JP2009270847A - Reflectance measuring device and reflectance measuring method - Google Patents

Reflectance measuring device and reflectance measuring method Download PDF

Info

Publication number
JP2009270847A
JP2009270847A JP2008119385A JP2008119385A JP2009270847A JP 2009270847 A JP2009270847 A JP 2009270847A JP 2008119385 A JP2008119385 A JP 2008119385A JP 2008119385 A JP2008119385 A JP 2008119385A JP 2009270847 A JP2009270847 A JP 2009270847A
Authority
JP
Japan
Prior art keywords
reflectance
light
test surface
measurement
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008119385A
Other languages
Japanese (ja)
Inventor
Takashi Sato
隆史 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2008119385A priority Critical patent/JP2009270847A/en
Publication of JP2009270847A publication Critical patent/JP2009270847A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a reflectance measuring device and a reflectance measuring method having high measurement accuracy of a reflectance of an inspection surface of an optical element. <P>SOLUTION: In this reflectance measuring device, the first photodetection intensity when measuring light is reflected by interposing the inspection surface of the optical element in an optical path through which the measuring light arrives at a photodetection means, and the second photodetection intensity when the inspection surface is not interposed, are measured, and the reflectance of the inspection surface is measured by comparison between the first photodetection intensity and the second photodetection intensity. In the device, the reflectance is corrected by measuring beforehand a measured value error of the reflectance caused by a curvature of the inspection surface, or the reflectance is corrected by measuring beforehand the measured value error of the reflectance caused by at least one of a position of the inspection surface in the optical path, an incident angle of the measuring light onto the inspection surface, and a wavelength of the measuring light. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、光学素子の被検面の反射率を測定する反射率測定装置および反射率測定方法に関する。   The present invention relates to a reflectance measuring device and a reflectance measuring method for measuring the reflectance of a test surface of an optical element.

従来、光学レンズの測定は、分光エネルギー分布、分光透過率、分光反射率などの測定が行なわれ、これ等の測定は可視領域にて主に行われていた。
図8を参照して、特開2000−321126号公報(特許文献1)などで提案されている従来例の分光反射率測定装置を説明する。
この従来例は、光源11から発せられた光線11aは、ミラー12、13、回析格子14、ミラー15を介して、スリット16に入射される。
光線11aは、スリット16によって単色光とされ、この単色光は、ミラー17、セクターミラー18などにより参照光18aと測定光18bに分割され、参照光18aは反射ミラー19によって積分球28を介し、受光センサーである光電子増倍管27に導かれる。
一方、測定光18bは反射ミラー21によって被検レンズ26を介し、直接又は積分球24を介して受光センサーである光電子増倍管23に導かれ、各々の光の光束を比較することにより光のエネルギーの測定が行なわれる。
光電子増倍管23、積分球24とセクターミラー18は、制御駆動部50により、駆動制御される。
従来例の分光反射率測定装置に使用される受光センサーは、シリコンフォトダイオード、光電子増倍管、CCD等が、用途、使用波長、必要精度等によって使い分けられてきた。
特開2000−321126号公報
Conventionally, measurement of an optical lens is performed by measuring spectral energy distribution, spectral transmittance, spectral reflectance, and the like, and these measurements are mainly performed in the visible region.
With reference to FIG. 8, a conventional spectral reflectance measuring apparatus proposed in Japanese Patent Laid-Open No. 2000-321126 (Patent Document 1) will be described.
In this conventional example, the light beam 11 a emitted from the light source 11 enters the slit 16 via the mirrors 12 and 13, the diffraction grating 14, and the mirror 15.
The light beam 11a is made into monochromatic light by the slit 16, and this monochromatic light is divided into the reference light 18a and the measuring light 18b by the mirror 17, the sector mirror 18, etc., and the reference light 18a is passed through the integrating sphere 28 by the reflecting mirror 19. It is guided to a photomultiplier tube 27 which is a light receiving sensor.
On the other hand, the measurement light 18b is guided to the photomultiplier tube 23, which is a light receiving sensor, directly or via the integrating sphere 24 by the reflecting mirror 21 via the lens 26 to be measured, and the light beams of each light are compared by comparing them. Energy measurements are made.
The photomultiplier tube 23, the integrating sphere 24, and the sector mirror 18 are driven and controlled by the control driving unit 50.
As the light receiving sensor used in the conventional spectral reflectance measuring apparatus, silicon photodiodes, photomultiplier tubes, CCDs, and the like have been properly used depending on the application, wavelength used, required accuracy, and the like.
JP 2000-321126 A

しかし、従来例の可視領域にて主に行われてきた分光反射率測定装置に対して、紫外領域の光線を利用した分光反射率測定装置が各方面で使用されるようになってきている。
特に、半導体の製造に用いられるステッパー等の光源は、水銀灯のg線(λ=4358Å)からi線(λ=3650Å)、ガスレーザーのKrF(λ=2486Å)レーザー、更には、真空紫外領域のArF(λ=1934Å)レーザーへと移行してきている。
このため、これらの光源を有するステッパー等の露光装置に使用される光学系を構成するレンズ、及びレンズ表面に形成する反射防止膜、又はミラーの特性等を評価し、開発しなければならない。
この光学系を構成するレンズ、ミラー等を評価し、開発検討するためのツールとして、紫外波長領域で硝材及び光学膜の特性を精度良く計測し、評価する分光反射率測定装置が必要になる。
しかし、これまでの測定評価に用いていた従来例の分光反射率測定装置では、凸凹様々な曲率を有するレンズ又はミラーを、紫外領域で測定するのに対応しておらず、精度良く測定し評価できなかった。
However, in contrast to the conventional spectral reflectance measuring apparatus mainly used in the visible region, a spectral reflectance measuring device using a light beam in the ultraviolet region has been used in various directions.
In particular, light sources such as steppers used in the manufacture of semiconductors include mercury lamp g-line (λ = 4358 Å) to i-line (λ = 3650 Å), gas laser KrF (λ = 2486 、) laser, and further in the vacuum ultraviolet region. The laser has shifted to an ArF (λ = 1934Å) laser.
For this reason, it is necessary to evaluate and develop the characteristics of a lens constituting an optical system used in an exposure apparatus such as a stepper having these light sources, an antireflection film formed on the lens surface, or a mirror.
As a tool for evaluating and developing the lenses, mirrors, and the like constituting this optical system, a spectral reflectance measuring device for accurately measuring and evaluating the characteristics of the glass material and the optical film in the ultraviolet wavelength region is required.
However, the conventional spectral reflectance measuring apparatus used for measurement evaluation so far does not support measurement of lenses or mirrors having various irregularities in the ultraviolet region, and accurately measures and evaluates them. could not.

精度の良い測定をするためには、測定光が光検出手段に到達する光路中に、被検面を介在させて測定光を反射させた場合と、被検面を介在させない場合の光検出強度を計測し、その対比が正確に行われなければならない。
しかし、受光器の場所による受光特性が完全に均一であるということは少ない。
シリコンフォトダイオードの場合であれば、光電変換を行う受光面内に、製造プロセス、或いは使用時間による劣化によって、場所による感度ムラが存在する。
また、積分球の場合であれば、積分球内壁塗料の塗布ムラや劣化によって場所による反射率ムラが存在するため、被検レンズを介在させない場合と、被検レンズを光路中に介在させて反射させた光束を受光面内の同一部分で受光しないと正確な対比ができない。
特に、真空紫外域では、光が様々な物質に強い吸収を受け、受光面等の汚染による感度ムラへの影響も顕著であった。
また、凸凹様々な曲率を有する球面を測定する場合、被検レンズに照射される測定光が、被検面の曲率により収束、又は発散され、光路中に被検面を介在させない場合の光束と異なり、受光器の感度ムラと相まって、測定値誤差を生じた。
In order to perform measurement with high accuracy, the light detection intensity when the measurement light is reflected with the test surface interposed in the optical path where the measurement light reaches the light detection means, and when the test surface is not interposed Must be measured and contrasted accurately.
However, it is rare that the light receiving characteristics depending on the location of the light receiver are completely uniform.
In the case of a silicon photodiode, there is a non-uniformity in sensitivity depending on the location due to deterioration due to the manufacturing process or use time in the light receiving surface where photoelectric conversion is performed.
In the case of an integrating sphere, since there is uneven reflectance depending on the location due to coating unevenness or deterioration of the integrating sphere inner wall paint, there are cases where the test lens is not interposed and reflection is performed with the test lens interposed in the optical path. An accurate comparison cannot be made unless the light flux thus received is received by the same portion of the light receiving surface.
In particular, in the vacuum ultraviolet region, light is strongly absorbed by various substances, and the influence on the sensitivity unevenness due to contamination of the light receiving surface and the like is also remarkable.
Further, when measuring a spherical surface having various curvatures, the measurement light applied to the test lens is converged or diverged by the curvature of the test surface, and the light flux when the test surface is not interposed in the optical path. In contrast, the measurement value error was caused by the sensitivity variation of the receiver.

ここで、図9を参照して、レンズが凸凹様々な曲率を有する球面を測定する場合、レンズの被検面に照射される測定光が、被検面の曲率により収束、発散され、光路中に被検面を介在させない場合の光束と比較して変化する様子を模式的に説明する。
図9(a)を参照して、光路中にレンズの被検面が介在しない場合を説明する。
積分球32と光電子増倍管31とを有し、分光された単色の測定入射光33が、所定のNAを有する収束光であり、積分球32の開口部32a付近を焦点位置33aとし、積分球32内に入射される。
積分球32の内壁面32bで反射された光は、積分球32の内壁面32bを拡散反射しながら光電子増倍管31に到達し、測定に供される。
Here, referring to FIG. 9, when measuring a spherical surface having various curvatures of the lens, the measurement light irradiated to the test surface of the lens is converged and diverged by the curvature of the test surface, and in the optical path A state in which the light flux changes in comparison with the light beam in the case where the test surface is not interposed in will be schematically described.
With reference to FIG. 9A, a case where the test surface of the lens is not interposed in the optical path will be described.
The monochromatic measurement incident light 33 having the integrating sphere 32 and the photomultiplier tube 31 is a convergent light having a predetermined NA, and the vicinity of the opening 32a of the integrating sphere 32 is set as a focal position 33a. Incident into the sphere 32.
The light reflected by the inner wall surface 32b of the integrating sphere 32 reaches the photomultiplier tube 31 while being diffusely reflected by the inner wall surface 32b of the integrating sphere 32, and is used for measurement.

次に、図9(b)は、被検面として負の曲率、即ち凹面を有するレンズ34を、測定光路中に介在させた場合である。
図9(a)に示される光路中にレンズの被検面を介在させない場合と比較して、レンズ34の被検面34aによって反射された測定光33が収束し、焦点位置33aがレンズ34寄りに変わる。
このため、積分球32の内壁面32bの照射位置で、図9(a)に示される被検面を介在させない場合と比較して光束33bが大きくなる。
Next, FIG. 9B shows a case where a lens 34 having a negative curvature, that is, a concave surface as a test surface is interposed in the measurement optical path.
Compared to the case where the test surface of the lens is not interposed in the optical path shown in FIG. 9A, the measurement light 33 reflected by the test surface 34a of the lens 34 converges, and the focal position 33a is closer to the lens 34. Changes to.
For this reason, the light flux 33b becomes larger at the irradiation position of the inner wall surface 32b of the integrating sphere 32 than in the case where the test surface shown in FIG.

次に、図9(c)は、被検面として正の曲率、即ち凸面を有するレンズ35を、測定光路中に介在させた場合である。
図9(a)に示されるような光路中にレンズの被検面を介在させない場合と比較して、レンズ35の被検面35aによって反射された光が発散し、焦点位置がレンズ35と反対寄りに変わる。
このため、積分球32の内壁面32bの照射位置で、図9(a)に示される被検面を介在させない場合と比較して光束33bが小さくなる。
このように、凸凹様々な曲率を有する球面を測定する場合、被検面34a,35aに照射される測定光33が、被検面34a,35aの曲率により収束、発散され、光路中に被検面34a,35aを介在させない場合の光束と異なり、受光器の感度ムラと相まって、測定値誤差を生じた。
また、受光器に積分球32を用いる場合、その構造上光を取り込むため、検知器で受光するための開口部32aが必要である。
その開口部32aの大きさ、積分球32自体の内径と開口径の面積比、検知器である光電子増倍管31の受光位置等によっても、入射する測定光33の収束、発散により、影響の受け方も異なる。
また、被検レンズ34,35の曲率の大小・正負によっても誤差の量が異なるという問題があった。
また、測定機によっても、測定光、受光器のムラなどが、それぞれ異なり、誤差の量も測定機毎に異なった。
そこで、本発明は、光学素子の被検面の反射率の測定精度が高い反射率測定装置および反射率測定方法を提供することを目的とする。
Next, FIG. 9C shows a case where a lens 35 having a positive curvature, that is, a convex surface as a test surface is interposed in the measurement optical path.
Compared with the case where the test surface of the lens is not interposed in the optical path as shown in FIG. 9A, the light reflected by the test surface 35 a of the lens 35 diverges and the focal position is opposite to the lens 35. It changes to the side.
For this reason, the light beam 33b is smaller at the irradiation position of the inner wall surface 32b of the integrating sphere 32 than in the case where the test surface shown in FIG.
As described above, when measuring a spherical surface having various curvatures, the measurement light 33 irradiated on the test surfaces 34a and 35a is converged and diverged by the curvature of the test surfaces 34a and 35a, and the test light is detected in the optical path. Unlike the light flux in the case where the surfaces 34a and 35a are not interposed, a measurement value error occurs due to sensitivity variations of the light receiver.
In addition, when the integrating sphere 32 is used as a light receiver, an opening 32a for receiving light by the detector is necessary in order to capture light due to its structure.
Depending on the size of the opening 32a, the area ratio between the inner diameter and the opening diameter of the integrating sphere 32 itself, the light receiving position of the photomultiplier tube 31 serving as a detector, and the like, the convergence and divergence of the incident measurement light 33 are affected. The way of receiving is also different.
In addition, there is a problem that the amount of error varies depending on the magnitude and positive / negative of the curvature of the test lenses 34 and 35.
In addition, the measurement light, the non-uniformity of the light receiver and the like differ depending on the measuring machine, and the amount of error also differs for each measuring machine.
Therefore, an object of the present invention is to provide a reflectance measuring apparatus and a reflectance measuring method with high accuracy in measuring the reflectance of the test surface of an optical element.

上記課題を解決するための本発明の反射率測定装置は、測定光が光検出手段に到達する光路中に、光学素子の被検面を介在させて前記測定光を反射させた場合の第1の光検出強度と、前記被検面を介在させない場合の第2の光検出強度を計測し、前記第1の光検出強度と前記第2の光検出強度との対比により前記被検面の反射率を測定する反射率測定装置であって、前記被検面の曲率による前記反射率の測定値誤差を予め測定することにより前記反射率を補正することを特徴とする。
さらに、本発明の反射率測定装置は、測定光が光検出手段に到達する光路中に、光学素子の被検面を介在させて前記測定光を反射させた場合の第1の光検出強度と、前記被検面を介在させない場合の第2の光検出強度を計測し、前記第1の光検出強度と前記第2の光検出強度との対比により前記被検面の反射率を測定する反射率測定装置であって、
前記光路中の前記被検面の位置、前記測定光の前記被検面への入射角度および前記測定光の波長の少なくとも1つによる前記反射率の測定値誤差を予め測定することにより前記反射率を補正することを特徴とする。
The reflectance measuring apparatus of the present invention for solving the above-described problem is the first in the case where the measurement light is reflected through the test surface of the optical element in the optical path where the measurement light reaches the light detection means. And the second photodetection intensity when the test surface is not interposed, and the reflection of the test surface is compared by comparing the first photodetection intensity and the second photodetection intensity. A reflectance measuring apparatus for measuring a reflectance, wherein the reflectance is corrected by measuring in advance a measurement value error of the reflectance due to a curvature of the test surface.
Furthermore, the reflectance measuring apparatus according to the present invention includes a first light detection intensity when the measurement light is reflected through the test surface of the optical element in the optical path where the measurement light reaches the light detection means. The second light detection intensity when the test surface is not interposed is measured, and the reflectance of the test surface is measured by comparing the first light detection intensity and the second light detection intensity. A rate measuring device,
The reflectivity is measured by measuring in advance the measurement value error of the reflectivity due to at least one of the position of the test surface in the optical path, the incident angle of the measurement light to the test surface, and the wavelength of the measurement light. It is characterized by correcting.

本発明によれば、光学素子の被検面の反射率の測定精度が高い。   According to the present invention, the measurement accuracy of the reflectance of the test surface of the optical element is high.

以下、添付図面を参照して、本発明の実施例を説明する。
まず、図3を参照して、本発明の実施例1の反射率測定装置について説明する。
本実施例1は、測定光18bが光検出手段である光電子増倍管23に到達する光路中に、光学素子である被検レンズ26の被検面41を介在させて測定光18bを反射させた場合の第1の光検出強度を計測する。
さらに、被検面41を介在させない場合の第2の光検出強度を計測し、第1の光検出強度と第2の光検出強度との対比により被検面41の反射率を測定し、被検面41の曲率による前記反射率の測定値誤差を予め測定することにより反射率を補正する。
光源11は、真空紫外域から可視域まで連続した波長の光線11aを放射する重水素ランプから成る。
分光するための分光器は、第1軸外し方物面ミラー13、反射型平面回折格子14、第2軸外し方物面ミラー15および出口スリット16から成る。
分光器は、光分散素子として反射型の平面回折格子14と、2枚の軸外し方物面ミラー13、15とから成る所謂ツェルニターナー型のモノクロメーターから成る。
受光センサーである光電子増倍管27は、積分球28を介して参照光18aを受光する。
光検出手段である受光センサーの光電子増倍管23は、積分球24を介して測定光18bを受光する。
光電子増倍管23、積分球24とセクターミラー18は、制御駆動部50により、駆動制御される。
本実施例1においては、光量と波長分解能の関係から出口スリット16面上での単位長さ当りの波長差である逆線分散は2nm/mmとした。
Embodiments of the present invention will be described below with reference to the accompanying drawings.
First, the reflectance measuring apparatus according to the first embodiment of the present invention will be described with reference to FIG.
In the first embodiment, the measurement light 18b is reflected through the test surface 41 of the test lens 26, which is an optical element, in the optical path where the measurement light 18b reaches the photomultiplier tube 23, which is a light detection means. In this case, the first light detection intensity is measured.
Further, the second light detection intensity when the test surface 41 is not interposed is measured, the reflectance of the test surface 41 is measured by comparing the first light detection intensity and the second light detection intensity, The reflectance is corrected by measuring in advance the measurement error of the reflectance due to the curvature of the inspection surface 41.
The light source 11 includes a deuterium lamp that emits a light beam 11a having a continuous wavelength from the vacuum ultraviolet region to the visible region.
The spectroscope for performing spectroscopy is composed of a first off-axis object plane mirror 13, a reflective planar diffraction grating 14, a second off-axis object plane mirror 15, and an exit slit 16.
The spectroscope includes a so-called Zernitaner type monochromator including a reflection type plane diffraction grating 14 and two off-axis direction plane mirrors 13 and 15 as light dispersion elements.
A photomultiplier tube 27 that is a light receiving sensor receives the reference light 18 a via the integrating sphere 28.
The photomultiplier tube 23 of the light receiving sensor as the light detecting means receives the measuring light 18b via the integrating sphere 24.
The photomultiplier tube 23, the integrating sphere 24, and the sector mirror 18 are driven and controlled by the control driving unit 50.
In Example 1, the inverse dispersion, which is the wavelength difference per unit length on the exit slit 16 surface, was set to 2 nm / mm from the relationship between the light amount and the wavelength resolution.

光源11から出射した光線11aは第1平面ミラー12によって90°方向を変えられ、第1軸外し方物面ミラー13によって平行光11bとなり、回折格子14に入射される。
回折格子14によって分光された光11cは、第2軸外し方物面ミラー15によって再び集光され、出口スリット16面上で結像し、特定波長のみが通過する。
出口スリット16を通過した光11dは、第3軸外し方物面ミラー17によって平行光11eとなり、半円形の平面ミラーであるセクターミラー18を回転させて、参照光18aと測定光18bとに時間分割される。
セクターミラー18が光路上にある時は、90°方向を変えられて、参照光18aが第4軸外し方物面ミラー19により集光されて積分球28に入射し、光量をモニターすることで、光量変動分の補正に供される。
ミラー18が光路上に無い時は、そのまま測定光18bが第5軸外し方物面ミラー21に入射され、集光されて積分球24に入射する。
The light beam 11 a emitted from the light source 11 is changed in direction by 90 ° by the first plane mirror 12, becomes parallel light 11 b by the first off-axis direction plane mirror 13, and enters the diffraction grating 14.
The light 11c split by the diffraction grating 14 is condensed again by the second off-axis direction plane mirror 15, forms an image on the exit slit 16 surface, and only a specific wavelength passes.
The light 11d that has passed through the exit slit 16 becomes parallel light 11e by the third off-axis direction plane mirror 17, and the sector mirror 18 that is a semicircular plane mirror is rotated to turn the reference light 18a and the measurement light 18b into time. Divided.
When the sector mirror 18 is on the optical path, the direction of 90 ° is changed, and the reference light 18a is collected by the fourth off-axis object plane mirror 19 and incident on the integrating sphere 28, and the amount of light is monitored. This is used to correct the amount of light fluctuation.
When the mirror 18 is not on the optical path, the measurement light 18b is incident on the fifth off-axis direction plane mirror 21 as it is, collected and incident on the integrating sphere 24.

積分球24は、回転可能に構成され、被検レンズ26の被検面41の反射点を回転中心として回転し、光路中に被検面41を介在させた時に、被検面41からの反射光が入射する位置に回転する。
そこで、測定光18bが積分球24に到達する光路中に、被検面41を介在させて測定光18bを反射させた場合の第1の光検出強度と、被検面41を介在させない場合の第2の光検出強度を計測し、その対比により被検面41の反射率を測定する。
積分球28、24の内面には、測定域が可視光であれば、一般に、硫酸バリウム等が塗布されるが、本実施例1では、真空紫外波長に発光する特性を有する蛍光体が塗布されている。
検知器であるフォトマルと称される光電子増倍管27、23は、積分球28、24の開口部28a,24aに取り付けられている。
積分球28,24に入射した真空紫外光は積分球内壁に塗布された蛍光体を照射し、発光した蛍光光線は積分球28,24の内面の蛍光体被膜の表面を拡散反射しながら、検知器である光電子増倍管27、23に達して測定に供される。
The integrating sphere 24 is configured to be rotatable, rotates around the reflection point of the test surface 41 of the test lens 26 as a rotation center, and reflects from the test surface 41 when the test surface 41 is interposed in the optical path. Rotates to the position where light enters.
Therefore, in the optical path where the measurement light 18b reaches the integrating sphere 24, the first light detection intensity when the measurement light 18b is reflected through the test surface 41 and the test surface 41 is not interposed. The second light detection intensity is measured, and the reflectance of the test surface 41 is measured by comparison.
If the measurement area is visible light, barium sulfate or the like is generally applied to the inner surfaces of the integrating spheres 28 and 24. In the first embodiment, a phosphor having a characteristic of emitting light at a vacuum ultraviolet wavelength is applied. ing.
Photomultiplier tubes 27 and 23 called photomals which are detectors are attached to openings 28a and 24a of integrating spheres 28 and 24, respectively.
The vacuum ultraviolet light incident on the integrating spheres 28 and 24 illuminates the phosphor coated on the inner wall of the integrating sphere, and the emitted fluorescent light is detected while diffusely reflecting the surface of the phosphor coating on the inner surfaces of the integrating spheres 28 and 24. It reaches the photomultiplier tubes 27 and 23, which are testers, and is used for measurement.

次に、図1、図3を参照して、本実施例1における反射率測定値の補正の方法について説明する。
本実施例1においては、まず、波長193.4nmにおける反射率測定値の補正値を求めることとする。
初めに、光学特性が均一な同一材料から切り出した材料を、同一条件で研磨し洗浄した曲率の異なる光学素子である複数、例えば、6種のレンズを用意する。
各レンズ表面の反射率は、吸収等のロスが無視できるレベルに洗浄されており、材料の屈折率により求められる反射率R%を基準反射率Roとするか、各レンズ表面の吸収等によるロスが既知の場合はその分を減算した値を基準反射率Roとする。
或いは、各レンズの平面研磨面の反射率を実測して、その値を基準反射率Roとする。
各レンズのサイズは、直径がφ30、中心厚が10mm、片側の面は全て平面に研磨され、もう一方の面が曲率半径28、56、112の凹面、同じく112、56、28の凸の球面とした。
Next, with reference to FIGS. 1 and 3, a method of correcting the reflectance measurement value in the first embodiment will be described.
In the first embodiment, first, a correction value of the reflectance measurement value at a wavelength of 193.4 nm is obtained.
First, a plurality of, for example, six types of lenses, which are optical elements having different curvatures, are prepared by polishing and cleaning a material cut out from the same material having uniform optical characteristics under the same conditions.
The reflectivity of each lens surface is cleaned to a level at which loss such as absorption is negligible. The reflectivity R% obtained by the refractive index of the material is used as the reference reflectivity Ro, or the loss due to absorption or the like of each lens surface. Is known, the value obtained by subtracting that amount is used as the reference reflectance Ro.
Alternatively, the reflectance of the flat polished surface of each lens is measured, and the value is set as the reference reflectance Ro.
Each lens has a diameter of φ30, a center thickness of 10 mm, one surface is polished to a flat surface, and the other surface is a concave surface with a radius of curvature of 28, 56, 112, and a convex spherical surface with 112, 56, 28 as well. It was.

次に、上記曲率の異なる6種のレンズを一つずつ取り替えて使用し、通常に被検レンズ26を測定し、反射率の測定を行う。
本実施例1においては、被検面41の曲率のみを可変パラメータとする。
しかし、光路中の被検面41の位置である積分球24と被検面41との距離、測定光18bの被検面41への入射角度、測定光18bの波長などを変化させ、各パラメータによる反射率の測定値誤差を予め測定することにより反射率を補正する場合もある。
これらの少なくとも1つを可変パラメータとすればよい。
この曲率の異なる6種の被検レンズ26の被検面41の反射率の測定結果が図1のグラフに示され、横軸を測定光の波長、縦軸を反射率とすると、被検面41の曲率により反射率の測定値が異なる。
Next, the six types of lenses having different curvatures are replaced one by one, and the lens 26 is normally measured to measure the reflectance.
In the first embodiment, only the curvature of the test surface 41 is set as a variable parameter.
However, the distance between the integrating sphere 24, which is the position of the test surface 41 in the optical path, and the test surface 41, the incident angle of the measurement light 18b on the test surface 41, the wavelength of the measurement light 18b, and the like are changed, and each parameter is changed. In some cases, the reflectance is corrected by measuring in advance the measurement value error of the reflectance.
At least one of these may be a variable parameter.
The measurement results of the reflectance of the test surface 41 of the six types of test lenses 26 having different curvatures are shown in the graph of FIG. 1, where the test surface is represented by the horizontal axis representing the wavelength of the measurement light and the vertical axis representing the reflectivity. The measured value of the reflectance varies depending on the curvature of 41.

次に、図2のグラフに示されるように、横軸に曲率半径の逆数(1/r)、縦軸を反射率とし、図1のグラフ上の193.4nmの各測定値6点をプロットし、最小二乗法等により多項式近似し、近似曲線の関数を求める。
本実施例1では、2次近似し、近次式(1)が求められる。
Ra=a(1/r)^2+b(1/r)+c・・・(1)
Ra:近似値
r:曲率半径
a、b:係数
c:定数(切片)
Next, as shown in the graph of FIG. 2, the horizontal axis represents the reciprocal of the radius of curvature (1 / r), the vertical axis represents the reflectivity, and 6 measured values of 193.4 nm on the graph of FIG. 1 are plotted. Then, a polynomial approximation is performed by a least square method or the like to obtain a function of an approximate curve.
In the first embodiment, quadratic approximation is performed, and the near-order expression (1) is obtained.
Ra = a (1 / r) ^ 2 + b (1 / r) + c (1)
Ra: approximate value r: radius of curvature
a, b: coefficient c: constant (intercept)

また、曲率半径rの被検面41を、近似式(1)を求めたのと同じ本実施例1の反射率測定装置を用いて反射率を測定する。
さらに、同じ被検面41の位置である積分球24と被検面41との距離、同じ測定光18bの入射角度、同じ測定光18bの波長で測定した反射率の測定値Rmから反射率の補正値Rcを求める補正式(2)は次式になる。
Rc=Rm・Ro/Ra=Rm・Ro/(a(1/r)^2+b(1/r)+c)・・・(2)
この補正式(2)により、反射率測定値Rmに、被検面41の曲率により変化した反射光束と受光器の感度ムラにより、基準反射率Roに対して、測定値誤差を含んだ反射率比であるRaの逆数を掛けることで、測定値誤差が補正される。
ここまで、193.4nmの測定値及び基準反射率から、補正式(2)により193.4nmの反射率補正値を求めてきたが、他波長の補正値を求めたい場合、同様の方法で求めたい波長について近似曲線の関数を求める。
これにより、他波長の反射率補正値を求めることができる。
また、受光器の感度ムラと測定光内の強度分布が波長により変化しないか、無視できる量である場合、他波長の補正値Rc(λ)を以下の式(3)により求めてもよい。
Rc(λ)=Rm(λ)・Rc(193.4)/Rm(193.4)・・・(3)
この式(3)により、波長毎に近似曲線の関数を求める方法よりも、簡便に反射率の補正値を求めることができる。
Further, the reflectance of the test surface 41 having a radius of curvature r is measured using the same reflectance measuring apparatus of Example 1 as that for which the approximate expression (1) was obtained.
Further, the reflectance is calculated from the measured value Rm of the reflectance measured at the distance between the integrating sphere 24, which is the position of the same test surface 41, and the test surface 41, the incident angle of the same measurement light 18b, and the wavelength of the same measurement light 18b. The correction formula (2) for obtaining the correction value Rc is as follows.
Rc = Rm · Ro / Ra = Rm · Ro / (a (1 / r) ^ 2 + b (1 / r) + c) (2)
By this correction formula (2), the reflectance including the measurement value error with respect to the reference reflectance Ro due to the reflected light flux changed by the curvature of the surface 41 to be measured and the sensitivity unevenness of the light receiver in the reflectance measurement value Rm. By multiplying the reciprocal of Ra, which is the ratio, the measurement value error is corrected.
So far, the reflectance correction value of 193.4 nm has been obtained from the measurement value of 193.4 nm and the reference reflectance by the correction equation (2). However, when it is desired to obtain correction values of other wavelengths, the same method is used. Find the approximate curve function for the desired wavelength.
Thereby, the reflectance correction value of other wavelengths can be obtained.
If the sensitivity variation of the light receiver and the intensity distribution in the measurement light do not change with the wavelength or are negligible, the correction value Rc (λ) of other wavelengths may be obtained by the following equation (3).
Rc (λ) = Rm (λ) · Rc (193.4) / Rm (193.4) (3)
From this equation (3), the reflectance correction value can be obtained more easily than the method of obtaining the function of the approximate curve for each wavelength.

本実施例1によれば、反射率の測定値を補正し、受光器の感度ムラと、被検面41の曲率、光路中の被検面41の位置、測定光18bの入射角度、測定光18bの波長による測定値誤差を補正し、測定値誤差を低減することができる。
本実施例1の補正を実施した場合、特に、誤差の大きかった曲率半径の小さいレンズで、基準平面より反射率が1%以上も低く測定されていたが、0.1%程度の差となり、大幅に絶対値の精度が向上した。
このため、紫外域の分光反射率測定においても、凸凹様々な曲率を有するレンズを高精度に測定することができ、レンズ、及びレンズ表面に形成する反射防止膜や高反射膜等光学薄膜の高精度な特性評価を可能にする。
According to the first embodiment, the measurement value of the reflectance is corrected, the sensitivity unevenness of the light receiver, the curvature of the test surface 41, the position of the test surface 41 in the optical path, the incident angle of the measurement light 18b, the measurement light The measurement value error due to the wavelength of 18b can be corrected to reduce the measurement value error.
When the correction of Example 1 was performed, in particular, a lens having a large radius of curvature with a large error was measured with a reflectivity of 1% or more lower than the reference plane, but the difference was about 0.1%. The accuracy of absolute values has been greatly improved.
For this reason, even in the spectral reflectance measurement in the ultraviolet region, it is possible to measure a lens having various curvatures with high accuracy, and to increase the accuracy of the optical thin film such as the antireflection film and the high reflection film formed on the lens and the lens surface. Enables accurate characterization.

以下、図4、図5、図6、図7を参照して本発明の実施例2について説明する。
本実施例2の反射率測定装置の主な構成は、実施例1と同様であるため、相違点のみ説明する。
本実施例2の反射率測定装置は、反射率補正式を求めるための光学素子である誤差量測定レンズ26a、26bを有し、光路中の被検レンズ26a、26bのセット位置に自動でセットできるように構成されている。
本実施例2においても、まず波長193.4nmにおける補正値を求めることとする。
誤差量測定レンズ26a、26bは、光学特性が均一な同一材料から切り出した材料を、同一条件で研磨し洗浄した曲率の異なる光学素子である複数、例えば、6種のレンズである。
誤差量測定レンズ26a、26bは、光路中に順次介在させて反射率が測定できるよう可動式のホルダー25にセットされている。
各レンズ26a、26bの表面の反射率は、吸収等のロスが無視できるレベルに洗浄されており、材料の屈折率により求まる反射率R%を基準反射率Roとする。
各レンズ26a、26bのサイズは、直径がφ30、中心厚が10mm、片側の面は全て平面に研磨され、もう一方の面が曲率半径28、56、112の凹面、曲率半径112、56、28の凸の球面とした。
Hereinafter, Embodiment 2 of the present invention will be described with reference to FIGS. 4, 5, 6, and 7.
Since the main configuration of the reflectance measuring apparatus of the second embodiment is the same as that of the first embodiment, only differences will be described.
The reflectance measuring apparatus according to the second embodiment includes error amount measuring lenses 26a and 26b, which are optical elements for obtaining a reflectance correction formula, and is automatically set at the set position of the test lenses 26a and 26b in the optical path. It is configured to be able to.
Also in the second embodiment, first, a correction value at a wavelength of 193.4 nm is obtained.
The error amount measurement lenses 26a and 26b are a plurality of, for example, six types of lenses that are optical elements having different curvatures obtained by polishing and cleaning a material cut out from the same material having uniform optical characteristics under the same conditions.
The error amount measurement lenses 26a and 26b are set on the movable holder 25 so that the reflectance can be measured by sequentially interposing them in the optical path.
The reflectance of the surface of each lens 26a, 26b is cleaned to a level where loss such as absorption is negligible, and the reflectance R% obtained by the refractive index of the material is defined as the reference reflectance Ro.
Each lens 26a, 26b has a diameter of φ30, a center thickness of 10 mm, one surface is polished to a flat surface, and the other surface is a concave surface having a curvature radius of 28, 56, 112, and a curvature radius of 112, 56, 28. The convex spherical surface.

次に、図7に示すフロー図の手順に従って、補正された反射率測定値を導く方法について説明する。
まず、第1の工程101である「誤差量と変化するパラメータの関係を見出す工程」について説明する。
この第1の工程101は、被検面41aの曲率、被検面41aの位置である積分球24と被検面41aとの距離、測定光18bの被検面41aへの入射角度および測定光18bの波長の少なくとも1つと反射率の測定値誤差との関係を見出す工程である。
本実施例2においては、変化するパラメータは、レンズ26aの曲率のみとするが、被検面41aの位置である積分球24と被検面41aとの距離、測定光18bの被検面41aへの入射角度、測定光18bの波長などの場合もある。これらの少なくとも1つを可変パラメータとすればよい。
その場合は、各パラメータを変化させた時の反射率を測定し、誤差量との関係を求める。
本実施例2においては、曲率の異なるレンズ26aを、可動式ホルダー25を駆動させることで、順次光路に介在させて反射率を測定する。
その結果が、図4のグラフに示され、横軸を測定光18bの波長、縦軸を反射率にし、被検面41aの曲率により測定値が異なる。
Next, a method for deriving the corrected reflectance measurement value according to the procedure of the flowchart shown in FIG. 7 will be described.
First, the “step of finding the relationship between the error amount and the changing parameter” that is the first step 101 will be described.
In the first step 101, the curvature of the test surface 41a, the distance between the integrating sphere 24, which is the position of the test surface 41a, and the test surface 41a, the incident angle of the measurement light 18b to the test surface 41a, and the measurement light This is a step of finding the relationship between at least one of the wavelengths of 18b and the measurement error of the reflectance.
In the second embodiment, the only parameter to be changed is the curvature of the lens 26a, but the distance between the integrating sphere 24, which is the position of the test surface 41a, and the test surface 41a, and the test light 41b to the test surface 41a. In some cases, the incident angle, the wavelength of the measurement light 18b, and the like. At least one of these may be a variable parameter.
In that case, the reflectance when each parameter is changed is measured, and the relationship with the error amount is obtained.
In the second embodiment, the reflectance is measured by sequentially interposing the lens 26a having different curvatures in the optical path by driving the movable holder 25.
The result is shown in the graph of FIG. 4, where the horizontal axis represents the wavelength of the measurement light 18 b and the vertical axis represents the reflectance, and the measured values differ depending on the curvature of the test surface 41 a.

次に、第2の工程102である「反射率の補正式を導く工程」について説明する。
図5のグラフに示されるように、横軸を曲率半径の逆数(1/r)、縦軸を反射率にとし、第1工程101で得た反射率の結果から、193.4nmの各測定値6点をプロットし、最小二乗法等により多項式近似し、その近似曲線の関数を求める。
本実施例2では、2次近似し、近似式(1)が求められる。
Ra=a(1/r)^2+b(1/r)+c・・・(1)
Ra:近似値
r:曲率半径
a、b:係数
c:定数(切片)
Next, the “step of deriving the reflectance correction formula” that is the second step 102 will be described.
As shown in the graph of FIG. 5, the horizontal axis is the reciprocal of the radius of curvature (1 / r), and the vertical axis is the reflectivity. From the reflectivity results obtained in the first step 101, each measurement at 193.4 nm is performed. Six values are plotted, polynomial approximation is performed by the least square method or the like, and a function of the approximate curve is obtained.
In the second embodiment, quadratic approximation is performed to obtain the approximate expression (1).
Ra = a (1 / r) ^ 2 + b (1 / r) + c (1)
Ra: approximate value r: radius of curvature a, b: coefficient c: constant (intercept)

また、曲率半径rの被検面41aを、近似式(1)を求めたのと同じ本実施例2の反射率測定装置を用いて反射率を測定する。
さらに、同じ被検面41aの位置である積分球24と被検面41との距離、同じ測定光18bの入射角度、同じ測定光18bの波長で測定した測定値Rmから補正値Rcを求める補正式(2)となる。
Rc=Rm・Ro/Ra=Rm・Ro/(a(1/r)^2+b(1/r)+c)・・・(2)
補正式(2)により、反射率測定値Rmに、被検面41aの曲率により変化した反射光束と受光器の感度ムラにより、基準反射率Roに対して、測定値誤差を含んだ反射率比であるRaの逆数を掛けることで、測定値誤差が補正される。
Further, the reflectance of the test surface 41a having the radius of curvature r is measured using the same reflectance measuring apparatus of Example 2 as that for which the approximate expression (1) is obtained.
Further, a correction for obtaining the correction value Rc from the measured value Rm measured at the distance between the integrating sphere 24, which is the position of the same test surface 41a, and the test surface 41, the incident angle of the same measurement light 18b, and the wavelength of the same measurement light 18b. Equation (2) is obtained.
Rc = Rm · Ro / Ra = Rm · Ro / (a (1 / r) ^ 2 + b (1 / r) + c) (2)
According to the correction formula (2), the reflectance ratio including the measurement value error with respect to the reference reflectance Ro due to the reflected light flux changed due to the curvature of the test surface 41a and the sensitivity unevenness of the light receiver in the reflectance measurement value Rm. The measured value error is corrected by multiplying by the reciprocal of Ra.

次に、第3の工程103である「被検面を測定する工程」について説明する。
第1工程101の誤差量測定レンズ26aを、可動式ホルダー25を駆動させることで光路から退避させる。
これにより、曲率半径rが既知の被検面41aを、補正式(2)を求めたのと同じ被検面41aの位置である積分球24と被検面41との距離、同じ測定光18bの入射角度、同じ測定光18bの波長にセットする。
被検面41aは、不純物等の付着による吸収ロスが無視できるレベルに洗浄されている。
通常の被検レンズは、誤差量測定レンズ26aとは別の可動ホルダー(不図示)にセットされており、PC等の制御装置からの命令により移動することができるように構成される。
反射率を測定し、その測定値Rmを制御PCに記憶する。
Next, the “step of measuring the surface to be measured” that is the third step 103 will be described.
The error amount measuring lens 26 a in the first step 101 is retracted from the optical path by driving the movable holder 25.
As a result, the test surface 41a having a known radius of curvature r is measured by using the same measurement light 18b as the distance between the integrating sphere 24 and the test surface 41 at the same position of the test surface 41a from which the correction formula (2) is obtained. Are set to the same incident angle and the same wavelength of the measurement light 18b.
The test surface 41a is cleaned to such a level that absorption loss due to adhesion of impurities or the like can be ignored.
The normal lens to be tested is set in a movable holder (not shown) different from the error amount measurement lens 26a, and is configured to be moved by a command from a control device such as a PC.
The reflectance is measured, and the measured value Rm is stored in the control PC.

最後に、第4の工程104である「反射率を補正する工程」について説明する。
この第4の工程104では、第2の工程102で求めた補正式(2)に、第3の工程103で求めた測定値Rmを代入し、補正値Rcを求め、それらの結果をPC等の制御装置内に記憶し、必要に応じて表示器等に表示させる。
ここまで、193.4nmの測定値及び基準反射率から、補正式(2)により193.4nmの反射率補正値を求めてきたが、他波長の補正値を求めたい場合、同様の方法で求めたい波長について近似曲線の関数を求めることで、他波長の反射率補正値を求める。
また、受光器の感度ムラと測定光18b内の強度分布が波長により変化しないか、無視できる量である場合、他波長の補正値Rc(λ)を以下の式(3)により求めてもよい。
Rc(λ)=Rm(λ)・Rc(193.4)/Rm(193.4)・・・(3)
この式(3)により、波長毎に近似曲線の関数を求める方法よりも、簡便に反射率補正値を求めることができる。
Finally, the “step of correcting the reflectance” which is the fourth step 104 will be described.
In the fourth step 104, the measured value Rm obtained in the third step 103 is substituted into the correction formula (2) obtained in the second step 102 to obtain a correction value Rc, and the result is used as PC or the like. Is stored in the control device and displayed on a display unit or the like as necessary.
So far, the reflectance correction value of 193.4 nm has been obtained from the measurement value of 193.4 nm and the reference reflectance by the correction equation (2). However, when it is desired to obtain correction values of other wavelengths, the same method is used. By calculating the function of the approximate curve for the desired wavelength, the reflectance correction value for other wavelengths is obtained.
When the sensitivity variation of the light receiver and the intensity distribution in the measurement light 18b do not change with the wavelength or are negligible, the correction value Rc (λ) of other wavelengths may be obtained by the following equation (3). .
Rc (λ) = Rm (λ) · Rc (193.4) / Rm (193.4) (3)
By this equation (3), the reflectance correction value can be obtained more simply than the method of obtaining the function of the approximate curve for each wavelength.

本実施例2によれば、反射率測定値を補正し、受光器の感度ムラと、被検面の曲率、光路中の被検面の位置、入射角度、測定光の波長による光束の収束又は発散に起因する測定値誤差を補正することができ、測定値誤差を低減する。
本実施例2の補正を実施した場合、特に、誤差の大きかった曲率半径の小さいレンズで、基準平面基板より反射率が0.2%以上も低く測定されていたが、0.05%程度の差となり、大幅に絶対値の精度が向上した。
このため、紫外域の分光反射率測定においても、凸凹様々な曲率を有するレンズを高精度に測定することができ、レンズ、及びレンズ表面に形成する反射防止膜や高反射膜等光学薄膜の高精度な特性評価を可能にする。
According to the second embodiment, the reflectance measurement value is corrected, the sensitivity unevenness of the light receiver, the curvature of the test surface, the position of the test surface in the optical path, the incident angle, the convergence of the light flux depending on the wavelength of the measurement light, or The measurement value error due to divergence can be corrected, and the measurement value error is reduced.
When the correction of Example 2 was performed, in particular, the lens having a large curvature radius with a large error was measured to have a reflectivity of 0.2% or more lower than that of the reference plane substrate. As a result, the accuracy of the absolute value was greatly improved.
For this reason, even in the spectral reflectance measurement in the ultraviolet region, it is possible to measure a lens having various curvatures with high accuracy, and to increase the accuracy of the optical thin film such as the antireflection film and the high reflection film formed on the lens and the lens surface. Enables accurate characterization.

本発明の実施例1の反射率測定装置の誤差量を求めるためのグラフである。6 is a graph for obtaining an error amount of the reflectance measuring apparatus according to the first embodiment of the present invention. 本発明の実施例1の反射率測定装置の補正値を求めるためのグラフである。6 is a graph for obtaining a correction value of the reflectance measuring apparatus according to the first embodiment of the present invention. 本発明の実施例1の反射率測定装置の概略断面図である。It is a schematic sectional drawing of the reflectance measuring apparatus of Example 1 of this invention. 本発明の実施例2の反射率測定装置の誤差量を求めるためのグラフである。It is a graph for calculating | requiring the error amount of the reflectance measuring apparatus of Example 2 of this invention. 本発明の実施例2の反射率測定装置の補正値を求めるためのグラフである。It is a graph for calculating | requiring the correction value of the reflectance measuring apparatus of Example 2 of this invention. 本発明の実施例2の反射率測定装置の概略断面図である。It is a schematic sectional drawing of the reflectance measuring apparatus of Example 2 of this invention. 本発明の実施例2の反射率測定装置の工程を説明するためのフロー図である。It is a flowchart for demonstrating the process of the reflectance measuring apparatus of Example 2 of this invention. 従来例の反射率測定装置の概略断面図である。It is a schematic sectional drawing of the reflectance measuring apparatus of a prior art example. 従来例の反射率測定装置の課題を説明するための概略断面図である。It is a schematic sectional drawing for demonstrating the subject of the reflectance measuring apparatus of a prior art example.

符号の説明Explanation of symbols

11 光源
12、13、15、17、19、21 ミラー
14 回折格子 16 スリット
18 セクターミラー 23、27 光電子増倍管
24、28 積分球 25 ホルダー
26、26a 被検レンズ 41,41a 被検面

DESCRIPTION OF SYMBOLS 11 Light source 12, 13, 15, 17, 19, 21 Mirror 14 Diffraction grating 16 Slit 18 Sector mirror 23, 27 Photomultiplier tube 24, 28 Integrating sphere 25 Holder 26, 26a Test lens 41, 41a Test surface

Claims (7)

測定光が光検出手段に到達する光路中に、光学素子の被検面を介在させて前記測定光を反射させた場合の第1の光検出強度と、前記被検面を介在させない場合の第2の光検出強度を計測し、
前記第1の光検出強度と前記第2の光検出強度との対比により前記被検面の反射率を測定する反射率測定装置であって、
前記被検面の曲率による前記反射率の測定値誤差を予め測定することにより前記反射率を補正することを特徴とする反射率測定装置。
The first light detection intensity when the measurement light is reflected through the test surface of the optical element in the optical path through which the measurement light reaches the light detection means, and the first light detection intensity when the test surface is not interposed Measure the light detection intensity of 2,
A reflectance measuring device that measures the reflectance of the test surface by comparing the first light detection intensity and the second light detection intensity;
A reflectance measurement apparatus, wherein the reflectance is corrected by measuring in advance a measurement value error of the reflectance due to the curvature of the surface to be examined.
光学特性が均一な同一材料から切り出した材料を、同一条件で研磨し洗浄した曲率の異なる前記光学素子である複数のレンズを使用して、前記被検面の曲率による前記反射率の測定値誤差を予め測定することにより前記反射率を補正することを特徴とする請求項1記載の反射率測定装置。 A measurement value error of the reflectance due to the curvature of the test surface using a plurality of lenses which are the optical elements having different curvatures, which are obtained by polishing and cleaning a material cut out from the same material having uniform optical characteristics. The reflectance measurement apparatus according to claim 1, wherein the reflectance is corrected by measuring in advance. 測定光が光検出手段に到達する光路中に、光学素子の被検面を介在させて前記測定光を反射させた場合の第1の光検出強度と、前記被検面を介在させない場合の第2の光検出強度を計測し、
前記第1の光検出強度と前記第2の光検出強度との対比により前記被検面の反射率を測定する反射率測定装置であって、
前記光路中の前記被検面の位置、前記測定光の前記被検面への入射角度および前記測定光の波長の少なくとも1つによる前記反射率の測定値誤差を予め測定することにより前記反射率を補正することを特徴とする反射率測定装置。
The first light detection intensity when the measurement light is reflected through the test surface of the optical element in the optical path through which the measurement light reaches the light detection means, and the first light detection intensity when the test surface is not interposed Measure the light detection intensity of 2,
A reflectance measuring device that measures the reflectance of the test surface by comparing the first light detection intensity and the second light detection intensity;
The reflectivity is measured by measuring in advance the measurement value error of the reflectivity due to at least one of the position of the test surface in the optical path, the incident angle of the measurement light to the test surface, and the wavelength of the measurement light. The reflectance measuring device characterized by correcting the above.
光学特性が均一な同一材料から切り出した材料を、同一条件で研磨し洗浄した曲率の異なる複数のレンズを使用して、前記被検レンズの位置、測定光の前記被検面への入射角度、測定光の波長の少なくとも1つによる前記反射率の測定値誤差を予め測定することにより前記反射率を補正することを特徴とする請求項3記載の反射率測定装置。   Using a plurality of lenses with different curvatures that are polished and cleaned under the same conditions, the material cut out from the same material with uniform optical properties, the position of the test lens, the incident angle of the measurement light to the test surface, The reflectance measurement apparatus according to claim 3, wherein the reflectance is corrected by measuring in advance a measurement value error of the reflectance due to at least one of wavelengths of measurement light. 光学特性が均一な同一材料から切り出した材料を、同一条件で研磨し洗浄した曲率の異なる前記光学素子である複数のレンズを有することを特徴とする請求項1から4のいずれかに記載の反射率測定装置。   5. The reflection according to claim 1, comprising a plurality of lenses which are the optical elements having different curvatures obtained by polishing and cleaning a material cut out from the same material having uniform optical characteristics under the same conditions. Rate measuring device. 前記被検面の曲率、前記被検面の位置、前記測定光の前記被検面への入射角度および前記測定光の波長の少なくとも1つと前記反射率の測定値誤差との関係を見出す工程と、
前記反射率の補正式を導く工程と、
前記被検面を測定する工程と、
前記反射率の補正を行う工程と、を経て前記反射率を補正することを特徴とする請求項1から4のいずれかに記載の反射率測定装置。
Finding a relationship between at least one of the curvature of the test surface, the position of the test surface, the incident angle of the measurement light to the test surface, and the wavelength of the measurement light and the measurement value error of the reflectance; ,
Deriving the reflectance correction equation;
Measuring the test surface;
The reflectivity measuring apparatus according to claim 1, wherein the reflectivity is corrected through a step of correcting the reflectivity.
請求項1から6のいずれかに記載の反射率測定装置を用いることを特徴とする反射率測定方法。
A reflectance measuring method using the reflectance measuring apparatus according to claim 1.
JP2008119385A 2008-04-30 2008-04-30 Reflectance measuring device and reflectance measuring method Pending JP2009270847A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008119385A JP2009270847A (en) 2008-04-30 2008-04-30 Reflectance measuring device and reflectance measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008119385A JP2009270847A (en) 2008-04-30 2008-04-30 Reflectance measuring device and reflectance measuring method

Publications (1)

Publication Number Publication Date
JP2009270847A true JP2009270847A (en) 2009-11-19

Family

ID=41437547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008119385A Pending JP2009270847A (en) 2008-04-30 2008-04-30 Reflectance measuring device and reflectance measuring method

Country Status (1)

Country Link
JP (1) JP2009270847A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111587383A (en) * 2018-11-30 2020-08-25 深圳市大疆创新科技有限公司 Reflectivity correction method applied to distance measuring device and distance measuring device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111587383A (en) * 2018-11-30 2020-08-25 深圳市大疆创新科技有限公司 Reflectivity correction method applied to distance measuring device and distance measuring device

Similar Documents

Publication Publication Date Title
US9176048B2 (en) Normal incidence broadband spectroscopic polarimeter and optical measurement system
JP3995579B2 (en) Film thickness measuring device and reflectance measuring device
US9170156B2 (en) Normal-incidence broadband spectroscopic polarimeter containing reference beam and optical measurement system
US10274370B2 (en) Inspection apparatus and method
KR100940129B1 (en) Vacuum ultraviolet referencing reflectometer
US7215419B2 (en) Method and apparatus for position-dependent optical metrology calibration
WO2019199340A1 (en) An overlay metrology system and method
CN103048047B (en) Phase element containing normal incident broadband polarized spectrometer and optical measurement system
US7450225B1 (en) Correction of optical metrology for focus offset
JP4823289B2 (en) Reflective scatterometer
JP2002098591A (en) Spectral oval polarimeter provided with refractive lighting optical system
US20220005715A1 (en) Metrology apparatus and method based on diffraction using oblique illumination and method of manufacturing semiconductor device using the metrology method
KR101388424B1 (en) Apparatus for measuring a thickness using digital light processing and method using the same
JP2010048604A (en) Apparatus and method for measuring film thickness
JP2009270847A (en) Reflectance measuring device and reflectance measuring method
CN103185638B (en) Broadband polarization spectrograph and optical measuring system
US6856395B2 (en) Reflectometer arrangement and method for determining the reflectance of selected measurement locations of measurement objects reflecting in a spectrally dependent manner
JP2009031043A (en) Transmittance measuring method and device
WO2019142569A1 (en) Spectroscopic analysis device, spectroscopic analysis method, method for manufacturing steel strip, and steel strip quality assurance method
KR100897109B1 (en) Vacuum ultraviolet referencing reflectometer
JPH0791926A (en) Method and device for measuring characteristic value
TW202141030A (en) Method for measuring light transmittance capable of obtaining the accurate light transmittance
JP2007315760A (en) Photometric device and photometric method
JP2001281093A (en) Method and apparatus for measuring scattering
JPWO2021154617A5 (en)

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100201

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20100630