JP2009272041A - Lithium-ion secondary battery - Google Patents

Lithium-ion secondary battery Download PDF

Info

Publication number
JP2009272041A
JP2009272041A JP2008118561A JP2008118561A JP2009272041A JP 2009272041 A JP2009272041 A JP 2009272041A JP 2008118561 A JP2008118561 A JP 2008118561A JP 2008118561 A JP2008118561 A JP 2008118561A JP 2009272041 A JP2009272041 A JP 2009272041A
Authority
JP
Japan
Prior art keywords
active material
electrode active
positive electrode
lithium
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008118561A
Other languages
Japanese (ja)
Other versions
JP5462445B2 (en
Inventor
Tsutomu Atsugi
勉 厚木
Hiroyuki Imai
浩之 今井
Shinji Saito
慎治 齊藤
Fukuyoshi Morimoto
副吉 森本
Takehiko Sawai
岳彦 澤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SEI KK
Mitsubishi Materials Corp
Mitsubishi Materials Electronic Chemicals Co Ltd
Original Assignee
SEI KK
Mitsubishi Materials Corp
Mitsubishi Materials Electronic Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SEI KK, Mitsubishi Materials Corp, Mitsubishi Materials Electronic Chemicals Co Ltd filed Critical SEI KK
Priority to JP2008118561A priority Critical patent/JP5462445B2/en
Publication of JP2009272041A publication Critical patent/JP2009272041A/en
Application granted granted Critical
Publication of JP5462445B2 publication Critical patent/JP5462445B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lithium-ion secondary battery enabling a heightened input and output with low-resistance and high-current charge/discharge and control of exothermic heat for safety. <P>SOLUTION: The lithium-ion secondary battery, in which a positive electrode material including a positive electrode active substance composed of a lithium-containing compound and a negative electrode material including a negative electrode active substance enabled to store and release lithium ions are laminated or wound around through a separator and are sealed up together with nonaqueous electrolyte solution in which lithium salt is dissolved, is characterized by fine carbon fiber adhered in a mesh state on particle surfaces of the positive electrode active substance and the negative electrode active substance, and it is desirable if all or a part of the surface of the fine carbon fiber are modified with a hydrophilic group. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、低抵抗で大電流の充放電における高入出力化と安全上の発熱抑制を可能にしたリチウムイオン二次電池に関する。   The present invention relates to a lithium-ion secondary battery that has a low resistance and a high input / output in charge / discharge of a large current and that can suppress heat generation in safety.

従来、携帯電話やノート型パソコン等のポータブル電子機器の発達に伴い、小型軽量でかつ高容量の二次電池が必要とされている。現在、この要求に応える高容量二次電池として、正極材にLiCoO2等のリチウム含有遷移金属酸化物を用い、負極活物質に炭素系材料を用いたリチウムイオン二次電池が商品化されている。上記リチウムイオン二次電池はエネルギ密度が高く、かつ小型、軽量化が図れることから、ポータブル電子機器の電源として多く利用されている。 2. Description of the Related Art Conventionally, along with the development of portable electronic devices such as mobile phones and notebook computers, secondary batteries with small size, light weight and high capacity are required. Currently, lithium ion secondary batteries using lithium-containing transition metal oxides such as LiCoO 2 as the positive electrode material and carbon-based materials as the negative electrode active material are commercialized as high-capacity secondary batteries that meet this demand. . The lithium ion secondary battery has high energy density and can be reduced in size and weight, and thus is widely used as a power source for portable electronic devices.

さらに近年は、リチウムイオン二次電池は、民生用用途に限らず、バイク、車載等の産業用用途に展開されつつあり、リチウムイオン二次電池について高容量化および高入出力化が求められている。そのために電池の反応物質として使用されている正極の複合金属リチウム酸化物や負極の炭素材自体の高容量化や高入出力化が図られると共に、電池設計面から電極比表面積の増加による見掛け充放電の電流密度の低減化、さらにはセパレータの薄形化等によるセパレータ抵抗の低減などによって大電流充放電時の高容量化ならびに耐久性の工夫がなされてきた。   Furthermore, in recent years, lithium ion secondary batteries are being developed not only for consumer use but also for industrial use such as motorcycles and in-vehicle use, and there is a demand for higher capacity and higher input / output capabilities for lithium ion secondary batteries. Yes. For this purpose, the positive electrode composite metal lithium oxide used as a battery reactant and the negative electrode carbon material itself have a higher capacity and higher input / output, and an apparent charge by increasing the electrode specific surface area in terms of battery design. Improvements in capacity and durability during large current charge / discharge have been devised by reducing the current density of the discharge and further reducing the separator resistance by reducing the thickness of the separator.

現在のリチウム電池に用いられている正極活物質の電子伝導性はさほど高くなく、半導体に属するものが多いので、電極の導電性を確保するため、正極活物質粉末に導電材の粉末を加え、結着剤(バインダー)によってペーストにした正極合剤を金属箔に塗布して正極材が形成されている。従来、この導電剤にはカーボン、アセチレンブラック、グラファイト等が用いられている。   Electron conductivity of the positive electrode active material used in current lithium batteries is not so high, and many of them belong to semiconductors. Therefore, in order to ensure the conductivity of the electrode, a conductive material powder is added to the positive electrode active material powder, A positive electrode mixture formed by pasting with a binder (binder) is applied to a metal foil to form a positive electrode material. Conventionally, carbon, acetylene black, graphite or the like has been used for this conductive agent.

例えば、特開2000−208147号公報(特許文献1)には、正極活物質粒子の表面に微細なカーボンブラック粉末が付着し、正極活物質粒子の隙間に天然黒鉛と炭素繊維が充填された正極構造が記載されている。また、特開2006−86116号公報(特許文献2)には、正極活物質と共に炭素系導電材を含む正極構造が記載されており、該炭素系導電材としてナノサイズの炭素繊維が用いられている。さらに、特開2004−220909号公報(特許文献3)には、正極活物質粒子の間にカーボンナノファイバーを充填した正極構造が記載されている。   For example, JP 2000-208147 A (Patent Document 1) discloses a positive electrode in which fine carbon black powder adheres to the surface of the positive electrode active material particles, and natural graphite and carbon fibers are filled in the gaps between the positive electrode active material particles. The structure is described. JP 2006-86116 A (Patent Document 2) describes a positive electrode structure including a carbon-based conductive material together with a positive electrode active material, and nano-sized carbon fibers are used as the carbon-based conductive material. Yes. Furthermore, JP 2004-220909 A (Patent Document 3) describes a positive electrode structure in which carbon nanofibers are filled between positive electrode active material particles.

また、特開2008−66053号公報(特許文献4)には、負極活物質として、コアの炭素粒子の表面や内部に形成された特殊構造の繊維状炭素繊維との極微細孔を有する複合炭素材を用いることによって出力特性および低温特性の改善を図ったものが記載されている。   Japanese Patent Laid-Open No. 2008-66053 (Patent Document 4) discloses a composite carbon having extremely fine pores as a negative electrode active material and a fibrous carbon fiber having a special structure formed on the surface or inside of a core carbon particle. It describes what improved output characteristics and low temperature characteristics by using a material.

電池の高率放電特性は正極中の導電材の含有量を増すことによって高めることができるが、導電材の含有量が多くなると、相対的に正極中のリチウム含有遷移金属酸化物の含有量が低下し、放電容量が減少すると云う問題を生じる。また、導電材として従来使用されているカーボン、アセチレンブラック、グラファイトなど、および通常のカーボンナノファイバー、カーボンナノチューブを正極材に分散させるためには分散剤が使用され、その分散剤が、反応中に分解してガスが発生するなどの問題があった。   The high rate discharge characteristics of the battery can be enhanced by increasing the content of the conductive material in the positive electrode. However, as the content of the conductive material increases, the content of the lithium-containing transition metal oxide in the positive electrode is relatively increased. This causes a problem that the discharge capacity is reduced. Also, a dispersing agent is used to disperse carbon, acetylene black, graphite, etc., which are conventionally used as conductive materials, and normal carbon nanofibers and carbon nanotubes in the positive electrode material, and the dispersing agent is used during the reaction. There were problems such as decomposition and generation of gas.

さらに、従来の導電材として用いられる炭素系材料は正極活物質の粒子相互の隙間に充填されており、このため比較的多量の導電材を必要としている。また、コアの炭素粒子とその表面や粒子内部に形成された特殊構造の繊維状炭素からなる極微細孔を有する複合炭素材を負極活物質として用いるものは、その極微細孔の制御が難しいなどの問題がある。   Furthermore, the carbon-based material used as a conventional conductive material is filled in the gaps between the particles of the positive electrode active material, and thus a relatively large amount of conductive material is required. In addition, it is difficult to control the ultrafine pores using a composite carbon material having ultrafine pores made of fibrous carbon having a special structure formed on the surface and inside of the core carbon particles as the negative electrode active material. There is a problem.

また、これまでに提案されてきた高容量化や高入出力化に対する改善手段は、容量を増大できるが、大電流の充放電でのサイクル寿命性能や安全性という観点では、産業用の用途への適用を考慮した場合に問題がある。
特開2000−208147号公報 特開2006−086116号公報 特開2004−220909号公報 特開2008−066053号公報
In addition, the proposed improvement measures for higher capacity and higher input / output can increase the capacity, but from the viewpoint of cycle life performance and safety in charge / discharge of large current, There is a problem when considering the application of.
JP 2000-208147 A JP 2006-086116 A JP 2004-220909 A JP 2008-066053 A

本発明の目的は、低抵抗で大電流の充放電における高入出力化と安全上の発熱抑制を可能にしたリチウムイオン二次電池を提供することにある。   An object of the present invention is to provide a lithium ion secondary battery that has a low resistance and can achieve high input / output in charge / discharge of a large current and suppression of heat generation for safety.

本発明によれば、以下の構成によって上記課題を解決したリチウムイオン二次電池が提供される。
〔1〕リチウム含有化合物からなる正極活物質を含む正極材と、リチウムイオンの吸蔵・放出が可能な負極活物質を含む負極材とが、セパレータを介して積層あるいは捲回され、非水電解液と共に密封され、該非水電解液にリチウム塩が溶解されているリチウムイオン二次電池において、正極活物質および負極活物質の粒子表面に微細炭素繊維が網目状に付着していることを特徴とするリチウムイオン二次電池。
〔2〕微細炭素繊維の表面の全部または一部が親水性基で修飾されている上記[1]に記載するリチウムイオン二次電池。
〔3〕平均粒径60nm〜10μmの正極活物質、平均粒径3μm〜7μmの負極活物質に対して平均繊維径1nm〜100nmおよびアスペクト比5以上の微細炭素繊維が網目状に付着している上記[1]または上記[2]に記載するリチウムイオン二次電池。
〔4〕微細炭素繊維の含有量が、正極活物質または負極活物質100質量部に対し、0.5質量部〜15質量部である上記[1]〜上記[3]の何れかに記載するリチウムイオン二次電池。
〔5〕正極材および負極材が活物質より微細な炭素粉末をさらに含有する上記[1]〜上記[4]の何れかに記載するリチウムイオン二次電池。
〔6〕正極活物質がリチウム含有遷移金属酸化物粒子である上記[1]〜上記[5]の何れかに記載するリチウムイオン二次電池。
〔7〕正極活物質のリチウム含有遷移金属酸化物がLiCoO2、Li(Nix/Mny/Coz)O2(x+y+z=1)、LiMn24、LiCoPO4、LiFePO4、LiNiVO4、LiCoVO4、LiMnCoO4、LiMnCrO4、LiMn1.5Ni0.54からなる群より選ばれた少なくとも1種、または上記組成の一部を金属元素で置換した非化学量論的化合物からなる群より選ばれた少なくとも1種の何れか又は双方を含む化合物である上記[6]に記載するリチウムイオン二次電池。
〔8〕負極活物質が天然黒鉛、人造黒鉛、合成黒鉛、メソカーボンマイクロビーズ、有機物の黒鉛化材料、石炭、コークス、PAN系炭素繊維、ピッチ系炭素繊維、またはLi4Ti512、あるいはSn、Si等の合金系である上記[1]〜上記[7]の何れかに記載するリチウムイオン二次電池。
According to this invention, the lithium ion secondary battery which solved the said subject with the following structures is provided.
[1] A positive electrode material including a positive electrode active material composed of a lithium-containing compound and a negative electrode material including a negative electrode active material capable of occluding and releasing lithium ions are laminated or wound through a separator, and a non-aqueous electrolyte solution In the lithium ion secondary battery which is sealed together and the lithium salt is dissolved in the non-aqueous electrolyte, fine carbon fibers are attached to the surface of the particles of the positive electrode active material and the negative electrode active material. Lithium ion secondary battery.
[2] The lithium ion secondary battery according to the above [1], wherein all or part of the surface of the fine carbon fiber is modified with a hydrophilic group.
[3] Fine carbon fibers having an average fiber diameter of 1 nm to 100 nm and an aspect ratio of 5 or more adhere to the positive electrode active material having an average particle diameter of 60 nm to 10 μm and the negative electrode active material having an average particle diameter of 3 μm to 7 μm. The lithium ion secondary battery according to the above [1] or [2].
[4] The content of the fine carbon fiber is described in any one of [1] to [3] above, which is 0.5 to 15 parts by mass with respect to 100 parts by mass of the positive electrode active material or the negative electrode active material. Lithium ion secondary battery.
[5] The lithium ion secondary battery according to any one of [1] to [4], wherein the positive electrode material and the negative electrode material further contain carbon powder finer than the active material.
[6] The lithium ion secondary battery according to any one of [1] to [5] above, wherein the positive electrode active material is lithium-containing transition metal oxide particles.
[7] The lithium-containing transition metal oxide positive electrode active material is LiCoO 2, Li (Ni x / Mn y / Co z) O 2 (x + y + z = 1), LiMn 2 O 4, LiCoPO 4, LiFePO 4 consists LiNiVO 4, LiCoVO 4, LiMnCoO 4 , LiMnCrO 4, LiMn 1.5 Ni 0.5 O 4 at least one selected from the group consisting of, or non-stoichiometric compounds a portion of the composition was replaced with a metal element The lithium ion secondary battery according to the above [6], which is a compound containing at least one selected from the group or both.
[8] The negative electrode active material is natural graphite, artificial graphite, synthetic graphite, mesocarbon microbeads, organic graphitized material, coal, coke, PAN-based carbon fiber, pitch-based carbon fiber, or Li 4 Ti 5 O 12 , or The lithium ion secondary battery according to any one of [1] to [7], which is an alloy system such as Sn or Si.

本発明のリチウムイオン二次電池は、正極活物質および負極活物質として粒子表面に微細炭素繊維が網目状に分散して付着したものを用いているので、比較的少量の炭素繊維量で高い導電性を有し、従って、正極中のリチウム含有化合物の含有量を十分に確保することができるので、充放電容量が大きく、電池の出力を高めることができる。   The lithium ion secondary battery of the present invention uses a positive carbon active material and a negative electrode active material in which fine carbon fibers are dispersed and attached to the surface of the particles in a mesh form, so that high conductivity with a relatively small amount of carbon fibers. Therefore, since the content of the lithium-containing compound in the positive electrode can be sufficiently ensured, the charge / discharge capacity is large and the output of the battery can be increased.

また、本発明のリチウムイオン二次電池は、活物質表面の微細炭素繊維は酸処理によって親水化し、表面に親水基が修飾したものを用いることによって、分散剤を用いずに活物質表面に均一な網目構造の炭素繊維膜を形成することができ、分散剤に起因するガス発生の問題がなく、サイクル寿命や安全性の高い電池を得ることができる。   In addition, the lithium ion secondary battery of the present invention is made uniform on the surface of the active material without using a dispersant by making the fine carbon fibers on the surface of the active material hydrophilic by acid treatment and modifying the surface with hydrophilic groups. A carbon fiber film having a simple network structure can be formed, and there is no problem of gas generation caused by the dispersant, and a battery having a high cycle life and high safety can be obtained.

本発明のリチウムイオン二次電池において、好ましくは、平均粒径60nm〜10μmの正極活物質粒子、および平均粒径3μm〜7μm負極活物質に対して、微細炭素繊維として平均繊維径1nm〜100nmおよびアスペクト比5以上のカーボンナノファイバーを用いることによって、活物質の粒子表面に微細炭素繊維の均一な網目層を形成することができ、少量の炭素繊維量、例えば、活物質100質量部に対して、微細炭素繊維の含有量が0.5〜15質量部、好ましくは1〜10質量部の含有量によって、充放電容量および出力特性やサイクル特性に優れる二次電池を得ることができる。   In the lithium ion secondary battery of the present invention, preferably, an average fiber diameter of 1 nm to 100 nm as fine carbon fibers and a positive electrode active material particle having an average particle diameter of 60 nm to 10 μm and a negative electrode active material having an average particle diameter of 3 μm to 7 μm By using carbon nanofibers having an aspect ratio of 5 or more, a uniform network layer of fine carbon fibers can be formed on the particle surface of the active material, and a small amount of carbon fibers, for example, 100 parts by mass of the active material A secondary battery having excellent charge / discharge capacity, output characteristics, and cycle characteristics can be obtained with a fine carbon fiber content of 0.5 to 15 parts by mass, preferably 1 to 10 parts by mass.

本発明のリチウムイオン二次電池は、好ましくは、正極材および負極材が活物質より微細な炭素粉末をさらに含有することによって微細炭素粉末が活物質の粒子相互の隙間に入り込み、例えば、炭素粉末の含有量が正極活物質100質量部に対して0.5〜5質量部、好ましくは1〜3質量部の炭素粉末を含有することによって正極材および負極材の導電性をさらに向上させることができる。   In the lithium ion secondary battery of the present invention, preferably, the positive electrode material and the negative electrode material further contain carbon powder finer than the active material, so that the fine carbon powder enters the gaps between the particles of the active material. By adding 0.5 to 5 parts by mass, preferably 1 to 3 parts by mass of carbon powder with respect to 100 parts by mass of the positive electrode active material, the conductivity of the positive electrode material and the negative electrode material can be further improved. it can.

本発明の正極材は、正極活物質としてリチウム含有化合物が用いられ、主としてリチウム含有遷移金属酸化物粒子が用いられる。具体的には、例えば、LiCoO2、Li(Nix/Mny/Coz)O2(x+y+z=1)、LiMn24、LiCoPO4、LiFePO4、LiNiVO4、LiCoVO4、LiMnCoO4、LiMnCrO4、LiMn1.5Ni0.54からなる群より選ばれた少なくとも1種、または上記組成の一部を金属元素で置換した化合物を用いる。また、Li含有繊維金属酸化粒子以外にLiTiS2等の硫化物も用いることができる。これらのリチウム含有化合物を用いることによって、充放電サイクルに優れたリチウムイオン電池を得ることができる。 In the positive electrode material of the present invention, a lithium-containing compound is used as a positive electrode active material, and lithium-containing transition metal oxide particles are mainly used. Specifically, for example, LiCoO 2, Li (Ni x / Mn y / Co z) O 2 (x + y + z = 1), LiMn 2 O 4, LiCoPO 4, LiFePO 4, LiNiVO 4, LiCoVO 4, A compound in which at least one selected from the group consisting of LiMnCoO 4 , LiMnCrO 4 and LiMn 1.5 Ni 0.5 O 4 , or a part of the above composition is substituted with a metal element is used. In addition to Li-containing fiber metal oxide particles, sulfides such as LiTiS 2 can also be used. By using these lithium-containing compounds, it is possible to obtain a lithium ion battery having an excellent charge / discharge cycle.

本発明の負極材は、負極活物質としてリチウムイオンを吸蔵・放出することができる物質が用いられる。具体的には、例えば、主としてグラファイト系として天然黒鉛、人造黒鉛、合成黒鉛、メソカーボンマイクロビーズ、有機物の黒鉛化材料、炭素系材料としては、石炭、コークス、PAN系炭素繊維、ピッチ系炭素繊維を好適に用いることができ、非炭素系材料としては、Si系、Sn系、Ti系などLi吸蔵材を好適に用いることができる。   In the negative electrode material of the present invention, a material capable of occluding and releasing lithium ions is used as the negative electrode active material. Specifically, for example, natural graphite, artificial graphite, synthetic graphite, mesocarbon microbeads, organic graphitized materials, mainly carbon-based materials, coal, coke, PAN-based carbon fibers, pitch-based carbon fibers As the non-carbon-based material, a Li-occlusion material such as Si-based, Sn-based, or Ti-based material can be preferably used.

以下、本発明を実施形態に基づいて具体的に説明する。
本発明のリチウムイオン二次電池は、リチウム含有化合物からなる正極活物質を含む正極材と、リチウムイオンの吸蔵・放出が可能な負極活物質を含む負極材とが、セパレータを介して積層あるいは捲回されて、非水電解液と共に密封され、該非水電解液にリチウム塩が溶解されているリチウムイオン二次電池において、正極活物質および負極活物質の粒子表面に微細炭素繊維が網目状に付着していることを特徴とするリチウムイオン二次電池である。
Hereinafter, the present invention will be specifically described based on embodiments.
The lithium ion secondary battery of the present invention comprises a positive electrode material containing a positive electrode active material made of a lithium-containing compound and a negative electrode material containing a negative electrode active material capable of occluding and releasing lithium ions, stacked or sandwiched through a separator. In a lithium ion secondary battery that is rotated and sealed together with a non-aqueous electrolyte and a lithium salt is dissolved in the non-aqueous electrolyte, fine carbon fibers adhere to the surface of the particles of the positive electrode active material and the negative electrode active material. It is the lithium ion secondary battery characterized by the above-mentioned.

リチウムイオン二次電池の構造の一例を図1に示す。図示するように、容器10の内部に正極材11と負極材12が交互に積層された積層体14が非水電解液と共に密封されている。正極材11は、正極活物質と導電材が結着剤のペースト中に含有され、基本的に該ペーストをアルミニウム合金箔の両面に塗布して形成されている。正極活物質には主としてリチウムイオン源となるリチウム遷移金属複酸化物粉末などが用いられている。負極材12は、負極活物質が結着剤のペースト中に含有され、基本的には該ペーストを銅合金箔の両面に塗布して形成されている。負極活物質にはリチウムイオンを吸蔵・放出することができる黒鉛粉末などが用いられている。また、必要に応じ、導電性を高めるために炭素粉末が黒鉛粉末と共にペースト中に含まれている。   An example of the structure of a lithium ion secondary battery is shown in FIG. As shown in the figure, a laminate 14 in which positive electrode materials 11 and negative electrode materials 12 are alternately laminated inside a container 10 is sealed together with a non-aqueous electrolyte. The positive electrode material 11 includes a positive electrode active material and a conductive material contained in a binder paste, and is basically formed by applying the paste to both surfaces of an aluminum alloy foil. As the positive electrode active material, a lithium transition metal double oxide powder or the like that mainly serves as a lithium ion source is used. The negative electrode material 12 includes a negative electrode active material contained in a binder paste, and is basically formed by applying the paste to both surfaces of a copper alloy foil. As the negative electrode active material, graphite powder capable of inserting and extracting lithium ions is used. Further, if necessary, carbon powder is included in the paste together with the graphite powder in order to increase conductivity.

正極材11と負極材12は帯状をなし、セパレータ13を介してロール状に積層されている。セパレータ13にはポリオレフィン系樹脂等の多孔質フィルムが用いられている。セパレータ13を介して積層された一対の正極材11と負極材12は絶縁材(図示省略)を介して捲回積層されており、このロール状の積層体14は非水電解質と共に上記容器10に収納されている。該積層体14の頭部側には捲回中心軸にリードを接続して正極20が形成されており、積層体14の底部側はリードを介して負極21が形成されている。   The positive electrode material 11 and the negative electrode material 12 have a band shape, and are laminated in a roll shape with a separator 13 interposed therebetween. The separator 13 is a porous film such as polyolefin resin. A pair of positive electrode material 11 and negative electrode material 12 stacked via a separator 13 are wound and stacked via an insulating material (not shown), and this roll-shaped stacked body 14 is placed in the container 10 together with a nonaqueous electrolyte. It is stored. A positive electrode 20 is formed on the top side of the laminate 14 by connecting a lead to the winding center axis, and a negative electrode 21 is formed on the bottom side of the laminate 14 via the lead.

非水電解液としてはエチレンカーボネイト(EC)などの有機溶媒中にリチウム塩として6フッ化リン酸リチウム(LiPF6)などを溶解したものなどが用いられている。なお、図示する構造は一例であり、本発明のリチウムイオン二次電池の構造は図示するものに限らない。 As the nonaqueous electrolytic solution, a solution obtained by dissolving lithium hexafluorophosphate (LiPF 6 ) or the like as a lithium salt in an organic solvent such as ethylene carbonate (EC) is used. In addition, the structure shown in figure is an example and the structure of the lithium ion secondary battery of this invention is not restricted to what is shown in figure.

本発明のリチウムイオン二次電池は、正極活物質の粒子表面、および負極活物質の粒子表面に微細炭素繊維が網目状に付着していることを特徴とする。この微細炭素繊維は平均繊維径1nm〜100nmおよびアスペクト比5以上のカーボンナノファイバーが好ましい。該カーボンナノファイバーは、良好な導電性が得られるように、該ファイバー粉末の圧密体の体積抵抗値1.0Ωcm以下、X線回折測定によるグラファイト層の[002]面の積層間隔が0.35nm以下であるものが好ましい。正極活物質および負極活物質の粒子表面に微細炭素繊維による均一な網目状被膜が形成されることによって、導電性が格段に向上する。   The lithium ion secondary battery of the present invention is characterized in that fine carbon fibers are attached in a network form on the particle surface of the positive electrode active material and the particle surface of the negative electrode active material. The fine carbon fibers are preferably carbon nanofibers having an average fiber diameter of 1 nm to 100 nm and an aspect ratio of 5 or more. The carbon nanofibers have a volume resistance value of 1.0 Ωcm or less of the compact of the fiber powder so that good conductivity is obtained, and the stacking interval of the [002] plane of the graphite layer by X-ray diffraction measurement is 0.35 nm. The following are preferred. By forming a uniform network coating of fine carbon fibers on the surface of the positive electrode active material and the negative electrode active material, the conductivity is remarkably improved.

上記微細炭素繊維はその表面を酸化処理によって親水化し、表面に親水基を修飾させたものが好ましい。一般に炭素粉末や炭素繊維は水中で凝集する傾向が強く、均一に分散させるのが困難であるため、従来の炭素粉末や炭素繊維は分散剤を必要とする。一方、表面に親水基を有する微細炭素繊維は分散剤を用いずに水溶液中で均一に分散するので、分散剤を必要とせずに活物質表面に均一な網目構造の炭素繊維膜を形成することができる。   The fine carbon fiber is preferably made by hydrophilizing the surface by oxidation treatment and modifying the surface with a hydrophilic group. Generally, carbon powder and carbon fiber have a strong tendency to agglomerate in water, and it is difficult to uniformly disperse them. Therefore, conventional carbon powder and carbon fiber require a dispersant. On the other hand, since fine carbon fibers having hydrophilic groups on the surface are uniformly dispersed in an aqueous solution without using a dispersant, a carbon fiber film having a uniform network structure is formed on the active material surface without the need for a dispersant. Can do.

酸化処理の方法は乾式法および湿式法のいずれでもよい。例えば、微細炭素繊維に硫酸などの硫黄含有強酸を添加し、硝酸などの酸化剤を加え、このスラリーを加熱下で攪拌した後、濾過し、残留する酸を洗浄して除去すればよい。この酸化処理によって微細炭素繊維の表面にカルボニル基やカルボキシル基あるいはニトロ基などの極性官能基が形成されるので親水化することができる。   The oxidation treatment method may be either a dry method or a wet method. For example, a sulfur-containing strong acid such as sulfuric acid is added to fine carbon fibers, an oxidizing agent such as nitric acid is added, the slurry is stirred under heating, and then filtered, and the remaining acid is washed and removed. By this oxidation treatment, polar functional groups such as a carbonyl group, a carboxyl group or a nitro group are formed on the surface of the fine carbon fiber, so that it can be hydrophilized.

表面を酸化処理して親水化した微細炭素繊維を有機溶剤や水などの分散媒に分散させ、この分散液に結着剤と共に電極活物質(正極活物質および負極活物質)を加えることによって、電極活物質の粒子表面に分散状態を維持した微細炭素繊維が付着し、均一な網目状の被膜が形成される。   By dispersing fine carbon fibers whose surface is oxidized and hydrophilized in a dispersion medium such as an organic solvent or water, and adding an electrode active material (a positive electrode active material and a negative electrode active material) together with a binder to the dispersion, Fine carbon fibers maintained in a dispersed state adhere to the surface of the electrode active material particles, and a uniform network-like film is formed.

結着剤としてはポリフッ化ビニリデン(PVdF)、カルボキシメチルセルロース(CMC)、スチレンブタジエン共重合体エマルジョン(SBR)、ポリビニールアルコール(PVA)、シリコンエマルジョンなどが用いられる。結着剤の量は、活物質100質量部に対して0.5〜10質量部が適当であり、1〜5質量部が好ましい。この量が0.5質量部より少ないと付着不良になりやすく、10質量部より多いと結着剤によって導電性低下の影響が現れるようになるので適当ではない。   As the binder, polyvinylidene fluoride (PVdF), carboxymethyl cellulose (CMC), styrene butadiene copolymer emulsion (SBR), polyvinyl alcohol (PVA), silicon emulsion, and the like are used. The amount of the binder is suitably 0.5 to 10 parts by mass, preferably 1 to 5 parts by mass with respect to 100 parts by mass of the active material. If this amount is less than 0.5 parts by mass, poor adhesion tends to occur, and if it exceeds 10 parts by mass, the effect of a decrease in conductivity will appear due to the binder, which is not appropriate.

本発明のリチウムイオン二次電池において、正極活物質には主としてリチウムイオン源となるリチウム含有酸化物が用いられる。例えば、リチウム含有遷移金属酸化物が用いられる。具体的には、例えば、LiCoO2、Li(Nix/Mny/Coz)O2(x+y+z=1)、LiMn24、LiCoPO4、LiFePO4、LiNiVO4、LiCoVO4、LiMnCoO4、LiMnCrO4、LiMn1.5Ni0.54からなる群より選ばれた少なくとも1種、または上記組成の一部を金属元素で置換した非化学量論的化合物からなる群より選ばれた少なくとも1種の何れか又は双方を含む化合物を用いることができる。 In the lithium ion secondary battery of the present invention, a lithium-containing oxide serving as a lithium ion source is mainly used as the positive electrode active material. For example, a lithium-containing transition metal oxide is used. Specifically, for example, LiCoO 2, Li (Ni x / Mn y / Co z) O 2 (x + y + z = 1), LiMn 2 O 4, LiCoPO 4, LiFePO 4, LiNiVO 4, LiCoVO 4, At least one selected from the group consisting of LiMnCoO 4 , LiMnCrO 4 , LiMn 1.5 Ni 0.5 O 4 , or at least one selected from the group consisting of non-stoichiometric compounds in which a part of the above composition is substituted with a metal element. Compounds containing either or both species can be used.

例示される上記リチウム含有遷移金属酸化物のうち、LiFePO4または該化合物のFeの一部を金属元素で置換した化合物は、他のリチウム含有遷移金属酸化物粒子に比して、一次粒子径が50〜100nmであって、凝集二次粒子径が1〜3μmと極めて小さく、本発明の微細炭素繊維の導電材として微細網目を形成しやすく、より好ましい。 Among the lithium-containing transition metal oxides exemplified above, LiFePO 4 or a compound in which a part of Fe of the compound is substituted with a metal element has a primary particle size as compared with other lithium-containing transition metal oxide particles. It is 50 to 100 nm, and the aggregated secondary particle diameter is very small as 1 to 3 μm, and it is more preferable because it is easy to form a fine network as the conductive material of the fine carbon fiber of the present invention.

負極活物質としては、主として天然黒鉛、人造黒鉛、合成黒鉛、メソカーボンマイクロビーズ、有機物の黒鉛化材料、石炭、コークス、PAN系炭素繊維、ピッチ系炭素繊維などの炭素材料を用いることができる。   As the negative electrode active material, carbon materials such as natural graphite, artificial graphite, synthetic graphite, mesocarbon microbeads, organic graphitized material, coal, coke, PAN-based carbon fiber, and pitch-based carbon fiber can be mainly used.

正極活物質粒子は平均粒径60nm〜10μmのものが好ましく、負極活物質粒子は平均粒径3μm〜7μmのものが好ましい。この粒子径の活物質粒子に対して平均繊維径1nm〜100nmおよびアスペクト比5以上の微細炭素繊維を用い、1μm以下の活物質には平均繊維径が数十nmの微細炭素繊維を用いるとよい。   The positive electrode active material particles preferably have an average particle size of 60 nm to 10 μm, and the negative electrode active material particles preferably have an average particle size of 3 μm to 7 μm. Fine carbon fibers having an average fiber diameter of 1 nm to 100 nm and an aspect ratio of 5 or more are used for the active material particles having this particle diameter, and fine carbon fibers having an average fiber diameter of several tens of nanometers are preferably used for the active material of 1 μm or less. .

微細炭素繊維の含有量は、正極活物質または負極活物質100質量部に対し、0.5質量部〜15質量部が適当である。微細炭素繊維の含有量が0.5質量部よりすくないと導電性を十分に高めることができず、15質量部より多いと、例えば、正極活物質の含有量が相対的に少なくなるので好ましくない。   The content of the fine carbon fiber is suitably 0.5 to 15 parts by mass with respect to 100 parts by mass of the positive electrode active material or the negative electrode active material. If the content of the fine carbon fiber is less than 0.5 parts by mass, the conductivity cannot be sufficiently increased, and if it is more than 15 parts by mass, for example, the content of the positive electrode active material is relatively small, which is not preferable. .

微細炭素繊維と共に活物質よりも微細な炭素粉末、例えば平均一次粒径10nmのカーボンブラック等を併用することができる。微細な炭素粉末を併用することによって、この炭素粉末が活物質の粒子相互の隙間に入り込み導電性をさらに高めることができる。上記炭素粉末は、微細炭素繊維と共に、あるは微細炭素繊維の添加前後に、分散液に添加すればよい。   A carbon powder finer than the active material, for example, carbon black having an average primary particle size of 10 nm can be used in combination with the fine carbon fibers. When the fine carbon powder is used in combination, the carbon powder enters the gaps between the particles of the active material, and the conductivity can be further increased. The carbon powder may be added to the dispersion together with the fine carbon fibers or before and after the addition of the fine carbon fibers.

炭素粉末の含有量は、活物質100質量部に対して0.5〜5質量部が適当であり、1〜3質量部が好ましい。この量が0.5質量部より少ないと炭素粉末を併用する効果が乏しく、5質量部より多いと微細炭素繊維との合計量が多くなり正極活物質の量が相対的に少なくなるので好ましくない。また、微細炭素繊維を用いる利点を高めるには該炭素粉末の量は微細炭素繊維の量より少ないほうが好ましい。   0.5-5 mass parts is suitable with respect to 100 mass parts of active materials, and, as for content of carbon powder, 1-3 mass parts is preferable. If the amount is less than 0.5 parts by mass, the effect of using the carbon powder together is poor. If the amount is more than 5 parts by mass, the total amount of fine carbon fibers increases, and the amount of the positive electrode active material becomes relatively small. . In order to increase the advantage of using fine carbon fibers, the amount of the carbon powder is preferably smaller than the amount of fine carbon fibers.

上記炭素粉末としては、導電性カーボンブラック、ケッチェンブラック、アセチレンブラック、石炭、コークス、ポリアクリロニトリル系炭素繊維、ピッチ系炭素繊維、有機物の炭素化品、天然黒鉛、人造黒鉛、合成黒鉛、メソカーボンマイクロビーズ、有機物の黒鉛化品および黒鉛繊維などからなる粉末を用いることができる。   Examples of the carbon powder include conductive carbon black, ketjen black, acetylene black, coal, coke, polyacrylonitrile carbon fiber, pitch carbon fiber, organic carbonized product, natural graphite, artificial graphite, synthetic graphite, and mesocarbon. Powders composed of microbeads, graphitized organic materials, graphite fibers, and the like can be used.

正極材および負極材の製造方法の一例を以下に示す。
〔微細炭素繊維分散液の製造〕
カーボンナノファイバー(CNF:平均繊維径20nm)を硝酸(濃度60%)と硫酸(濃度95%以上)の混合液にCNF:硝酸:硫酸=1重量部:5重量部:15重量部の割合で混合し、加熱して表面酸化処理を行った。得られた溶液を濾過し、数回水洗を行って残留する酸を洗い流した。その後、乾燥して粉末化し、その粉末をN-メチルピロリドン(NMP)に溶解させてCNF分散液を調製する。
An example of a method for producing the positive electrode material and the negative electrode material is shown below.
[Production of fine carbon fiber dispersion]
Carbon nanofibers (CNF: average fiber diameter 20 nm) in a mixed solution of nitric acid (concentration 60%) and sulfuric acid (concentration 95% or more) at a ratio of CNF: nitric acid: sulfuric acid = 1 part by weight: 5 parts by weight: 15 parts by weight It mixed and heated and the surface oxidation process was performed. The resulting solution was filtered and washed several times with water to wash away the remaining acid. Thereafter, the powder is dried and powdered, and the powder is dissolved in N-methylpyrrolidone (NMP) to prepare a CNF dispersion.

〔正極材の作製〕
正極活物質粉末(リチウム含有遷移金属酸化物粉末:LiFePO4等)を、結着剤(ポリフッ化ビニリデン:PVdF等)と共に、上記CNF分散液に加えて攪拌することによって正極活物質粉末表面にCNFが均一に網目状に付着した正極活物質スラリーを調製する。この正極活物質スラリーをアルミニウム箔(正極集電体)の両面に塗布乾燥し、圧延して正極フィルムを作製し、この正極フィルムを切断して正極を作製する。
[Production of positive electrode material]
The positive electrode active material powder (lithium-containing transition metal oxide powder: LiFePO 4 or the like) is added to the CNF dispersion together with the binder (polyvinylidene fluoride: PVdF or the like) and stirred to form CNF on the surface of the positive electrode active material powder. A positive electrode active material slurry in which is uniformly attached in a network form is prepared. This positive electrode active material slurry is applied and dried on both sides of an aluminum foil (positive electrode current collector), rolled to produce a positive electrode film, and this positive electrode film is cut to produce a positive electrode.

〔負極材の作製〕
負極活物質(黒鉛粉末等)を、結着剤(PVdF等)と共に、上記CNF分散液に加えて攪拌することによって黒鉛粉末表面にCNFが均一に網目状に付着した負極活物質スラリーを調製する。この負極活物質スラリーを銅箔(負極集電体)の両面に塗布乾燥し、圧延して負極フィルムを作製し、この負極フィルムを切断して負極を作製する。
(Production of negative electrode material)
A negative electrode active material (graphite powder or the like) and a binder (PVdF or the like) are added to the CNF dispersion and stirred to prepare a negative electrode active material slurry in which CNF is uniformly attached to the surface of the graphite powder. . The negative electrode active material slurry is applied and dried on both sides of a copper foil (negative electrode current collector), rolled to produce a negative electrode film, and the negative electrode film is cut to produce a negative electrode.

〔電池の作製〕
上記正極および負極を、ポリエチレン製セパレータを介し捲回して電極群とし、この電極群を円筒形の電池容器に挿入し、電解液を所定量注入して密封することによって円筒形リチウムイオン二次電池を得ることができる。電解液にはEC、DMC、DECを体積比で25:60:15に混合した溶液中に6フッ化リン酸リチウム(LiPF6)を1モル/リットル溶解し、さらにその溶液にビニレンカーボネートを添加たものなどを用いることができる。
[Production of battery]
The positive electrode and the negative electrode are wound through a polyethylene separator to form an electrode group. The electrode group is inserted into a cylindrical battery container, and a predetermined amount of electrolyte is injected and sealed to form a cylindrical lithium ion secondary battery. Can be obtained. 1 mol / liter of lithium hexafluorophosphate (LiPF 6 ) is dissolved in a solution in which EC, DMC, and DEC are mixed at a volume ratio of 25:60:15, and vinylene carbonate is added to the solution. Can be used.

〔正極の作製〕
鉄燐酸リチウム粉末(D50:100nm)を正極活物質とし、この活物質90質量部に、導電材2質量部と、結着剤のポリフッ化ビニリデン8質量部を混合した。導電材として直径10〜20nm、長さ0.1〜10μm、比表面積150〜200m2/g、表面の一部を親水性基により置換したカーボンナノチューブを用いた。これに分散溶媒としてN−メチルピロリドンを添加し混練して正極合剤(スラリ)を作製した。このスラリを厚さ20μmのアルミニウム箔の両面に塗布し乾燥後に圧延し裁断して厚さ約150μmの正極を作製した。
[Production of positive electrode]
Lithium iron phosphate powder (D50: 100 nm) was used as a positive electrode active material, and 90 parts by mass of this active material was mixed with 2 parts by mass of a conductive material and 8 parts by mass of a polyvinylidene fluoride binder. A carbon nanotube having a diameter of 10 to 20 nm, a length of 0.1 to 10 μm, a specific surface area of 150 to 200 m 2 / g, and a part of the surface substituted with a hydrophilic group was used as a conductive material. To this was added N-methylpyrrolidone as a dispersion solvent and kneaded to prepare a positive electrode mixture (slurry). This slurry was applied to both sides of an aluminum foil having a thickness of 20 μm, dried, rolled and cut to produce a positive electrode having a thickness of about 150 μm.

〔負極の作製〕
活物質として黒鉛粉末(D50:5μm)94質量部を用い、これに導電材1質量部と、結着剤のポリフッ化ビニリデン5質量部を混合した。導電材は正極と同様のものを用いた。これに分散溶媒としてN−メチルピロリドンを添加し混練して負極合剤(スラリ)を作製した。このスラリを厚さ10μmの銅箔の両面に塗布し乾燥後に圧延し裁断して厚さ約110μmの負極を作製した。
(Production of negative electrode)
94 parts by mass of graphite powder (D50: 5 μm) was used as an active material, and 1 part by mass of a conductive material and 5 parts by mass of polyvinylidene fluoride as a binder were mixed therewith. The same conductive material as that of the positive electrode was used. N-methylpyrrolidone was added thereto as a dispersion solvent and kneaded to prepare a negative electrode mixture (slurry). This slurry was applied to both sides of a 10 μm thick copper foil, dried, rolled and cut to prepare a negative electrode having a thickness of about 110 μm.

〔電池の作製〕
上記正極および負極を、厚さ20μmのポリエチレン製セパレータを介し捲回して電極群とし、この電極群を円筒形の電池容器に挿入し、電解液を所定量注入後、密封して円筒形リチウムイオン二次電池を作製した。電解液にはEC、DMC、DECを体積比で25:60:15に混合した溶液中に6フッ化リン酸リチウム(LiPF6)を1モル/リットル溶解し、さらにその溶液にビニレンカーボネートを添加たものを用いた。この電池の設計容量は1000mAhである。
[Production of battery]
The positive electrode and the negative electrode are wound through a polyethylene separator having a thickness of 20 μm to form an electrode group. This electrode group is inserted into a cylindrical battery container, and after a predetermined amount of electrolyte is injected, it is sealed and cylindrical lithium ion is sealed. A secondary battery was produced. 1 mol / liter of lithium hexafluorophosphate (LiPF 6 ) is dissolved in a solution in which EC, DMC, and DEC are mixed at a volume ratio of 25:60:15, and vinylene carbonate is added to the solution. Used. The design capacity of this battery is 1000 mAh.

〔試験例1〕
導電材として直径100〜200nm、長さ5μm、比表面積20m2/g、表面に親水性基を有していないカーボンナノチューブ材料を用いた以外は実施例1と同様にして円筒形のリチウムイオン電池を得た。この電池の設計容量は実施例1と同様に1000mAhである。
[Test Example 1]
Cylindrical lithium ion battery in the same manner as in Example 1 except that a carbon nanotube material having a diameter of 100 to 200 nm, a length of 5 μm, a specific surface area of 20 m 2 / g, and having no hydrophilic group on the surface was used as the conductive material. Got. The design capacity of this battery is 1000 mAh as in Example 1.

〔試験例2〕
負極材としてD50が15μmの黒鉛粉末を用い、かつ比較例1で用いた導電材を使用したこと以外は実施例1と同様にして円筒形のリチウムイオン電池を得た。この電池の設計容量は実施例1と同様に1000mAhである。
[Test Example 2]
A cylindrical lithium ion battery was obtained in the same manner as in Example 1 except that graphite powder having a D50 of 15 μm was used as the negative electrode material and the conductive material used in Comparative Example 1 was used. The design capacity of this battery is 1000 mAh as in Example 1.

〔試験例3〕
実施例1で使用した導電材を正極材および負極材にそれぞれ0.3質量%添加したこと以外は試験例1と同様にして円筒形のリチウムイオン電池を得た。この電池の設計容量は1000mAhである。
[Test Example 3]
A cylindrical lithium ion battery was obtained in the same manner as in Test Example 1 except that 0.3% by mass of the conductive material used in Example 1 was added to the positive electrode material and the negative electrode material, respectively. The design capacity of this battery is 1000 mAh.

〔試験例4〕
実施例1で使用した導電材を正極材および負極材にそれぞれ15質量%添加したこと以外は上記試験例1と同様にして活物質スラリーの調製を試みたが、活物質スラリーを作ることができず、電池を作製できなかった。従って、導電材(微細炭素繊維)の含有量は15質量%より少ないものが適当である。
[Test Example 4]
An active material slurry was prepared in the same manner as in Test Example 1 except that 15% by mass of the conductive material used in Example 1 was added to the positive electrode material and the negative electrode material, respectively. The battery could not be manufactured. Therefore, the content of the conductive material (fine carbon fiber) is suitably less than 15% by mass.

実施例1および試験例1〜3の電池について充放電試験を行い、放電レート試験容量および電流―電圧特性より算出した直流抵抗値を比較した。   The batteries of Example 1 and Test Examples 1 to 3 were subjected to charge / discharge tests, and the DC resistance values calculated from the discharge rate test capacity and current-voltage characteristics were compared.

〔容量試験〕
4.0V充電状態の電池を、それぞれ5時間率(0.2C、0.2A)、1時間率(1C、1A)、1/2時間率(2C、2A)、1/3時間率(3C、3A)、および1/5時間率(5C、5A)にて終止電圧である2.0Vまで放電し、電流値と時間の積にて容量を求めた。放電レート容量試験の結果を図2に示す。容量についてはそれぞれの電池での5時間率放電容量を100%ととして基準値とし、各放電率時の容量を5時間率容量に対する比率としてプロットした。
[Capacity test]
The batteries in the 4.0V state are charged with 5 hour rate (0.2C, 0.2A), 1 hour rate (1C, 1A), 1/2 hour rate (2C, 2A), 1/3 hour rate (3C 3A), and 1/5 hour rate (5C, 5A), the battery was discharged to a final voltage of 2.0 V, and the capacity was determined from the product of the current value and time. The results of the discharge rate capacity test are shown in FIG. Regarding the capacity, the 5-hour rate discharge capacity in each battery was set as a reference value, and the capacity at each discharge rate was plotted as a ratio to the 5-hour rate capacity.

図2に示すように、試験例3は導電材の量が少なく、放電時の電極内での電子伝導抵抗が大きくなり、大電流放電時には容量が低下するので、導電材の含有量は0.3質量%より多いものが適当である。試験例1は実施例1に比べて放電電流が高くなると容量維持率が低下するので、導電材として用いる微細炭素繊維は表面を親水化処理したものが好ましい。   As shown in FIG. 2, in Test Example 3, the amount of the conductive material is small, the electron conduction resistance in the electrode during discharge increases, and the capacity decreases during large current discharge. More than 3% by weight is suitable. Since Test Example 1 has a lower capacity retention rate when the discharge current is higher than that of Example 1, it is preferable that the fine carbon fiber used as the conductive material has a hydrophilic surface.

本発明の実施例1は、導電材として用いる微細炭素繊維の導電性に加えて、正極活物質粒子および負極活物質粒子の粒子どうしの接触が良好であり、高い導電性を有するので、大電流放電時の容量が大きい。また、実施例1の電池は、5C放電時の発熱は試験例1〜3の電池に比べて約5℃低く、電子伝導性が放熱性を良好にして電池の発熱抑制効果も有していることが確認された。   In Example 1 of the present invention, in addition to the conductivity of the fine carbon fiber used as the conductive material, the positive electrode active material particles and the negative electrode active material particles are in good contact with each other and have high conductivity. Large capacity during discharge. In addition, the battery of Example 1 has a heat generation during 5C discharge of about 5 ° C. lower than that of the batteries of Test Examples 1 to 3, and the electronic conductivity has good heat dissipation and also has the effect of suppressing the heat generation of the battery. It was confirmed.

〔直流抵抗比較試験〕
25℃±2℃の雰囲気温度にて、電池の有する容量の50%の容量を1時間率(1A)定電流にて放電し、次いで0.2A、1A、2A、3A、5Aそれぞれの電流で10秒間放電して10秒後の電池電圧を測定した。その際、各10秒間の放電後にはそれぞれの電流で放電した電気容量に相当する電気量を1A電流にてそれぞれの所定量の充電を行い、かつ10分間の休止期間を設けて試験を行った。得られた電圧値を用いて横軸に電流、縦軸に電圧の相関プロットを描き、その一次近似直線関係の傾きを求めてその値を直流抵抗とした。この結果を表1に示した。
[DC resistance comparison test]
At an ambient temperature of 25 ° C. ± 2 ° C., 50% of the capacity of the battery is discharged at a constant current (1A) for 1 hour, and then at a current of 0.2A, 1A, 2A, 3A, 5A. After discharging for 10 seconds, the battery voltage after 10 seconds was measured. At that time, after each discharge for 10 seconds, a test was performed by charging each predetermined amount of electricity corresponding to the electric capacity discharged at each current with a current of 1 A and providing a 10-minute rest period. . Using the obtained voltage value, a horizontal axis is plotted with the current plotted on the horizontal axis and the voltage is plotted on the vertical axis, and the slope of the first-order approximate linear relationship was determined and the value was taken as the DC resistance. The results are shown in Table 1.

表1に示すように、電池の直流抵抗値は実施例1が最も小さく、正極および負極における導電性が最も優れていることが分かる。この直流抵抗値が小さいことは、大電流を発生するでき、その結果として大きな電池出力を得ることができる。従って本発明の電池は高容量化のみではなく、電池の発熱抑制効果を有すると共に高入出力電池であることが分かる。   As shown in Table 1, it can be seen that the direct current resistance value of the battery is the smallest in Example 1, and the conductivity at the positive electrode and the negative electrode is the best. The small DC resistance value can generate a large current, and as a result, a large battery output can be obtained. Therefore, it can be seen that the battery of the present invention is not only a high capacity, but also has an effect of suppressing the heat generation of the battery and is a high input / output battery.

上記効果は、本実施例の正極鉄燐酸リチウムに限らず、コバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウム、さらにはこれらの複合金属リチウム酸化物や他のリチウム含有化合物等に対しても、また負極が黒鉛のみならず非晶質炭素材、合金系材料、酸化物材料に対しても同様の効果が得られた。   The above-mentioned effects are not limited to the positive electrode lithium lithium phosphate of this example, but also to lithium cobaltate, lithium nickelate, lithium manganate, and further to these composite metal lithium oxides and other lithium-containing compounds. Similar effects were obtained when the negative electrode was not only graphite but also amorphous carbon material, alloy material, and oxide material.

カーボンナノファイバー(CNF:平均繊維径20nm)を硝酸(濃度60%)と硫酸(濃度95%以上)の混合液にCNF:硝酸:硫酸=1重量部:5重量部:15重量部の割合で混合し、加熱して表面酸化処理を行った。得られた溶液を濾過し、数回水洗を行って残留する酸を洗い流した。その後、乾燥して粉末化し、その粉末をN-メチルピロリドン(NMP)に溶解させてCNF分散液を得た。一方、平均粒径15μmのLiCoO2(容量140mAh/g)およびポリフッ化ビニリデン(PVdF)を固形分重量比で1:1となるように混合した。この混合物を上記CNF分散液に加え、LiCoO2とPVdFとCNFとを100重量部:5重量部:5重量部の割合に調整し、攪拌して正極活物質含有スラリーを調製した。このスラリーをアルミニウム箔の両面に塗布して乾燥した後に圧延して厚さ0.09cmの正極材フィルムを作製した。この正極活物質表面の電子顕微鏡写真を図3に示す。図示するように、正極活物質のLiCoO2粒子表面には微細炭素繊維(CNF)によって網目状の被覆が形成されていることが観察される。 Carbon nanofibers (CNF: average fiber diameter 20 nm) in a mixed solution of nitric acid (concentration 60%) and sulfuric acid (concentration 95% or more) at a ratio of CNF: nitric acid: sulfuric acid = 1 part by weight: 5 parts by weight: 15 parts by weight It mixed and heated and the surface oxidation process was performed. The resulting solution was filtered and washed several times with water to wash away the remaining acid. Then, it dried and pulverized, the powder was dissolved in N-methylpyrrolidone (NMP), and the CNF dispersion liquid was obtained. On the other hand, LiCoO 2 (capacity 140 mAh / g) having an average particle diameter of 15 μm and polyvinylidene fluoride (PVdF) were mixed at a solid content weight ratio of 1: 1. This mixture was added to the CNF dispersion, and LiCoO 2 , PVdF, and CNF were adjusted to a ratio of 100 parts by weight: 5 parts by weight: 5 parts by weight and stirred to prepare a positive electrode active material-containing slurry. This slurry was applied to both sides of an aluminum foil, dried, and then rolled to prepare a positive electrode material film having a thickness of 0.09 cm. An electron micrograph of the surface of the positive electrode active material is shown in FIG. As shown in the figure, it is observed that a mesh-like coating is formed of fine carbon fibers (CNF) on the surface of the LiCoO 2 particles of the positive electrode active material.

リチウムイオン二次電池の断面模式図Cross-sectional schematic diagram of a lithium ion secondary battery 放電容量試験の結果を示すグラフGraph showing the results of the discharge capacity test 実施例2の正極活物質表面の電子顕微鏡写真Electron micrograph of the surface of the positive electrode active material of Example 2

符号の説明Explanation of symbols

10−容器、11−正極材、12−負極材、13−セパレータ、14−積層体 10-container, 11-positive electrode material, 12-negative electrode material, 13-separator, 14-laminate

Claims (8)

リチウム含有化合物からなる正極活物質を含む正極材と、リチウムイオンの吸蔵・放出が可能な負極活物質を含む負極材とが、セパレータを介して積層あるいは捲回され、非水電解液と共に密封され、該非水電解液にリチウム塩が溶解されているリチウムイオン二次電池において、正極活物質および負極活物質の粒子表面に微細炭素繊維が網目状に付着していることを特徴とするリチウムイオン二次電池。
A positive electrode material including a positive electrode active material composed of a lithium-containing compound and a negative electrode material including a negative electrode active material capable of occluding and releasing lithium ions are laminated or wound through a separator and sealed together with a non-aqueous electrolyte. In the lithium ion secondary battery in which a lithium salt is dissolved in the non-aqueous electrolyte, fine carbon fibers are attached in a network shape on the surface of the positive electrode active material and the negative electrode active material. Next battery.
微細炭素繊維の表面の全部または一部が親水性基で修飾されている請求項1に記載するリチウムイオン二次電池。
The lithium ion secondary battery according to claim 1, wherein all or part of the surface of the fine carbon fiber is modified with a hydrophilic group.
平均粒径60nm〜10μmの正極活物質、平均粒径3μm〜7μmの負極活物質に対して平均繊維径1nm〜100nmおよびアスペクト比5以上の微細炭素繊維が網目状に付着している請求項1または請求項2に記載するリチウムイオン二次電池。

2. Fine carbon fibers having an average fiber diameter of 1 nm to 100 nm and an aspect ratio of 5 or more adhere to the positive electrode active material having an average particle diameter of 60 nm to 10 μm and the negative electrode active material having an average particle diameter of 3 μm to 7 μm. Alternatively, a lithium ion secondary battery according to claim 2.

微細炭素繊維の含有量が、正極活物質または負極活物質100質量部に対し、0.5質量部〜15質量部である請求項1〜請求項3の何れかに記載するリチウムイオン二次電池。
The lithium ion secondary battery according to any one of claims 1 to 3, wherein a content of the fine carbon fiber is 0.5 to 15 parts by mass with respect to 100 parts by mass of the positive electrode active material or the negative electrode active material. .
正極材および負極材が活物質より微細な炭素粉末をさらに含有する請求項1〜請求項4の何れかに記載するリチウムイオン二次電池。
The lithium ion secondary battery according to any one of claims 1 to 4, wherein the positive electrode material and the negative electrode material further contain carbon powder finer than the active material.
正極活物質がリチウム含有遷移金属酸化物粒子である請求項1〜請求項5の何れかに記載するリチウムイオン二次電池。
The lithium ion secondary battery according to any one of claims 1 to 5, wherein the positive electrode active material is a lithium-containing transition metal oxide particle.
正極活物質のリチウム含有遷移金属酸化物がLiCoO2、Li(Nix/Mny/Coz)O2(x+y+z=1)、LiMn24、LiCoPO4、LiFePO4、LiNiVO4、LiCoVO4、LiMnCoO4、LiMnCrO4、LiMn1.5Ni0.54からなる群より選ばれた少なくとも1種、または上記組成の一部を金属元素で置換した非化学量論的化合物からなる群より選ばれた少なくとも1種の何れか又は双方を含む化合物である請求項6に記載するリチウムイオン二次電池。
LiCoO 2 lithium-containing transition metal oxide positive electrode active material, Li (Ni x / Mn y / Co z) O 2 (x + y + z = 1), LiMn 2 O 4, LiCoPO 4, LiFePO 4, LiNiVO 4 , LiCoVO 4, LiMnCoO 4, LiMnCrO 4, LiMn 1.5 Ni 0.5 O 4 at least one selected from the group consisting of or selected from the group consisting of a portion of the composition from the non-stoichiometric compounds substituted with a metal element The lithium ion secondary battery according to claim 6, wherein the lithium ion secondary battery is a compound containing either or both of at least one kind.
負極活物質が天然黒鉛、人造黒鉛、合成黒鉛、メソカーボンマイクロビーズ、有機物の黒鉛化材料、石炭、コークス、PAN系炭素繊維、ピッチ系炭素繊維、またはLi4Ti512、あるいはSn、Si等の合金系である請求項1〜請求項7の何れかに記載するリチウムイオン二次電池。 The negative electrode active material is natural graphite, artificial graphite, synthetic graphite, mesocarbon microbead, organic graphitized material, coal, coke, PAN-based carbon fiber, pitch-based carbon fiber, or Li 4 Ti 5 O 12 , or Sn, Si The lithium ion secondary battery according to any one of claims 1 to 7, wherein the lithium ion secondary battery is an alloy system.
JP2008118561A 2008-04-30 2008-04-30 Lithium ion secondary battery Active JP5462445B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008118561A JP5462445B2 (en) 2008-04-30 2008-04-30 Lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008118561A JP5462445B2 (en) 2008-04-30 2008-04-30 Lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2009272041A true JP2009272041A (en) 2009-11-19
JP5462445B2 JP5462445B2 (en) 2014-04-02

Family

ID=41438438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008118561A Active JP5462445B2 (en) 2008-04-30 2008-04-30 Lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP5462445B2 (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010018458A1 (en) 2009-04-28 2011-02-17 Denso Corporation, Kariya-City Non-aqueous electrolyte solution battery negative electrode and non-aqueous electrolyte solution battery with same
JPWO2009110570A1 (en) * 2008-03-06 2011-07-14 宇部興産株式会社 Fine carbon fiber, fine short carbon fiber and method for producing them
JP2011181293A (en) * 2010-02-27 2011-09-15 Mitsubishi Materials Corp Positive electrode active material for lithium-ion battery, and method of manufacturing the same
JP2011204638A (en) * 2010-03-26 2011-10-13 Mitsubishi Materials Corp POSITIVE ELECTRODE ACTIVE MATERIAL FOR Li-ION CELL AND METHOD OF MANUFACTURING THE SAME
CN102244233A (en) * 2011-05-18 2011-11-16 刘剑洪 Method for preparing composite cathode material of graphene-like doped-cladded lithium titanate
WO2012098970A1 (en) * 2011-01-17 2012-07-26 昭栄化学工業株式会社 Positive electrode material for lithium ion secondary batteries and method for producing same
JP2012221672A (en) * 2011-04-07 2012-11-12 Hitachi Chem Co Ltd Conductive agent for lithium ion secondary battery positive electrode and lithium ion secondary battery using the same
JP2013041704A (en) * 2011-08-12 2013-02-28 Mitsubishi Materials Corp Electrode for nonaqueous electrolyte secondary battery and manufacturing method of the same
WO2013031929A1 (en) * 2011-08-29 2013-03-07 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing positive electrode active material for lithium ion battery
WO2013047870A1 (en) * 2011-09-30 2013-04-04 三菱マテリアル株式会社 Electrode-forming material and use thereof
CN103165878A (en) * 2013-03-25 2013-06-19 安徽亚兰德新能源材料股份有限公司 Preparation method of spherical nickel-manganese binary material
EP2658010A2 (en) * 2011-02-15 2013-10-30 LG Chem, Ltd. Cathode mixture for secondary battery and secondary battery comprising same
WO2014054792A1 (en) * 2012-10-05 2014-04-10 ソニー株式会社 Active material, process for manufacturing active material, electrode, and secondary battery
WO2014073701A1 (en) * 2012-11-12 2014-05-15 国立大学法人九州大学 Positive electrode active material, lithium battery, and manufacturing method for positive electrode active material
WO2014115852A1 (en) * 2013-01-25 2014-07-31 帝人株式会社 Ultra-fine fibrous carbon for non-aqueous electrolyte secondary battery, ultra-fine fibrous carbon aggregate, composite body, and electrode active material layer
WO2014185494A1 (en) * 2013-05-16 2014-11-20 住友大阪セメント株式会社 Carbon-coated active-material complex and lithium-ion battery
JP2015153714A (en) * 2014-02-19 2015-08-24 三菱マテリアル株式会社 Electrode for lithium ion secondary battery
WO2015132962A1 (en) * 2014-03-07 2015-09-11 国立大学法人九州大学 Electricity storage element
US9206048B2 (en) 2009-08-07 2015-12-08 Ube Industries, Ltd. Electroconductive polyamide resin composition
US9236163B2 (en) 2009-08-07 2016-01-12 Ube Industries, Ltd. Electroconductive resin composition
US9234080B2 (en) 2009-04-02 2016-01-12 Ube Industries, Ltd. Conductive resin composition
CN105742075A (en) * 2016-04-07 2016-07-06 武汉理工大学 Cobalt vanadate nano material for super capacitor and preparation method and application of cobalt vanadate nano material
US9410645B2 (en) 2009-09-07 2016-08-09 Ube Industries, Ltd. Multilayer tube for transportation
US9577249B2 (en) 2011-04-28 2017-02-21 Showa Denko K.K. Cathode material for lithium secondary battery, and method of producing said cathode material
WO2017216822A1 (en) * 2016-06-13 2017-12-21 Nec Corporation Fast chargeable lithium ion batteries with nano-carbon coated anode material and imide anion based lithium salt electrolyte
US10326141B2 (en) 2015-09-16 2019-06-18 Kabushiki Kaisha Toshiba Nonaqueous electrolyte secondary battery and battery pack
CN110998962A (en) * 2017-07-25 2020-04-10 株式会社村田制作所 Lithium ion secondary battery
US10873073B2 (en) 2011-11-15 2020-12-22 Denka Company Limited Composite particles, manufacturing method thereof, electrode material for secondary battery, and secondary battery
JP7462066B2 (en) 2020-10-21 2024-04-04 旭化成株式会社 Nonaqueous alkali metal storage element and positive electrode coating fluid

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05135925A (en) * 1991-11-08 1993-06-01 Daido Steel Co Ltd Manufacture of rare earth magnet material
JPH09306502A (en) * 1996-05-17 1997-11-28 Kureha Chem Ind Co Ltd Electrode mix for nonaqueous battery, and nonaqueous battery
JP2003331838A (en) * 2002-05-14 2003-11-21 Hitachi Ltd Lithium secondary battery
JP2005203130A (en) * 2004-01-13 2005-07-28 Hitachi Chem Co Ltd Negative electrode material for lithium ion secondary battery, and lithium ion secondary battery
JP2005340152A (en) * 2003-07-28 2005-12-08 Showa Denko Kk High-density electrode and battery using its electrode

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05135925A (en) * 1991-11-08 1993-06-01 Daido Steel Co Ltd Manufacture of rare earth magnet material
JPH09306502A (en) * 1996-05-17 1997-11-28 Kureha Chem Ind Co Ltd Electrode mix for nonaqueous battery, and nonaqueous battery
JP2003331838A (en) * 2002-05-14 2003-11-21 Hitachi Ltd Lithium secondary battery
JP2005340152A (en) * 2003-07-28 2005-12-08 Showa Denko Kk High-density electrode and battery using its electrode
JP2005203130A (en) * 2004-01-13 2005-07-28 Hitachi Chem Co Ltd Negative electrode material for lithium ion secondary battery, and lithium ion secondary battery

Cited By (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2009110570A1 (en) * 2008-03-06 2011-07-14 宇部興産株式会社 Fine carbon fiber, fine short carbon fiber and method for producing them
US8834828B2 (en) 2008-03-06 2014-09-16 Ube Industries, Ltd. Fine carbon fiber, fine short carbon fiber, and manufacturing method for said fibers
US9103052B2 (en) 2008-03-06 2015-08-11 Ube Industries, Ltd. Fine carbon fiber, fine short carbon fiber, and manufacturing method for said fibers
JP5003923B2 (en) * 2008-03-06 2012-08-22 宇部興産株式会社 Fine carbon fiber, fine short carbon fiber and method for producing them
US9234080B2 (en) 2009-04-02 2016-01-12 Ube Industries, Ltd. Conductive resin composition
US8778541B2 (en) 2009-04-28 2014-07-15 Denso Corporation Negative electrode for nonaqueous electrolyte solution battery and nonaqueous electrolyte solution battery having the same
DE102010018458A1 (en) 2009-04-28 2011-02-17 Denso Corporation, Kariya-City Non-aqueous electrolyte solution battery negative electrode and non-aqueous electrolyte solution battery with same
US9206048B2 (en) 2009-08-07 2015-12-08 Ube Industries, Ltd. Electroconductive polyamide resin composition
US9236163B2 (en) 2009-08-07 2016-01-12 Ube Industries, Ltd. Electroconductive resin composition
US9410645B2 (en) 2009-09-07 2016-08-09 Ube Industries, Ltd. Multilayer tube for transportation
JP2011181293A (en) * 2010-02-27 2011-09-15 Mitsubishi Materials Corp Positive electrode active material for lithium-ion battery, and method of manufacturing the same
JP2011204638A (en) * 2010-03-26 2011-10-13 Mitsubishi Materials Corp POSITIVE ELECTRODE ACTIVE MATERIAL FOR Li-ION CELL AND METHOD OF MANUFACTURING THE SAME
CN103443972A (en) * 2011-01-17 2013-12-11 昭荣化学工业株式会社 Positive electrode material for lithium ion secondary batteries and method for producing same
WO2012098970A1 (en) * 2011-01-17 2012-07-26 昭栄化学工業株式会社 Positive electrode material for lithium ion secondary batteries and method for producing same
US9153816B2 (en) 2011-02-15 2015-10-06 Lg Chem, Ltd. Cathode mix for secondary battery and secondary battery comprising the same
EP2658010A4 (en) * 2011-02-15 2014-07-16 Lg Chemical Ltd Cathode mixture for secondary battery and secondary battery comprising same
EP2658010A2 (en) * 2011-02-15 2013-10-30 LG Chem, Ltd. Cathode mixture for secondary battery and secondary battery comprising same
JP2012221672A (en) * 2011-04-07 2012-11-12 Hitachi Chem Co Ltd Conductive agent for lithium ion secondary battery positive electrode and lithium ion secondary battery using the same
US9577249B2 (en) 2011-04-28 2017-02-21 Showa Denko K.K. Cathode material for lithium secondary battery, and method of producing said cathode material
CN102244233A (en) * 2011-05-18 2011-11-16 刘剑洪 Method for preparing composite cathode material of graphene-like doped-cladded lithium titanate
JP2013041704A (en) * 2011-08-12 2013-02-28 Mitsubishi Materials Corp Electrode for nonaqueous electrolyte secondary battery and manufacturing method of the same
CN103765641A (en) * 2011-08-29 2014-04-30 株式会社半导体能源研究所 Method of manufacturing positive electrode active material for lithium ion battery
US8470477B2 (en) 2011-08-29 2013-06-25 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing positive electrode active material for lithium ion battery
US9711292B2 (en) 2011-08-29 2017-07-18 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing positive electrode active material for lithium ion battery
US10096428B2 (en) 2011-08-29 2018-10-09 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing positive electrode active material for lithium ion battery
US8685570B2 (en) 2011-08-29 2014-04-01 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing positive electrode active material for lithium ion battery
WO2013031929A1 (en) * 2011-08-29 2013-03-07 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing positive electrode active material for lithium ion battery
WO2013047870A1 (en) * 2011-09-30 2013-04-04 三菱マテリアル株式会社 Electrode-forming material and use thereof
JP2013077426A (en) * 2011-09-30 2013-04-25 Mitsubishi Materials Corp Material for forming electrode and its use
US10873073B2 (en) 2011-11-15 2020-12-22 Denka Company Limited Composite particles, manufacturing method thereof, electrode material for secondary battery, and secondary battery
US10665855B2 (en) 2012-10-05 2020-05-26 Murata Manufacturing Co., Ltd. Active material, method of manufacturing active material, electrode, and secondary battery
JPWO2014054792A1 (en) * 2012-10-05 2016-08-25 ソニー株式会社 Active material, method for producing active material, electrode and secondary battery
WO2014054792A1 (en) * 2012-10-05 2014-04-10 ソニー株式会社 Active material, process for manufacturing active material, electrode, and secondary battery
WO2014073701A1 (en) * 2012-11-12 2014-05-15 国立大学法人九州大学 Positive electrode active material, lithium battery, and manufacturing method for positive electrode active material
JP2014096330A (en) * 2012-11-12 2014-05-22 Kyushu Univ Positive electrode active material, lithium battery, and process of manufacturing positive electrode active material
CN106898776B (en) * 2013-01-25 2019-11-29 帝人株式会社 Superfine fiber shape carbon aggregation
CN111509227A (en) * 2013-01-25 2020-08-07 帝人株式会社 Ultrafine fibrous carbon aggregate for nonaqueous electrolyte secondary battery, composite, and electrode active material layer
WO2014115852A1 (en) * 2013-01-25 2014-07-31 帝人株式会社 Ultra-fine fibrous carbon for non-aqueous electrolyte secondary battery, ultra-fine fibrous carbon aggregate, composite body, and electrode active material layer
JP7023198B2 (en) 2013-01-25 2022-02-21 帝人株式会社 Ultrafine fibrous carbon, ultrafine fibrous carbon aggregate, carbon-based conductive aid, electrode material for non-aqueous electrolyte secondary battery, electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery, and ultrafine fiber Method of manufacturing state carbon
JPWO2014115852A1 (en) * 2013-01-25 2017-01-26 帝人株式会社 Superfine fibrous carbon, superfine fibrous carbon aggregate, composite, and electrode active material layer for non-aqueous electrolyte secondary battery
CN106898776A (en) * 2013-01-25 2017-06-27 帝人株式会社 Superfine fiber shape carbon aggregation
US11545669B2 (en) 2013-01-25 2023-01-03 Teijin Limited Ultra-fine fibrous carbon for non-aqueous electrolyte secondary battery, ultra-fine fibrous carbon aggregate, composite, and electrode active material layer
JP2017197898A (en) * 2013-01-25 2017-11-02 帝人株式会社 Ultrafine fibrous carbon for nonaqueous electrolyte secondary cell, ultrafine fibrous carbon aggregate, composite and electrode active material layer
US10541417B2 (en) * 2013-01-25 2020-01-21 Teijin Limited Ultra-fine fibrous carbon for non-aqueous electrolyte secondary battery, ultra-fine fibrous carbon aggregate, composite, and electrode active material layer
US20150372309A1 (en) * 2013-01-25 2015-12-24 Teijin Limited Ultra-fine fibrous carbon for non-aqueous electrolyte secondary battery, ultra-fine fibrous carbon aggregate, composite, and electrode active material layer
JP2018181858A (en) * 2013-01-25 2018-11-15 帝人株式会社 Ultrafine fibrous carbon, ultrafine fibrous carbon aggregate, carbon based conductive additive, electrode material for nonaqueous electrolyte secondary battery, electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and manufacturing method of ultrafine fibrous carbon
CN103165878B (en) * 2013-03-25 2016-03-30 安徽亚兰德新能源材料股份有限公司 A kind of preparation method of spherical nickel-manganese binary material
CN103165878A (en) * 2013-03-25 2013-06-19 安徽亚兰德新能源材料股份有限公司 Preparation method of spherical nickel-manganese binary material
JP5708895B1 (en) * 2013-05-16 2015-04-30 住友大阪セメント株式会社 Carbon-coated active material composite and lithium ion battery
US9455442B2 (en) 2013-05-16 2016-09-27 Sumitomo Osaka Cement Co., Ltd. Carbon-coated active material composite and lithium ion battery
WO2014185494A1 (en) * 2013-05-16 2014-11-20 住友大阪セメント株式会社 Carbon-coated active-material complex and lithium-ion battery
JP2015153714A (en) * 2014-02-19 2015-08-24 三菱マテリアル株式会社 Electrode for lithium ion secondary battery
WO2015132962A1 (en) * 2014-03-07 2015-09-11 国立大学法人九州大学 Electricity storage element
US10326141B2 (en) 2015-09-16 2019-06-18 Kabushiki Kaisha Toshiba Nonaqueous electrolyte secondary battery and battery pack
CN105742075A (en) * 2016-04-07 2016-07-06 武汉理工大学 Cobalt vanadate nano material for super capacitor and preparation method and application of cobalt vanadate nano material
JP2019520674A (en) * 2016-06-13 2019-07-18 日本電気株式会社 Fast chargeable lithium ion battery with nanocarbon coated anode material and imide anion based lithium salt electrolyte
WO2017216822A1 (en) * 2016-06-13 2017-12-21 Nec Corporation Fast chargeable lithium ion batteries with nano-carbon coated anode material and imide anion based lithium salt electrolyte
CN110998962A (en) * 2017-07-25 2020-04-10 株式会社村田制作所 Lithium ion secondary battery
CN110998962B (en) * 2017-07-25 2022-12-23 株式会社村田制作所 Lithium ion secondary battery
JP7462066B2 (en) 2020-10-21 2024-04-04 旭化成株式会社 Nonaqueous alkali metal storage element and positive electrode coating fluid

Also Published As

Publication number Publication date
JP5462445B2 (en) 2014-04-02

Similar Documents

Publication Publication Date Title
JP5462445B2 (en) Lithium ion secondary battery
JP5335264B2 (en) Positive electrode forming material, material and manufacturing method thereof, and lithium ion secondary battery
JP5182477B2 (en) Non-aqueous secondary battery
JP5162825B2 (en) Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
CA2786012C (en) Electrode material for lithium secondary battery and lithium secondary battery
TWI458154B (en) Lithium secondary battery
JP5885984B2 (en) Electrode forming material and electrode manufacturing method using the electrode forming material
CN114975980A (en) Negative electrode material, and electrochemical device and electronic device using same
JP6188158B2 (en) Negative electrode for lithium ion secondary battery, negative electrode slurry for lithium ion secondary battery, and lithium ion secondary battery
JP5344884B2 (en) Lithium secondary battery
JPWO2002041420A1 (en) Non-aqueous lithium secondary battery
WO2013094100A1 (en) Positive electrode for secondary batteries, and secondary battery using same
JPWO2012144177A1 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the negative electrode
JP2008047458A (en) Electrode for power storage device, and power storage device using it
JP2018125077A (en) Negative electrode for lithium ion secondary battery
WO2012147647A1 (en) Lithium ion secondary cell
JP2010225366A (en) Nonaqueous electrolyte secondary battery
JP5395350B2 (en) Sheet-like negative electrode for lithium ion secondary battery and lithium ion secondary battery using the same
JP6212305B2 (en) Composite current collector, and electrode and secondary battery using the same
JP2016170945A (en) Nonaqueous secondary battery
JP2017188424A (en) Positive electrode active material for lithium ion secondary battery and lithium ion secondary battery positive electrode using the same, and lithium ion secondary battery
JP4841814B2 (en) Non-aqueous secondary battery
JP7223999B2 (en) Positive electrode composition for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2008060028A (en) Power storage device
JP7288479B2 (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130513

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130824

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20131025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140117

R150 Certificate of patent or registration of utility model

Ref document number: 5462445

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250