した。 The slurry was prepared positive electrode material film rolled to a thickness of 0.09cm after drying was applied to both surfaces of an aluminum foil. この正極活物質表面の電子顕微鏡写真を図3に示す。 It shows an electron micrograph of the positive electrode active material surface in FIG. 図示するように、正極活物質のLiCoO 2粒子表面には微細炭素繊維(CNF)によって網目状の被覆が形成されていることが観察される。 As shown, the LiCoO 2 particle surface of the positive electrode active material is observed that mesh-like covering is formed by the fine carbon fibers (CNF).

リチウムイオン二次電池の断面模式図 Cross-sectional schematic view of a lithium ion secondary battery 放電容量試験の結果を示すグラフ Graph showing the results of a discharge capacity test 実施例2の正極活物質表面の電子顕微鏡写真 Electron micrograph of the positive electrode active material surface of Example 2

符号の説明 DESCRIPTION OF SYMBOLS

10−容器、11−正極材、12−負極材、13−セパレータ、14−積層体 10- container, 11- positive electrode material, 12-negative electrode material, 13 separator, 14-laminate

Claims (8)

  1. リチウム含有化合物からなる正極活物質を含む正極材と、リチウムイオンの吸蔵・放出が可能な負極活物質を含む負極材とが、セパレータを介して積層あるいは捲回され、非水電解液と共に密封され、該非水電解液にリチウム塩が溶解されているリチウムイオン二次電池において、正極活物質および負極活物質の粒子表面に微細炭素繊維が網目状に付着していることを特徴とするリチウムイオン二次電池。 A positive electrode containing a positive electrode active material composed of a lithium-containing compound, a negative electrode material containing a negative electrode active material capable of intercalating and deintercalating lithium ions, laminated or wound wound through a separator is sealed with a non-aqueous electrolyte solution the lithium ion secondary, characterized in that the lithium ion secondary battery lithium salt nonaqueous electrolyte is dissolved, the particle surface of the positive electrode active material and the negative electrode active material fine carbon fibers adhering to the mesh-like The following battery.
  2. 微細炭素繊維の表面の全部または一部が親水性基で修飾されている請求項1に記載するリチウムイオン二次電池。 Lithium-ion secondary battery in which all or part of the surface of the fine carbon fibers according to claim 1 which is modified with a hydrophilic group.
  3. 平均粒径60nm〜10μmの正極活物質、平均粒径3μm〜7μmの負極活物質に対して平均繊維径1nm〜100nmおよびアスペクト比5以上の微細炭素繊維が網目状に付着している請求項1または請求項2に記載するリチウムイオン二次電池。 The positive electrode active material having an average particle size of 60Nm~10myuemu, average particle diameter anode active average relative material according fiber diameter 1nm~100nm and aspect ratio of 5 or more of the fine carbon fibers are adhered to the mesh-like section ranges from 3 m to 7 m 1 or a lithium ion secondary battery according to claim 2.

  4. 微細炭素繊維の含有量が、正極活物質または負極活物質100質量部に対し、0.5質量部〜15質量部である請求項1〜請求項3の何れかに記載するリチウムイオン二次電池。 The content of the fine carbon fibers, to positive electrode active material or negative electrode active material 100 parts by weight, the lithium ion secondary battery according to any one of claims 1 to 3 is 0.5 part by weight to 15 parts by weight .
  5. 正極材および負極材が活物質より微細な炭素粉末をさらに含有する請求項1〜請求項4の何れかに記載するリチウムイオン二次電池。 Positive electrode material and negative electrode material is a lithium-ion secondary battery according to any one of claims 1 to 4, further containing a fine carbon powder from the active material.
  6. 正極活物質がリチウム含有遷移金属酸化物粒子である請求項1〜請求項5の何れかに記載するリチウムイオン二次電池。 Lithium-ion secondary battery according to any one of claims 1 to 5 positive electrode active material is a lithium-containing transition metal oxide particles.
  7. 正極活物質のリチウム含有遷移金属酸化物がLiCoO 2 、Li(Ni x /Mn y /Co z )O 2 (x+y+z=1)、LiMn 24 、LiCoPO 4 、LiFePO 4 、LiNiVO 4 、LiCoVO 4 、LiMnCoO 4 、LiMnCrO 4 、LiMn 1.5 Ni 0.54からなる群より選ばれた少なくとも1種、または上記組成の一部を金属元素で置換した非化学量論的化合物からなる群より選ばれた少なくとも1種の何れか又は双方を含む化合物である請求項6に記載するリチウムイオン二次電池。 LiCoO 2 lithium-containing transition metal oxide positive electrode active material, Li (Ni x / Mn y / Co z) O 2 (x + y + z = 1), LiMn 2 O 4, LiCoPO 4, LiFePO 4, LiNiVO 4 , LiCoVO 4, LiMnCoO 4, LiMnCrO 4, LiMn 1.5 Ni 0.5 O 4 at least one selected from the group consisting of or selected from the group consisting of a portion of the composition from the non-stoichiometric compounds substituted with a metal element at least one lithium ion secondary battery according to claim 6, wherein any or compounds containing both that.
  8. 負極活物質が天然黒鉛、人造黒鉛、合成黒鉛、メソカーボンマイクロビーズ、有機物の黒鉛化材料、石炭、コークス、PAN系炭素繊維、ピッチ系炭素繊維、またはLi 4 Ti 512 、あるいはSn、Si等の合金系である請求項1〜請求項7の何れかに記載するリチウムイオン二次電池。 Negative electrode active material is natural graphite, artificial graphite, synthetic graphite, mesocarbon microbeads, graphitized materials of organic, coal, coke, PAN-based carbon fibers, pitch-based carbon fiber or Li 4 Ti 5 O 12, or Sn,, Si lithium-ion secondary battery according to any one of claims 1 to 7 which is an alloy system like.
JP2008118561A 2008-04-30 2008-04-30 Lithium ion secondary battery Active JP5462445B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008118561A JP5462445B2 (en) 2008-04-30 2008-04-30 Lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008118561A JP5462445B2 (en) 2008-04-30 2008-04-30 Lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2009272041A true true JP2009272041A (en) 2009-11-19
JP5462445B2 JP5462445B2 (en) 2014-04-02

Family

ID=41438438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008118561A Active JP5462445B2 (en) 2008-04-30 2008-04-30 Lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP5462445B2 (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010018458A1 (en) 2009-04-28 2011-02-17 Denso Corporation, Kariya-City A negative electrode for non-aqueous electrolyte solution battery and non-aqueous electrolyte solution battery with the same
JPWO2009110570A1 (en) * 2008-03-06 2011-07-14 宇部興産株式会社 Fine carbon fiber, fine short carbon fibers and a process for their preparation
JP2011181293A (en) * 2010-02-27 2011-09-15 Akita Univ Positive electrode active material for lithium-ion battery, and method of manufacturing the same
JP2011204638A (en) * 2010-03-26 2011-10-13 Akita Univ POSITIVE ELECTRODE ACTIVE MATERIAL FOR Li-ION CELL AND METHOD OF MANUFACTURING THE SAME
CN102244233A (en) * 2011-05-18 2011-11-16 刘剑洪 Method for preparing composite cathode material of graphene-like doped-cladded lithium titanate
WO2012098970A1 (en) * 2011-01-17 2012-07-26 昭栄化学工業株式会社 Positive electrode material for lithium ion secondary batteries and method for producing same
JP2012221672A (en) * 2011-04-07 2012-11-12 Hitachi Chem Co Ltd Conductive agent for lithium ion secondary battery positive electrode and lithium ion secondary battery using the same
JP2013041704A (en) * 2011-08-12 2013-02-28 Mitsubishi Materials Corp Electrode for nonaqueous electrolyte secondary battery and manufacturing method of the same
WO2013031929A1 (en) * 2011-08-29 2013-03-07 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing positive electrode active material for lithium ion battery
WO2013047870A1 (en) * 2011-09-30 2013-04-04 三菱マテリアル株式会社 Electrode-forming material and use thereof
CN103165878A (en) * 2013-03-25 2013-06-19 安徽亚兰德新能源材料股份有限公司 Preparation method of spherical nickel-manganese binary material
EP2658010A2 (en) * 2011-02-15 2013-10-30 LG Chem, Ltd. Cathode mixture for secondary battery and secondary battery comprising same
WO2014054792A1 (en) * 2012-10-05 2014-04-10 ソニー株式会社 Active material, process for manufacturing active material, electrode, and secondary battery
WO2014073701A1 (en) * 2012-11-12 2014-05-15 国立大学法人九州大学 Positive electrode active material, lithium battery, and manufacturing method for positive electrode active material
WO2014115852A1 (en) * 2013-01-25 2014-07-31 帝人株式会社 Ultra-fine fibrous carbon for non-aqueous electrolyte secondary battery, ultra-fine fibrous carbon aggregate, composite body, and electrode active material layer
WO2014185494A1 (en) * 2013-05-16 2014-11-20 住友大阪セメント株式会社 Carbon-coated active-material complex and lithium-ion battery
JP2015153714A (en) * 2014-02-19 2015-08-24 三菱マテリアル株式会社 Electrode for lithium ion secondary battery
WO2015132962A1 (en) * 2014-03-07 2015-09-11 国立大学法人九州大学 Electricity storage element
US9206048B2 (en) 2009-08-07 2015-12-08 Ube Industries, Ltd. Electroconductive polyamide resin composition
US9236163B2 (en) 2009-08-07 2016-01-12 Ube Industries, Ltd. Electroconductive resin composition
US9234080B2 (en) 2009-04-02 2016-01-12 Ube Industries, Ltd. Conductive resin composition
CN105742075A (en) * 2016-04-07 2016-07-06 武汉理工大学 Cobalt vanadate nano material for super capacitor and preparation method and application of cobalt vanadate nano material
US9410645B2 (en) 2009-09-07 2016-08-09 Ube Industries, Ltd. Multilayer tube for transportation
US9577249B2 (en) 2011-04-28 2017-02-21 Showa Denko K.K. Cathode material for lithium secondary battery, and method of producing said cathode material
WO2017216822A1 (en) * 2016-06-13 2017-12-21 Nec Corporation Fast chargeable lithium ion batteries with nano-carbon coated anode material and imide anion based lithium salt electrolyte

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05135925A (en) * 1991-11-08 1993-06-01 Daido Steel Co Ltd Manufacture of rare earth magnet material
JPH09306502A (en) * 1996-05-17 1997-11-28 Kureha Chem Ind Co Ltd Electrode mix for nonaqueous battery, and nonaqueous battery
JP2003331838A (en) * 2002-05-14 2003-11-21 Hitachi Ltd Lithium secondary battery
JP2005203130A (en) * 2004-01-13 2005-07-28 Hitachi Chem Co Ltd Negative electrode material for lithium ion secondary battery, and lithium ion secondary battery
JP2005340152A (en) * 2003-07-28 2005-12-08 Showa Denko Kk High-density electrode and battery using its electrode

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05135925A (en) * 1991-11-08 1993-06-01 Daido Steel Co Ltd Manufacture of rare earth magnet material
JPH09306502A (en) * 1996-05-17 1997-11-28 Kureha Chem Ind Co Ltd Electrode mix for nonaqueous battery, and nonaqueous battery
JP2003331838A (en) * 2002-05-14 2003-11-21 Hitachi Ltd Lithium secondary battery
JP2005340152A (en) * 2003-07-28 2005-12-08 Showa Denko Kk High-density electrode and battery using its electrode
JP2005203130A (en) * 2004-01-13 2005-07-28 Hitachi Chem Co Ltd Negative electrode material for lithium ion secondary battery, and lithium ion secondary battery

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5003923B2 (en) * 2008-03-06 2012-08-22 宇部興産株式会社 Fine carbon fiber, fine short carbon fibers and a process for their preparation
JPWO2009110570A1 (en) * 2008-03-06 2011-07-14 宇部興産株式会社 Fine carbon fiber, fine short carbon fibers and a process for their preparation
US8834828B2 (en) 2008-03-06 2014-09-16 Ube Industries, Ltd. Fine carbon fiber, fine short carbon fiber, and manufacturing method for said fibers
US9103052B2 (en) 2008-03-06 2015-08-11 Ube Industries, Ltd. Fine carbon fiber, fine short carbon fiber, and manufacturing method for said fibers
US9234080B2 (en) 2009-04-02 2016-01-12 Ube Industries, Ltd. Conductive resin composition
DE102010018458A1 (en) 2009-04-28 2011-02-17 Denso Corporation, Kariya-City A negative electrode for non-aqueous electrolyte solution battery and non-aqueous electrolyte solution battery with the same
US8778541B2 (en) 2009-04-28 2014-07-15 Denso Corporation Negative electrode for nonaqueous electrolyte solution battery and nonaqueous electrolyte solution battery having the same
US9236163B2 (en) 2009-08-07 2016-01-12 Ube Industries, Ltd. Electroconductive resin composition
US9206048B2 (en) 2009-08-07 2015-12-08 Ube Industries, Ltd. Electroconductive polyamide resin composition
US9410645B2 (en) 2009-09-07 2016-08-09 Ube Industries, Ltd. Multilayer tube for transportation
JP2011181293A (en) * 2010-02-27 2011-09-15 Akita Univ Positive electrode active material for lithium-ion battery, and method of manufacturing the same
JP2011204638A (en) * 2010-03-26 2011-10-13 Akita Univ POSITIVE ELECTRODE ACTIVE MATERIAL FOR Li-ION CELL AND METHOD OF MANUFACTURING THE SAME
WO2012098970A1 (en) * 2011-01-17 2012-07-26 昭栄化学工業株式会社 Positive electrode material for lithium ion secondary batteries and method for producing same
CN103443972A (en) * 2011-01-17 2013-12-11 昭荣化学工业株式会社 Positive electrode material for lithium ion secondary batteries and method for producing same
EP2658010A4 (en) * 2011-02-15 2014-07-16 Lg Chemical Ltd Cathode mixture for secondary battery and secondary battery comprising same
EP2658010A2 (en) * 2011-02-15 2013-10-30 LG Chem, Ltd. Cathode mixture for secondary battery and secondary battery comprising same
US9153816B2 (en) 2011-02-15 2015-10-06 Lg Chem, Ltd. Cathode mix for secondary battery and secondary battery comprising the same
JP2012221672A (en) * 2011-04-07 2012-11-12 Hitachi Chem Co Ltd Conductive agent for lithium ion secondary battery positive electrode and lithium ion secondary battery using the same
US9577249B2 (en) 2011-04-28 2017-02-21 Showa Denko K.K. Cathode material for lithium secondary battery, and method of producing said cathode material
CN102244233A (en) * 2011-05-18 2011-11-16 刘剑洪 Method for preparing composite cathode material of graphene-like doped-cladded lithium titanate
JP2013041704A (en) * 2011-08-12 2013-02-28 Mitsubishi Materials Corp Electrode for nonaqueous electrolyte secondary battery and manufacturing method of the same
US9711292B2 (en) 2011-08-29 2017-07-18 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing positive electrode active material for lithium ion battery
US8470477B2 (en) 2011-08-29 2013-06-25 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing positive electrode active material for lithium ion battery
US8685570B2 (en) 2011-08-29 2014-04-01 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing positive electrode active material for lithium ion battery
CN103765641A (en) * 2011-08-29 2014-04-30 株式会社半导体能源研究所 Method of manufacturing positive electrode active material for lithium ion battery
WO2013031929A1 (en) * 2011-08-29 2013-03-07 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing positive electrode active material for lithium ion battery
US10096428B2 (en) 2011-08-29 2018-10-09 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing positive electrode active material for lithium ion battery
JP2013077426A (en) * 2011-09-30 2013-04-25 Mitsubishi Materials Corp Material for forming electrode and its use
WO2013047870A1 (en) * 2011-09-30 2013-04-04 三菱マテリアル株式会社 Electrode-forming material and use thereof
JPWO2014054792A1 (en) * 2012-10-05 2016-08-25 ソニー株式会社 Active material, a manufacturing method of an active material, electrode and secondary battery
WO2014054792A1 (en) * 2012-10-05 2014-04-10 ソニー株式会社 Active material, process for manufacturing active material, electrode, and secondary battery
WO2014073701A1 (en) * 2012-11-12 2014-05-15 国立大学法人九州大学 Positive electrode active material, lithium battery, and manufacturing method for positive electrode active material
JP2014096330A (en) * 2012-11-12 2014-05-22 Kyushu Univ Positive electrode active material, lithium battery, and process of manufacturing positive electrode active material
WO2014115852A1 (en) * 2013-01-25 2014-07-31 帝人株式会社 Ultra-fine fibrous carbon for non-aqueous electrolyte secondary battery, ultra-fine fibrous carbon aggregate, composite body, and electrode active material layer
JP2017197898A (en) * 2013-01-25 2017-11-02 帝人株式会社 Ultrafine fibrous carbon for nonaqueous electrolyte secondary cell, ultrafine fibrous carbon aggregate, composite and electrode active material layer
US20150372309A1 (en) * 2013-01-25 2015-12-24 Teijin Limited Ultra-fine fibrous carbon for non-aqueous electrolyte secondary battery, ultra-fine fibrous carbon aggregate, composite, and electrode active material layer
JPWO2014115852A1 (en) * 2013-01-25 2017-01-26 帝人株式会社 Ultrafine fibrous carbon for a non-aqueous electrolyte secondary battery, ultrafine fibrous carbon aggregate, composite, and the electrode active material layer
CN103165878B (en) * 2013-03-25 2016-03-30 安徽亚兰德新能源材料股份有限公司 Method for preparing spherical nickel-manganese binary material of
CN103165878A (en) * 2013-03-25 2013-06-19 安徽亚兰德新能源材料股份有限公司 Preparation method of spherical nickel-manganese binary material
WO2014185494A1 (en) * 2013-05-16 2014-11-20 住友大阪セメント株式会社 Carbon-coated active-material complex and lithium-ion battery
US9455442B2 (en) 2013-05-16 2016-09-27 Sumitomo Osaka Cement Co., Ltd. Carbon-coated active material composite and lithium ion battery
JP2015153714A (en) * 2014-02-19 2015-08-24 三菱マテリアル株式会社 Electrode for lithium ion secondary battery
WO2015132962A1 (en) * 2014-03-07 2015-09-11 国立大学法人九州大学 Electricity storage element
CN105742075A (en) * 2016-04-07 2016-07-06 武汉理工大学 Cobalt vanadate nano material for super capacitor and preparation method and application of cobalt vanadate nano material
WO2017216822A1 (en) * 2016-06-13 2017-12-21 Nec Corporation Fast chargeable lithium ion batteries with nano-carbon coated anode material and imide anion based lithium salt electrolyte

Also Published As

Publication number Publication date Type
JP5462445B2 (en) 2014-04-02 grant

Similar Documents

Publication Publication Date Title
US20120064409A1 (en) Graphene-enhanced anode particulates for lithium ion batteries
US20100173198A1 (en) Secondary lithium ion battery containing a prelithiated anode
JP2007165079A (en) Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using it
JP2008210618A (en) Nonaqueous electrolyte secondary battery
JP2007242590A (en) Nonaqueous secondary battery
JP2005294011A (en) Non-aqueous electrolyte secondary battery
JP2011023221A (en) Lithium ion secondary battery
JP2011181375A (en) Electrode active material and lithium ion battery
JP2009076372A (en) Non-aqueous secondary battery
JP2007165108A (en) Nonaqueous electrolyte secondary battery
JP2008192488A (en) Nonaqueous electrolyte secondary battery
JP2008270204A (en) Positive electrode formation material, its material and manufacturing method, and lithium ion secondary battery
JP2009076373A (en) Non-aqueous secondary battery
JP2003168429A (en) Nonaqueous electrolyte secondary battery
JP2008235258A (en) Anode material for lithium ion secondary battery, anode, and lithium ion secondary battery
JP2011113862A (en) Nonaqueous secondary battery and method of manufacturing the same
JP2008293875A (en) Positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using the same
JP2011192539A (en) Electrode for nonaqueous electrolyte secondary battery and method for manufacturing the same, and nonaqueous electrolyte secondary battery
JP2008277128A (en) Electrode for secondary battery, its manufacturing method, and secondary battery
JP2005293942A (en) Method for manufacturing negative electrode for secondary battery
JP2009272041A (en) Lithium-ion secondary battery
CN101038960A (en) The non-aqueous electrolyte battery
WO2012140790A1 (en) Electrode material for lithium secondary battery and lithium secondary battery
CN1967910A (en) Negative electrode for non-aqueous electrolyte secondary batteries, non-aqueous electrolyte secondary battery having the electrode, and method for producing negative electrode for non-aqueous electrol
JP2005294079A (en) Negative electrode for secondary battery, its manufacturing method, and secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130313

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130513

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130824

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20131025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140117

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250