JP2010048604A - Apparatus and method for measuring film thickness - Google Patents

Apparatus and method for measuring film thickness Download PDF

Info

Publication number
JP2010048604A
JP2010048604A JP2008211732A JP2008211732A JP2010048604A JP 2010048604 A JP2010048604 A JP 2010048604A JP 2008211732 A JP2008211732 A JP 2008211732A JP 2008211732 A JP2008211732 A JP 2008211732A JP 2010048604 A JP2010048604 A JP 2010048604A
Authority
JP
Japan
Prior art keywords
film thickness
film
light
pixel value
inspection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008211732A
Other languages
Japanese (ja)
Inventor
Kazutaka Taniguchi
和隆 谷口
Kunio Ueda
邦夫 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dainippon Screen Manufacturing Co Ltd
Original Assignee
Dainippon Screen Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Screen Manufacturing Co Ltd filed Critical Dainippon Screen Manufacturing Co Ltd
Priority to JP2008211732A priority Critical patent/JP2010048604A/en
Publication of JP2010048604A publication Critical patent/JP2010048604A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To quickly measure and acquire film thicknesses at a plurality of measurement points in a measurement of a film formed on an object. <P>SOLUTION: In this film-thickness measuring apparatus 1, a plurality of reflection characteristics corresponding to a plurality of inspection wavelengths are stored beforehand, concerning the film 92 whose optical constants are known. Based on the plurality of reflection characteristics and a plurality of inspection images corresponding to the plurality of inspection wavelengths acquired by imaging the film 92 while switching the inspection wavelengths, the film thicknesses at the individual measurement points are acquired by a film-thickness calculation part 73, based on the degrees of coincidences between a plurality of pixel values of the plurality of inspection images at the individual measurement points on the film 92, and a plurality of theoretical reflectivities represented by a plurality of reflection characteristics at individual film thicknesses. Accordingly, the film thicknesses at the plurality of measurement points on a substrate 9 can be quickly acquired, since the amount of calculations by the calculation part 73 only increases slightly even if the number of measurements increases. As a result, a wide-range of film-thickness distribution on the substrate 9 can be acquired with high accuracy and with high resolution. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、対象物上に形成された膜の膜厚を測定する技術に関する。   The present invention relates to a technique for measuring the thickness of a film formed on an object.

従来より、表示装置用のガラス基板や半導体基板等(以下、単に「基板」という。)の主面上に形成されたレジスト膜等の薄膜を検査する装置の1つとして、基板上における薄膜のムラを検査する装置が知られている。特許文献1ないし特許文献10の装置では、光源からの光を基板上の薄膜に照射し、薄膜からの反射光や透過光における光干渉を利用して膜厚ムラ(すなわち、基板上における膜厚の相対変動の分布)の検出が行われる。   Conventionally, as one of apparatuses for inspecting a thin film such as a resist film formed on a main surface of a glass substrate or a semiconductor substrate (hereinafter simply referred to as “substrate”) for a display device, An apparatus for inspecting unevenness is known. In the devices of Patent Document 1 to Patent Document 10, light from a light source is irradiated onto a thin film on a substrate, and film thickness unevenness (that is, film thickness on the substrate) is performed using light interference in reflected light or transmitted light from the thin film. The distribution of relative fluctuations is detected.

一方、特許文献11では、基板上の微小領域に向けて光を照射し、当該微小領域からの反射光の分光強度に基づいて基板上の薄膜の膜厚を求める膜厚測定装置が開示されている。特許文献11の膜厚測定装置では、反射光の分光強度から光干渉法により膜厚を求める上述の測定部に加えて、偏光した光を基板上の微小領域に照射し、当該微小領域からの反射光の偏光状態を解析することにより薄膜の膜厚を求めるエリプソメータも備えている。
特開2006−105884号公報 特開2006−284211号公報 特開2006−284212号公報 特開2006−292487号公報 特開2006−308556号公報 特開2006−313143号公報 特開2007−57521号公報 特開2007−322256号公報 特開2007−322257号公報 特開2007−322258号公報 特開2004−156996号公報
On the other hand, Patent Document 11 discloses a film thickness measuring device that irradiates light toward a minute region on a substrate and obtains a film thickness of the thin film on the substrate based on the spectral intensity of reflected light from the minute region. Yes. In the film thickness measurement device of Patent Document 11, in addition to the above-described measurement unit that obtains the film thickness from the spectral intensity of the reflected light by the optical interference method, the polarized light is irradiated onto a minute region on the substrate, An ellipsometer is also provided to determine the thickness of the thin film by analyzing the polarization state of the reflected light.
JP 2006-105884 A Japanese Patent Laid-Open No. 2006-284211 JP 2006-284212 A JP 2006-292487 A JP 2006-308556 A JP 2006-313143 A JP 2007-57521 A JP 2007-322256 A JP 2007-322257 A JP 2007-322258 A JP 2004-156996 A

ところで、基板上に薄膜を形成する工程では、薄膜を高精度に管理するために、基板上における膜厚の分布(すなわち、膜厚の絶対値の分布)を高精度かつ高分解能にて取得することが求められている。しかしながら、特許文献1ないし特許文献10の装置では、基板上における膜厚の相対変動の分布を求めることはできるが、膜厚の絶対値を求めることはできない。一方、特許文献11の膜厚測定装置では、光干渉法による膜厚測定およびエリプソメータによる膜厚測定のいずれにおいても、1回の測定により測定可能な領域が微小であるため、基板上の広い範囲の膜厚測定を高分解能にて行うためには測定を多数回繰り返す必要があり、多大な測定時間が必要となる。   By the way, in the process of forming a thin film on the substrate, in order to manage the thin film with high accuracy, the distribution of the film thickness on the substrate (that is, the distribution of the absolute value of the film thickness) is acquired with high accuracy and high resolution. It is demanded. However, with the apparatuses of Patent Document 1 to Patent Document 10, it is possible to obtain the distribution of the relative variation of the film thickness on the substrate, but it is not possible to obtain the absolute value of the film thickness. On the other hand, in the film thickness measurement apparatus of Patent Document 11, the area that can be measured by one measurement is very small in both the film thickness measurement by the optical interferometry and the film thickness measurement by the ellipsometer, and thus a wide range on the substrate. In order to perform the film thickness measurement at a high resolution, it is necessary to repeat the measurement many times, which requires a lot of measurement time.

本発明は、上記課題に鑑みなされたものであり、対象物上に形成された膜の膜厚測定において、複数の測定点における膜厚を迅速に求めることを目的としている。   The present invention has been made in view of the above problems, and an object of the present invention is to quickly obtain film thicknesses at a plurality of measurement points in film thickness measurement of a film formed on an object.

請求項1に記載の発明は、対象物上に形成された膜の膜厚を測定する膜厚測定装置であって、光学定数が既知である膜が主面上に形成された対象物を保持する保持部と、複数の検査波長における前記膜の膜厚と前記膜厚の変化に従って変動する前記膜の反射率の理論値との関係をそれぞれ示す複数の反射特性を予め記憶する反射特性記憶部と、前記膜に光を照射する光照射部と、前記光照射部からの光のうち前記膜にて反射された干渉光を受光して前記複数の検査波長における前記膜の複数の画像を取得する撮像部と、前記複数の画像および前記複数の反射特性に基づいて前記対象物上の複数の測定点のそれぞれにおける膜厚を算出する膜厚演算部とを備え、前記膜厚演算部が、a)前記複数の画像の各画像において、画素値が最大となる最大位置および画素値が最小となる最小位置における最大画素値および最小画素値を取得する工程と、b)前記各画像の前記最大画素値および前記最小画素値と前記各画像に対応する反射特性における極大反射率および極小反射率との関係に基づいて前記各画像の画素値と反射率とを対応付ける工程と、c)前記複数の測定点の各測定点における前記複数の画像の複数の画素値と、各膜厚における前記複数の反射特性が示す複数の反射率との一致度に基づいて前記各測定点における膜厚を求める工程とを実行する。   The invention according to claim 1 is a film thickness measuring device for measuring the film thickness of a film formed on an object, and holds the object on which a film having a known optical constant is formed on the main surface. And a reflection characteristic storage unit that stores in advance a plurality of reflection characteristics respectively indicating the relationship between the film thickness of the film at a plurality of inspection wavelengths and the theoretical value of the reflectivity of the film that varies according to the change in the film thickness And a light irradiating unit for irradiating the film with light, and receiving interference light reflected by the film among the light from the light irradiating unit to obtain a plurality of images of the film at the plurality of inspection wavelengths. An imaging unit, and a film thickness calculation unit that calculates a film thickness at each of a plurality of measurement points on the object based on the plurality of images and the plurality of reflection characteristics, the film thickness calculation unit, a) In each of the plurality of images, the maximum pixel value is the maximum. Obtaining a maximum pixel value and a minimum pixel value at a minimum position at which the position and the pixel value are minimum; b) a maximum in reflection characteristics corresponding to the maximum pixel value and the minimum pixel value of each image and each image; A step of associating a pixel value of each image with a reflectance based on a relationship between a reflectance and a minimum reflectance; c) a plurality of pixel values of the plurality of images at each measurement point of the plurality of measurement points; A step of obtaining a film thickness at each measurement point based on a degree of coincidence with a plurality of reflectivities indicated by the plurality of reflection characteristics at each film thickness.

請求項2に記載の発明は、請求項1に記載の膜厚測定装置であって、前記複数の検査波長の光を選択的にそれぞれ透過する複数の光学フィルタと、前記複数の光学フィルタのうち前記光照射部から前記撮像部に至る光路上に配置された一の光学フィルタを他の光学フィルタに変更する光学フィルタ変更機構とをさらに備え、前記光照射部から出射される光が白色光である。   Invention of Claim 2 is a film thickness measuring apparatus of Claim 1, Comprising: Among the some optical filter which each selectively permeate | transmits the light of these test | inspection wavelength, and these optical filters An optical filter changing mechanism that changes one optical filter disposed on an optical path from the light irradiation unit to the imaging unit to another optical filter, and the light emitted from the light irradiation unit is white light. is there.

請求項3に記載の発明は、請求項1または2に記載の膜厚測定装置であって、前記膜上の少なくとも1つの測定点における膜厚を取得する膜厚計をさらに備え、前記膜厚計により取得された前記膜厚が、前記膜厚演算部による膜厚の算出に利用される。   Invention of Claim 3 is a film thickness measuring apparatus of Claim 1 or 2, Comprising: The film thickness meter which acquires the film thickness in the at least 1 measurement point on the said film | membrane is further provided, The said film thickness The film thickness acquired by the meter is used for calculation of the film thickness by the film thickness calculator.

請求項4に記載の発明は、請求項3に記載の膜厚測定装置であって、前記膜厚計により取得された前記少なくとも1つの測定点における膜厚と、前記膜厚演算部により算出された前記少なくとも1つの測定点における膜厚との差に基づいて、前記膜厚演算部により算出された前記各測定点における膜厚が補正される。   Invention of Claim 4 is the film thickness measuring apparatus of Claim 3, Comprising: The film thickness in the said at least 1 measurement point acquired with the said film thickness meter, and the said film thickness calculating part calculate The film thickness at each measurement point calculated by the film thickness calculator is corrected based on the difference from the film thickness at the at least one measurement point.

請求項5に記載の発明は、対象物上に形成された膜の厚さを測定する膜厚測定方法であって、a)光学定数が既知である膜が主面上に形成された対象物を保持する工程と、b)複数の検査波長における前記膜の膜厚と前記膜厚の変化に従って変動する前記膜の反射率の理論値との関係をそれぞれ示す複数の反射特性を予め記憶する工程と、c)光照射部から前記膜に光を照射し、前記光照射部からの光のうち前記膜にて反射された干渉光を撮像部により受光して前記複数の検査波長における前記膜の複数の画像を取得する工程と、d)前記複数の画像の各画像において、画素値が最大となる最大位置および画素値が最小となる最小位置における最大画素値および最小画素値を取得する工程と、e)前記各画像の前記最大画素値および前記最小画素値と前記各画像に対応する反射特性における極大反射率および極小反射率との関係に基づいて前記各画像の画素値と反射率とを対応付ける工程と、f)前記対象物上の複数の測定点の各測定点における前記複数の画像の複数の画素値と、各膜厚における前記複数の反射特性が示す複数の反射率との一致度に基づいて前記各測定点における膜厚を求める工程とを備える。   The invention according to claim 5 is a film thickness measuring method for measuring a thickness of a film formed on an object, and a) an object in which a film having a known optical constant is formed on a main surface. And b) storing in advance a plurality of reflection characteristics respectively indicating the relationship between the film thickness of the film at a plurality of inspection wavelengths and the theoretical value of the reflectivity of the film that varies according to the change in the film thickness. And c) irradiating the film with light from the light irradiating unit, and receiving interference light reflected by the film among the light from the light irradiating unit by the imaging unit, and the film at the plurality of inspection wavelengths. Obtaining a plurality of images; and d) obtaining a maximum pixel value and a minimum pixel value at a maximum position where the pixel value is maximum and a minimum position where the pixel value is minimum in each of the plurality of images. E) the maximum pixel value and the minimum of each image Associating a pixel value and a reflectance of each image based on a relationship between an elementary value and a maximum reflectance and a minimum reflectance in a reflection characteristic corresponding to each image; and f) a plurality of measurements on the object. Obtaining a film thickness at each measurement point based on a degree of coincidence between a plurality of pixel values of the plurality of images at each measurement point and a plurality of reflectances indicated by the plurality of reflection characteristics at each film thickness; Is provided.

請求項6に記載の発明は、請求項5に記載の膜厚測定方法であって、前記c)工程において前記光照射部から出射される光が白色光であり、前記c)工程が、c1)前記複数の検査波長の光を選択的にそれぞれ透過する複数の光学フィルタのうち一の光学フィルタを前記光照射部から前記撮像部に至る光路上に配置して前記一の光学フィルタに対応する検査波長の画像を取得する工程と、c2)前記複数の画像が取得されるまで前記一の光学フィルタを他の光学フィルタに変更して前記c1)工程に戻る工程とを備える。   Invention of Claim 6 is a film thickness measuring method of Claim 5, Comprising: The light radiate | emitted from the said light irradiation part in the said c) process is white light, The said c) process is c1. ) One optical filter among a plurality of optical filters that selectively transmit light of the plurality of inspection wavelengths is disposed on an optical path from the light irradiation unit to the imaging unit, and corresponds to the one optical filter. And c2) a step of changing the one optical filter to another optical filter and returning to the step c1) until the plurality of images are acquired.

請求項7に記載の発明は、請求項5または6に記載の膜厚測定方法であって、g)前記膜上の少なくとも1つの測定点における膜厚を膜厚計により取得する工程をさらに備え、前記g)工程にて取得された前記膜厚が、前記f)工程における膜厚の算出に利用される。   The invention according to claim 7 is the film thickness measuring method according to claim 5 or 6, further comprising: g) obtaining a film thickness at at least one measurement point on the film with a film thickness meter. The film thickness obtained in the step g) is used for calculating the film thickness in the step f).

請求項8に記載の発明は、請求項7に記載の膜厚測定方法であって、前記g)工程にて取得された前記少なくとも1つの測定点における前記膜厚と、前記f)工程において算出された前記少なくとも1つの測定点における膜厚との差に基づいて、前記f)工程において算出された前記各測定点における膜厚が補正される。   The invention according to claim 8 is the film thickness measuring method according to claim 7, wherein the film thickness at the at least one measurement point acquired in the step g) is calculated in the step f). Based on the difference from the film thickness at the at least one measurement point, the film thickness at each measurement point calculated in the step f) is corrected.

本発明では、複数の測定点における膜厚を迅速に求めることができる。また、請求項3および7の発明では、膜厚測定の精度を向上することができる。   In the present invention, film thicknesses at a plurality of measurement points can be quickly obtained. In the inventions of claims 3 and 7, the accuracy of film thickness measurement can be improved.

図1は、本発明の第1の実施の形態に係る膜厚測定装置1の構成を示す図である。膜厚測定装置1は、液晶表示装置等の表示装置に用いられるガラス基板(以下、単に「基板」という。)9において、一方の主面91上に形成されたパターン形成用のレジスト膜(以下、単に「膜」という。)92の膜厚を測定する装置である。基板9上の膜92は、基板9の主面91上にレジスト液を塗布することにより形成されており、膜92の光学定数は既知である。   FIG. 1 is a diagram showing a configuration of a film thickness measuring apparatus 1 according to the first embodiment of the present invention. The film thickness measuring device 1 is a resist film (hereinafter referred to as a pattern forming resist film) formed on one main surface 91 of a glass substrate (hereinafter simply referred to as “substrate”) 9 used in a display device such as a liquid crystal display device. , Simply referred to as “film”). The film 92 on the substrate 9 is formed by applying a resist solution on the main surface 91 of the substrate 9, and the optical constant of the film 92 is known.

図1に示すように、膜厚測定装置1は、主面91(以下、「上面91」という。)上に膜92が形成された基板9を上面91を上側(図1中の(+Z)側)に向けて保持する保持部であるステージ2、ステージ2に保持された基板9の上面91上の膜92に光を照射する光照射部3、光照射部3から出射された光のうち膜92にて反射された後の光を受光して膜92の画像を取得する撮像部4、基板9と撮像部4との間に配置されて撮像部4にて受光される光の波長帯を切り替える波長帯切替機構5、ステージ2を光照射部3、撮像部4および波長帯切替機構5に対して相対的に移動する移動機構21、並びに、撮像部4にて取得された画像に基づいて膜92の膜厚を求める検査部7を備える。   As shown in FIG. 1, the film thickness measuring apparatus 1 includes a substrate 9 on which a film 92 is formed on a main surface 91 (hereinafter referred to as “upper surface 91”), with the upper surface 91 on the upper side ((+ Z) in FIG. 1). Of the light emitted from the light irradiation unit 3, the light irradiation unit 3 that irradiates light onto the film 92 on the upper surface 91 of the substrate 9 held by the stage 2. The imaging unit 4 that receives light after being reflected by the film 92 to acquire an image of the film 92, and the wavelength band of light that is disposed between the substrate 9 and the imaging unit 4 and is received by the imaging unit 4 Based on the wavelength band switching mechanism 5 for switching between, the moving mechanism 21 for moving the stage 2 relative to the light irradiation unit 3, the imaging unit 4 and the wavelength band switching mechanism 5, and the image acquired by the imaging unit 4. The inspection unit 7 for determining the film thickness of the film 92 is provided.

ステージ2の(+Z)側の表面は、好ましくは黒色艶消しとされる。移動機構21は、モータ211にボールねじ(図示省略)が接続された構成とされ、モータ211が回転することにより、ステージ2がガイド212に沿って基板9の上面91に沿う図1中のX方向に移動する。   The (+ Z) side surface of the stage 2 is preferably black matte. The moving mechanism 21 has a configuration in which a ball screw (not shown) is connected to a motor 211, and the stage 211 moves along the upper surface 91 of the substrate 9 along the guide 212 by rotating the motor 211 in FIG. Move in the direction.

光照射部3は、白色光(すなわち、後述する複数の検査波長の全てを含む波長帯の光)を出射する光源であるハロゲンランプ31、ステージ2の移動方向に垂直な図1中のY方向に伸びる円柱状の石英ロッド32、および、Y方向に伸びるシリンドリカルレンズ33を備える。光照射部3では、ハロゲンランプ31が石英ロッド32の(+Y)側の端部に取り付けられており、ハロゲンランプ31から石英ロッド32に入射した光は、Y方向に伸びる線状光(すなわち、光束断面がY方向に長い線状となる光)に変換されて石英ロッド32の側面から出射され、シリンドリカルレンズ33を介して基板9の上面91へと導かれる。換言すれば、石英ロッド32およびシリンドリカルレンズ33は、ハロゲンランプ31からの光を、ステージ2の上面91に沿うとともに移動方向に垂直な線状光に変換して基板9の上面91上の膜92へと導く照明光学系となっている。基板9の上面91上に照射される線状光のY方向の長さは、基板9のY方向の幅よりも大きい。   The light irradiation unit 3 is a halogen lamp 31 that is a light source that emits white light (that is, light in a wavelength band that includes all of a plurality of inspection wavelengths described later), and the Y direction in FIG. 1 perpendicular to the moving direction of the stage 2. Columnar quartz rod 32 extending in the vertical direction and a cylindrical lens 33 extending in the Y direction. In the light irradiation unit 3, a halogen lamp 31 is attached to an end portion on the (+ Y) side of the quartz rod 32, and light incident on the quartz rod 32 from the halogen lamp 31 is linear light extending in the Y direction (that is, The light beam cross-section is converted to light that is long in the Y direction), is emitted from the side surface of the quartz rod 32, and is guided to the upper surface 91 of the substrate 9 through the cylindrical lens 33. In other words, the quartz rod 32 and the cylindrical lens 33 convert the light from the halogen lamp 31 into linear light along the upper surface 91 of the stage 2 and perpendicular to the moving direction to convert the film 92 on the upper surface 91 of the substrate 9. It is an illumination optical system that leads to The length of the linear light irradiated onto the upper surface 91 of the substrate 9 in the Y direction is larger than the width of the substrate 9 in the Y direction.

図1では、光照射部3から基板9に至る光路を一点鎖線にて示している(基板9から撮像部4に至る光路についても同様)。光照射部3のハロゲンランプ31から出射されて基板9の上面91上の膜92に対して傾斜して(すなわち、0°よりも大きい入射角にて)入射した光の一部は、基板9の上面91上の膜92の(+Z)側の上面にて反射される。膜92は光照射部3からの光に対して光透過性を有しており、光照射部3からの光のうち膜92の上面にて反射されなかった光は、膜92を透過して基板9の上面91(すなわち、膜92の下面)にて反射される。膜厚測定装置1では、膜92の上面にて反射された光と基板9の上面91にて反射された光との干渉光(以下、単に「反射光」という。)が、波長帯切替機構5を経由して撮像部4に入射する。   In FIG. 1, the optical path from the light irradiation unit 3 to the substrate 9 is indicated by a one-dot chain line (the same applies to the optical path from the substrate 9 to the imaging unit 4). A part of the light that is emitted from the halogen lamp 31 of the light irradiation unit 3 and is inclined with respect to the film 92 on the upper surface 91 of the substrate 9 (that is, at an incident angle greater than 0 °) Is reflected on the (+ Z) side upper surface of the film 92 on the upper surface 91. The film 92 is light transmissive to the light from the light irradiation unit 3, and the light that has not been reflected by the upper surface of the film 92 out of the light from the light irradiation unit 3 passes through the film 92. Reflected by the upper surface 91 of the substrate 9 (that is, the lower surface of the film 92). In the film thickness measuring device 1, interference light (hereinafter simply referred to as “reflected light”) between the light reflected by the upper surface of the film 92 and the light reflected by the upper surface 91 of the substrate 9 is a wavelength band switching mechanism. Then, the light enters the imaging unit 4 via 5.

波長帯切替機構5は、膜厚測定に利用される互いに異なる複数の狭い波長帯の光を選択的にそれぞれ透過する複数の光学フィルタ(例えば、半値幅10nmの干渉フィルター)51、複数の光学フィルタ51を保持する円板状のフィルタホイール52、および、フィルタホイール52の中心に取り付けられてフィルタホイール52を回転するフィルタ回転モータ53を備える。フィルタホイール52は、その法線方向が基板9から撮像部4に至る光路に平行になるように配置される。   The wavelength band switching mechanism 5 includes a plurality of optical filters (for example, interference filters having a half-value width of 10 nm) 51 and a plurality of optical filters that selectively transmit light of a plurality of different narrow wavelength bands used for film thickness measurement. A disc-shaped filter wheel 52 that holds 51, and a filter rotation motor 53 that is attached to the center of the filter wheel 52 and rotates the filter wheel 52. The filter wheel 52 is arranged so that the normal direction thereof is parallel to the optical path from the substrate 9 to the imaging unit 4.

図2は、波長帯切替機構5を基板9側からフィルタホイール52に垂直な方向に沿って見た図である。図2に示すように、フィルタホイール52には、6つの円形の開口521が周方向に等間隔に形成されており、そのうちの5つの開口521には互いに透過波長帯が異なる5種類の光学フィルタ51が取り付けられている。各光学フィルタ51の透過波長帯は、膜厚測定装置1による膜厚測定において利用される予め定められた光の波長(以下、「検査波長」という。)を中心とする狭い波長帯である。以下の説明では、各光学フィルタ51を透過する透過波長帯の光を、透過波長帯の中心波長にて代表して「検査波長の光」という。すなわち、「波長550nmの検査波長の光」という記載は、検査波長550nmを中心波長とする狭い透過波長帯の光を意味する。   FIG. 2 is a view of the wavelength band switching mechanism 5 as viewed from the substrate 9 side along the direction perpendicular to the filter wheel 52. As shown in FIG. 2, the filter wheel 52 has six circular openings 521 formed at equal intervals in the circumferential direction, and five of these openings 521 have five types of optical filters having different transmission wavelength bands. 51 is attached. The transmission wavelength band of each optical filter 51 is a narrow wavelength band centered on a predetermined wavelength of light (hereinafter referred to as “inspection wavelength”) used in film thickness measurement by the film thickness measuring apparatus 1. In the following description, the light in the transmission wavelength band that passes through each optical filter 51 is referred to as “light at the inspection wavelength” as a representative of the center wavelength of the transmission wavelength band. That is, the description “light having an inspection wavelength of 550 nm” means light having a narrow transmission wavelength band centered on the inspection wavelength of 550 nm.

図1に示す波長帯切替機構5では、フィルタ回転モータ53によりフィルタホイール52が回転し、5つの光学フィルタ51(図2参照)のうち一の光学フィルタ51(以下、他の光学フィルタ51と区別するために、「選択光学フィルタ51a」という。)が選択され、基板9から撮像部4に至る光路上に配置される。これにより、基板9からの反射光(すなわち、5つの光学フィルタ51に対応する5つの検査波長の光を含む白色光の反射光)のうち、光路上に配置された選択光学フィルタ51aに対応する特定の検査波長の光のみが、選択光学フィルタ51aを透過して撮像部4へと導かれる。   In the wavelength band switching mechanism 5 shown in FIG. 1, the filter wheel 52 is rotated by the filter rotation motor 53, so that one of the five optical filters 51 (see FIG. 2) (hereinafter, different from the other optical filters 51). (Referred to as “selected optical filter 51a”), and is disposed on the optical path from the substrate 9 to the imaging unit 4. Thereby, among the reflected light from the substrate 9 (that is, reflected light of white light including light of five inspection wavelengths corresponding to the five optical filters 51), it corresponds to the selected optical filter 51a arranged on the optical path. Only light of a specific inspection wavelength passes through the selective optical filter 51a and is guided to the imaging unit 4.

そして、フィルタ回転モータ53によりフィルタホイール52が回転すると、複数の光学フィルタ51のうち基板9から撮像部4に至る光路上に配置された選択光学フィルタ51aが他の光学フィルタ51に変更され、撮像部4が受光する光の波長帯が変更される。膜厚測定装置1では、フィルタ回転モータ53が、上記光路上の光学フィルタ51を変更する光学フィルタ変更機構となっている。なお、膜厚測定装置1では、選択光学フィルタ51aは、光照射部43から撮像部4に至る光路上に配置されていればよく、光照射部3から基板9に至る光路上に配置されてもよい。   When the filter wheel 52 is rotated by the filter rotating motor 53, the selected optical filter 51a arranged on the optical path from the substrate 9 to the imaging unit 4 among the plurality of optical filters 51 is changed to another optical filter 51, and imaging is performed. The wavelength band of the light received by the unit 4 is changed. In the film thickness measuring apparatus 1, the filter rotation motor 53 is an optical filter changing mechanism that changes the optical filter 51 on the optical path. In the film thickness measurement device 1, the selection optical filter 51 a may be disposed on the optical path from the light irradiation unit 43 to the imaging unit 4, and is disposed on the optical path from the light irradiation unit 3 to the substrate 9. Also good.

撮像部4は、複数の受光素子であるCCD(Charge Coupled Device)素子がY方向に直線状に配列されたラインセンサ41、および、基板9からラインセンサ41に至る光路上であってラインセンサ41と波長帯切替機構5の選択光学フィルタ51aとの間に配置される集光レンズ42を備える。集光レンズ42は、光照射部3から出射されて基板9の上面91上においてY方向に伸びる直線状の照射領域(以下、「線状照射領域」という。)の膜92にて反射された後の線状光のうち、選択光学フィルタ51aを透過した検査波長の光をラインセンサ41に向けて集光する。ラインセンサ41は、集光レンズ42により集光されるとともに検査波長の光を受光し、受光した光の強度分布(すなわち、各受光素子からの出力値のY方向における分布)を取得して検査部7に出力する。膜厚測定装置1では、基板9の上面91上に形成された膜92からの反射光の強度分布が、基板9およびステージ2のX方向への移動中にラインセンサ41により繰り返し取得される。なお、膜厚測定装置1では、基板9の上面91上における線状照射領域のY方向の長さが基板9のY方向の幅よりも小さくされてもよく、この場合、基板9のX方向への移動中に当該線状照射領域がY方向に基板9に対して相対的に走査されることにより、基板9の全幅における反射光の強度分布が取得される。   The imaging unit 4 includes a line sensor 41 in which CCD (Charge Coupled Device) elements, which are a plurality of light receiving elements, are linearly arranged in the Y direction, and an optical path from the substrate 9 to the line sensor 41. And a condensing lens 42 disposed between the selection optical filter 51 a of the wavelength band switching mechanism 5. The condenser lens 42 is reflected by a film 92 in a linear irradiation region (hereinafter referred to as “linear irradiation region”) that is emitted from the light irradiation unit 3 and extends in the Y direction on the upper surface 91 of the substrate 9. Of the subsequent linear light, the light having the inspection wavelength transmitted through the selection optical filter 51 a is condensed toward the line sensor 41. The line sensor 41 collects the light having the inspection wavelength while being condensed by the condenser lens 42, acquires the intensity distribution of the received light (that is, the distribution in the Y direction of the output value from each light receiving element), and inspects it. Output to unit 7. In the film thickness measuring apparatus 1, the intensity distribution of reflected light from the film 92 formed on the upper surface 91 of the substrate 9 is repeatedly acquired by the line sensor 41 while the substrate 9 and the stage 2 are moving in the X direction. In the film thickness measuring apparatus 1, the length of the linear irradiation region on the upper surface 91 of the substrate 9 in the Y direction may be smaller than the width of the substrate 9 in the Y direction. When the linear irradiation area is scanned relative to the substrate 9 in the Y direction during the movement to, the intensity distribution of the reflected light over the entire width of the substrate 9 is acquired.

検査部7は、ラインセンサ41からの出力を受け付けて基板9の上面91の2次元画像を生成する画像生成部71、膜92の反射特性の理論値を予め記憶する反射特性記憶部72、並びに、画像生成部71により生成された2次元画像および反射特性記憶部72に記憶された反射特性から膜92の膜厚を算出する膜厚演算部73を備える。図3は、反射特性記憶部72に記憶されている膜92の反射特性を示す図である。図3中の横軸は膜92の膜厚を示し、縦軸は膜厚の変化に従って周期性を持って変動する膜92の反射率の理論値(以下、「理論反射率」という。)を示す。膜92の理論反射率は、膜92の既知の光学定数(例えば、膜92の屈折率)に基づいて求められる。なお、膜厚測定装置1では、反射特性記憶部72に記憶された膜92の反射特性を求めるために必要な膜92の光学定数が既知とされる。   The inspection unit 7 receives an output from the line sensor 41 and generates an image generation unit 71 that generates a two-dimensional image of the upper surface 91 of the substrate 9, a reflection characteristic storage unit 72 that stores in advance a theoretical value of the reflection characteristic of the film 92, and And a film thickness calculation unit 73 that calculates the film thickness of the film 92 from the two-dimensional image generated by the image generation unit 71 and the reflection characteristics stored in the reflection characteristic storage unit 72. FIG. 3 is a diagram illustrating the reflection characteristics of the film 92 stored in the reflection characteristic storage unit 72. In FIG. 3, the horizontal axis indicates the film thickness of the film 92, and the vertical axis indicates the theoretical value of the reflectivity of the film 92 (hereinafter referred to as "theoretical reflectivity") that varies with periodicity as the film thickness changes. Show. The theoretical reflectance of the film 92 is obtained based on a known optical constant of the film 92 (for example, the refractive index of the film 92). In the film thickness measuring device 1, the optical constant of the film 92 necessary for obtaining the reflection characteristic of the film 92 stored in the reflection characteristic storage unit 72 is known.

反射特性記憶部72には、図3に示すように、複数の光学フィルタ51に対応する複数の検査波長における膜92の膜厚と膜92の理論反射率との関係をそれぞれ示す複数の反射特性が格納されている。本実施の形態では、検査波長は550nm,580nm,600nm,620nm,650nmの5つであり、図3中では、検査波長550nm,580nm,600nm,620nm,650nmにそれぞれ対応する反射特性をそれぞれ、細破線、細一点鎖線、実線、太一点鎖線および太破線にて示すとともに、これらの反射特性に符号801〜805を付す。   As shown in FIG. 3, the reflection characteristic storage unit 72 has a plurality of reflection characteristics indicating the relationship between the film thickness of the film 92 and the theoretical reflectance of the film 92 at a plurality of inspection wavelengths corresponding to the plurality of optical filters 51. Is stored. In the present embodiment, there are five inspection wavelengths, 550 nm, 580 nm, 600 nm, 620 nm, and 650 nm. In FIG. While indicated by a broken line, a thin one-dot chain line, a solid line, a thick one-dot chain line, and a thick broken line, reference numerals 801 to 805 are given to these reflection characteristics.

次に、図4および図5を参照しつつ膜厚測定装置1による膜厚測定の流れについて説明する。膜厚測定装置1により基板9の上面91上の膜92の膜厚測定が行われる際には、まず、図1中に実線にて示す撮像開始位置に位置するステージ2上に基板9が保持される(ステップS11)。また、反射特性記憶部72には、図3に示す複数の検査波長における複数の反射特性が記憶される(ステップS12)。ステップS11とステップS12とは、どちらが先に行われてもよく、並行して行われてもよい。   Next, the flow of film thickness measurement by the film thickness measuring device 1 will be described with reference to FIGS. When film thickness measurement of the film 92 on the upper surface 91 of the substrate 9 is performed by the film thickness measuring device 1, first, the substrate 9 is held on the stage 2 located at the imaging start position indicated by the solid line in FIG. (Step S11). Further, the reflection characteristic storage unit 72 stores a plurality of reflection characteristics at a plurality of inspection wavelengths shown in FIG. 3 (step S12). Either step S11 or step S12 may be performed first or may be performed in parallel.

続いて、基板9およびステージ2の(+X)方向への移動が開始され(ステップS13)、光照射部3から出射されて基板9の上面91に対して入射角60°にて入射する線状光が、基板9の上面91における膜92上の線状照射領域に照射され(ステップS14)、線状照射領域が基板9に対して相対的に移動する。このとき、波長帯切替機構5では、一の検査波長(例えば、550nm)に対応する一の光学フィルタ51が選択光学フィルタ51aとして基板9と撮像部4との間の光路上に配置されている。   Subsequently, the movement of the substrate 9 and the stage 2 in the (+ X) direction is started (step S13), and the linear shape that is emitted from the light irradiation unit 3 and incident on the upper surface 91 of the substrate 9 at an incident angle of 60 °. Light is irradiated to the linear irradiation region on the film 92 on the upper surface 91 of the substrate 9 (step S14), and the linear irradiation region moves relative to the substrate 9. At this time, in the wavelength band switching mechanism 5, one optical filter 51 corresponding to one inspection wavelength (for example, 550 nm) is disposed on the optical path between the substrate 9 and the imaging unit 4 as the selection optical filter 51a. .

光照射部3からの光は基板9の上面91上の膜92にて反射され、波長帯切替機構5の選択光学フィルタ51aを透過することにより、反射光から検査波長の光のみ(実際には、検査波長を中心とする狭い波長帯の光のみ)が取り出された後、撮像部4へと導かれる。撮像部4では、膜92における反射後の検査波長の干渉光が、集光レンズ42によりラインセンサ41に向けて集光されてラインセンサ41により受光され、膜92上の線状照射領域からの反射光のうち検査波長における強度分布が取得される(ステップS15)。ラインセンサ41の各受光素子からの出力値は、検査部7の画像生成部71へと送られる。   The light from the light irradiation unit 3 is reflected by the film 92 on the upper surface 91 of the substrate 9 and passes through the selective optical filter 51a of the wavelength band switching mechanism 5, so that only the light having the inspection wavelength is reflected from the reflected light (actually , Only light in a narrow wavelength band centered on the inspection wavelength) is taken out and guided to the imaging unit 4. In the imaging unit 4, the interference light having the inspection wavelength after being reflected by the film 92 is condensed toward the line sensor 41 by the condenser lens 42 and is received by the line sensor 41, and from the linear irradiation region on the film 92. Of the reflected light, the intensity distribution at the inspection wavelength is acquired (step S15). Output values from the respective light receiving elements of the line sensor 41 are sent to the image generation unit 71 of the inspection unit 7.

膜厚測定装置1では、基板9およびステージ2が図1中に二点鎖線にて示す撮像終了位置まで移動したか否かが基板9の移動中に繰り返し確認されており(ステップS16)、検査終了位置まで移動していない場合には、ステップS15に戻って膜92上の線状照射領域における検査波長の干渉光の強度分布の取得が繰り返される(ステップS15,S16)。膜厚測定装置1では、ステージ2が(+X)方向に移動している間、ステップS15,S16の動作が繰り返されて線状照射領域からの反射光の強度分布が繰り返し取得されることにより、基板9の全体について膜92からの反射光のうちの検査波長における強度分布を示す画像(すなわち、検査波長における膜92の画像であり、以下、「検査画像」という。)が取得される。そして、基板9およびステージ2が撮像終了位置まで移動すると、移動機構21による基板9およびステージ2の移動が停止される(ステップS17)。   In the film thickness measuring apparatus 1, whether or not the substrate 9 and the stage 2 have moved to the imaging end position indicated by a two-dot chain line in FIG. 1 is repeatedly confirmed during the movement of the substrate 9 (step S16). If it has not moved to the end position, the process returns to step S15 and the acquisition of the intensity distribution of the interference light of the inspection wavelength in the linear irradiation region on the film 92 is repeated (steps S15 and S16). In the film thickness measuring device 1, while the stage 2 is moving in the (+ X) direction, the operations of steps S15 and S16 are repeated, and the intensity distribution of the reflected light from the linear irradiation region is repeatedly acquired. An image showing the intensity distribution at the inspection wavelength of the reflected light from the film 92 for the entire substrate 9 (that is, an image of the film 92 at the inspection wavelength, hereinafter referred to as “inspection image”) is acquired. And if the board | substrate 9 and the stage 2 move to an imaging completion position, the movement of the board | substrate 9 and the stage 2 by the moving mechanism 21 will be stopped (step S17).

一の検査波長における膜92の検査画像が取得されると、次の検査波長の有無が確認され(ステップS18)、基板9およびステージ2が撮像開始位置に戻される(ステップS19)。また、フィルタ回転モータ53によりフィルタホイール52が所定の角度だけ回転することにより、2番目の検査波長に対応する光学フィルタ51が、新たな選択光学フィルタ51aとして基板9と撮像部4との間の光路上に配置されて検査波長が変更される(ステップS20)。   When the inspection image of the film 92 at one inspection wavelength is acquired, the presence or absence of the next inspection wavelength is confirmed (step S18), and the substrate 9 and the stage 2 are returned to the imaging start position (step S19). Further, when the filter wheel 52 is rotated by a predetermined angle by the filter rotation motor 53, the optical filter 51 corresponding to the second inspection wavelength becomes a new selection optical filter 51a between the substrate 9 and the imaging unit 4. It arrange | positions on an optical path and a test | inspection wavelength is changed (step S20).

続いて、ステップS13に戻り、基板9の(+X)方向への移動が開始され、光照射部3からの線状光が、基板9の上面91における膜92上の線状照射領域に照射され(ステップS14)、膜92における反射光のうち2番目の検査波長(例えば、580nm)の光のみが撮像部4のラインセンサ41により受光されて当該検査波長における強度分布が取得される(ステップS15)。そして、基板9が撮像終了位置に到達するまでステップS15が繰り返され(ステップS16)、2番目の検査波長における膜92の検査画像が取得されて基板9の移動が停止される(ステップS17)。その後、次の検査波長の有無が再度確認され(ステップS18)、次の検査波長が存在する場合には、基板9が撮像開始位置に戻されるとともにフィルタホイール52が回転して検査波長が変更された後(ステップS19,S20)、ステップS13に戻る。   Subsequently, returning to step S13, the movement of the substrate 9 in the (+ X) direction is started, and the linear light from the light irradiation unit 3 is irradiated to the linear irradiation region on the film 92 on the upper surface 91 of the substrate 9. (Step S14) Of the reflected light from the film 92, only the light of the second inspection wavelength (for example, 580 nm) is received by the line sensor 41 of the imaging unit 4, and the intensity distribution at the inspection wavelength is acquired (Step S15). ). Then, step S15 is repeated until the substrate 9 reaches the imaging end position (step S16), and the inspection image of the film 92 at the second inspection wavelength is acquired, and the movement of the substrate 9 is stopped (step S17). Thereafter, the presence / absence of the next inspection wavelength is confirmed again (step S18). If the next inspection wavelength exists, the substrate 9 is returned to the imaging start position and the filter wheel 52 is rotated to change the inspection wavelength. After that (steps S19 and S20), the process returns to step S13.

膜厚測定装置1では、上述のステップS13〜S20が繰り返されることにより、複数(本実施の形態では、5つ)の検査波長における膜92の複数の検査画像が取得され、その後、照明光の照射が停止される(ステップS21)。図6は、基板9の中心を通るとともにX方向(すなわち、基板9の移動方向)に平行な直線上におけるX方向の位置と、各位置における画素値との関係を示す画素値分布を各検査画像について(すなわち、各検査波長について)示す図である。図6中の横軸はX方向の位置を示し、縦軸は各位置における画素値に基づいて求められた反射率(すなわち、画素値に基づいて求められた反射光の強度の入射光に対する割合)を示す。図6中では、検査波長550nm,580nm,600nm,620nm,650nmにそれぞれ対応する画素値分布をそれぞれ、細破線、細一点鎖線、実線、太一点鎖線および太破線にて示すとともに、これらの画素値分布に符号811〜815を付す。   In the film thickness measurement device 1, the above-described steps S13 to S20 are repeated, whereby a plurality of inspection images of the film 92 at a plurality of (in this embodiment, five) inspection wavelengths are acquired. Irradiation is stopped (step S21). FIG. 6 shows each pixel value distribution indicating the relationship between the position in the X direction on a straight line passing through the center of the substrate 9 and parallel to the X direction (that is, the moving direction of the substrate 9), and the pixel value at each position. It is a figure shown about an image (namely, about each test | inspection wavelength). The horizontal axis in FIG. 6 indicates the position in the X direction, and the vertical axis indicates the reflectance obtained based on the pixel value at each position (that is, the ratio of the intensity of the reflected light obtained based on the pixel value to the incident light). ). In FIG. 6, pixel value distributions corresponding to inspection wavelengths of 550 nm, 580 nm, 600 nm, 620 nm, and 650 nm, respectively, are indicated by thin broken lines, fine one-dot chain lines, solid lines, thick one-dot chain lines, and thick broken lines, and these pixel values. Reference numerals 811 to 815 are attached to the distribution.

膜92の複数(本実施の形態では、5つ)の検査画像が取得されると、膜厚演算部73により、各検査画像において画素値が最大となる最大位置における最大画素値、および、画素値が最小となる最小位置における最小画素値が取得される(ステップS22)。例えば、図6中の検査波長600nmに対応する画素値分布813に、検査波長600nmにおける検査画像中の最大画素値および最小画素値が含まれているとすると、画素値分布813の左側の極大値に対応する画素値が最大画素値として取得され、当該極大値の右側に隣接する極小値に対応する画素値が最小画素値として取得される。   When a plurality of (in the present embodiment, five) inspection images of the film 92 are acquired, the film thickness calculator 73 causes the maximum pixel value and the pixel at the maximum position where the pixel value is maximum in each inspection image. The minimum pixel value at the minimum position where the value is minimum is acquired (step S22). For example, assuming that the pixel value distribution 813 corresponding to the inspection wavelength 600 nm in FIG. 6 includes the maximum pixel value and the minimum pixel value in the inspection image at the inspection wavelength 600 nm, the maximum value on the left side of the pixel value distribution 813. Is obtained as the maximum pixel value, and the pixel value corresponding to the minimum value adjacent to the right side of the maximum value is acquired as the minimum pixel value.

最大画素値および最小画素値が取得されると、各検査画像の最大画素値および最小画素値と各検査画像に対応する反射特性における極大反射率と極小反射率との関係に基づいて各検査画像の各画素における画素値と理論反射率とが対応付けられる(ステップS23)。例えば、検査波長600nmにおいては、検査画像の最大画素値は、図3中の反射特性803における膜厚1420nm近傍および膜厚1630nm近傍の極大反射率(約0.25)に対応付けられ、検査画像の最小画素値は、反射特性803における膜厚1310nm近傍および膜厚1520nm近傍の極小反射率(約0.19)に対応付けられる。そして、画素値と理論反射率とが正比例の関係にあるものとして、検査画像の各画素において、各画素の画素値と検査画像の最大画素値および最小画素値とに基づいて各画素の画素値に対応する理論反射率が求められる。例えば、一の画素の画素値が最大画素値と最小画素値との平均値に等しい場合、当該画素の画素値に対応付けられる理論反射率は、極大反射率と極小反射率との平均値である約0.22となる。   When the maximum pixel value and the minimum pixel value are acquired, each inspection image is based on the relationship between the maximum and minimum pixel values of each inspection image and the maximum reflectance and the minimum reflectance in the reflection characteristics corresponding to each inspection image. The pixel value in each pixel and the theoretical reflectance are associated with each other (step S23). For example, at the inspection wavelength of 600 nm, the maximum pixel value of the inspection image is associated with the maximum reflectance (about 0.25) near the film thickness of 1420 nm and the film thickness of 1630 nm in the reflection characteristic 803 in FIG. The minimum pixel value is associated with the minimum reflectance (about 0.19) in the reflection characteristics 803 near the film thickness of 1310 nm and the film thickness of about 1520 nm. Assuming that the pixel value and the theoretical reflectance are in a directly proportional relationship, in each pixel of the inspection image, the pixel value of each pixel based on the pixel value of each pixel and the maximum and minimum pixel values of the inspection image The theoretical reflectance corresponding to is required. For example, when the pixel value of one pixel is equal to the average value of the maximum pixel value and the minimum pixel value, the theoretical reflectance associated with the pixel value of the pixel is the average value of the maximum reflectance and the minimum reflectance. It is about 0.22.

各検査画像の各画素において画素値と理論反射率とが対応付けられると、膜厚演算部73により、基板9上に設定された複数の測定点のうち一の測定点において、一の検査画像の画素値に対応付けられた理論反射率、および、当該検査画像に対応する図3中の反射特性(すなわち、同じ検査波長の反射特性)に基づいて、当該測定点の膜厚と推定される膜厚候補値が求められる。例えば、検査波長600nmにおいて、検査画像中の測定点の画素値に対応付けられた理論反射率が0.22である場合、図3中の反射特性803において理論反射率が0.22となる膜厚である1360nm,1470nm,1580nmが膜厚候補値として求められる。同様に、検査波長550nmにおいて、検査画像の測定点の画素値に対応付けられた理論反射率が0.195である場合、図3中の反射特性801において理論反射率が0.195となる膜厚である1370nm,1420nm,1580nmが膜厚候補値として求められる。   When the pixel value and the theoretical reflectance are associated with each pixel of each inspection image, one inspection image is obtained at one measurement point among a plurality of measurement points set on the substrate 9 by the film thickness calculator 73. The film thickness at the measurement point is estimated based on the theoretical reflectance associated with the pixel value and the reflection characteristic in FIG. 3 corresponding to the inspection image (that is, the reflection characteristic of the same inspection wavelength). A film thickness candidate value is obtained. For example, when the theoretical reflectance associated with the pixel value of the measurement point in the inspection image is 0.22 at the inspection wavelength of 600 nm, the film having the theoretical reflectance of 0.22 in the reflection characteristic 803 in FIG. Thicknesses of 1360 nm, 1470 nm, and 1580 nm are obtained as film thickness candidate values. Similarly, when the theoretical reflectance associated with the pixel value at the measurement point of the inspection image is 0.195 at the inspection wavelength of 550 nm, the film having the theoretical reflectance of 0.195 in the reflection characteristic 801 in FIG. Thicknesses of 1370 nm, 1420 nm, and 1580 nm are obtained as film thickness candidate values.

膜厚演算部73では、一の測定点について、5つの検査画像の画素値にそれぞれ対応付けられた理論反射率、および、5つの検査画像にそれぞれ対応する図3中の反射特性に基づいて、5つの検査波長のそれぞれにおいて測定点の膜厚と推定される膜厚候補値が求められる。続いて、5つの検査波長の各膜厚候補値を中心とした所定の膜厚範囲に対し、膜厚候補値から離れるに従って小さくなるように傾斜配分が施された点数が投票される。   In the film thickness calculation unit 73, for one measurement point, based on the theoretical reflectance associated with the pixel values of the five inspection images and the reflection characteristics in FIG. 3 respectively corresponding to the five inspection images, A film thickness candidate value estimated as the film thickness of the measurement point is obtained for each of the five inspection wavelengths. Subsequently, for a predetermined film thickness range centered on the respective film thickness candidate values of the five inspection wavelengths, the number of points to which the gradient distribution is applied so as to decrease as the distance from the film thickness candidate value is voted.

図7は、上述の膜厚範囲に対する投票結果を各検査波長における反射特性のグラフと併せて示す図である。図7では、検査波長550nm,580nm,600nm,620nm,650nmのそれぞれについて求められた膜厚候補値を中心とする膜厚範囲に対する投票結果を、それぞれ細破線、細一点鎖線、実線、太一点鎖線および太破線にて示すとともに、これらの投票結果に符号821〜825を付す。図7では、5つの検査波長において膜厚1580nmを中心とする膜厚範囲に投票が行われており、当該膜厚範囲に対する投票結果は符号823を付す検査波長600nmに係るもののみを示している。また、当該膜厚範囲に対する投票結果の合計点数を符号826を付す二点鎖線にて描いている。膜厚演算部73では、図7に示す投票結果において最も投票点数が大きい膜厚1580nmが、測定点の膜厚として求められる。   FIG. 7 is a diagram showing the voting results for the above-mentioned film thickness range together with the graph of the reflection characteristics at each inspection wavelength. In FIG. 7, the voting results for the film thickness ranges centered on the film thickness candidate values obtained for the inspection wavelengths of 550 nm, 580 nm, 600 nm, 620 nm, and 650 nm, respectively, are shown as a thin broken line, a fine dotted line, a solid line, and a thick dashed line These voting results are indicated by reference numerals 821 to 825. In FIG. 7, voting is performed on a film thickness range centering on a film thickness of 1580 nm at five inspection wavelengths, and the voting results for the film thickness range show only those relating to the inspection wavelength of 600 nm denoted by reference numeral 823. . In addition, the total number of voting results for the film thickness range is drawn with a two-dot chain line denoted by reference numeral 826. In the film thickness calculator 73, a film thickness of 1580 nm having the largest number of votes in the voting result shown in FIG. 7 is obtained as the film thickness of the measurement point.

換言すれば、一の測定点における膜厚の算出は、当該測定点における5つの検査波長の5つの画素値と、一の膜厚における5つの反射特性801〜805(図3参照)が示す5つの理論反射率との一致度(より正確には、測定点における5つの画素値にステップS23にて対応付けられた5つの理論反射率と、一の膜厚における5つの理論反射率との一致度)を各膜厚について比較し、一致度が最も高い膜厚が測定点の膜厚として求められる。   In other words, the calculation of the film thickness at one measurement point is indicated by five pixel values of five inspection wavelengths at the measurement point and five reflection characteristics 801 to 805 (see FIG. 3) at one film thickness. The degree of coincidence with two theoretical reflectances (more precisely, the coincidence between the five theoretical reflectances associated with the five pixel values at the measurement point in step S23 and the five theoretical reflectances at one film thickness) Degree) for each film thickness, and the film thickness having the highest degree of coincidence is obtained as the film thickness at the measurement point.

膜厚演算部73では、基板9上の複数の測定点のそれぞれにおいて上述の膜厚算出が行われる。すなわち、複数の測定点の各測定点における複数の検査画像の複数の画素値(に対応付けられた複数の理論反射率)と、各膜厚における複数の反射特性が示す複数の理論反射率との一致度に基づいて、各測定点における膜厚が求められる(ステップS24)。   In the film thickness calculator 73, the above-described film thickness calculation is performed at each of a plurality of measurement points on the substrate 9. That is, a plurality of pixel values of a plurality of inspection images at a plurality of measurement points (a plurality of theoretical reflectances associated with each other), and a plurality of theoretical reflectances indicated by a plurality of reflection characteristics at each film thickness Based on the degree of coincidence, the film thickness at each measurement point is obtained (step S24).

膜厚測定装置1において複数の基板9に対する膜厚測定が連続的に行われる場合には、反射特性記憶部72への反射特性の格納(ステップS12)は、1枚目の基板9に対する膜厚測定の際にのみ行われ、2枚目以降の基板9の膜厚測定ではステップS12が省略される。   When film thickness measurement is continuously performed on a plurality of substrates 9 in the film thickness measuring device 1, the reflection characteristic storage unit 72 stores the reflection characteristics (step S12). This is performed only at the time of measurement, and step S12 is omitted in the film thickness measurement of the second and subsequent substrates 9.

以上に説明したように、膜厚測定装置1では、光学定数が既知である膜92について、複数の検査波長に対応する複数の反射特性801〜805(図3参照)が予め記憶されており、検査波長を切り替えつつ膜92を撮像することにより取得された複数の検査波長に対応する複数の検査画像と上記複数の反射特性801〜805に基づいて、膜厚演算部73により基板9上の複数の測定点のそれぞれにおける膜厚が算出される。   As described above, in the film thickness measuring apparatus 1, a plurality of reflection characteristics 801 to 805 (see FIG. 3) corresponding to a plurality of inspection wavelengths are stored in advance for the film 92 whose optical constant is known. Based on a plurality of inspection images corresponding to a plurality of inspection wavelengths acquired by imaging the film 92 while switching the inspection wavelengths and the plurality of reflection characteristics 801 to 805, the film thickness calculation unit 73 performs a plurality of operations on the substrate 9. The film thickness at each of the measurement points is calculated.

ところで、光照射部から基板上の微小領域に光を照射し、受光部により当該微小領域からの反射光を受光して膜厚を測定する膜厚計(以下、「比較例の膜厚計」という。)では、基板上の複数の測定点のそれぞれにおける膜厚を測定しようとすると、一の測定点へと光照射部および受光部を相対的に移動した後に膜厚を測定する工程を測定点数に等しい回数だけ行う必要がある。また、一の測定点における膜厚の算出に要する演算量も多いため、測定点数が増加すると測定に長時間を要することとなる。したがって、基板上の広い範囲の膜厚測定を高分解能にて行おうとすると膨大な測定時間が必要となるため、比較例の膜厚計により広い範囲の膜厚分布を高分解能にて取得することは現実的には非常に困難である。   By the way, a film thickness meter that irradiates light onto a minute region on a substrate from a light irradiation unit and receives reflected light from the minute region by a light receiving unit to measure the film thickness (hereinafter referred to as “thickness meter of comparative example”). Then, when measuring the film thickness at each of a plurality of measurement points on the substrate, the process of measuring the film thickness after moving the light irradiation part and the light receiving part relative to one measurement point is measured. It is necessary to do as many times as the number of points. In addition, since a large amount of calculation is required to calculate the film thickness at one measurement point, a long time is required for measurement as the number of measurement points increases. Therefore, since it takes a long time to measure a wide range of film thickness on the substrate with high resolution, a wide range of film thickness distribution must be acquired with high resolution using the film thickness meter of the comparative example. Is very difficult in practice.

これに対し、本実施の形態に係る膜厚測定装置1では、ラインセンサ41の相対的な走査により基板9上の膜92の画像を検査波長を切り替えつつ5回(すなわち、検査波長の個数に等しい回数)だけ取得した後は、これら5つの検査画像と予め記憶されている膜92の反射特性とに基づいて、膜厚演算部73による演算により、基板9上の複数の測定点のそれぞれにおける膜厚(必要であれば、検査画像の全画素に対応する位置における膜厚)が求められる。また、上述のように、膜厚範囲に対する投票により膜厚を求めるため、膜厚演算部73による演算量も比較的少ない。このため、測定点数が増加した場合であっても膜厚演算部73による演算量が僅かに増加するだけであり、膜厚測定に要する時間は、比較例の膜厚計に比べて非常に短くすることができる。このように、膜厚測定装置1では、比較例の膜厚計に比べ、基板9上の複数の測定点における膜厚を迅速に求めることができ、基板9上における広い範囲の膜厚分布を高精度かつ高分解能にて取得することができる。   On the other hand, in the film thickness measuring apparatus 1 according to the present embodiment, the image of the film 92 on the substrate 9 is switched five times (that is, the number of inspection wavelengths is changed) by switching the inspection wavelength by relative scanning of the line sensor 41. After obtaining the same number of times), the film thickness calculation unit 73 performs calculation at each of a plurality of measurement points on the substrate 9 based on the five inspection images and the reflection characteristics of the film 92 stored in advance. The film thickness (if necessary, the film thickness at the position corresponding to all the pixels of the inspection image) is obtained. Further, as described above, since the film thickness is obtained by voting on the film thickness range, the amount of calculation by the film thickness calculator 73 is relatively small. For this reason, even when the number of measurement points is increased, the amount of calculation by the film thickness calculator 73 is only slightly increased, and the time required for film thickness measurement is much shorter than that of the film thickness meter of the comparative example. can do. As described above, the film thickness measuring apparatus 1 can quickly determine the film thickness at a plurality of measurement points on the substrate 9 as compared with the film thickness meter of the comparative example, and a wide range of film thickness distribution on the substrate 9 can be obtained. It can be acquired with high accuracy and high resolution.

また、膜厚測定装置1では、波長帯切替機構5において、複数の検査波長に対応する複数の光学フィルタ51のいずれかを基板9と撮像部4との間の光路上に位置させることにより、検査波長の切り替えを容易に行うことができる。その結果、膜厚測定装置1の構造が簡素化される。   Further, in the film thickness measuring device 1, in the wavelength band switching mechanism 5, by positioning any one of the plurality of optical filters 51 corresponding to the plurality of inspection wavelengths on the optical path between the substrate 9 and the imaging unit 4, The inspection wavelength can be easily switched. As a result, the structure of the film thickness measuring device 1 is simplified.

次に、本発明の第2の実施の形態に係る膜厚測定装置について説明する。図8は、第2の実施の形態に係る膜厚測定装置1aの構成を示す図である。図8に示すように、膜厚測定装置1aは、図1に示す膜厚測定装置1の各構成に加え、膜92上の1つの測定点における膜厚を取得する膜厚計である落射式の光干渉ユニット6をさらに備え、検査部7が参照膜厚演算部74および膜厚補正部731を備える。その他の構成は、図1に示す膜厚測定装置1と同様であり、以下の説明において同符号を付す。   Next, a film thickness measuring apparatus according to the second embodiment of the present invention will be described. FIG. 8 is a diagram showing a configuration of a film thickness measuring apparatus 1a according to the second embodiment. As shown in FIG. 8, the film thickness measuring device 1 a is an epi-illuminating type that is a film thickness meter that acquires the film thickness at one measurement point on the film 92 in addition to the components of the film thickness measuring device 1 shown in FIG. 1. The optical interference unit 6 is further provided, and the inspection unit 7 includes a reference film thickness calculation unit 74 and a film thickness correction unit 731. Other configurations are the same as those of the film thickness measuring apparatus 1 shown in FIG. 1, and the same reference numerals are given in the following description.

光干渉ユニット6は、図8に示すように、白色光を照明光として出射する光源61、基板9からの反射光を分光する分光器62、および、光学系65を備え、光学系65により光源61からの照明光が基板9の上面91上へと導かれるとともに基板9からの反射光が分光器62へと導かれる。   As shown in FIG. 8, the optical interference unit 6 includes a light source 61 that emits white light as illumination light, a spectroscope 62 that splits reflected light from the substrate 9, and an optical system 65. The illumination light from 61 is guided onto the upper surface 91 of the substrate 9 and the reflected light from the substrate 9 is guided to the spectroscope 62.

具体的には、光ファイバ651の一端に光源61からの照明光が導入され、他端に設けられたレンズ652から照明光が導出される。導出された照明光はレンズ群650aによりハーフミラー653へと導かれ、反射された照明光は対物レンズ654を介して膜92上の微小領域である測定点に照射される。測定点からの反射光は、対物レンズ654を介してハーフミラー653へと導かれる。ハーフミラー653を透過した光はレンズ650bを介して分光器62へと導かれ、分光器62により反射光の分光強度が取得される。分光強度のデータは、検査部7の参照膜厚演算部74へと送られる。以上のように、レンズ群650a、レンズ650b,652、光ファイバ651、ハーフミラー653および対物レンズ654により光学系65が構成される。   Specifically, illumination light from the light source 61 is introduced into one end of the optical fiber 651, and illumination light is derived from a lens 652 provided at the other end. The derived illumination light is guided to the half mirror 653 by the lens group 650a, and the reflected illumination light is irradiated to a measurement point which is a minute region on the film 92 via the objective lens 654. The reflected light from the measurement point is guided to the half mirror 653 through the objective lens 654. The light transmitted through the half mirror 653 is guided to the spectroscope 62 through the lens 650b, and the spectroscopic intensity of the reflected light is acquired by the spectroscope 62. The spectral intensity data is sent to the reference film thickness calculator 74 of the inspection unit 7. As described above, the optical system 65 is configured by the lens group 650a, the lenses 650b and 652, the optical fiber 651, the half mirror 653, and the objective lens 654.

膜厚測定装置1aでは、光干渉ユニット6により取得された膜厚が膜厚演算部73による複数の測定点の膜厚の算出に利用される。図9および図10は、第2の実施の形態に係る膜厚測定装置1aによる膜厚測定の流れの一部を示す図である。膜厚測定装置1aによる膜厚測定の流れは、図4に示す第1の実施の形態に係る膜厚測定装置1による膜厚測定の流れとほぼ同様であるが、基板9の移動開始(図4:ステップS13)と移動停止(ステップS17)との間に、図9に示すステップS31,S32が行われ、膜厚演算部73による膜厚の算出(ステップS24)よりも後に、図10に示すステップS41が行われる点で異なる。   In the film thickness measuring device 1 a, the film thickness acquired by the optical interference unit 6 is used for the calculation of the film thickness at a plurality of measurement points by the film thickness calculator 73. 9 and 10 are diagrams showing a part of the flow of film thickness measurement by the film thickness measuring apparatus 1a according to the second embodiment. The flow of film thickness measurement by the film thickness measurement device 1a is substantially the same as the flow of film thickness measurement by the film thickness measurement device 1 according to the first embodiment shown in FIG. 4: Steps S31 and S32 shown in FIG. 9 are performed between the step S13) and the movement stop (step S17). After the film thickness is calculated by the film thickness calculator 73 (step S24), FIG. The difference is that step S41 shown is performed.

図8に示す膜厚測定装置1aにより膜厚測定が行われる際には、第1の実施の形態と同様に、基板9がステージ2上に保持されて移動開始位置から(+X)方向への移動が開始される。また、反射特性記憶部72には、図3に示す複数の検査波長における複数の反射特性が予め記憶される(ステップS11〜S13)。   When the film thickness is measured by the film thickness measuring apparatus 1a shown in FIG. 8, the substrate 9 is held on the stage 2 in the (+ X) direction from the movement start position, as in the first embodiment. The move starts. The reflection characteristic storage unit 72 stores in advance a plurality of reflection characteristics at a plurality of inspection wavelengths shown in FIG. 3 (steps S11 to S13).

続いて、光照射部3からの線状光が基板9の上面91における膜92上の線状照射領域に照射され(ステップS14)、膜92からの反射光のうち選択光学フィルタ51aを透過した検査波長の光が撮像部4のラインセンサ41により受光されて強度分布が取得される(ステップS15)。膜厚測定装置1aでも、第1の実施の形態と同様に、基板9が撮像終了位置に位置するまでステップS14,S15が繰り返され、一の検査波長に対応する膜92の検査画像が取得された後、基板9の移動が停止される(ステップS16,S17)。   Subsequently, the linear light from the light irradiation unit 3 is irradiated to the linear irradiation region on the film 92 on the upper surface 91 of the substrate 9 (step S14), and the selection light filter 51a out of the reflected light from the film 92 is transmitted. The light having the inspection wavelength is received by the line sensor 41 of the imaging unit 4 and the intensity distribution is acquired (step S15). In the film thickness measuring apparatus 1a, as in the first embodiment, steps S14 and S15 are repeated until the substrate 9 is positioned at the imaging end position, and an inspection image of the film 92 corresponding to one inspection wavelength is acquired. After that, the movement of the substrate 9 is stopped (steps S16 and S17).

膜厚測定装置1aでは、膜92への線状光の照射および反射光の強度分布の取得(ステップS14,S15)と並行して、光干渉ユニット6の光源61から照明光が出射されて膜92上の複数の測定点のうち所定の1つの測定点(以下、「特定測定点」という。)へと導かれる。特定測定点からの反射光は光干渉ユニット6の分光器62へと導かれて分光器62により反射光の分光強度が取得され(ステップS31)、分光強度データが参照膜厚演算部74へと出力される。参照膜厚演算部74では、分光反射率が既知である他の基板の分光強度と分光反射率との関係が予め準備されており、当該関係に基づいて分光器62により取得された分光強度から膜92の分光反射率が求められる。参照膜厚演算部74では、取得された分光反射率に基づいて特定測定点における膜92の膜厚(以下、「参照膜厚」という。)が求められる(ステップS32)。   In the film thickness measuring device 1a, the illumination light is emitted from the light source 61 of the optical interference unit 6 in parallel with the irradiation of the linear light onto the film 92 and the acquisition of the intensity distribution of the reflected light (steps S14 and S15). A predetermined measurement point (hereinafter referred to as “specific measurement point”) out of a plurality of measurement points on 92 is guided. The reflected light from the specific measurement point is guided to the spectroscope 62 of the optical interference unit 6, and the spectroscopic intensity of the reflected light is acquired by the spectroscope 62 (step S31), and the spectral intensity data is sent to the reference film thickness calculator 74. Is output. In the reference film thickness calculator 74, the relationship between the spectral intensity and the spectral reflectance of another substrate whose spectral reflectance is known is prepared in advance, and from the spectral intensity acquired by the spectroscope 62 based on the relationship. The spectral reflectance of the film 92 is obtained. The reference film thickness calculator 74 obtains the film thickness (hereinafter referred to as “reference film thickness”) of the film 92 at the specific measurement point based on the acquired spectral reflectance (step S32).

膜厚測定装置1aでは、第1の実施の形態と同様に、次の検査波長の有無が確認され、基板9が撮像開始位置に戻されるとともに検査波長が変更される(ステップS18〜S20)。続いて、ステップS13〜S20が繰り返されることにより、複数(本実施の形態では、5つ)の検査波長における膜92の複数の検査画像が取得され、その後、照明光の照射が停止される(ステップS21)。なお、2番目以降の検査波長に対応する検査画像の取得の際には、ステップS31,S32は行われない。   In the film thickness measuring device 1a, as in the first embodiment, the presence or absence of the next inspection wavelength is confirmed, the substrate 9 is returned to the imaging start position, and the inspection wavelength is changed (steps S18 to S20). Subsequently, by repeating steps S13 to S20, a plurality of inspection images of the film 92 at a plurality of (in this embodiment, five) inspection wavelengths are acquired, and then irradiation of illumination light is stopped ( Step S21). Note that steps S31 and S32 are not performed when acquiring inspection images corresponding to the second and subsequent inspection wavelengths.

膜92の複数(本実施の形態では、5つ)の画像が取得されると、膜厚演算部73により、各検査画像における最大画素値および最小画素値が取得され、各検査画像の最大画素値および最小画素値と各検査画像に対応する反射特性における極大反射率と極小反射率との関係に基づいて各検査画像の各画素における画素値と理論反射率とが対応付けられる(ステップS22,S23)。そして、膜厚演算部73により、複数の測定点の各測定点における複数の検査画像の複数の画素値(に対応付けられた5つの理論反射率)と、各膜厚における複数の反射特性が示す複数の理論反射率との一致度に基づいて、各測定点における膜厚が求められる(ステップS24)。   When a plurality of images (five in this embodiment) of the film 92 are acquired, the film thickness calculator 73 acquires the maximum pixel value and the minimum pixel value in each inspection image, and the maximum pixel value in each inspection image. The pixel value and the theoretical reflectance at each pixel of each inspection image are associated with each other based on the relationship between the value and the minimum pixel value and the maximum reflectance and the minimum reflectance in the reflection characteristics corresponding to each inspection image (Step S22, S23). Then, by the film thickness calculator 73, a plurality of pixel values (five theoretical reflectances associated with each other) of a plurality of inspection images at each measurement point of a plurality of measurement points, and a plurality of reflection characteristics at each film thickness. Based on the degree of coincidence with the plurality of theoretical reflectances shown, the film thickness at each measurement point is obtained (step S24).

次に、膜厚演算部73の膜厚補正部731により、参照膜厚演算部74により求められた特定測定点における参照膜厚と、膜厚演算部73により求められた複数の測定点における膜厚のうち当該特定測定点における膜厚とに基づいて、ステップS24にて求められた各測定点における膜厚が補正される(ステップS41)。本実施の形態では、参照膜厚演算部74により求められた特定測定点における参照膜厚と膜厚演算部73により求められた特定測定点における補正前の膜厚との差が膜厚補正値として求められ、膜厚演算部73により算出された各測定点における膜厚に膜厚補正値が加えられることにより、各測定点における膜厚の補正が行われる。   Next, the reference film thickness at the specific measurement point obtained by the reference film thickness computation unit 74 by the film thickness correction unit 731 of the film thickness computation unit 73 and the film at the plurality of measurement points obtained by the film thickness computation unit 73. Based on the film thickness at the specific measurement point among the thicknesses, the film thickness at each measurement point obtained in step S24 is corrected (step S41). In the present embodiment, the difference between the reference film thickness at the specific measurement point obtained by the reference film thickness calculation unit 74 and the film thickness before correction at the specific measurement point obtained by the film thickness calculation unit 73 is the film thickness correction value. The film thickness correction at each measurement point is corrected by adding the film thickness correction value to the film thickness at each measurement point calculated by the film thickness calculation unit 73.

第2の実施の形態に係る膜厚測定装置1aでは、膜厚演算部73により、第1の実施の形態と同様に基板9上の複数の測定点における膜厚を迅速に求めることができ、さらに、光干渉ユニット6により取得された参照膜厚を利用して複数の測定点の膜厚を補正することにより、基板9上の複数の測定点における膜厚を高精度に求めることができる。その結果、基板9上における広い範囲の膜厚分布をより高精度かつ高分解能にて取得することができる。また、膜厚補正部731による膜厚の補正が、特定測定点における参照膜厚と膜厚演算部73により算出された膜厚(すなわち、補正前の膜厚)との差に基づいて行われることにより、膜厚の補正に係る演算を簡素化することができ、基板9上の膜厚分布の取得を高速化することができる。   In the film thickness measuring device 1a according to the second embodiment, the film thickness calculator 73 can quickly obtain the film thickness at a plurality of measurement points on the substrate 9 as in the first embodiment. Further, by correcting the film thickness at the plurality of measurement points using the reference film thickness acquired by the optical interference unit 6, the film thickness at the plurality of measurement points on the substrate 9 can be obtained with high accuracy. As a result, a wide range of film thickness distribution on the substrate 9 can be obtained with higher accuracy and higher resolution. Further, the film thickness correction by the film thickness correction unit 731 is performed based on the difference between the reference film thickness at the specific measurement point and the film thickness calculated by the film thickness calculation unit 73 (that is, the film thickness before correction). Thus, the calculation related to the correction of the film thickness can be simplified, and the acquisition of the film thickness distribution on the substrate 9 can be speeded up.

上記実施の形態では、膜厚測定装置1aでは、1番目の検査波長に対応する検査画像を取得する際にステップS31,S32が行われて特定測定点の参照膜厚が測定されるが、参照膜厚の測定は、5つの検査画像のうちいずれの検査画像の取得と並行して行われてもよい。また、5つの検査画像のうち複数の検査画像の取得と並行して複数回の参照膜厚の測定が行われてもよく、例えば、複数回の測定結果の平均値が参照膜厚とされてもよい。   In the above embodiment, in the film thickness measuring device 1a, when acquiring an inspection image corresponding to the first inspection wavelength, steps S31 and S32 are performed to measure the reference film thickness at a specific measurement point. The measurement of the film thickness may be performed in parallel with acquisition of any of the five inspection images. Further, the reference film thickness may be measured a plurality of times in parallel with the acquisition of a plurality of inspection images among the five inspection images. For example, an average value of a plurality of measurement results is used as the reference film thickness. Also good.

あるいは、膜92上に複数の特定測定点が設定され、一の検査画像の取得(または、複数の検査画像の取得)と並行して当該複数の特定測定点における参照膜厚が光干渉ユニット6により順次測定されてもよい。この場合、複数の特定測定点のそれぞれにおける膜厚補正値(すなわち、参照膜厚とステップS24において膜厚演算部73により求められた補正前の膜厚との差)が求められ、これら複数の膜厚補正値に基づいて各測定点における膜厚の補正が行われる。例えば、複数の特定測定点における補正前の膜厚および膜厚補正値から補正前の膜厚と膜厚補正値との関係が求められ、各測定点において、当該関係と補正前の膜厚とに基づいて求められた膜厚補正値により膜厚の補正が行われる。このように、膜厚測定装置1aでは、光干渉ユニット6により膜92上の少なくとも1つの特定測定点における参照膜厚が求められ、当該参照膜厚が膜厚演算部73による膜厚の算出に利用される。   Alternatively, a plurality of specific measurement points are set on the film 92, and the reference film thickness at the plurality of specific measurement points is set to the optical interference unit 6 in parallel with acquisition of one inspection image (or acquisition of a plurality of inspection images). May be measured sequentially. In this case, the film thickness correction value (that is, the difference between the reference film thickness and the film thickness before correction obtained by the film thickness calculation unit 73 in step S24) at each of the plurality of specific measurement points is obtained. Based on the film thickness correction value, the film thickness at each measurement point is corrected. For example, the relationship between the film thickness before correction and the film thickness correction value is obtained from the film thickness before correction and the film thickness correction value at a plurality of specific measurement points, and at each measurement point, the relationship and the film thickness before correction are calculated. The film thickness is corrected by the film thickness correction value obtained based on the above. As described above, in the film thickness measuring device 1a, the optical interference unit 6 obtains the reference film thickness at at least one specific measurement point on the film 92, and the reference film thickness is used for the film thickness calculation unit 73 to calculate the film thickness. Used.

膜厚測定装置1aでは、Y方向(すなわち、基板9の移動方向に垂直な方向)に配列された複数の光干渉ユニット6が設けられ、膜92上において格子状に配列された複数(ただし、膜厚演算部73により膜厚測定が行われる測定点数よりも少ない個数)の特定測定点の参照膜厚が測定されて当該複数の参照膜厚が膜92上の複数の測定点における膜厚の算出に利用されてもよい。例えば、4つの特定測定点を頂点とする矩形領域において、当該4つの特定測定点のそれぞれにおける参照膜厚と補正前の膜厚との差である膜厚補正値に基づいて膜厚補正値の分布が求められ、上記矩形領域内の複数の測定点における補正前の膜厚が、膜厚補正値の分布から求められた膜厚補正値により補正される。これにより、膜厚補正値が膜92上の位置に依存して異なる場合に、各測定点における膜厚をより高精度に求めることができる。   In the film thickness measuring device 1a, a plurality of optical interference units 6 arranged in the Y direction (that is, a direction perpendicular to the moving direction of the substrate 9) are provided, and a plurality (however, The reference film thickness of the specific measurement points (the number smaller than the number of measurement points at which the film thickness is measured by the film thickness calculation unit 73) is measured, and the plurality of reference film thicknesses are the film thicknesses at the plurality of measurement points on the film 92. It may be used for calculation. For example, in a rectangular region having four specific measurement points as vertices, the film thickness correction value is calculated based on the film thickness correction value that is the difference between the reference film thickness at each of the four specific measurement points and the film thickness before correction. The distribution is obtained, and the film thickness before correction at the plurality of measurement points in the rectangular area is corrected by the film thickness correction value obtained from the distribution of the film thickness correction value. Thereby, when the film thickness correction value varies depending on the position on the film 92, the film thickness at each measurement point can be obtained with higher accuracy.

以上、本発明の実施の形態について説明してきたが、本発明は上記実施の形態に限定されるものではなく、様々な変更が可能である。   As mentioned above, although embodiment of this invention has been described, this invention is not limited to the said embodiment, A various change is possible.

上記実施の形態に係る膜厚測定装置では、図7に示すように、膜厚候補値を中心とする膜厚範囲に対する投票において、各膜厚に投票される点数は0以上となっているが、例えば、膜厚候補値から大きく離れた膜厚範囲に対してマイナスの点数が投票されてもよい。また、膜厚測定装置では、ラインセンサ41に代えて、2次元CCDカメラ等により検査画像が取得されてもよい。   In the film thickness measuring apparatus according to the above embodiment, as shown in FIG. 7, in the voting for the film thickness range centering on the film thickness candidate value, the score voted for each film thickness is 0 or more. For example, a negative score may be voted for a film thickness range far away from the film thickness candidate value. Further, in the film thickness measurement device, an inspection image may be acquired by a two-dimensional CCD camera or the like instead of the line sensor 41.

膜厚測定装置において膜厚測定に利用される検査波長の個数は、必ずしも5つには限定されず、例えば、膜92のおよその膜厚が予め判明している場合、当該膜厚近傍における反射特性の位相差(すなわち、理論反射率の変化の位相)がおよそπ/2だけずれている2つの検査波長のみを利用して膜厚測定が行われてもよい。これにより、膜92の画像取得に要する時間を短縮することができ、膜厚測定がさらに迅速に行われる。   The number of inspection wavelengths used for film thickness measurement in the film thickness measurement device is not necessarily limited to five. For example, when the approximate film thickness of the film 92 is known in advance, reflection near the film thickness is performed. The film thickness may be measured using only two inspection wavelengths whose characteristic phase difference (that is, the phase of change in theoretical reflectance) is shifted by approximately π / 2. As a result, the time required to acquire the image of the film 92 can be shortened, and the film thickness can be measured more rapidly.

第2の実施の形態に係る膜厚測定装置1aでは、光干渉ユニット6および参照膜厚演算部74により取得された参照膜厚は、膜厚演算部73による膜厚の算出に利用されるのであれば、必ずしも、膜厚演算部73により算出された膜厚の補正に利用される必要はない。例えば、基板9上の全ての測定点の膜厚が狭い範囲内に含まれていることが予め判明している場合、各測定点の膜厚算出(ステップS24)における投票の際に、投票範囲を参照膜厚を含む比較的狭い膜厚範囲に限定することにより(例えば、投票可能な膜厚の最大値を参照膜厚よりも100nm大きい値とし、最小値を参照膜厚よりも100nm小さい値とすることにより)、各測定点における膜厚の算出を簡素化し、基板9上の膜厚分布の取得を高速化することができる。   In the film thickness measuring device 1a according to the second embodiment, the reference film thickness acquired by the optical interference unit 6 and the reference film thickness calculator 74 is used for the calculation of the film thickness by the film thickness calculator 73. If there is, it is not necessarily required to be used for correcting the film thickness calculated by the film thickness calculator 73. For example, when it is previously known that the film thicknesses of all the measurement points on the substrate 9 are included in a narrow range, the voting range is used when voting in the calculation of the film thickness of each measurement point (step S24). Is limited to a relatively narrow film thickness range including the reference film thickness (for example, the maximum voting film thickness is set to a value 100 nm larger than the reference film thickness, and the minimum value is a value 100 nm smaller than the reference film thickness). Thus, the calculation of the film thickness at each measurement point can be simplified, and the acquisition of the film thickness distribution on the substrate 9 can be speeded up.

また、膜厚測定装置1aでは、落射式の光干渉ユニット6に代えて、膜92上の微小領域に膜92に対して傾斜した光を照射するとともに当該微小領域からの反射光の偏光状態を取得して偏光解析を行うことにより当該微小領域における膜厚を取得するエリプソメータが膜厚計として設けられてもよい。   Further, in the film thickness measuring device 1a, instead of the epi-illumination type optical interference unit 6, the minute region on the film 92 is irradiated with light inclined with respect to the film 92 and the polarization state of the reflected light from the minute region is changed. An ellipsometer may be provided as a film thickness meter that acquires the film thickness in the minute region by acquiring and performing polarization analysis.

上記実施の形態に係る膜厚測定装置は、レジスト膜以外の膜、例えば、基板9上に形成された絶縁膜や導電膜の膜厚測定に利用されてよく、これらの膜は、塗布液の塗布以外の方法、例えば、蒸着法や化学気相成長法(CVD:Chemical Vapor Deposition)、スパッタリング等により形成されたものであってもよい。また、膜厚測定装置は、半導体基板等の他の基板や基板以外の様々な対象物上に形成された膜の膜厚測定に利用されてよい。   The film thickness measurement apparatus according to the above embodiment may be used for film thickness measurement of a film other than a resist film, for example, an insulating film or a conductive film formed on the substrate 9. It may be formed by a method other than coating, for example, vapor deposition, chemical vapor deposition (CVD), sputtering, or the like. The film thickness measuring device may be used for measuring the film thickness of a film formed on another substrate such as a semiconductor substrate or various objects other than the substrate.

第1の実施の形態に係る膜厚測定装置を示す図である。It is a figure which shows the film thickness measuring apparatus which concerns on 1st Embodiment. 波長帯切替機構を示す図である。It is a figure which shows a wavelength band switching mechanism. 膜の反射特性を示す図である。It is a figure which shows the reflective characteristic of a film | membrane. 膜厚測定の流れを示す図である。It is a figure which shows the flow of a film thickness measurement. 膜厚測定の流れを示す図である。It is a figure which shows the flow of a film thickness measurement. 画素値分布を示す図である。It is a figure which shows pixel value distribution. 膜厚測定における投票結果を膜の反射特性と共に示す図である。It is a figure which shows the voting result in a film thickness measurement with the reflective characteristic of a film | membrane. 第2の実施の形態に係る膜厚測定装置を示す図である。It is a figure which shows the film thickness measuring apparatus which concerns on 2nd Embodiment. 膜厚測定の流れの一部を示す図である。It is a figure which shows a part of flow of a film thickness measurement. 膜厚測定の流れの一部を示す図である。It is a figure which shows a part of flow of a film thickness measurement.

符号の説明Explanation of symbols

1,1a 膜厚測定装置
2 ステージ
3 光照射部
4 撮像部
6 光干渉ユニット
9 基板
51 光学フィルタ
51a 選択光学フィルタ
53 フィルタ回転モータ
72 反射特性記憶部
73 膜厚演算部
91 上面
92 膜
801〜805 反射特性
S11〜S24,S31,S32,S41 ステップ
DESCRIPTION OF SYMBOLS 1,1a Film thickness measuring apparatus 2 Stage 3 Light irradiation part 4 Imaging part 6 Optical interference unit 9 Substrate 51 Optical filter 51a Selection optical filter 53 Filter rotation motor 72 Reflection characteristic memory | storage part 73 Film thickness calculating part 91 Upper surface 92 Film | membrane 801-805 Reflection characteristics S11 to S24, S31, S32, S41 Steps

Claims (8)

対象物上に形成された膜の膜厚を測定する膜厚測定装置であって、
光学定数が既知である膜が主面上に形成された対象物を保持する保持部と、
複数の検査波長における前記膜の膜厚と前記膜厚の変化に従って変動する前記膜の反射率の理論値との関係をそれぞれ示す複数の反射特性を予め記憶する反射特性記憶部と、
前記膜に光を照射する光照射部と、
前記光照射部からの光のうち前記膜にて反射された干渉光を受光して前記複数の検査波長における前記膜の複数の画像を取得する撮像部と、
前記複数の画像および前記複数の反射特性に基づいて前記対象物上の複数の測定点のそれぞれにおける膜厚を算出する膜厚演算部と、
を備え、
前記膜厚演算部が、
a)前記複数の画像の各画像において、画素値が最大となる最大位置および画素値が最小となる最小位置における最大画素値および最小画素値を取得する工程と、
b)前記各画像の前記最大画素値および前記最小画素値と前記各画像に対応する反射特性における極大反射率および極小反射率との関係に基づいて前記各画像の画素値と反射率とを対応付ける工程と、
c)前記複数の測定点の各測定点における前記複数の画像の複数の画素値と、各膜厚における前記複数の反射特性が示す複数の反射率との一致度に基づいて前記各測定点における膜厚を求める工程と、
を実行することを特徴とする膜厚測定装置。
A film thickness measuring device for measuring a film thickness of a film formed on an object,
A holding unit for holding an object in which a film having a known optical constant is formed on the main surface;
A reflection characteristic storage unit that stores in advance a plurality of reflection characteristics respectively indicating the relationship between the film thickness of the film at a plurality of inspection wavelengths and the theoretical value of the reflectivity of the film that varies according to the change in the film thickness;
A light irradiation section for irradiating the film with light;
An imaging unit that receives interference light reflected by the film from the light irradiation unit and acquires a plurality of images of the film at the plurality of inspection wavelengths;
A film thickness calculator that calculates the film thickness at each of a plurality of measurement points on the object based on the plurality of images and the plurality of reflection characteristics;
With
The film thickness calculator is
a) obtaining a maximum pixel value and a minimum pixel value at a minimum position where the pixel value is maximum and a minimum position where the pixel value is minimum in each of the plurality of images;
b) Associating the pixel value of each image with the reflectance based on the relationship between the maximum pixel value and the minimum pixel value of each image and the maximum reflectance and minimum reflectance in the reflection characteristics corresponding to each image. Process,
c) Based on the degree of coincidence between the plurality of pixel values of the plurality of images at each measurement point of the plurality of measurement points and the plurality of reflectances indicated by the plurality of reflection characteristics at each film thickness, A step of obtaining a film thickness;
The film thickness measuring apparatus characterized by performing.
請求項1に記載の膜厚測定装置であって、
前記複数の検査波長の光を選択的にそれぞれ透過する複数の光学フィルタと、
前記複数の光学フィルタのうち前記光照射部から前記撮像部に至る光路上に配置された一の光学フィルタを他の光学フィルタに変更する光学フィルタ変更機構と、
をさらに備え、
前記光照射部から出射される光が白色光であることを特徴とする膜厚測定装置。
The film thickness measuring device according to claim 1,
A plurality of optical filters that selectively transmit light of the plurality of inspection wavelengths respectively;
An optical filter changing mechanism that changes one optical filter arranged on the optical path from the light irradiation unit to the imaging unit among the plurality of optical filters to another optical filter;
Further comprising
The film thickness measuring apparatus, wherein the light emitted from the light irradiation unit is white light.
請求項1または2に記載の膜厚測定装置であって、
前記膜上の少なくとも1つの測定点における膜厚を取得する膜厚計をさらに備え、
前記膜厚計により取得された前記膜厚が、前記膜厚演算部による膜厚の算出に利用されることを特徴とする膜厚測定装置。
The film thickness measuring device according to claim 1 or 2,
A film thickness meter for obtaining a film thickness at at least one measurement point on the film;
The film thickness measurement apparatus characterized in that the film thickness acquired by the film thickness meter is used for calculation of the film thickness by the film thickness calculator.
請求項3に記載の膜厚測定装置であって、
前記膜厚計により取得された前記少なくとも1つの測定点における膜厚と、前記膜厚演算部により算出された前記少なくとも1つの測定点における膜厚との差に基づいて、前記膜厚演算部により算出された前記各測定点における膜厚が補正されることを特徴とする膜厚測定装置。
The film thickness measuring device according to claim 3,
Based on the difference between the film thickness at the at least one measurement point acquired by the film thickness meter and the film thickness at the at least one measurement point calculated by the film thickness calculation unit, the film thickness calculation unit A film thickness measuring apparatus, wherein the calculated film thickness at each measurement point is corrected.
対象物上に形成された膜の厚さを測定する膜厚測定方法であって、
a)光学定数が既知である膜が主面上に形成された対象物を保持する工程と、
b)複数の検査波長における前記膜の膜厚と前記膜厚の変化に従って変動する前記膜の反射率の理論値との関係をそれぞれ示す複数の反射特性を予め記憶する工程と、
c)光照射部から前記膜に光を照射し、前記光照射部からの光のうち前記膜にて反射された干渉光を撮像部により受光して前記複数の検査波長における前記膜の複数の画像を取得する工程と、
d)前記複数の画像の各画像において、画素値が最大となる最大位置および画素値が最小となる最小位置における最大画素値および最小画素値を取得する工程と、
e)前記各画像の前記最大画素値および前記最小画素値と前記各画像に対応する反射特性における極大反射率および極小反射率との関係に基づいて前記各画像の画素値と反射率とを対応付ける工程と、
f)前記対象物上の複数の測定点の各測定点における前記複数の画像の複数の画素値と、各膜厚における前記複数の反射特性が示す複数の反射率との一致度に基づいて前記各測定点における膜厚を求める工程と、
を備えることを特徴とする膜厚測定方法。
A film thickness measuring method for measuring the thickness of a film formed on an object,
a) a step of holding an object on which a film having a known optical constant is formed on the main surface;
b) preliminarily storing a plurality of reflection characteristics respectively indicating a relationship between a film thickness of the film at a plurality of inspection wavelengths and a theoretical value of the reflectivity of the film that varies according to a change in the film thickness;
c) irradiating the film with light from the light irradiating unit, and receiving interference light reflected by the film among the light from the light irradiating unit by the imaging unit, and a plurality of the films at the plurality of inspection wavelengths. Acquiring an image;
d) obtaining a maximum pixel value and a minimum pixel value at a maximum position where the pixel value is maximum and a minimum position where the pixel value is minimum in each of the plurality of images;
e) correlating the pixel value of each image with the reflectance based on the relationship between the maximum pixel value and the minimum pixel value of each image and the maximum reflectance and minimum reflectance in the reflection characteristics corresponding to each image. Process,
f) based on a degree of coincidence between a plurality of pixel values of the plurality of images at each of the plurality of measurement points on the object and a plurality of reflectances indicated by the plurality of reflection characteristics at each film thickness. A step of obtaining a film thickness at each measurement point;
A film thickness measuring method comprising:
請求項5に記載の膜厚測定方法であって、
前記c)工程において前記光照射部から出射される光が白色光であり、
前記c)工程が、
c1)前記複数の検査波長の光を選択的にそれぞれ透過する複数の光学フィルタのうち一の光学フィルタを前記光照射部から前記撮像部に至る光路上に配置して前記一の光学フィルタに対応する検査波長の画像を取得する工程と、
c2)前記複数の画像が取得されるまで前記一の光学フィルタを他の光学フィルタに変更して前記c1)工程に戻る工程と、
を備えることを特徴とする膜厚測定方法。
The film thickness measuring method according to claim 5,
The light emitted from the light irradiation unit in the step c) is white light,
Step c)
c1) Corresponding to the one optical filter by arranging one optical filter among the plurality of optical filters that selectively transmit the light of the plurality of inspection wavelengths on the optical path from the light irradiation unit to the imaging unit. Acquiring an image of an inspection wavelength to be performed;
c2) changing the one optical filter to another optical filter until the plurality of images are acquired, and returning to the c1) step;
A film thickness measuring method comprising:
請求項5または6に記載の膜厚測定方法であって、
g)前記膜上の少なくとも1つの測定点における膜厚を膜厚計により取得する工程をさらに備え、
前記g)工程にて取得された前記膜厚が、前記f)工程における膜厚の算出に利用されることを特徴とする膜厚測定方法。
The film thickness measuring method according to claim 5 or 6,
g) further comprising a step of obtaining a film thickness at at least one measurement point on the film by a film thickness meter;
The film thickness measurement method, wherein the film thickness obtained in the step g) is used for calculation of the film thickness in the step f).
請求項7に記載の膜厚測定方法であって、
前記g)工程にて取得された前記少なくとも1つの測定点における前記膜厚と、前記f)工程において算出された前記少なくとも1つの測定点における膜厚との差に基づいて、前記f)工程において算出された前記各測定点における膜厚が補正されることを特徴とする膜厚測定方法。
The film thickness measuring method according to claim 7,
In the step f) based on the difference between the film thickness at the at least one measurement point acquired in the step g) and the film thickness at the at least one measurement point calculated in the step f). A film thickness measuring method, wherein the calculated film thickness at each measurement point is corrected.
JP2008211732A 2008-08-20 2008-08-20 Apparatus and method for measuring film thickness Pending JP2010048604A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008211732A JP2010048604A (en) 2008-08-20 2008-08-20 Apparatus and method for measuring film thickness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008211732A JP2010048604A (en) 2008-08-20 2008-08-20 Apparatus and method for measuring film thickness

Publications (1)

Publication Number Publication Date
JP2010048604A true JP2010048604A (en) 2010-03-04

Family

ID=42065812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008211732A Pending JP2010048604A (en) 2008-08-20 2008-08-20 Apparatus and method for measuring film thickness

Country Status (1)

Country Link
JP (1) JP2010048604A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013054814A1 (en) * 2011-10-11 2013-04-18 株式会社ニコン Shape-measuring device, system for manufacturing structures, shape-measuring method, method for manufacturing structures, shape-measuring program
JP2013190224A (en) * 2012-03-12 2013-09-26 Konica Minolta Inc Thickness measurement device and thickness measurement method
JP5790644B2 (en) * 2010-04-30 2015-10-07 株式会社ニコン Inspection apparatus and inspection method
JP2019020419A (en) * 2017-07-20 2019-02-07 Jfeテクノリサーチ株式会社 Film thickness calculation method, film thickness calculation program, and film thickness calculation device
JP2019060852A (en) * 2017-09-22 2019-04-18 Jfeテクノリサーチ株式会社 Film thickness measuring method, film thickness measuring program and film thickness measuring device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5790644B2 (en) * 2010-04-30 2015-10-07 株式会社ニコン Inspection apparatus and inspection method
KR101793584B1 (en) 2010-04-30 2017-11-03 가부시키가이샤 니콘 Inspecting apparatus and inspecting method
US10359367B2 (en) 2010-04-30 2019-07-23 Nikon Corporation Inspection apparatus and inspection method
WO2013054814A1 (en) * 2011-10-11 2013-04-18 株式会社ニコン Shape-measuring device, system for manufacturing structures, shape-measuring method, method for manufacturing structures, shape-measuring program
JPWO2013054814A1 (en) * 2011-10-11 2015-03-30 株式会社ニコン Shape measuring device, structure manufacturing system, shape measuring method, structure manufacturing method, shape measuring program
US9891043B2 (en) 2011-10-11 2018-02-13 Nikon Corporation Profile measuring apparatus, structure manufacturing system, method for measuring profile, method for manufacturing structure, and non-transitory computer readable medium
JP2013190224A (en) * 2012-03-12 2013-09-26 Konica Minolta Inc Thickness measurement device and thickness measurement method
JP2019020419A (en) * 2017-07-20 2019-02-07 Jfeテクノリサーチ株式会社 Film thickness calculation method, film thickness calculation program, and film thickness calculation device
JP2019060852A (en) * 2017-09-22 2019-04-18 Jfeテクノリサーチ株式会社 Film thickness measuring method, film thickness measuring program and film thickness measuring device

Similar Documents

Publication Publication Date Title
JP5790644B2 (en) Inspection apparatus and inspection method
KR102549058B1 (en) Optical measurement apparatus and optical measurement method
US8009292B2 (en) Single polarizer focused-beam ellipsometer
KR960013677B1 (en) Apparatus and method for interferometrically measuring the thickness of thin films using full aperture irradiation
KR101195101B1 (en) Generating model signals for interferometry
JP3995579B2 (en) Film thickness measuring device and reflectance measuring device
TWI461857B (en) Method and apparatus for angular-resolved spectroscopic lithography characterization
KR101950523B1 (en) Surface inspection device and method therefor
US9170156B2 (en) Normal-incidence broadband spectroscopic polarimeter containing reference beam and optical measurement system
US8830463B2 (en) Rotating-element ellipsometer and method for measuring properties of the sample using the same
US7929139B2 (en) Spectroscopic ellipsometer, film thickness measuring apparatus, and method of focusing in spectroscopic ellipsometer
US11262293B2 (en) System and method for use in high spatial resolution ellipsometry
US20180144995A1 (en) Optical inspection apparatus and method and method of fabricating semiconductor device using the apparatus
US7684039B2 (en) Overlay metrology using the near infra-red spectral range
JP5459944B2 (en) Surface shape measuring device, stress measuring device, surface shape measuring method and stress measuring method
KR20200071563A (en) Inspecting apparatus based on hyper HSI(Hyper Spectral Imaging)
TW202204848A (en) High sensitivity image-based reflectometry
JP2010048604A (en) Apparatus and method for measuring film thickness
JP2010223822A (en) Spectroscopic ellipsometer and polarization analysis method
KR101388424B1 (en) Apparatus for measuring a thickness using digital light processing and method using the same
JP2004069651A (en) Instrument for measuring film thickness
JP2006313143A (en) Irregularity inspection device and method thereof
JP2008139065A (en) Film evaluation apparatus and film evaluation method
CN114616437A (en) Device and method for measuring the contour of a flat object with unknown material
JP4618720B2 (en) Unevenness inspection apparatus and unevenness inspection method