JP2011204638A - POSITIVE ELECTRODE ACTIVE MATERIAL FOR Li-ION CELL AND METHOD OF MANUFACTURING THE SAME - Google Patents

POSITIVE ELECTRODE ACTIVE MATERIAL FOR Li-ION CELL AND METHOD OF MANUFACTURING THE SAME Download PDF

Info

Publication number
JP2011204638A
JP2011204638A JP2010073501A JP2010073501A JP2011204638A JP 2011204638 A JP2011204638 A JP 2011204638A JP 2010073501 A JP2010073501 A JP 2010073501A JP 2010073501 A JP2010073501 A JP 2010073501A JP 2011204638 A JP2011204638 A JP 2011204638A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
lithium
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010073501A
Other languages
Japanese (ja)
Other versions
JP5552709B2 (en
Inventor
Hirokazu Tsukada
博一 塚田
Hiroyuki Imai
浩之 今井
Koichi Okawa
浩一 大川
Mineo Sato
峰夫 佐藤
Kazuyoshi Uematsu
和義 上松
Chihiro Sato
千紘 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Niigata University NUC
Akita University NUC
Mitsubishi Materials Electronic Chemicals Co Ltd
Original Assignee
Mitsubishi Materials Corp
Niigata University NUC
Akita University NUC
Mitsubishi Materials Electronic Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp, Niigata University NUC, Akita University NUC, Mitsubishi Materials Electronic Chemicals Co Ltd filed Critical Mitsubishi Materials Corp
Priority to JP2010073501A priority Critical patent/JP5552709B2/en
Publication of JP2011204638A publication Critical patent/JP2011204638A/en
Application granted granted Critical
Publication of JP5552709B2 publication Critical patent/JP5552709B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a positive electrode active material for a Li-ion cell with a high discharged capacity as well as superior cycle characteristics, and to provide a method of manufacturing the same.SOLUTION: The positive electrode active material for the Li-ion cell includes rod-shaped LiFePOpowder and carbon nanofiber or nanocarbon, wherein the carbon nanofiber exists in the interior and/or on the surface of the rod-shaped LiFePOpowder or nanocarbon exists on the surface of the rod-shaped LiFePOpowder. The LiFePOcontained in the positive electrode active material can be synthesized in an aqueous solution containing a lithium compound, a metal compound, a phosphate compound, and carbon nanofiber in an inert atmosphere, a reducing atmosphere or a vacuum atmosphere by a microwave hydrothermal method.

Description

本発明は、Liイオン電池用正極活物質として用いられるLiFePO、およびその製造方法に関する。 The present invention relates to LiFePO 4 used as a positive electrode active material for a Li ion battery, and a method for producing the same.

近年、携帯電話やノート型パソコン等のポータブル電子機器の発達や、電気自動車の実用化等に伴い、小型軽量でかつ高容量の二次電池が必要とされている。現在、この要求に応える高容量二次電池の正極材料としてLiCoO等のリチウム含有遷移金属酸化物を用い、負極活物質として炭素系材料を用いたリチウムイオン二次電池が商品化されている。 In recent years, with the development of portable electronic devices such as mobile phones and laptop computers, and the practical application of electric vehicles, secondary batteries with small size and light weight and high capacity are required. Currently, lithium ion secondary batteries using a lithium-containing transition metal oxide such as LiCoO 2 as a positive electrode material of a high capacity secondary battery that meets this requirement and using a carbon-based material as a negative electrode active material have been commercialized.

ところが、LiCoOを用いたリチウムイオン電池は、小型電池としての性能は優れているものの、原料のコバルト埋蔵量が少ないため、資源的制約があり、激しい価格変動があることに加えて、充電時に何らかの原因で内部短絡が生じた際や過充電の際に、LiCoOからの酸素放出により激しい発熱が起こり、電解液を燃焼、電池を爆発させる危険性を有している等の問題を抱えている。 However, although the lithium ion battery using LiCoO 2 has excellent performance as a small battery, there are few resource reserves due to the small amount of cobalt reserves in the raw material, and in addition to severe price fluctuations, When there is an internal short circuit for some reason or overcharge, there is a problem that severe heat generation occurs due to release of oxygen from LiCoO 2 , and there is a risk of burning the electrolyte and exploding the battery. Yes.

今後、電気自動車やハイブリッド車等の環境対応車の開発が重要になってくる状況を考慮すると、安全でかつ安価なリチウムイオン電池用の正極材料が必要とされてくる。このような状況下、Liイオン電池の正極材料として、原料の豊富な鉄系の材料、特にLiFePOに期待が持たれている。 Considering the situation where the development of environmentally friendly vehicles such as electric vehicles and hybrid vehicles will become important in the future, safe and inexpensive cathode materials for lithium ion batteries will be required. Under such circumstances, an iron-based material rich in raw materials, particularly LiFePO 4 , is expected as a positive electrode material for a Li-ion battery.

しかし、LiFePOは電子伝導性が非常に低いため、単に導電助剤を共存させて正極を構成するだけでは不十分であり、優れた電池特性の確保が困難である。そこで、LiFePOを用いたリチウムイオン電池用の正極材料において、電子伝導性を高める技術が検討されている。 However, since LiFePO 4 has very low electronic conductivity, it is not sufficient to simply form a positive electrode by coexisting a conductive additive, and it is difficult to ensure excellent battery characteristics. Therefore, a technique for increasing the electron conductivity in a positive electrode material for a lithium ion battery using LiFePO 4 has been studied.

例えば、リチウム化合物、鉄化合物、リン含有アンモニウム塩、炭素物質微粒子を混合して混合物を得る原料混合工程と、該混合物を600℃以上750℃以下の温度で焼成する焼成工程を含む方法により製造された、炭素含有リチウム鉄複合酸化物が、示されている(特許文献1)。また、炭素−リン酸鉄複合体を沈殿により製造する工程、上記炭素−リン酸鉄複合体とリン酸リチウムとを含有する共沈物を製造する工程、上記共沈物を焼成する工程を有する炭素−オリビン型リン酸鉄リチウム複合粒子の製造方法が示されている(特許文献2)。   For example, it is manufactured by a method including a raw material mixing step of mixing a lithium compound, an iron compound, a phosphorus-containing ammonium salt, and carbon material fine particles to obtain a mixture, and a baking step of baking the mixture at a temperature of 600 ° C. or higher and 750 ° C. or lower. In addition, a carbon-containing lithium iron composite oxide is shown (Patent Document 1). Moreover, it has the process of manufacturing a carbon-iron phosphate complex by precipitation, the process of manufacturing the coprecipitate containing the said carbon-iron phosphate complex and lithium phosphate, and the process of baking the said coprecipitate. A method for producing carbon-olivine type lithium iron phosphate composite particles is shown (Patent Document 2).

また、リン酸鉄リチウムの原料に電子伝導性物質として炭素を加えて、前駆体混合物又は前駆体懸濁物の分散又は粉砕処理を行い、その後、熱水条件下で反応させるリン酸鉄リチウムの製造方法が、示されている(特許文献3)。   In addition, carbon as an electron conductive substance is added to the raw material of lithium iron phosphate, the precursor mixture or the precursor suspension is dispersed or pulverized, and then reacted under hydrothermal conditions. A manufacturing method is shown (Patent Document 3).

しかしながら、上記の製造方法で使用されている炭素材料は、いずれも粉末であり、各原料と炭素材料を、均一な状態で製造することは困難である。また、上記の炭素−リン酸鉄複合体とリン酸リチウムとを含有する共沈物を用いる製造方法には、炭素粉末として、カーボンナノファイバーが例示されているが(特許文献2の第0022段落)、カーボンナノファイバーの分散性は乏しいので、単純にカーボンナノファイバーを各原料と混合焼成しただけでは、カーボンナノファイバーの凝集物が正極材料中に形成され、十分な効果が発揮できない。また、上記の前駆体混合物又は前駆体懸濁物の分散又は粉砕処理を行った後、熱水条件下で反応させる方法(特許文献3)では、分散又は粉砕処理によって炭素材料の分散性は高まる可能性はあるが、工程が多く複雑で、手間やコストがかかり、安価であるという鉄系材料のメリットを活かし難いという課題がある。   However, the carbon materials used in the above production method are all powders, and it is difficult to produce each raw material and the carbon material in a uniform state. In addition, in the production method using the coprecipitate containing the carbon-iron phosphate complex and lithium phosphate, carbon nanofibers are exemplified as the carbon powder (paragraph 0022 of Patent Document 2). ) Since the dispersibility of the carbon nanofibers is poor, the carbon nanofiber aggregates are formed in the positive electrode material simply by mixing and firing the carbon nanofibers with each raw material, and sufficient effects cannot be exhibited. In addition, in the method (Patent Document 3) in which the precursor mixture or the precursor suspension is dispersed or pulverized and then reacted under hot water conditions (Patent Document 3), the dispersibility of the carbon material is increased by the dispersion or pulverization. Although there is a possibility, there is a problem that it is difficult to take advantage of the merit of the iron-based material that the process is complicated, complicated, costly, and inexpensive.

特開2003−34534号広報Japanese Laid-Open Patent Publication No. 2003-34534 特開2007−35295号広報Japanese Laid-Open Patent Publication No. 2007-35295 特表2007−511458号広報Special table 2007-511458 public information

そこで、発明者らは、鋭意研究した結果、原料溶液に、カーボンナノファイバー分散液を添加した後、LiFePOを、マイクロ波水熱合成を用いで製造する方法により、特定形状で微細なLiFePO粉末であって、LiFePO粉末内部および/もしくは表面にカーボンナノファイバーが存在するか、または前記ロッド状LiFePO粉末表面にナノカーボンが存在する、Liイオン電池用正極活物質を合成すると、LiFePOの容量やサイクル特性を顕著に改善できることを見出した。 Thus, as a result of intensive studies, the inventors have added a carbon nanofiber dispersion to a raw material solution, and then manufactured LiFePO 4 using a microwave hydrothermal synthesis to produce a fine LiFePO 4 having a specific shape. When a positive electrode active material for a Li ion battery, in which carbon nanofibers exist inside and / or on the surface of LiFePO 4 powder or nanocarbon exists on the surface of the rod-like LiFePO 4 powder, LiFePO 4 is synthesized. It has been found that the capacity and cycle characteristics of can be significantly improved.

本発明は、以下に示す構成によって上記課題を解決したLiイオン電池用正極活物質、およびその製造方法に関する。
(1)ロッド状LiFePO粉末と、カーボンナノファイバーまたはナノカーボンと、を含み、かつ前記ロッド状LiFePO粉末の内部および/もしくは表面に前記カーボンナノファイバーが存在するか、または前記ロッド状LiFePO粉末表面にナノカーボンが存在する、ことを特徴とする、Liイオン電池用正極活物質。
(2)ロッド状LiFePO粉末の平均短軸径が20〜300nmで、平均長軸径が100〜2000nmであり、かつカーボンナノファイバーの平均短軸径1〜100nmで、アスペクト比が5以上であるか、またはナノカーボンの厚さが1〜25nmである、上記(1)記載のLiイオン電池用正極活物質。
(3)リチウム化合物、鉄化合物、リン酸化合物、およびカーボンナノファイバーを含有する水溶液に、空気雰囲気中、不活性雰囲気中、還元性雰囲気中または真空雰囲気中で、マイクロ波水熱法によりLiFePOを合成することを特徴とする、Liイオン電池用正極活物質の製造方法。
(4)カーボンナノファイバーの平均短軸径が1〜100nmであり、かつアスペクト比が5以上である、上記(3)記載のLiイオン電池用正極活物質の製造方法。
(5)カーボンナノファイバーを、水溶液中のFeイオン:1質量部に対して2.24×10−5〜2.24質量部、および/または水溶液中のLiイオンに対して3.05×10−5〜3.05質量部含有する、上記(3)または(4)記載のLiイオン電池用正極活物質の製造方法。
(6)マイクロ波水熱合成を、温度:100〜250℃で、かつ圧力:0.2〜4.0MPaで行う、上記(3)〜(5)のいずれか記載のLiイオン電池用正極活物質の製造方法。
(7)リチウム化合物が、水酸化リチウム、クエン酸リチウム、シュウ酸リチウム、リン酸リチウム、および炭酸リチウムからなる群より選択される少なくとも1種である、上記(3)〜(6)のいずれか記載のLiイオン電池用正極活物質の製造方法。
(8)鉄化合物が、クエン酸鉄、シュウ酸鉄、リン酸鉄、硫酸鉄、酸化鉄、および金属鉄からなる群より選択される少なくとも1種である、上記(3)〜(7)のいずれか記載のLiイオン電池用正極活物質の製造方法。
(9)リン酸化合物が、リン酸二水素アンモニウム、リン酸水素二アンモニウム、およびリン酸からなる群より選択される少なくとも1種である、上記(3)〜(8)のいずれか記載のLiイオン電池用正極活物質の製造方法。
The present invention relates to a positive electrode active material for a Li-ion battery, which has solved the above problems with the following configuration, and a method for producing the same.
(1) The rod-shaped LiFePO 4 powder and carbon nanofiber or nanocarbon, and the carbon nanofiber is present inside and / or on the surface of the rod-shaped LiFePO 4 powder, or the rod-shaped LiFePO 4 A positive electrode active material for a Li-ion battery, characterized in that nanocarbon is present on the powder surface.
(2) The average minor axis diameter of the rod-shaped LiFePO 4 powder is 20 to 300 nm, the average major axis diameter is 100 to 2000 nm, the average minor axis diameter of the carbon nanofiber is 1 to 100 nm, and the aspect ratio is 5 or more. The positive electrode active material for a Li ion battery according to (1), wherein the nanocarbon has a thickness of 1 to 25 nm.
(3) LiFePO 4 is added to an aqueous solution containing a lithium compound, an iron compound, a phosphate compound, and carbon nanofibers in an air atmosphere, an inert atmosphere, a reducing atmosphere, or a vacuum atmosphere by a microwave hydrothermal method. A method for producing a positive electrode active material for a Li-ion battery, characterized by comprising:
(4) The method for producing a positive electrode active material for a Li ion battery according to (3), wherein the carbon nanofibers have an average minor axis diameter of 1 to 100 nm and an aspect ratio of 5 or more.
(5) The carbon nanofibers may be Fe ions in an aqueous solution: 2.24 × 10 −5 to 2.24 parts by mass with respect to 1 part by mass, and / or 3.05 × 10 6 with respect to Li ions in the aqueous solution. -5 ~3.05 containing parts by mass, (3) or (4) the method of producing the Li ion positive electrode active material for battery according.
(6) Microwave hydrothermal synthesis is performed at a temperature of 100 to 250 ° C. and a pressure of 0.2 to 4.0 MPa, and the positive electrode active for Li ion battery according to any one of (3) to (5) above A method for producing a substance.
(7) Any of (3) to (6) above, wherein the lithium compound is at least one selected from the group consisting of lithium hydroxide, lithium citrate, lithium oxalate, lithium phosphate, and lithium carbonate The manufacturing method of the positive electrode active material for Li ion batteries of description.
(8) The above (3) to (7), wherein the iron compound is at least one selected from the group consisting of iron citrate, iron oxalate, iron phosphate, iron sulfate, iron oxide, and metal iron The manufacturing method of the positive electrode active material for any one of Li ion batteries.
(9) The Li according to any one of (3) to (8), wherein the phosphate compound is at least one selected from the group consisting of ammonium dihydrogen phosphate, diammonium hydrogen phosphate, and phosphoric acid. A method for producing a positive electrode active material for an ion battery.

本発明(1)によれば、物質の放電容量が高く、かつ、カーボンナノファイバーにより、導電性が顕著に改良されたLiイオン電池用正極活物質が得られ、これにより、放電容量が高く、サイクル特性の良好なLiイオン電池を、容易に製造することができる。   According to the present invention (1), a positive electrode active material for a Li-ion battery having a high material discharge capacity and significantly improved conductivity with carbon nanofibers can be obtained, whereby the discharge capacity is high, A Li ion battery having good cycle characteristics can be easily manufactured.

本発明(3)によれば、容量が高く、サイクル特性のよいLiFePOを、水溶液中で簡便に、省エネルギーで製造することができる。ここで、カーボンナノファイバーは、マイクロ波水熱合成時のLiFePO合成の起点となり、かつ製造された正極活物質への導電性付与剤として寄与するという効果をもたらすことに加えて、マイクロ波により熱を吸収し、過熱されることにより合成反応を促進し、LiFePOの結晶化を進め、充放電に耐えられる安定な材料の合成を短時間で可能にするという顕著な効果を与える、と考えられる。ここで、マイクロ波は、LiFePOの結晶化に寄与すると考えられる。 According to the present invention (3), LiFePO 4 having a high capacity and good cycle characteristics can be easily produced in an aqueous solution with energy saving. Here, the carbon nanofiber serves as a starting point for synthesis of LiFePO 4 during microwave hydrothermal synthesis and contributes as a conductivity imparting agent to the produced positive electrode active material. It is believed that it absorbs heat and overheats to promote the synthesis reaction, promotes crystallization of LiFePO 4 , and provides a remarkable effect that enables the synthesis of a stable material that can withstand charge and discharge in a short time. It is done. Here, the microwave is considered to contribute to the crystallization of LiFePO 4 .

実施例1で作製したLiイオン電池用正極活物質の透過型電子顕微鏡写真である。2 is a transmission electron micrograph of a positive electrode active material for a Li-ion battery produced in Example 1. FIG. 実施例1で作製したLiイオン電池用正極活物質の走査型電子顕微鏡写真である。2 is a scanning electron micrograph of a positive electrode active material for a Li ion battery produced in Example 1. FIG. 実施例2で作製したLiイオン電池用正極活物質の透過型電子顕微鏡写真である。3 is a transmission electron micrograph of a positive electrode active material for a Li-ion battery produced in Example 2. FIG. 実施例2で作製したLiイオン電池用正極活物質の透過型電子顕微鏡写真である。3 is a transmission electron micrograph of a positive electrode active material for a Li-ion battery produced in Example 2. FIG. カーボンナノファイバーの透過型電子顕微鏡写真である。It is a transmission electron micrograph of carbon nanofiber. 比較例1で作製したLiイオン電池用正極活物質の走査電子顕微鏡写真である。2 is a scanning electron micrograph of a positive electrode active material for a Li-ion battery produced in Comparative Example 1. マイクロ波水熱法で用いた容器の概略図の一例である。It is an example of the schematic of the container used by the microwave hydrothermal method. 実施例1で作製したLiイオン電池用正極活物質のX線回折図である。2 is an X-ray diffraction pattern of a positive electrode active material for a Li-ion battery produced in Example 1. FIG. 実施例で合成した活物質を測定するために用いた電気化学セルの構成図である。It is a block diagram of the electrochemical cell used in order to measure the active material synthesize | combined in the Example. 実施例1で得られたLiイオン電池用正極活物質の0.2Cでの充放電結果を示す図である。It is a figure which shows the charging / discharging result in 0.2C of the positive electrode active material for Li ion batteries obtained in Example 1. FIG. 実施例2で得られたLiイオン電池用正極活物質の0.2Cでの充放電結果を示す図である。It is a figure which shows the charging / discharging result in 0.2C of the positive electrode active material for Li ion batteries obtained in Example 2. FIG. 比較例1で得られたLiイオン電池用正極活物質の0.2Cでの充放電結果を示す図である。It is a figure which shows the charging / discharging result at 0.2C of the positive electrode active material for Li ion batteries obtained by the comparative example 1. FIG. 実施例1で得られたLiイオン電池用正極活物質の0.5Cでの充放電結果を示す図である。It is a figure which shows the charging / discharging result in 0.5C of the positive electrode active material for Li ion batteries obtained in Example 1. FIG. 比較例1で得られたLiイオン電池用正極活物質の0.5Cでの充放電結果を示す図である。It is a figure which shows the charging / discharging result in 0.5C of the positive electrode active material for Li ion batteries obtained by the comparative example 1. FIG.

以下本発明を実施形態に基づいて具体的に説明する。なお、%は特に示さない限り、また数値固有の場合を除いて質量基準の%である。   Hereinafter, the present invention will be specifically described based on embodiments. Unless otherwise indicated,% is% based on mass unless otherwise specified.

〔Liイオン電池用正極活物質〕
本発明のLiイオン電池用正極活物質は、ロッド状LiFePO粉末と、カーボンナノファイバーまたはナノカーボンと、を含み、かつ前記ロッド状LiFePO粉末の内部および/もしくは表面に前記カーボンナノファイバーが存在するか、または前記ロッド状LiFePO粉末表面に前記ナノカーボンが存在する、ことを特徴とする。
[Positive electrode active material for Li-ion battery]
The positive electrode active material for a Li ion battery of the present invention includes rod-shaped LiFePO 4 powder and carbon nanofibers or nanocarbon, and the carbon nanofibers are present inside and / or on the surface of the rod-shaped LiFePO 4 powder. Or the nanocarbon is present on the surface of the rod-shaped LiFePO 4 powder.

LiFePOは、オリビン型であり、好ましい組成は、LiFePO4(式中、x=0〜1を示す)である。ここで、Li、Fe、P、Oの定量分析は、ICP質量分析法で行う。なお、例えば、結晶構造におけるFeのサイトの一部を、Co、Ni、Al、Mg、Cu、Zn、Ge等の他の元素で置換してもよい。 LiFePO 4 is an olivine type, and a preferred composition is Li x FePO 4 (wherein x = 0 to 1). Here, quantitative analysis of Li, Fe, P, and O is performed by ICP mass spectrometry. For example, part of the Fe site in the crystal structure may be replaced with other elements such as Co, Ni, Al, Mg, Cu, Zn, and Ge.

例えば、Mn、Mg、Ni、Co、Cu、Zn、Geは、Feと略同等のイオン半径を有し、かつFeとは異なる電位で酸化還元するものである。そのため、Feサイトの一部を、これらの元素の1種以上で置換することにより、リチウム鉄複合酸化物の結晶構造の安定化を図ることができる。したがって、リチウム鉄複合酸化物は、Feのサイトの一部を他の元素Mで置換した、組成式LiFe1−yPO(ここで、Mは、Mn、Mg、Ni、Co、Cu、Zn、Geから選ばれる少なくとも1種であり、y=0〜0.2である)で示されるものとすることが望ましい。特に、資源的にも豊富で安価であるという理由から、置換元素MはMnとすることが望ましい。 For example, Mn, Mg, Ni, Co, Cu, Zn, and Ge have an ionic radius substantially the same as that of Fe, and are oxidized and reduced at a potential different from that of Fe. Therefore, the crystal structure of the lithium iron composite oxide can be stabilized by substituting a part of the Fe site with one or more of these elements. Therefore, the lithium iron composite oxide has a composition formula LiFe 1-y M y PO 4 (where M is Mn, Mg, Ni, Co, Cu), in which a part of the Fe site is substituted with another element M. , Zn, and Ge, and y = 0 to 0.2 is desirable. In particular, the substitution element M is preferably Mn because it is abundant in terms of resources and is inexpensive.

図1に、実施例1で作製したLiイオン電池用正極活物質の透過型電子顕微鏡写真を、図2に、実施例1で作製したLiイオン電池用正極活物質の走査型電子顕微鏡写真を示す。図1からわかるように、ロッド状LiFePO粉末の内部および/もしくは表面に、カーボンナノファイバーが存在する。詳細には、ロッド状LiFePO粉末の表面にカーボンナノファイバーが存在し、ロッド状LiFePO粉末とカーボンナノファイバーが重なって電子線が透過している部分があることがわかる。ここで、ロッド状とは、図1中に濃い色で示されているような棒状のものをいう。 FIG. 1 shows a transmission electron micrograph of the positive electrode active material for Li ion battery produced in Example 1, and FIG. 2 shows a scanning electron micrograph of the positive electrode active material for Li ion battery produced in Example 1. . As can be seen from FIG. 1, carbon nanofibers are present inside and / or on the surface of the rod-shaped LiFePO 4 powder. Specifically, the carbon nanofibers are present in the surface of the rod-shaped LiFePO 4 powder, it can be seen that the electron beam overlap rod LiFePO 4 powder and the carbon nanofibers is part that transmitted. Here, the rod shape means a rod shape as shown in a dark color in FIG.

また、図3、図4に、実施例2で作製したLiイオン電池用正極活物質の透過型電子顕微鏡写真を示す。図4からわかるように、ロッド状LiFePO粉末表面にナノカーボンが層状に存在する。このナノカーボンは、上記の内部および/もしくは表面にカーボンナノファイバーが存在するロッド状LiFePO粉末を、特定の条件で加熱することにより形成される。ここで、ナノカーボンとは、カーボンナノファイバーが加熱により、その形状を変化させたものをいう。 3 and 4 show transmission electron micrographs of the Li-ion battery positive electrode active material produced in Example 2. FIG. As can be seen from FIG. 4, nanocarbon is present in layers on the surface of the rod-shaped LiFePO 4 powder. This nanocarbon is formed by heating the rod-shaped LiFePO 4 powder in which carbon nanofibers exist inside and / or on the surface under specific conditions. Here, nanocarbon means carbon nanofibers whose shape has been changed by heating.

参考として、図5に、カーボンナノファイバーの透過型電子顕微鏡写真を、図6に、カーボンナノファイバーを添加せずに合成した比較例1のLiイオン電池用正極活物質の走査電子顕微鏡写真を示す。図1、図5、図6の比較から、図1中に濃い色で示されているものは、ロッド状LiFePO粉末であることを確認することができる。 For reference, FIG. 5 shows a transmission electron micrograph of carbon nanofibers, and FIG. 6 shows a scanning electron micrograph of the positive electrode active material for Li-ion battery of Comparative Example 1 synthesized without adding carbon nanofibers. . From comparison of FIG. 1, FIG. 5, and FIG. 6, it can be confirmed that what is shown in dark color in FIG. 1 is rod-shaped LiFePO 4 powder.

上記ロッド状LiFePO粉末の平均短軸径は、5〜50nmが好ましく、10〜40nmがより好ましい。平均長軸径は、30〜2000nmが好ましく、30〜500nmがより好ましい。ここで、平均粒径は、JEOL製走査電子顕微鏡(型番:JSM−5900)によるSEM写真の観察、あるいはマイクロトラック社製粒度分布測定装置(型番:UPA−EX)を用いて算出する。また、Liイオン電池用正極活物質の比表面積は、3〜70m/gが好ましく、6〜40m/gが、より好ましい。ここで、比表面積は、BET法で測定する。 The average minor axis diameter of the rod-shaped LiFePO 4 powder is preferably 5 to 50 nm, and more preferably 10 to 40 nm. The average major axis diameter is preferably 30 to 2000 nm, and more preferably 30 to 500 nm. Here, the average particle diameter is calculated by observing an SEM photograph with a scanning electron microscope (model number: JSM-5900) manufactured by JEOL or using a particle size distribution measuring apparatus (model number: UPA-EX) manufactured by Microtrack. Moreover, 3-70 m < 2 > / g is preferable and, as for the specific surface area of the positive electrode active material for Li ion batteries, 6-40 m < 2 > / g is more preferable. Here, the specific surface area is measured by the BET method.

カーボンナノファイバーは、平均短軸径が1〜100nmであり、アスペクト比が5以上であると、導電パス形成及び良好な導電性付与の観点から好ましい。また、アスペクト比は、10000以下であると、分散性の観点から好ましい。なお、水溶液中での分散性の観点から、カーボンナノファイバーの表面は、酸処理等により親水化処理されていると好ましい。また、ナノカーボンの厚さは、1〜25nmであると、良好な導電性付与、充放電時のLiイオンのパス確保の観点から好ましい。ナノカーボンの厚さは、1〜5nmであると、より好ましく、1〜3nmであると、さらに好ましい。   Carbon nanofibers preferably have an average minor axis diameter of 1 to 100 nm and an aspect ratio of 5 or more from the viewpoint of forming a conductive path and imparting good conductivity. The aspect ratio is preferably 10,000 or less from the viewpoint of dispersibility. In addition, from the viewpoint of dispersibility in an aqueous solution, the surface of the carbon nanofiber is preferably subjected to a hydrophilic treatment by acid treatment or the like. The thickness of the nanocarbon is preferably 1 to 25 nm from the viewpoint of imparting good conductivity and securing the Li ion path during charge and discharge. The thickness of the nanocarbon is more preferably 1 to 5 nm, and further preferably 1 to 3 nm.

カーボンナノファイバー、ナノカーボンは、LiFePOの核形成および反応促進、良好な導電性付与、良好なサイクル特性の観点から、Liイオン電池用正極活物質:100質量部に対して、0.01〜30質量部であると好ましく、0.03〜10質量部であるとより好ましい。 From the viewpoint of nucleation and reaction promotion of LiFePO 4 , imparting good conductivity, and good cycle characteristics, carbon nanofibers and nanocarbons are 0.01 to 0.1 parts by mass with respect to 100 parts by mass of a positive electrode active material for Li ion batteries. The amount is preferably 30 parts by mass, and more preferably 0.03 to 10 parts by mass.

〔Liイオン電池用正極活物質の製造方法〕
本発明のLiイオン電池用正極活物質の製造方法は、リチウム化合物、鉄化合物、リン酸化合物、およびカーボンナノファイバーを含有する水溶液に、空気雰囲気中、不活性雰囲気中、還元性雰囲気中または真空雰囲気中で、マイクロ波水熱法によりLiFePOを合成することを特徴とする。
[Method for producing positive electrode active material for Li-ion battery]
The method for producing a positive electrode active material for a Li-ion battery according to the present invention includes an aqueous solution containing a lithium compound, an iron compound, a phosphate compound, and carbon nanofibers in an air atmosphere, an inert atmosphere, a reducing atmosphere, or a vacuum. In the atmosphere, LiFePO 4 is synthesized by a microwave hydrothermal method.

リチウム化合物は、LiFePOのリチウム源となり、水に溶解可能なものであればよく、このようなリチウム化合物としては、水酸化リチウム、クエン酸リチウム、シュウ酸リチウム、リン酸リチウム、および炭酸リチウム等が挙げられ、リチウム化合物は、これらを単独で或いは2種以上混合して用いてもよい。好ましくは、水酸化リチウム、リン酸リチウム、および炭酸リチウムであり、より好ましくは、水溶性の観点から水酸化リチウムである。詳細にはわかっていないが、水酸化リチウムを含有する水溶液はアルカリ性になる点も好ましいと思われる。純度は、試薬メーカーから特級として市販されているものが好ましい。 The lithium compound only needs to be a lithium source of LiFePO 4 and soluble in water. Examples of such lithium compounds include lithium hydroxide, lithium citrate, lithium oxalate, lithium phosphate, and lithium carbonate. These lithium compounds may be used alone or in admixture of two or more. Lithium hydroxide, lithium phosphate, and lithium carbonate are preferable, and lithium hydroxide is more preferable from the viewpoint of water solubility. Although it is not known in detail, it seems preferable that the aqueous solution containing lithium hydroxide becomes alkaline. The purity is preferably that which is commercially available as a special grade from a reagent manufacturer.

鉄化合物は、LiFePOの鉄源となり、水に溶解可能なものであればよく、このような鉄化合物としては、クエン酸鉄、シュウ酸鉄、リン酸鉄、硫酸鉄、酸化鉄、および金属鉄等が挙げられ、これらを単独で或いは2種以上混合して用いてもよい。好ましくは、硫酸鉄、リン酸鉄である。硫酸鉄は、水に溶解しやすく、鉄イオンが溶出しやすい材料のためであり、また、その分離した硫酸イオンが電池材料の合成を阻害しない、もしくは電池材料に混合しないため、より好ましい。また、硫酸鉄は価格が安価であるので、より好ましい。 The iron compound only needs to be an iron source of LiFePO 4 and soluble in water. Examples of such iron compounds include iron citrate, iron oxalate, iron phosphate, iron sulfate, iron oxide, and metals. Iron etc. are mentioned, You may use these individually or in mixture of 2 or more types. Of these, iron sulfate and iron phosphate are preferable. Iron sulfate is more preferable because it is easily dissolved in water and iron ions are easily eluted, and the separated sulfate ion does not inhibit the synthesis of the battery material or is not mixed with the battery material. Further, iron sulfate is more preferable because it is inexpensive.

リン酸化合物は、LiFePOのリン酸源となり、水に溶解可能なものであればよく、このようなリン酸化合物としては、リン酸二水素アンモニウム、リン酸水素二アンモニウム、およびリン酸等が挙げられ、これらを単独で或いは2種以上混合して用いてもよい。好ましくは、リン酸である。常温、常圧において液体であり、混合が容易であること、また、リチウムと反応する観点からである。 The phosphoric acid compound only needs to be a phosphoric acid source for LiFePO 4 and soluble in water. Examples of such phosphoric acid compounds include ammonium dihydrogen phosphate, diammonium hydrogen phosphate, and phosphoric acid. These may be used alone or in admixture of two or more. Preferably, it is phosphoric acid. This is because it is liquid at normal temperature and pressure and is easy to mix, and also from the viewpoint of reacting with lithium.

カーボンナノファイバーについては、上述のとおりであるが、予めカーボンナノファイバーの分散体であると、分散または粉砕処理が不要になるため、好ましい。このカーボンナノファイバーを添加した後、超音波照射をすることにより、LiFePOの微粒子化、さらには均一な結晶化が可能となる。詳細は明らかではないが、カーボンナノファイバーは、導電助剤として作用するだけでなく、LiFePOの核形成剤および粒子成長抑制剤として働いていると考えられる。また、カーボンナノファイバーには、マイクロ波を吸収し、水熱合成を促進する効果も期待される。 The carbon nanofibers are as described above, but a dispersion of carbon nanofibers in advance is preferable because a dispersion or pulverization treatment is unnecessary. After this carbon nanofiber is added, ultrasonic irradiation is performed, whereby LiFePO 4 particles can be made fine and further crystallized uniformly. Although the details are not clear, it is considered that the carbon nanofibers not only act as a conduction aid but also act as a nucleation agent and particle growth inhibitor for LiFePO 4 . Carbon nanofibers are also expected to absorb microwaves and promote hydrothermal synthesis.

水としては、水道水、蒸留水、イオン交換水、純水等が挙げられ、無機イオン不純物混入回避の観点から、イオン交換水、純水等が好ましい。   Examples of water include tap water, distilled water, ion exchange water, pure water, and the like, and ion exchange water, pure water, and the like are preferable from the viewpoint of avoiding mixing of inorganic ion impurities.

水溶液中でのリチウムイオンの濃度は、0.08〜10g/dmが好ましい。0.08g/dmより低いと反応の進行が遅く合成に時間がかかり、10g/dmより高いと鉄の酸化を引き起こす可能性が高くなる。 The concentration of lithium ions in the aqueous solution is preferably 0.08 to 10 g / dm 3 . If it is lower than 0.08 g / dm 3, the progress of the reaction is slow, and the synthesis takes time. If it is higher than 10 g / dm 3, there is a high possibility of causing iron oxidation.

水溶液中での鉄イオンの濃度は、0.2〜110g/dmが好ましい。1g/dmより低いと反応の進行が遅く合成に時間がかかり、100g/dmより高いと目的とするLiFePOが合成され難くなる。また、水溶液中での鉄イオンの濃度は、リチウムの濃度の0.1〜4倍が好ましい。0.1倍より低いと反応の進行が遅く合成に時間がかかり、4倍より高いと目的とするLiFePOが合成され難くなる。 The concentration of iron ions in the aqueous solution is preferably 0.2 to 110 g / dm 3 . If it is lower than 1 g / dm 3, the progress of the reaction is slow and it takes time to synthesize, and if it is higher than 100 g / dm 3 , the target LiFePO 4 becomes difficult to synthesize. Moreover, the concentration of iron ions in the aqueous solution is preferably 0.1 to 4 times the concentration of lithium. If it is lower than 0.1 times, the progress of the reaction is slow and it takes time to synthesize. If it is higher than 4 times, the target LiFePO 4 is hardly synthesized.

水溶液中でのリンの濃度は、0.1〜68g/dmが好ましい。0.1g/dmより低いと反応の進行が遅く合成に時間がかかり、68g/dmより高いと目的とするLiFePOが合成され難くなる。また、水溶液中でのリン酸化合物の濃度は、リチウム化合物の濃度の0.02〜7倍が好ましい。0.02倍より低いと反応の進行が遅く合成に時間がかかり、7倍より高いと目的とするLiFePOが合成され難くなる。 The concentration of phosphorus in the aqueous solution is preferably 0.1 to 68 g / dm 3 . The progress of the reaction is lower than 0.1 g / dm 3 it takes time to slow synthesis, LiFePO 4 which is higher than 68 g / dm 3 interest is not easily synthesized. The concentration of the phosphoric acid compound in the aqueous solution is preferably 0.02 to 7 times the concentration of the lithium compound. If it is lower than 0.02 times, the progress of the reaction is slow and it takes time to synthesize. If it is higher than 7 times, the target LiFePO 4 is difficult to be synthesized.

水溶液中でのカーボンナノファイバーの濃度は、2.50×10−3〜25g/dmが好ましい。2.50×10−3g/dmより低いと反応の進行が遅く合成に時間がかかり、また、LiFePOへの導電性付与が十分でなく、25g/dmより高いと目的とするLiFePOが合成され難くなる。また、カーボンナノファイバーを、水溶液中のFeイオン:1質量部に対して2.24×10−5〜2.24質量部、および/または水溶液中のLiイオン:1質量部に対して3.05×10−5〜3.05質量部含有する、と好ましい。製造するLiFePO:1質量部に対しては、カーボンナノファイバーを、7.92×10−5〜0.792質量部になるように含有させると好ましい。室温にて20mlの溶液に同軸プローブを差込、ネットワークアナライザーにて、誘電損失(2.45GHz)を測定したところ、水のみの場合:9.82、水とアスコルビン酸の場合:11.29、水とカーボンナノファイバーの場合:12.79であり、電磁波の吸収率が、カーボンナノファイバーの添加により向上することがわかる。このため、カーボンナノファイバーが熱源となりLiFePO合成の核、および反応促進に寄与すると考えられる。 The concentration of the carbon nanofibers in the aqueous solution is preferably 2.50 × 10 −3 to 25 g / dm 3 . If it is lower than 2.50 × 10 −3 g / dm 3 , the progress of the reaction is slow and it takes time to synthesize, and the conductivity imparting to LiFePO 4 is not sufficient, and if it is higher than 25 g / dm 3 , the intended LiFePO 4 is difficult to synthesize. Further, the carbon nanofibers may be used in an amount of 2.24 × 10 −5 to 2.24 parts by mass with respect to 1 part by mass of Fe ions in the aqueous solution and / or 3 parts by mass of Li ions in the aqueous solution. It is preferable to contain 05 * 10 < -5 > -3.05 mass part. It is preferable that the carbon nanofibers are contained in an amount of 7.92 × 10 −5 to 0.792 parts by mass with respect to 1 part by mass of LiFePO 4 to be produced. A coaxial probe was inserted into a 20 ml solution at room temperature, and the dielectric loss (2.45 GHz) was measured with a network analyzer. In the case of water only: 9.82, in the case of water and ascorbic acid: 11.29, In the case of water and carbon nanofibers: 12.79, and it can be seen that the absorption rate of electromagnetic waves is improved by the addition of carbon nanofibers. For this reason, it is considered that the carbon nanofibers become a heat source and contribute to the nucleus of LiFePO 4 synthesis and the promotion of the reaction.

水溶液は、水中に、上記のリチウム化合物、鉄化合物およびリン酸化合物を添加後、撹拌しながら溶解し、カーボンナノファイバーを好ましくは分散液の状態で添加し、撹拌することにより作製することができる。撹拌は、プロペラ撹拌等の常法によればよい。また、水溶液は、脱気または脱酸素をすると、合成中のFeの酸化を防ぐ観点から好ましい。   The aqueous solution can be prepared by adding the above lithium compound, iron compound and phosphoric acid compound in water and then dissolving with stirring, adding the carbon nanofibers preferably in the state of a dispersion, and stirring. . Stirring may be performed by a conventional method such as propeller stirring. Further, the aqueous solution is preferably degassed or deoxygenated from the viewpoint of preventing oxidation of Fe during synthesis.

図7に、マイクロ波水熱法で用いた容器の概略図の一例を示す。1は圧力容器、2は蓋、3はロッキング蓋、4は破裂板、5は排気方向である。この容器をマイクロ波発生装置に設置し、マイクロ波水熱法による反応を行う。マイクロ波発生装置としては、マイクロ波水熱装置や一般家電製品である電子レンジ等が挙げられる。なお、本発明を実施するための装置としては、水溶液にマイクロ波を照射し、水熱合成をすることができるものであれば、特に限定されない。   FIG. 7 shows an example of a schematic diagram of a container used in the microwave hydrothermal method. 1 is a pressure vessel, 2 is a lid, 3 is a locking lid, 4 is a rupturable plate, and 5 is an exhaust direction. This container is installed in a microwave generator, and a reaction is performed by a microwave hydrothermal method. Examples of the microwave generator include a microwave hydrothermal apparatus and a microwave oven that is a general household appliance. An apparatus for carrying out the present invention is not particularly limited as long as it can irradiate an aqueous solution with microwaves and perform hydrothermal synthesis.

本発明のLiイオン電池用正極活物質の製造方法は、例えば、以下の反応式により起こると考えられる。
3LiOH・HO+FeSO・7HO+HPO
→LiFePO+LiSO+13H
The manufacturing method of the positive electrode active material for Li ion batteries of this invention is considered to occur by the following reaction formula, for example.
3LiOH · H 2 O + FeSO 4 · 7H 2 O + H 3 PO 4
→ LiFePO 4 + Li 2 SO 4 + 13H 2 O

上記の反応においては、空気雰囲気中において行ってもかまわないが、Feの酸化を防ぐことにより所望の効果を得ることができるので、アルゴンガス、窒素ガス等の不活性雰囲気中;水素、一酸化炭素等の還元性雰囲気中;または真空雰囲気中、で行うとより好ましい。   The above reaction may be performed in an air atmosphere, but since a desired effect can be obtained by preventing oxidation of Fe, in an inert atmosphere such as argon gas or nitrogen gas; hydrogen, monoxide More preferably, it is carried out in a reducing atmosphere such as carbon; or in a vacuum atmosphere.

マイクロ波水熱法のマイクロ波の周波数は、2.45〜28.00GHzであると好ましく、2.45GHzであると、より好ましい。この範囲を超えると,水に対する吸収効率が低下し,反応の速度が低下するので,好ましくない.   The microwave frequency of the microwave hydrothermal method is preferably 2.45 to 28.00 GHz, and more preferably 2.45 GHz. Exceeding this range is not preferable because the water absorption efficiency decreases and the reaction rate decreases.

マイクロ波水熱法の温度は、100〜250℃であると好ましく、120〜200℃であると、より好ましい。100℃より低いと、結晶性が低くなり、250℃より高いと結晶粒子が大きくなり、好ましくない。   The temperature of the microwave hydrothermal method is preferably 100 to 250 ° C, and more preferably 120 to 200 ° C. When the temperature is lower than 100 ° C., the crystallinity is lowered, and when the temperature is higher than 250 ° C., the crystal particles become larger, which is not preferable.

マイクロ波水熱法の圧力は、0.1〜4.0MPaであると好ましく、0.5〜1.6MPaであると、より好ましい。0.1MPaより低いと、温度が上がらないため反応が進まず、4.0MPaより高いと、温度が上昇し,結晶粒子が大きくなるので、好ましくない。   The pressure of the microwave hydrothermal method is preferably 0.1 to 4.0 MPa, and more preferably 0.5 to 1.6 MPa. If it is lower than 0.1 MPa, the reaction does not proceed because the temperature does not rise, and if it is higher than 4.0 MPa, the temperature rises and the crystal grains become larger, which is not preferable.

また、マイクロ波水熱法によりLiFePOを合成した後、さらに不活性雰囲気中、還元性雰囲気または真空雰囲気中、300〜800℃で加熱をすると、LiFePOの高容量化、サイクル特性向上の観点から好ましく、300〜500℃が、より好ましい。300℃より低いと、加熱の効果が得られず、800℃より高いと焼結が進行し粒径が大きくなってしまう。また、加熱時間は、30〜300分が好ましく、60〜180分が、より好ましい。 In addition, when LiFePO 4 is synthesized by the microwave hydrothermal method and then heated at 300 to 800 ° C. in an inert atmosphere, a reducing atmosphere or a vacuum atmosphere, the viewpoint of increasing the capacity of LiFePO 4 and improving the cycle characteristics To 300 to 500 ° C. is more preferable. If it is lower than 300 ° C., the effect of heating cannot be obtained, and if it is higher than 800 ° C., sintering proceeds and the particle size becomes large. The heating time is preferably 30 to 300 minutes, and more preferably 60 to 180 minutes.

本発明の方法で製造されたLiイオン電池用正極活物質を用いて、リチウムイオン電池用の正極を構成するには、例えば、Liイオン電池用正極活物質を、そのまま活物質として用い、その他については従来公知の正極と同様に、バインダーや、必要に応じて更に炭素材料などの導電助剤を含有する正極スラリーの成形体とすればよい。また、必要に応じて、これらの正極スラリーを、集電体となる導電性基体の片面または両面に、正極活物質層として形成すればよい。   In order to construct a positive electrode for a lithium ion battery using the positive electrode active material for a Li ion battery produced by the method of the present invention, for example, the positive electrode active material for a Li ion battery is used as an active material as it is, and the others Like the conventionally known positive electrode, a molded body of a positive electrode slurry containing a binder and, if necessary, a conductive aid such as a carbon material may be used. Moreover, what is necessary is just to form these positive electrode slurries as a positive electrode active material layer in the single side | surface or both surfaces of the electroconductive base | substrate used as a collector as needed.

本発明の方法で製造されたLiイオン電池用正極活物質を用いたリチウムイオン電池用の正極を用いてリチウムイオン電池を構成する際には、負極、セパレーター、非水電解液、外装体などの各種構成については特に制限はなく、従来公知のリチウムイオン電池と同様の構成を採用することができる。   When a lithium ion battery is constructed using a positive electrode for a lithium ion battery using the positive electrode active material for a Li ion battery produced by the method of the present invention, the negative electrode, separator, non-aqueous electrolyte, exterior body, etc. There is no restriction | limiting in particular about various structures, The structure similar to a conventionally well-known lithium ion battery is employable.

本発明の方法で製造されたLiイオン電池用正極活物質は、電池電極、二次電池用電極の正極活物質として有効に使用される。特に、リチウムイオン電池、リチウムイオンポリマー電池、リチウムポリマー電池等の非水電解液二次電池用正極活物質として極めて有効であり、リチウム一次電池用正極活物質としても有効である。本発明の電極活物質を用いた非水電解液二次電池は、大きな充放電容量と高いエネルギー密度を持ち、優れたサイクル特性、安全性等を発現し、中・大型二次電池や車載用二次電池の正極活物質として有効に適用できる。また、本発明の製造方法は、大掛かりな装置が不要で、短時間で容易に合成できるため、時間や手順を短縮し、製造コストを抑えることができる。   The positive electrode active material for Li ion batteries produced by the method of the present invention is effectively used as a positive electrode active material for battery electrodes and secondary battery electrodes. In particular, it is extremely effective as a positive electrode active material for non-aqueous electrolyte secondary batteries such as lithium ion batteries, lithium ion polymer batteries, and lithium polymer batteries, and is also effective as a positive electrode active material for lithium primary batteries. The non-aqueous electrolyte secondary battery using the electrode active material of the present invention has a large charge / discharge capacity and high energy density, and exhibits excellent cycle characteristics, safety, etc. It can be effectively applied as a positive electrode active material of a secondary battery. In addition, since the manufacturing method of the present invention does not require a large-scale apparatus and can be easily synthesized in a short time, the time and procedure can be shortened and the manufacturing cost can be reduced.

以下、実施例により、本発明を詳細に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited to these.

〔カーボンナノファイバー分散液の調整〕
カーボンナノファイバーを硝酸(濃度60%)と硫酸(濃度95%以上)の混合液に、カーボンナノファイバー:硝酸:硫酸=1重量部:5重量部:15重量部の割合で混合し、加熱した後、濾過・水洗を行い、親水化処理を行った。乾燥後、得られたカーボンナノファイバー:5gを、イオン交換水:95cmに分散させ、カーボンナノファイバー分散液を調整した。
[Adjustment of carbon nanofiber dispersion]
Carbon nanofibers were mixed with a mixed solution of nitric acid (concentration 60%) and sulfuric acid (concentration 95% or more) at a ratio of carbon nanofiber: nitric acid: sulfuric acid = 1 part by weight: 5 parts by weight: 15 parts by weight and heated. Then, filtration and water washing were performed and the hydrophilic treatment was performed. After drying, 5 g of the obtained carbon nanofiber was dispersed in ion exchange water: 95 cm 3 to prepare a carbon nanofiber dispersion.

〔実施例1〕
LiFePOは、脱気したイオン交換水を19cm入れたフラスコに、Li、Fe、Pの原料として、それぞれ水酸化リチウム1水和物:1.0g、硫酸鉄7水和物:1.12g、リン酸:0.43gを加え、撹拌した後、カーボンナノファイバー分散液:1.00cmを加え、撹拌して、水溶液を作製した。図7に示す容器に入れ、アルゴン雰囲気下、150℃で、20分間反応させて、その後、110℃で60分真空乾燥して、正極活物質を合成した。
[Example 1]
LiFePO 4 was charged in a flask containing 19 cm 3 of degassed ion-exchanged water, and lithium hydroxide monohydrate: 1.0 g and iron sulfate heptahydrate: 1.12 g as raw materials for Li, Fe, and P, respectively. Phosphoric acid: 0.43 g was added and stirred, then carbon nanofiber dispersion: 1.00 cm 3 was added and stirred to prepare an aqueous solution. The mixture was placed in the container shown in FIG. 7 and reacted at 150 ° C. for 20 minutes in an argon atmosphere, and then vacuum dried at 110 ° C. for 60 minutes to synthesize a positive electrode active material.

〔実施例2〕
実施例1で作製した正極活物質を、(アルゴン97体積%+水素3体積%)雰囲気中、400℃で60分間加熱した。
[Example 2]
The positive electrode active material produced in Example 1 was heated at 400 ° C. for 60 minutes in an atmosphere (97% by volume of argon + 3% by volume of hydrogen).

〔比較例1〕
カーボンナノファイバー分散液を用いなかったこと以外は実施例1と同様にして、正極活物質を合成した。
[Comparative Example 1]
A positive electrode active material was synthesized in the same manner as in Example 1 except that the carbon nanofiber dispersion was not used.

〔試験例1〕
実施例1で得られた正極活物質をJEOL製走査電子顕微鏡(型番:JSM−5900)で観察した。図2に、その結果を示す。また、比較例1で得られた正極活物質を観察した。図6に、その結果を示す。
[Test Example 1]
The positive electrode active material obtained in Example 1 was observed with a scanning electron microscope (model number: JSM-5900) manufactured by JEOL. FIG. 2 shows the result. Moreover, the positive electrode active material obtained in Comparative Example 1 was observed. FIG. 6 shows the result.

〔試験例2〕
実施例1、2で得られた正極活物質をJEOL製透過型電子顕微鏡(型番:JEM−1200EX)で観察した。図1に、実施例1の結果を、図3と図4に、実施例2の結果を示す。
[Test Example 2]
The positive electrode active materials obtained in Examples 1 and 2 were observed with a transmission electron microscope (model number: JEM-1200EX) manufactured by JEOL. FIG. 1 shows the results of Example 1, and FIGS. 3 and 4 show the results of Example 2. FIG.

〔試験例3〕
実施例1で得られた正極活物質を、マックスサイエンス株式会社製X線回折装置を用いて、2θ:10〜60°の範囲でX線回折測定を行った。その結果を図8に示す。
[Test Example 3]
The positive electrode active material obtained in Example 1 was subjected to X-ray diffraction measurement in the range of 2θ: 10 to 60 ° using an X-ray diffractometer manufactured by Max Science Co., Ltd. The result is shown in FIG.

〔試験例5〕
図9に、電池特性評価に用いた電気化学セルの構成図を示す。図9では、10は作用極、11は正極および集電体、12は不織布、13はセパレーター、14は負極、15は対極、16は電解液を示す。電極面積は1cmとした。合成したLiFePO粉末、アセチレンブラック(導電助剤)、ポリテトラフルオロエチレン(結着剤)を、質量比70:25:5で混合したもの(総量:0.1g)を正極11とした。負極14には、金属リチウムを用い、電解液16には、ポリカーボネートとジメトキシエタンを体積比1:1で混合した溶液に電解質として1mol/dmのLiClOを溶解した有機溶媒を用いた。集電体11には、ニッケルメッシュ、セパレーター13には、日揮化学株式会社製セパレーター、さらに不織布12には、三井石油化学工業製ポリプロピレン不織布を用いた。
[Test Example 5]
In FIG. 9, the block diagram of the electrochemical cell used for battery characteristic evaluation is shown. In FIG. 9, 10 is a working electrode, 11 is a positive electrode and a current collector, 12 is a nonwoven fabric, 13 is a separator, 14 is a negative electrode, 15 is a counter electrode, and 16 is an electrolytic solution. The electrode area was 1 cm 2 . The positive electrode 11 was prepared by mixing the synthesized LiFePO 4 powder, acetylene black (conducting aid) and polytetrafluoroethylene (binder) in a mass ratio of 70: 25: 5 (total amount: 0.1 g). For the negative electrode 14, metallic lithium was used, and for the electrolytic solution 16, an organic solvent in which 1 mol / dm 3 of LiClO 4 was dissolved as an electrolyte in a mixed solution of polycarbonate and dimethoxyethane at a volume ratio of 1: 1 was used. The current collector 11 was a nickel mesh, the separator 13 was a separator manufactured by JGC Chemicals, and the nonwoven fabric 12 was a polypropylene nonwoven fabric manufactured by Mitsui Petrochemical Industries.

充放電測定は、充放電測定装置(北斗電工(株)製 HJ−101 SM6)を用いて行った。測定条件は、20℃の温度条件下、2端子法で、充放電レート0.2C(理論容量分を充放電するのにかかる時間を5時間とするレート)、電圧範囲2.5〜4.0Vで、充電・放電を10回繰り返した。図10に、実施例1で得られた正極活物質の結果を、図11に、実施例2で得られた正極活物質の結果を、図12に、比較例1で得られた正極活物質の結果を示す。また、充放電レート0.5C(理論容量分を充放電するのにかかる時間を2時間とするレート)でも測定を行った。図13に、実施例1での結果を、図14に、比較例1での結果を示す。   The charge / discharge measurement was performed using a charge / discharge measuring device (HJ-101 SM6 manufactured by Hokuto Denko Co., Ltd.). The measurement conditions are a temperature condition of 20 ° C., a two-terminal method, a charge / discharge rate of 0.2 C (a rate that takes 5 hours to charge / discharge the theoretical capacity), and a voltage range of 2.5-4. Charging / discharging was repeated 10 times at 0V. 10 shows the result of the positive electrode active material obtained in Example 1, FIG. 11 shows the result of the positive electrode active material obtained in Example 2, and FIG. 12 shows the result of the positive electrode active material obtained in Comparative Example 1. The results are shown. The measurement was also performed at a charge / discharge rate of 0.5 C (a rate at which the time taken to charge / discharge the theoretical capacity was 2 hours). FIG. 13 shows the results in Example 1, and FIG. 14 shows the results in Comparative Example 1.

また、表1に、初期放電容量、10サイクル後の放電容量、容量維持率を示す。ここで、容量維持率は、〔(10サイクル後の放電容量)/(初期放電容量)〕である(単位は、「%」)。   Table 1 shows the initial discharge capacity, the discharge capacity after 10 cycles, and the capacity retention rate. Here, the capacity retention rate is [(discharge capacity after 10 cycles) / (initial discharge capacity)] (unit is “%”).

図1から、ロッド状LiFePO粉末の平均短軸径が10〜40nmで、平均長軸径が30〜500nmであり、カーボンナノファイバーの平均短軸径5〜20nmで、アスペクト比が5〜60であることがわかった。図6から、比較例1では、LiPO粒子のみ(X線回折で確認済)が観察された。図8から、実施例1の正極活物質は、LiPO単相であることが確認できた。 From FIG. 1, the average minor axis diameter of the rod-shaped LiFePO 4 powder is 10 to 40 nm, the average major axis diameter is 30 to 500 nm, the average minor axis diameter of the carbon nanofiber is 5 to 20 nm, and the aspect ratio is 5 to 60. I found out that From FIG. 6, in Comparative Example 1, only LiPO 4 particles (confirmed by X-ray diffraction) were observed. From FIG. 8, it was confirmed that the positive electrode active material of Example 1 was a LiPO 4 single phase.

表1からわかるように、カーボンナノファイバーを添加し合成した実施例1の初期容量は138mAh・g−1と、カーボンナノファイバーを添加していない比較例1と比べると7mAh・g−1の向上が確認された。さらにサイクル特性は大幅に改善され、10サイクル後も128mAh・g−1を示した。また、放電電圧は3.35Vを示し、図10と図12からわかるように、そのプラトー領域は無添加の比較例1と比較して広いものとなった。これはカーボンナノファイバーの添加により電子伝導性が改善されたと考えられる。表1には記載していないが、BET法による比表面積測定の結果、カーボンナノファイバーを添加した実施例1は約29m/g、カーボンナノファイバー無添加の比較例1は15m/gと、添加することで表面積は格段に大きくなっていることからも、カーボンナノファイバーの寄与が大きいことが考えられる。カーボンナノファイバーを添加し合成したLiFePOを(アルゴン97体積%+水素3体積%)雰囲気中、400℃で60分間加熱した実施例2の正極活物質は、サイクルを重ねることによる劣化が少なく、10サイクル後も初期容量の97%を維持した。これは、熱することで、結晶性が良くなったこと、粒子表面にナノカーボンが現れることが要因であると考えられる。図13、14から充放電レートを0.5C(1回の充電・放電時間が各々2時間)と高速で充放電を行うと、実施例1、比較例1ともに0.2Cレートで取得した充放電特性と比較して容量およびサイクル特性が低下した。しかしながらカーボンナノファイバーを添加して合成した実施例1は、添加しない比較例1と比較して分極が小さかったことから、カーボンナノファイバーによる電子伝導性の改善が見られた。 As can be seen from Table 1, improvement of the carbon nanofibers added synthesized initial capacity of Example 1 was the 138 mAh · g -1, as compared with Comparative Example 1 without addition of the carbon nanofibers 7 mAh · g -1 Was confirmed. Furthermore, the cycle characteristics were greatly improved, and 128 mAh · g −1 was exhibited even after 10 cycles. The discharge voltage was 3.35 V. As can be seen from FIGS. 10 and 12, the plateau region was wider than that of Comparative Example 1 with no additive. This is considered that the electron conductivity was improved by the addition of carbon nanofibers. Although not described in Table 1, as a result of measuring the specific surface area by the BET method, Example 1 to which carbon nanofibers were added was about 29 m 2 / g, and Comparative Example 1 to which no carbon nanofibers were added was 15 m 2 / g. The addition of carbon nanofibers is considered to contribute greatly to the fact that the surface area is remarkably increased by the addition. The positive electrode active material of Example 2 in which LiFePO 4 synthesized by adding carbon nanofibers was heated at 400 ° C. for 60 minutes in an atmosphere (97% by volume of argon + 3% by volume of hydrogen) has little deterioration due to repeated cycles, Even after 10 cycles, 97% of the initial capacity was maintained. This is considered to be due to the fact that the crystallinity improved by heating and the appearance of nanocarbon on the particle surface. 13 and 14, when charging / discharging is performed at a high charge rate of 0.5 C (each charging / discharging time is 2 hours each), charge obtained at a rate of 0.2 C in both Example 1 and Comparative Example 1 is obtained. Compared with the discharge characteristics, the capacity and cycle characteristics decreased. However, since Example 1 synthesized by adding carbon nanofibers had a smaller polarization than Comparative Example 1 in which carbon nanofibers were not added, improvement in electronic conductivity by carbon nanofibers was observed.

以上より、マイクロ波水熱合成において、カーボンナノファイバーを添加することで、カーボンナオンファイバーがLiFePO粉末の内部および/もしくは表面に存在する比表面積の大きな正極活物質を合成でき、充放電特性を大きく改善することができる。また、分散型のカーボンナノファイバー溶液を使用することで、均一に分散しているカーボンナノファイバーがマイクロ波を吸収するため、それを熱源として反応が効率よく進むと思われる。さらに、カーボンナオンファイバーがLiFePO粉末の内部および/もしくは表面に存在する正極活物質を窒素雰囲気中で400度程度にて過熱すると、ナノカーボンが見られるようになり、それが粉末表面を層状に覆うことで、サイクル特性の向上が確認された。 As described above, in the microwave hydrothermal synthesis, by adding carbon nanofibers, a positive electrode active material having a large specific surface area in which carbon nanofibers are present in and / or on the surface of LiFePO 4 powder can be synthesized, and charge / discharge characteristics can be improved. It can be greatly improved. In addition, by using a dispersion-type carbon nanofiber solution, the uniformly dispersed carbon nanofiber absorbs microwaves, and it is considered that the reaction proceeds efficiently using it as a heat source. Further, when the positive electrode active material in which the carbon naon fiber is present in and / or on the surface of the LiFePO 4 powder is heated at about 400 ° C. in a nitrogen atmosphere, nanocarbon can be seen, which causes the powder surface to be layered. It was confirmed that the cycle characteristics were improved by covering.

1 圧力容器
2 蓋
3 ロッキング蓋
4 破裂板
5 排気方向
10 作用極
11 正極および集電体
12 不織布
13 セパレーター
14 負極
15 対極
16 電解液
DESCRIPTION OF SYMBOLS 1 Pressure vessel 2 Lid 3 Locking lid 4 Rupture plate 5 Exhaust direction 10 Working electrode 11 Positive electrode and current collector 12 Nonwoven fabric 13 Separator 14 Negative electrode 15 Counter electrode 16 Electrolyte

Claims (9)

ロッド状LiFePO粉末と、カーボンナノファイバーまたはナノカーボンと、を含み、かつ前記ロッド状LiFePO粉末の内部および/もしくは表面に前記カーボンナノファイバーが存在するか、または前記ロッド状LiFePO粉末表面にナノカーボンが存在する、ことを特徴とする、Liイオン電池用正極活物質。 Rod-shaped LiFePO 4 powder and carbon nanofiber or nanocarbon, and the carbon nanofiber is present inside and / or on the surface of the rod-shaped LiFePO 4 powder, or on the surface of the rod-shaped LiFePO 4 powder. A positive electrode active material for a Li-ion battery, characterized in that nanocarbon is present. ロッド状LiFePO粉末の平均短軸径が5〜50nmで、平均長軸径が30〜2000nmであり、かつカーボンナノファイバーの平均短軸径1〜100nmで、アスペクト比が5以上であるか、またはナノカーボンの厚さが1〜25nmである、請求項1記載のLiイオン電池用正極活物質。 The average minor axis diameter of the rod-shaped LiFePO 4 powder is 5 to 50 nm, the average major axis diameter is 30 to 2000 nm, the average minor axis diameter of the carbon nanofibers is 1 to 100 nm, and the aspect ratio is 5 or more, Or the thickness of nanocarbon is 1-25 nm, The positive electrode active material for Li ion batteries of Claim 1. リチウム化合物、鉄化合物、リン酸化合物、およびカーボンナノファイバーを含有する水溶液に、空気雰囲気中、不活性雰囲気中、還元性雰囲気中または真空雰囲気中で、マイクロ波水熱法によりLiFePOを合成することを特徴とする、Liイオン電池用正極活物質の製造方法。 LiFePO 4 is synthesized by an microwave hydrothermal method in an air atmosphere, an inert atmosphere, a reducing atmosphere or a vacuum atmosphere in an aqueous solution containing a lithium compound, an iron compound, a phosphoric acid compound, and carbon nanofibers. The manufacturing method of the positive electrode active material for Li ion batteries characterized by the above-mentioned. カーボンナノファイバーの平均短軸径が1〜100nmであり、かつアスペクト比が5以上である、請求項3記載のLiイオン電池用正極活物質の製造方法。   The manufacturing method of the positive electrode active material for Li ion batteries of Claim 3 whose average minor axis diameter of carbon nanofiber is 1-100 nm, and whose aspect-ratio is 5 or more. カーボンナノファイバーを、水溶液中のFeイオン:1質量部に対して2.24×10−5〜2.24質量部、および/または水溶液中のLiイオンに対して3.05×10−5〜3.05質量部含有する、請求項3または4記載のLiイオン電池用正極活物質の製造方法。 The carbon nanofibers are Fe ions in an aqueous solution: 2.24 × 10 −5 to 2.24 parts by mass with respect to 1 part by mass, and / or 3.05 × 10 −5 to Li ions in an aqueous solution. The manufacturing method of the positive electrode active material for Li ion batteries of Claim 3 or 4 which contains 3.05 mass parts. マイクロ波水熱合成を、温度:100〜250℃で、かつ圧力:0.2〜4MPaで行う、請求項3〜5のいずれか1項記載のLiイオン電池用正極活物質の製造方法。   The method for producing a positive electrode active material for a Li-ion battery according to any one of claims 3 to 5, wherein the microwave hydrothermal synthesis is performed at a temperature of 100 to 250 ° C and a pressure of 0.2 to 4 MPa. リチウム化合物が、水酸化リチウム、クエン酸リチウム、シュウ酸リチウム、リン酸リチウム、および炭酸リチウムからなる群より選択される少なくとも1種である、請求項3〜6のいずれか1項記載のLiイオン電池用正極活物質の製造方法。   The Li ion according to any one of claims 3 to 6, wherein the lithium compound is at least one selected from the group consisting of lithium hydroxide, lithium citrate, lithium oxalate, lithium phosphate, and lithium carbonate. A method for producing a positive electrode active material for a battery. 鉄化合物が、クエン酸鉄、シュウ酸鉄、リン酸鉄、硫酸鉄、酸化鉄、および金属鉄からなる群より選択される少なくとも1種である、請求項3〜7のいずれか1項記載のLiイオン電池用正極活物質の製造方法。   The iron compound is at least one selected from the group consisting of iron citrate, iron oxalate, iron phosphate, iron sulfate, iron oxide, and metal iron, according to any one of claims 3 to 7. A method for producing a positive electrode active material for a Li-ion battery. リン酸化合物が、リン酸二水素アンモニウム、リン酸水素二アンモニウム、およびリン酸からなる群より選択される少なくとも1種である、請求項3〜8のいずれか1項記載のLiイオン電池用正極活物質の製造方法。   The positive electrode for a Li ion battery according to any one of claims 3 to 8, wherein the phosphoric acid compound is at least one selected from the group consisting of ammonium dihydrogen phosphate, diammonium hydrogen phosphate, and phosphoric acid. A method for producing an active material.
JP2010073501A 2010-03-26 2010-03-26 Cathode active material for Li-ion battery and method for producing the same Expired - Fee Related JP5552709B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010073501A JP5552709B2 (en) 2010-03-26 2010-03-26 Cathode active material for Li-ion battery and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010073501A JP5552709B2 (en) 2010-03-26 2010-03-26 Cathode active material for Li-ion battery and method for producing the same

Publications (2)

Publication Number Publication Date
JP2011204638A true JP2011204638A (en) 2011-10-13
JP5552709B2 JP5552709B2 (en) 2014-07-16

Family

ID=44881064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010073501A Expired - Fee Related JP5552709B2 (en) 2010-03-26 2010-03-26 Cathode active material for Li-ion battery and method for producing the same

Country Status (1)

Country Link
JP (1) JP5552709B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013047870A1 (en) * 2011-09-30 2013-04-04 三菱マテリアル株式会社 Electrode-forming material and use thereof
JP2013089393A (en) * 2011-10-14 2013-05-13 Gs Yuasa Corp Active material for secondary battery, and method for producing active material for secondary battery
JP2013163618A (en) * 2012-02-13 2013-08-22 Nippon Kagaku Kikai Seizo Kk Liquid phase high speed synthesis method for olivine type compound or carbon composite thereof
CN103400984A (en) * 2013-08-05 2013-11-20 营口航盛科技实业有限责任公司 Lattice growth-control hydro-thermal synthesis method for preparing lithium iron phosphate anode material
CN103700857A (en) * 2013-12-24 2014-04-02 山东大学 Hydrothermal preparation method of nano-level lithium iron phosphate
KR101440003B1 (en) 2012-11-23 2014-09-12 한국화학연구원 The preparing method of lithium iron phosphate cathode active materials, the lithium iron phosphate cathod acive materials thereby and the secondary battery using the same
JP5798564B2 (en) * 2010-09-30 2015-10-21 日本碍子株式会社 Method for producing positive electrode active material for lithium ion battery
US9548491B2 (en) 2014-02-07 2017-01-17 Samsung Sdi Co., Ltd. Positive electrode active material for rechargeable lithium battery, manufacturing method of same, and rechargeable lithium battery including same
CN108807985A (en) * 2017-04-26 2018-11-13 中国科学院福建物质结构研究所 The microwave hydro-thermal synthesis method of olivine-type lithium battery positive pole material lithium iron phosphate
CN109461931A (en) * 2018-09-06 2019-03-12 深圳清华大学研究院 A kind of preparation method of the ferric lithium phosphate precursor of non-wastewater discharge
CN109830680A (en) * 2017-11-23 2019-05-31 中国科学院金属研究所 A kind of LiFePO4Hydrothermal synthesis method
CN114725318A (en) * 2022-04-15 2022-07-08 湖北万润新能源科技股份有限公司 High-rate lithium iron phosphate positive electrode material, preparation method thereof, positive electrode and battery
WO2023093181A1 (en) * 2021-11-26 2023-06-01 广东邦普循环科技有限公司 Rod-shaped sodium ion positive electrode material, preparation method therefor and application thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007173210A (en) * 2005-11-24 2007-07-05 Nissan Motor Co Ltd Positive active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using this
JP2008117749A (en) * 2006-10-13 2008-05-22 Gs Yuasa Corporation:Kk Mixture of lithium phosphoric acid transition metal compound and carbon, electrode with the same, battery with electrode, method of manufacturing mixture and method of manufacturing battery
JP2008130526A (en) * 2006-11-27 2008-06-05 Hitachi Maxell Ltd Active material for electrochemical element, manufacturing method therefor, and electrochemical element
JP2009272041A (en) * 2008-04-30 2009-11-19 Mitsubishi Materials Corp Lithium-ion secondary battery
JP2010020987A (en) * 2008-07-09 2010-01-28 Sumitomo Chemical Co Ltd Non-aqueous electrolyte secondary battery
JP2012500771A (en) * 2008-08-26 2012-01-12 ビーエーエスエフ ソシエタス・ヨーロピア Production of LiFePO4 under hydrothermal conditions

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007173210A (en) * 2005-11-24 2007-07-05 Nissan Motor Co Ltd Positive active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using this
JP2008117749A (en) * 2006-10-13 2008-05-22 Gs Yuasa Corporation:Kk Mixture of lithium phosphoric acid transition metal compound and carbon, electrode with the same, battery with electrode, method of manufacturing mixture and method of manufacturing battery
JP2008130526A (en) * 2006-11-27 2008-06-05 Hitachi Maxell Ltd Active material for electrochemical element, manufacturing method therefor, and electrochemical element
JP2009272041A (en) * 2008-04-30 2009-11-19 Mitsubishi Materials Corp Lithium-ion secondary battery
JP2010020987A (en) * 2008-07-09 2010-01-28 Sumitomo Chemical Co Ltd Non-aqueous electrolyte secondary battery
JP2012500771A (en) * 2008-08-26 2012-01-12 ビーエーエスエフ ソシエタス・ヨーロピア Production of LiFePO4 under hydrothermal conditions

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5798564B2 (en) * 2010-09-30 2015-10-21 日本碍子株式会社 Method for producing positive electrode active material for lithium ion battery
WO2013047870A1 (en) * 2011-09-30 2013-04-04 三菱マテリアル株式会社 Electrode-forming material and use thereof
JP2013089393A (en) * 2011-10-14 2013-05-13 Gs Yuasa Corp Active material for secondary battery, and method for producing active material for secondary battery
JP2013163618A (en) * 2012-02-13 2013-08-22 Nippon Kagaku Kikai Seizo Kk Liquid phase high speed synthesis method for olivine type compound or carbon composite thereof
KR101440003B1 (en) 2012-11-23 2014-09-12 한국화학연구원 The preparing method of lithium iron phosphate cathode active materials, the lithium iron phosphate cathod acive materials thereby and the secondary battery using the same
CN103400984A (en) * 2013-08-05 2013-11-20 营口航盛科技实业有限责任公司 Lattice growth-control hydro-thermal synthesis method for preparing lithium iron phosphate anode material
CN103700857A (en) * 2013-12-24 2014-04-02 山东大学 Hydrothermal preparation method of nano-level lithium iron phosphate
US9548491B2 (en) 2014-02-07 2017-01-17 Samsung Sdi Co., Ltd. Positive electrode active material for rechargeable lithium battery, manufacturing method of same, and rechargeable lithium battery including same
CN108807985A (en) * 2017-04-26 2018-11-13 中国科学院福建物质结构研究所 The microwave hydro-thermal synthesis method of olivine-type lithium battery positive pole material lithium iron phosphate
CN109830680A (en) * 2017-11-23 2019-05-31 中国科学院金属研究所 A kind of LiFePO4Hydrothermal synthesis method
CN109461931A (en) * 2018-09-06 2019-03-12 深圳清华大学研究院 A kind of preparation method of the ferric lithium phosphate precursor of non-wastewater discharge
CN109461931B (en) * 2018-09-06 2021-08-06 深圳清华大学研究院 Preparation method of lithium iron phosphate precursor without wastewater discharge
WO2023093181A1 (en) * 2021-11-26 2023-06-01 广东邦普循环科技有限公司 Rod-shaped sodium ion positive electrode material, preparation method therefor and application thereof
GB2621031A (en) * 2021-11-26 2024-01-31 Guangdong Brunp Recycling Technology Co Ltd Rod-shaped sodium ion positive electrode material, preparation method therefor and application thereof
US11984596B2 (en) 2021-11-26 2024-05-14 Guangdong Brunp Recycling Technology Co., Ltd Rod-shaped sodium ion positive electrode material, preparation method therefor and application thereof
CN114725318A (en) * 2022-04-15 2022-07-08 湖北万润新能源科技股份有限公司 High-rate lithium iron phosphate positive electrode material, preparation method thereof, positive electrode and battery
CN114725318B (en) * 2022-04-15 2023-11-10 湖北万润新能源科技股份有限公司 High-magnification lithium iron phosphate positive electrode material, preparation method thereof, positive electrode and battery

Also Published As

Publication number Publication date
JP5552709B2 (en) 2014-07-16

Similar Documents

Publication Publication Date Title
JP5552709B2 (en) Cathode active material for Li-ion battery and method for producing the same
Shuang et al. Nitrogen-doped carbon shell-confined Ni3S2 composite nanosheets derived from Ni-MOF for high performance sodium-ion battery anodes
Chen et al. High-rate FeS2/CNT neural network nanostructure composite anodes for stable, high-capacity sodium-ion batteries
JP5429980B2 (en) Method for producing carbon-olivine-type manganese iron phosphate lithium composite and positive electrode material for lithium ion battery
JP4737607B2 (en) Method for producing carbon-olivine type lithium iron phosphate composite particles, and positive electrode material for lithium ion battery
Yue et al. A MnS/FeS 2 heterostructure with a high degree of lattice matching anchored into carbon skeleton for ultra-stable sodium-ion storage
JP5765798B2 (en) Cathode active material for Li-ion battery and method for producing the same
Liu et al. Combustion synthesized macroporous structure MFe2O4 (M= Zn, Co) as anode materials with excellent electrochemical performance for lithium ion batteries
TW201138193A (en) Lithium iron phosphate and carbon based lithium accumulator
JP2009301813A (en) Method for manufacturing carbon-olivine type iron lithium phosphate complex, and cathode material for lithium ion battery
KR20120113995A (en) Nano composite materials, method for preparing the same, and energy storage device comprising the same
JP5083866B2 (en) Lithium battery active material, method for producing the same, and lithium battery using the active material
Wang et al. Self-templating thermolysis synthesis of Cu 2–x S@ M (M= C, TiO 2, MoS 2) hollow spheres and their application in rechargeable lithium batteries
JP6501011B1 (en) ELECTRODE MATERIAL, METHOD FOR MANUFACTURING ELECTRODE MATERIAL, ELECTRODE, AND LITHIUM ION BATTERY
Shen et al. Ammonia-low coprecipitation synthesis of lithium layered oxide cathode material for high-performance battery
JP4264513B2 (en) Composite powder for electrode and method for producing the same
CN111710860B (en) Nitrogen-phosphorus co-doped carbon composite material modified by cobalt-molybdenum phosphide particles and preparation method and application thereof
JP5459668B2 (en) Cathode active material for Li-ion battery and method for producing the same
US20150243975A1 (en) Manufacturing method for electrode material, electrode material, and electric storage device provided with the electrode material
Xin et al. A simple approach to fabricate of Ni-NiCo2O4@ ZnCo2O4 yolk-shell nano-tetrahedron composite as high-performance anode material for lithium-ion batteries
Quyen et al. Carbon coated NaLi0. 2Mn0. 8O2 as a superb cathode material for sodium ion batteries
Herrera et al. LiMnPO 4: Review on synthesis and electrochemical properties
JP5928648B1 (en) Electrode material for lithium ion secondary battery
Yang et al. Formic acid as additive for the preparation of high-performance FePO4 materials by spray drying method
Zhao et al. Environmentally benign and scalable synthesis of LiFePO4 nanoplates with high capacity and excellent rate cycling performance for lithium ion batteries

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130326

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140423

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140509

R150 Certificate of patent or registration of utility model

Ref document number: 5552709

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees