JP2009031043A - Transmittance measuring method and device - Google Patents

Transmittance measuring method and device Download PDF

Info

Publication number
JP2009031043A
JP2009031043A JP2007193384A JP2007193384A JP2009031043A JP 2009031043 A JP2009031043 A JP 2009031043A JP 2007193384 A JP2007193384 A JP 2007193384A JP 2007193384 A JP2007193384 A JP 2007193384A JP 2009031043 A JP2009031043 A JP 2009031043A
Authority
JP
Japan
Prior art keywords
measurement
lens
transmittance
error
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007193384A
Other languages
Japanese (ja)
Inventor
Takashi Sato
隆史 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2007193384A priority Critical patent/JP2009031043A/en
Publication of JP2009031043A publication Critical patent/JP2009031043A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and a device capable of measuring highly accurately a lens having an uneven various curvature, in measurement of a transmittance. <P>SOLUTION: In a means for measuring each photodetection intensity when a test lens is interposed in an optical path through which measuring light reaches a photodetection means, to thereby allow the measuring light to pass, and when the test lens is not interposed, and calculating the transmittance of the test lens by comparison thereof, the shape, the material, and the position in the optical path of the test lens, and a measurement error portion caused by convergence or divergence of a light flux by a measurement wavelength are measured beforehand in both cases where the test lens is interposed in the optical path and where the test lens is not interposed, to thereby correct a measured value. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、光学レンズの測定方法及び装置に関し、特に紫外領域の光の測定評価に、その中でも従来測定が困難で精度の低かった真空紫外領域での測定精度の向上の為に有効な透過率測定方法及び装置に関する。   The present invention relates to an optical lens measurement method and apparatus, and more particularly to transmittance evaluation effective for measurement evaluation of light in the ultraviolet region, and in particular, to improve measurement accuracy in the vacuum ultraviolet region, which is difficult to measure in the past and has low accuracy. The present invention relates to a measurement method and apparatus.

従来、光学レンズの測定は、分光エネルギー分布、分光透過率、分光反射率などの測定が行なわれ、これ等の測定は可視領域が主体で行われていた。   Conventionally, the optical lens has been measured for spectral energy distribution, spectral transmittance, spectral reflectance, and the like, and these measurements have been mainly performed in the visible region.

図6に従来の分光透過率測定装置の一例を示す。従来の分光測定装置は、光源から発せられた光線を分光器によって単色光とし、該単色光はセクタミラーやハーフミラーにより参照光と試料光に分割する。参照光は反射ミラーによって直接受光センサに導かれ、一方、試料光は反射ミラーによって被検レンズを介し、直接又は積分球等を介して受光センサに導かれる。各々の光の光束を比較することにより光のエネルギーの測定が行なわれる。この種の分光測定装置は、例えば、特許文献1に開示されている。   FIG. 6 shows an example of a conventional spectral transmittance measuring apparatus. In a conventional spectroscopic measurement device, light emitted from a light source is converted into monochromatic light by a spectroscope, and the monochromatic light is divided into reference light and sample light by a sector mirror or a half mirror. The reference light is directly guided to the light receiving sensor by the reflecting mirror, while the sample light is guided to the light receiving sensor by the reflecting mirror via the lens to be tested, directly or via an integrating sphere. The light energy is measured by comparing the luminous flux of each light. This type of spectroscopic measurement apparatus is disclosed in Patent Document 1, for example.

分光測定装置に使用される受光素子は、シリコンフォトダイオード、光電子増倍管、CCD等が用途、使用波長、必要精度等によって使い分けられてきた。
特開2000−321126号公報
As the light receiving elements used in the spectroscopic measurement apparatus, silicon photodiodes, photomultiplier tubes, CCDs, and the like have been properly used depending on the application, wavelength used, required accuracy, and the like.
JP 2000-321126 A

ところで、従来の可視領域が主体で行われてきた分光測定装置に対して、紫外領域の光線を利用した装置が各方面で使用されるようになってきている。特に半導体の製造に用いられるステッパー等の光源には水銀灯のg線(λ=4358Å)からi線(λ=3650Å)、ガスレーザのKrF(λ=2486Å)レーザ、更には、真空紫外領域のArF(λ=1934Å)レーザへと移行してきている。   By the way, in contrast to the conventional spectroscopic measurement apparatus mainly performed in the visible region, apparatuses using light in the ultraviolet region are being used in various directions. In particular, light sources such as steppers used in semiconductor manufacturing include mercury lamp g-line (λ = 4358 Å) to i-line (λ = 3650 Å), gas laser KrF (λ = 2486 、) laser, and vacuum ultraviolet region ArF ( λ = 1934Å) Transition to laser.

ここで大きな問題となっているのがそこに使用される光学系である。レンズ、及びレンズ表面に形成する反射防止膜の特性等を評価・開発していかなければならず、これらの評価・開発検討ツールとして、真空紫外波長領域で硝材及び光学膜の特性を精度良く計測・評価できる分光透過率測定装置が必要になる。しかし、これまでの測定評価に用いていた分光透過率測定装置では、凸凹様々な曲率を有するレンズを真空紫外領域で測定するのに対応しておらず、精度良い測定評価が望めなかった。   The major problem here is the optical system used there. It is necessary to evaluate and develop the characteristics of the lens and the antireflection film formed on the lens surface, and as a tool for evaluating and developing these, the characteristics of glass materials and optical films are accurately measured in the vacuum ultraviolet wavelength region.・ A spectral transmittance measuring device that can be evaluated is required. However, the spectral transmittance measuring device used for the measurement evaluation so far does not support the measurement of lenses having various concave and convex curvatures in the vacuum ultraviolet region, and thus it has not been possible to expect accurate measurement evaluation.

その理由は、本発明者の知見によると、以下のとおりである。
精度の良い測定を実現するためには、測定光が光検出手段に到達する光路中に、被検レンズを介在させて測定光を通過させた場合と、被検レンズを介在させない場合の光検出強度を計測し、その対比が正確に行われなければならない。しかしながら、受光部中の場所による受光特性が完全に均一であるということは少ない。シリコンフォトダイオードの場合であれば、光電変換を行う受光面内に、製造プロセス、或いは使用時間による劣化によって、場所による感度ムラが存在する。また、積分球の場合であれば、積分球内壁塗料の塗布ムラや劣化によって場所による反射率ムラが存在する。そのため、被検レンズが光路中に無い時の100%測定時と、被検レンズを光路中に入れた時の測定時に受光面内の同一部分で受光しないと正確な対比ができないという問題がある。
The reason is as follows according to the knowledge of the present inventor.
In order to achieve accurate measurement, light detection is performed when the measurement light is passed through the optical path where the measurement light reaches the light detection means, and when the measurement light is not interposed. Intensities must be measured and compared accurately. However, it is rare that the light receiving characteristics depending on the location in the light receiving unit are completely uniform. In the case of a silicon photodiode, there is a non-uniformity in sensitivity depending on the location due to deterioration due to the manufacturing process or use time in the light receiving surface where photoelectric conversion is performed. Further, in the case of an integrating sphere, there is a non-uniformity of reflectance depending on the location due to non-uniform coating and deterioration of the integrating sphere inner wall paint. Therefore, there is a problem that accurate comparison cannot be made unless light is received at the same portion in the light receiving surface at the time of 100% measurement when the test lens is not in the optical path and at the time of measurement when the test lens is put in the optical path. .

特に、真空紫外域では、光が様々の物質に強い吸収を受け、受光面等の汚染による感度ムラへの影響も顕著であるという問題がある。さらに、凸凹様々な曲率を有する球面を測定する場合、光束の収束発散により被検レンズに照射される測定光が、被検レンズの形状や厚さにより屈折される。そのため、光路中に被検レンズを介在させない場合の光束と異なり、受光部の感度均一性は完全でないので、測定誤差を生じるという問題がある。   In particular, in the vacuum ultraviolet region, there is a problem that light is strongly absorbed by various substances, and the influence on sensitivity unevenness due to contamination of the light receiving surface and the like is significant. Further, when measuring a spherical surface having various curvatures, the measurement light irradiated to the test lens by the convergence and divergence of the light beam is refracted by the shape and thickness of the test lens. For this reason, unlike the light beam in the case where the test lens is not interposed in the optical path, the sensitivity uniformity of the light receiving unit is not perfect, which causes a measurement error.

ここで、図7を用いて、凸凹様々な曲率を有する球面を測定する場合を模式的に説明する。この場合、光束の収束発散により被検レンズに照射される測定光が、被検レンズの形状や厚さにより屈折され、光路中に被検レンズを介在させない場合の光束と変化する。図7(a)は、光路中に被検レンズを介在させない場合であり、検知器として光電子増倍管23を、積分球24を介して用いた受光部付近を示す。紙面左方向から、分光された単色の測定入射光33はあるNAを持った収束光であり、積分球開口部付近を焦点位置とし、積分球内に入射する。次に図7(b)は、被検レンズとして負のパワーを有するレンズ34を、測定光路中に介在させた場合である。図7(a)の、光路中に被検レンズを介在させない場合と比較して、レンズ34によって光が屈折され、焦点位置が奥側に変わり、光束が変化している事が分かる。次に図7(c)は、被検レンズとして正のパワーを有するレンズ35を、測定光路中に介在させた場合である。図7(a)の、光路中に被検レンズを介在させない場合と比較して、レンズ35によって光が屈折され、焦点位置が手前側に変わり、光束が発散している事が分かる。   Here, the case where a spherical surface having various curvatures is measured will be schematically described with reference to FIG. In this case, the measurement light applied to the test lens by the convergence and divergence of the light beam is refracted by the shape and thickness of the test lens, and changes to the light beam when the test lens is not interposed in the optical path. FIG. 7A shows a case where the test lens is not interposed in the optical path, and shows the vicinity of the light receiving unit using the photomultiplier tube 23 as the detector via the integrating sphere 24. From the left side of the drawing, the monochromatic measurement incident light 33 is a convergent light having a certain NA, and enters the integrating sphere with the vicinity of the integrating sphere opening as a focal position. Next, FIG. 7B shows a case where a lens 34 having a negative power is interposed in the measurement optical path as a test lens. It can be seen that the light is refracted by the lens 34, the focal position is changed to the back side, and the luminous flux is changed as compared with the case where the test lens is not interposed in the optical path in FIG. Next, FIG.7 (c) is a case where the lens 35 which has positive power as a to-be-tested lens is interposed in a measurement optical path. It can be seen that the light is refracted by the lens 35, the focal position is changed to the near side, and the luminous flux is diverged as compared with the case where the test lens is not interposed in the optical path in FIG.

このように、凸凹様々な曲率を有する球面を測定する場合、光束の収束発散により被検レンズに照射される測定光が、被検レンズの形状や厚さにより屈折され、光路中に被検レンズを介在させない場合の光束と異なる。そのため、受光部の感度ムラと相まって、測定誤差を生じるという問題があった。   In this way, when measuring a spherical surface having various curvatures, the measurement light irradiated to the test lens due to the convergence and divergence of the light beam is refracted by the shape and thickness of the test lens, and the test lens is in the optical path. It is different from the luminous flux when no intervening. For this reason, there is a problem that measurement errors occur due to sensitivity variations in the light receiving section.

また、受光部に積分球を用いる場合、その構造上光を取り込むためと、検知器で受光するための開口部が必用である。そして、その開口部の大きさや数、積分球自体の内径との比率、検知器の受光部の位置等によっても、入射する測定光束の収束・発散により、影響の受け方も異なる。また、被検レンズの曲率と屈折率によって決まるパワーの大小・正負によっても誤差の量が異なるという問題があった。また、測定機によっても、測定光束、受光部のムラなどがそれぞれ異なり、誤差の量も測定機毎に異なるという問題があった。
本発明は、上述の従来例における問題点を解消することを課題とする。
Further, when an integrating sphere is used for the light receiving portion, an opening for receiving light by the detector and for receiving light by the detector is necessary. Further, the way of influence varies depending on the convergence and divergence of the incident measurement light beam, depending on the size and number of the openings, the ratio to the inner diameter of the integrating sphere itself, the position of the light receiving portion of the detector, and the like. Another problem is that the amount of error varies depending on the magnitude and positive / negative of the power determined by the curvature and refractive index of the lens to be examined. Also, depending on the measuring machine, there is a problem that the measurement light flux, the unevenness of the light receiving part, etc. are different, and the amount of error is also different for each measuring machine.
An object of the present invention is to solve the problems in the above-described conventional example.

本発明の透過率測定方法は、測定光が光検出手段に到達する光路中に、被検レンズを介在させて測定光を通過させた場合と、被検レンズを介在させない場合の光検出強度を計測し、その対比により被検レンズの透過率を測定する透過率測定方法であって、光路中に介在させた被検レンズによる光束の収束又は発散に起因する前記透過率の測定誤差分を測定する測定誤差分測定工程と、前記被検レンズの透過率測定値を前記測定誤差分に応じて補正する補正工程とを有することを特徴とする。   In the transmittance measuring method of the present invention, the light detection intensity when the measurement light is allowed to pass through the optical path through which the measurement light reaches the light detection means and when the measurement light is not interposed are measured. A transmittance measurement method for measuring and measuring the transmittance of a test lens by comparing the measurement, and measuring a measurement error of the transmittance due to convergence or divergence of a light beam by a test lens interposed in an optical path A measurement error measurement step, and a correction step of correcting the measured transmittance value of the lens to be measured in accordance with the measurement error.

また、本発明の透過率測定装置は、測定光が光検出手段に到達する光路中に、被検レンズを介在させて測定光を通過させた場合と、被検レンズを介在させない場合の光検出強度を計測し、その対比により被検レンズの透過率を測定する透過率測定装置であって、光路中に介在させた被検レンズによる光束の収束又は発散に起因する前記透過率の測定誤差分を測定する測定誤差分測定手段と、前記被検レンズの透過率測定値を前記測定誤差分に応じて補正する補正手段とを有することを特徴とする。   Further, the transmittance measuring apparatus of the present invention is capable of detecting light when the measurement light is allowed to pass through the optical path through which the measurement light reaches the light detection means and when the measurement lens is not interposed. A transmittance measuring device that measures intensity and measures the transmittance of a test lens by comparing the intensity, and measures the measurement error of the transmittance caused by convergence or divergence of a light beam by a test lens interposed in an optical path And a correction means for correcting the measured transmittance value of the lens to be measured in accordance with the measurement error.

本発明によれば、受光部の感度ムラと、被検レンズの形状、材質、光路中の位置、測定波長等による光束の収束又は発散に起因する測定誤差量を予め測定しておき、測定値を補正する事により、測定誤差を低減することができる。これにより、真空紫外域の分光透過率測定においても、凸凹様々な曲率を有するレンズを高精度に測定することができ、レンズ、及びレンズ表面に形成する反射防止膜の高精度な特性評価を可能にするという、格別の効果がある。   According to the present invention, the measurement error amount resulting from the convergence or divergence of the light beam due to the sensitivity unevenness of the light receiving unit and the shape, material, position in the optical path, measurement wavelength, etc. of the lens to be measured is measured in advance. By correcting the measurement error, it is possible to reduce the measurement error. As a result, lenses with various curvatures can be measured with high accuracy even in the spectral transmittance measurement in the vacuum ultraviolet region, and the lens and antireflection film formed on the lens surface can be evaluated with high accuracy. It has a special effect.

本発明は、測定光が光検出手段に到達する光路中に、被検レンズを介在させて測定光を通過させた場合と、被検レンズを介在させない場合の光検出強度を計測し、その対比により被検レンズの透過率を算出する透過率測定方法及び装置に係る。そして、本発明の好ましい実施の形態では、被検レンズを光路中に介在させた場合と介在させない場合の、被検レンズの形状、材質、光路中の位置、測定波長による光束の収束又は発散に起因する測定誤差分を予め測定しておき、測定値を補正する。なお、本実施形態では、測定誤差分を測定する測定誤差分測定工程を予め行っておくようにしたが、本発明において、測定誤差分測定工程と被検レンズの透過率測定工程とは、いずれが先でもよい。   The present invention measures the light detection intensity when the measurement light is allowed to pass through the optical path where the measurement light reaches the light detection means and when the measurement light is not interposed, and contrasts the measurement light. This relates to a transmittance measuring method and apparatus for calculating the transmittance of a test lens. In a preferred embodiment of the present invention, the shape or material of the test lens, the position in the optical path, and the convergence or divergence of the light beam depending on the measurement wavelength when the test lens is interposed in the optical path or not. The resulting measurement error is measured in advance, and the measured value is corrected. In the present embodiment, the measurement error measurement process for measuring the measurement error is performed in advance, but in the present invention, the measurement error measurement process and the transmittance measurement process of the test lens are either May be first.

測定誤差分の測定には、吸収が殆どないか又は既知で、光学特性が均一な同一材料から切り出した材料で作成した、形状の異なる複数種のレンズを使用する。これらのレンズのそれぞれについて、透過率を測定し、その測定結果から測定する条件(パラメータ)と透過率測定値誤差との関係を近似する。さらに、被検レンズの透過率測定値を測定する条件に応じた透過率測定値誤差(測定誤差分)により補正する。測定する条件とは、被検レンズのレンズパワー、形状、材質、光路中の位置、測定波長等である。   In measuring the measurement error, a plurality of types of lenses having different shapes and made of a material cut out from the same material having little or no absorption and having uniform optical characteristics are used. For each of these lenses, the transmittance is measured, and the relationship between the measurement condition (parameter) and the transmittance measurement value error is approximated from the measurement result. Further, the transmittance measurement value of the test lens is corrected by a transmittance measurement value error (measurement error) according to the conditions for measuring. The conditions for measurement are the lens power, shape, material, position in the optical path, measurement wavelength, etc. of the lens to be measured.

また、本実施形態に係る透過率測定装置は、吸収が殆どないか又は既知で、光学特性が均一な同一材料から切り出した材料で作成した、形状の異なる複数種のレンズを具備する。また、以下の工程を実行する制御装置を備える。制御装置は、レンズパワー、被検レンズの位置、測定波長と透過率測定値誤差の関係を見出す工程、補正式を導く工程、被検レンズを測定する工程、測定被検レンズのパワーにより補正を行う工程を、個別又は連続に経て測定値を出力する。   In addition, the transmittance measuring apparatus according to the present embodiment includes a plurality of types of lenses having different shapes and made of a material cut out from the same material that has little or no absorption and has uniform optical characteristics. Moreover, the control apparatus which performs the following processes is provided. The control device corrects the lens power, the position of the test lens, the process of finding the relationship between the measurement wavelength and the transmittance measurement value error, the process of deriving the correction formula, the process of measuring the test lens, and the power of the test test lens. The measured values are output individually or continuously through the steps to be performed.

以下、図1、図2を参照して本発明の実施例1について詳細を説明する。なお、図は発明を理解できる程度に各構成成分の形状、大きさおよび配置関係を概略的に示してあるに過ぎず、したがってこの発明を図示例に限定するものではない。   Hereinafter, with reference to FIG. 1 and FIG. 2, Example 1 of this invention is demonstrated in detail. It should be noted that the drawings only schematically show the shape, size, and arrangement relationship of each component to the extent that the invention can be understood, and therefore the present invention is not limited to the illustrated examples.

図2において、本実施例における分光に使用される分光器は、光分散素子として反射型の平面回折格子14と2枚の軸外し放物面ミラー13、15とからなる所謂ツェルニターナ型のモノクロメータとしている。光源11には、真空紫外域から可視域まで連続した波長の光を放射する重水素ランプを用いている。参照光と測定光の受光センサには、光電子増倍管23が積分球24を介して使用されている。本実施例においては、光量と波長分解能の関係から出口スリット16面上での単位長さあたりの波長差である逆線分散は2nm/mmとした。   In FIG. 2, the spectroscope used for spectroscopy in the present embodiment is a so-called Zellnitana type monochromator comprising a reflection type plane diffraction grating 14 and two off-axis paraboloidal mirrors 13 and 15 as light dispersion elements. It is said. As the light source 11, a deuterium lamp that emits light having a continuous wavelength from the vacuum ultraviolet region to the visible region is used. A photomultiplier tube 23 is used via an integrating sphere 24 for a light receiving sensor for reference light and measurement light. In this example, the inverse dispersion, which is the wavelength difference per unit length on the exit slit 16 surface, was set to 2 nm / mm from the relationship between the light quantity and the wavelength resolution.

図2の分光測定装置の構成について、光源から出射する光の光路に沿ってより詳しく説明する。分光器部は、第1軸外し放物面ミラー13、反射型の平面回折格子14、第2軸外し放物面ミラー15、出口スリット16からなる。重水素ランプを用いた光源11から出射した光は第1平面ミラー12によって90°方向を変え、第1軸外し放物面ミラー13によって平行光となり、回折格子14に入射する。回折格子14によって分光された光は第2軸外し放物面ミラー15によって再び集光され、出口スリット16面上で結像し、特定波長のみが通過するようになっている。出口スリット16を通過した光は第3軸外し放物面ミラー17によって平行光となり、半円形の平面ミラー(セクタミラー)18を回転させることで参照光と測定光とに時間分割される。すなわち、セクタミラー18が光路上にある時は90°方向を変えられて第4軸外し放物面ミラー19に入射し集光されて積分球24に入射する。一方、ミラー18が光路上に無い時は、そのまま第5軸外し放物面ミラー21に入射し、集光されて積分球24に入射する。   The configuration of the spectrometer of FIG. 2 will be described in more detail along the optical path of light emitted from the light source. The spectroscope unit includes a first off-axis parabolic mirror 13, a reflective planar diffraction grating 14, a second off-axis parabolic mirror 15, and an exit slit 16. The light emitted from the light source 11 using the deuterium lamp is changed by 90 ° by the first plane mirror 12, becomes parallel light by the first off-axis parabolic mirror 13, and enters the diffraction grating 14. The light split by the diffraction grating 14 is condensed again by the second off-axis parabolic mirror 15 and forms an image on the exit slit 16 surface so that only a specific wavelength passes. The light that has passed through the exit slit 16 becomes parallel light by the third off-axis parabolic mirror 17 and is time-divided into reference light and measurement light by rotating a semicircular plane mirror (sector mirror) 18. That is, when the sector mirror 18 is on the optical path, the direction is changed by 90 ° and is incident on the fourth off-axis paraboloidal mirror 19 to be condensed and incident on the integrating sphere 24. On the other hand, when the mirror 18 is not on the optical path, it enters the fifth off-axis parabolic mirror 21 as it is, and is condensed and enters the integrating sphere 24.

積分球24内面には、測定域が可視光であれば一般に硫酸バリウム等が塗布されるが、本実施例では真空紫外波長に発光する特性を有する蛍光体が塗布されている。検知器としては光電子増倍管(フォトマル)23が用いられ、積分球24の紙面手前側開口部に取り付けられている。なお、図2の分光測定装置は、図6及び図7に示す従来例と同様のものである。積分球24に入射した真空紫外光は積分球内壁に塗布された蛍光体を照射し、発光した蛍光光線は積分球の内面の蛍光体被膜の表面を拡散反射しながら検知器である光電子増倍管23に達して測定に供される。   If the measurement area is visible light, barium sulfate or the like is generally applied to the inner surface of the integrating sphere 24. In this embodiment, a phosphor having a characteristic of emitting light at a vacuum ultraviolet wavelength is applied. A photomultiplier tube (photomultiplier) 23 is used as a detector, and is attached to the opening on the front side of the integrating sphere 24 in the drawing. 2 is the same as the conventional example shown in FIG. 6 and FIG. The vacuum ultraviolet light incident on the integrating sphere 24 irradiates the phosphor coated on the inner wall of the integrating sphere, and the emitted fluorescent light diffuses and reflects the surface of the phosphor coating on the inner surface of the integrating sphere while photomultiplier serving as a detector. The tube 23 is reached for measurement.

次に、測定値の補正の方法について説明する。本実施例においては、レンズ材料として合成石英ガラスの、波長193.4nmにおける補正値を求めることとする。まず、吸収が殆どないか又は既知で、光学特性が均一な同一材料から切り出した材料で、形状の異なる6種のレンズを用意する。各レンズの透過率は、吸収が無視できるほど小さい場合は、材料の屈折率により求まる反射ロスR%を100から減算した値、吸収率が既知の場合はその吸収率を更に減算した値を基準透過率Toとする。或いは、各レンズを球面研磨加工前に平面研磨し実測して、その値を基準透過率Toとしてもよい。   Next, a method for correcting the measured value will be described. In this embodiment, a correction value at a wavelength of 193.4 nm for synthetic quartz glass as a lens material is obtained. First, six types of lenses having different shapes are prepared from materials cut out from the same material that has little or no absorption and has uniform optical characteristics. The transmittance of each lens is based on the value obtained by subtracting the reflection loss R% obtained from the refractive index of the material from 100 when the absorption is negligible, and the value obtained by further subtracting the absorption when the absorption is known. Let it be the transmittance To. Alternatively, each lens may be polished and measured before spherical polishing, and the value may be used as the reference transmittance To.

各レンズのサイズは、直径がφ30、中心厚が10mmとし、片側の面を全て平面に研磨し、もう一方の面は曲率半径28、56、112の凹面、同じく112、56、28の凸の球面とした。これにより、レンズのパワーはそれぞれ順に−0.02、−0.01、−0.005、+0.005、+0.01、+0.02とした。レンズのパワーとは、焦点距離の逆数であり、次式で表される。
P=1/f=(n−1)(1/R1−1/R2)+t・(n−1)/(n・R1・R2)
上式において、Pはパワー、fは焦点距離、nはレンズ材の屈折率、R1は一方の面(第1面)の曲率半径、R2は他方の面(第2面)の曲率半径、tは中心厚である。
Each lens has a diameter of φ30 and a center thickness of 10 mm, and one surface is polished to a flat surface, and the other surface is a concave surface having a radius of curvature of 28, 56, 112, and also convex of 112, 56, 28. A spherical surface. As a result, the lens powers were set to -0.02, -0.01, -0.005, +0.005, +0.01, and +0.02, respectively. The lens power is the reciprocal of the focal length and is expressed by the following equation.
P = 1 / f = (n−1) (1 / R1-1 / R2) + t · (n−1) 2 / (n · R1 · R2)
In the above equation, P is power, f is the focal length, n is the refractive index of the lens material, R1 is the radius of curvature of one surface (first surface), R2 is the radius of curvature of the other surface (second surface), t Is the center thickness.

次に、上記6種のレンズを一つずつ、通常被検物を測定するのと同様に、透過率測定を行う。その際、受光部とレンズ間の距離を27mm、32mm、42mm、52mm、に換えて透過率データを取得した。その結果を図1のグラフに示す。横軸をレンズのパワー、縦軸を透過率にとると、グラフに示すように、レンズと受光部との距離とレンズのパワーにより、測定値が異なる事が分かる。   Next, the transmittance is measured in the same manner as measuring the normal test object for each of the six types of lenses. At that time, transmittance data was obtained by changing the distance between the light receiving unit and the lens to 27 mm, 32 mm, 42 mm, and 52 mm. The result is shown in the graph of FIG. When the horizontal axis represents the lens power and the vertical axis represents the transmittance, it can be seen that the measured values differ depending on the distance between the lens and the light receiving unit and the lens power, as shown in the graph.

次に、各測定距離ごとの測定値6点について最小二乗法等により多項式近似し、関数を求める。本実施例では、6次近似し次のような形の式が求められる。
Ta=aP+bP+cP+dP+eP+fP+g
上式において、Taは近似値、Pはパワー、a〜fは係数、gは定数(切片)である。
Next, the function is obtained by approximating the six measured values for each measurement distance by polynomial approximation using the least square method or the like. In the present embodiment, a sixth-order approximation and an expression of the following form are obtained.
Ta = aP 6 + bP 5 + cP 4 + dP 3 + eP 2 + fP + g
In the above equation, Ta is an approximate value, P is power, a to f are coefficients, and g is a constant (intercept).

最後に、パワーpの被検レンズを、上記近似式を求めたのと同じ測定機、同じ距離、同じ波長で測定した測定値Tmから補正値Tcを求める補正式は次のようになる。
Tc=To/Ta・Tm=To/(ap+bp+cp+dp+ep+fp+g)・Tm
Finally, the correction equation for obtaining the correction value Tc from the measurement value Tm measured with the same measuring machine, the same distance, and the same wavelength as the above-mentioned approximate equation for the lens to be tested is as follows.
Tc = To / Ta · Tm = To / (ap 6 + bp 5 + cp 4 + dp 3 + ep 2 + fp + g) · Tm

以上の方法により測定値を補正する事により、受光部の感度ムラと、被検レンズの形状、材質、光路中の位置、測定波長による光束の収束又は発散に起因する測定誤差分を補正する事ができ、測定誤差を低減することができる。実際に、本実施例の補正を実施した場合、特に誤差の大きかったパワーの大きいレンズで、基準平面基板より透過率が5%以上も低く測定されていたものが、0.1%程度の差となり、大幅な絶対値精度向上が図れた。これにより、真空紫外域の分光透過率測定においても、凸凹様々な曲率を有するレンズを高精度に測定することができ、レンズ、及びレンズ表面に形成する反射防止膜の高精度な特性評価が可能になった。   By correcting the measured value by the above method, the sensitivity variation of the light receiving part and the measurement error due to the shape or material of the lens to be tested, the position in the optical path, and the convergence or divergence of the light flux depending on the measurement wavelength can be corrected. Measurement error can be reduced. Actually, when the correction of the present embodiment was performed, a lens with a large power, which had a particularly large error, was measured with a transmittance of 5% or more lower than that of the reference plane substrate. Thus, the absolute value accuracy was greatly improved. As a result, even in the measurement of spectral transmittance in the vacuum ultraviolet region, lenses having various curvatures can be measured with high accuracy, and the lens and the antireflection film formed on the lens surface can be evaluated with high accuracy. Became.

以下、図3、図4、図5を参照して本発明の実施例2について詳細を説明する。なお、図は発明を理解できる程度に各構成成分の形状、大きさおよび配置関係を概略的に示してあるに過ぎず、したがってこの発明を図示例に限定するものではない。   Hereinafter, the second embodiment of the present invention will be described in detail with reference to FIG. 3, FIG. 4, and FIG. It should be noted that the drawings only schematically show the shape, size, and arrangement relationship of each component to the extent that the invention can be understood, and therefore the present invention is not limited to the illustrated examples.

本実施例における分光測定装置(図4参照)の主な構成は、実施例1と同様であるため、相違点のみ説明する。図4の透過率測定装置は、補正式を求めるための誤差量測定レンズを測定機内に具備し、測定光路中の被検レンズセット位置に自動でセットできるように構成されている。ここでは、6個の誤差量測定レンズがホルダ25に取り付けられており、誤差量測定時は、制御装置の制御の下に各レンズが択一的に(1つずつ)、測定光路中にセットされる。   Since the main configuration of the spectrometer (see FIG. 4) in the present embodiment is the same as that of the first embodiment, only the differences will be described. The transmissivity measuring apparatus in FIG. 4 includes an error amount measuring lens for obtaining a correction formula in a measuring machine, and is configured to be automatically set at a test lens set position in a measurement optical path. Here, six error amount measurement lenses are attached to the holder 25, and when measuring the error amount, each lens is alternatively (one by one) set in the measurement optical path under the control of the control device. Is done.

本実施例においても、レンズ材料として合成石英ガラスの、波長193.4nmにおける補正値を求めることとする。誤差量測定レンズは、吸収が殆どないか又は既知で、光学特性が均一な同一材料から切り出した材料で、形状の異なる6種のレンズを用意し、光路中に順次介在させて透過率が測定できるよう可動式のホルダにセットされている。各レンズの透過率は、吸収が無視できるほど小さい場合は、材料の屈折率により求まる反射ロスR%を100から減算した値、吸収率が既知の場合は更に減算した値を基準透過率Toとする。或いは、各レンズを球面研磨加工前に平面研磨し、基準透過率Toを実測してもよい。各レンズのサイズは、直径がφ30、中心厚が10mm、片側の面は全て平面に研磨され、もう一方の面が曲率半径28、56、112の凹面、同じく112、56、28の凸の球面とした。レンズのパワーはそれぞれ順に−0.02、−0.01、−0.005、+0.005、+0.01、+0.02とした。レンズのパワーとは、焦点距離の逆数であり、次式で表される。
P=1/f=(n−1)(1/R1−1/R2)+t・(n−1)/(n・R1・R2)
ここで、Pはパワー、fは焦点距離、nはレンズ材の屈折率、R1は一方の面(第1面)の曲率半径、R2は他方の面(第2面)の曲率半径、tは中心厚である。
Also in the present embodiment, a correction value at a wavelength of 193.4 nm is obtained for synthetic quartz glass as a lens material. The error amount measurement lens is a material cut out from the same material that has little or no absorption and has uniform optical properties. Prepare six types of lenses with different shapes and measure the transmittance by sequentially interposing them in the optical path. It is set in a movable holder so that it can be done. When the transmittance of each lens is so small that the absorption is negligible, a value obtained by subtracting the reflection loss R% obtained from the refractive index of the material from 100, and a value obtained by further subtracting when the absorbance is known, are referred to as the reference transmittance To. To do. Alternatively, each lens may be subjected to surface polishing before spherical polishing, and the reference transmittance To may be actually measured. Each lens has a diameter of φ30, a center thickness of 10 mm, one surface is polished to a flat surface, and the other surface is a concave surface with a radius of curvature of 28, 56, 112, and a convex spherical surface with 112, 56, 28 as well. It was. The lens powers were set to -0.02, -0.01, -0.005, +0.005, +0.01, and +0.02, respectively. The lens power is the reciprocal of the focal length and is expressed by the following equation.
P = 1 / f = (n−1) (1 / R1-1 / R2) + t · (n−1) 2 / (n · R1 · R2)
Here, P is power, f is the focal length, n is the refractive index of the lens material, R1 is the radius of curvature of one surface (first surface), R2 is the radius of curvature of the other surface (second surface), and t is Center thickness.

図5は、図4に不図示の制御装置の動作を示すフローである。
次に、図5に示すフローの手順に従って、連続または各段階を個別に、制御装置より補正された測定値を導く方法について説明する。
まず、第1の工程「誤差量と変化するパラメータの関係を見出す工程」について説明する。変化するパラメータは、本実施例においてはパワーのみとするが、この他、積分球と被検レンズの距離(被検レンズの光路中の位置)、測定光の波長などであってもよい。或いは、被検レンズの形状や材質であってもよい。前述の通り、パワーの異なるレンズを可動式ホルダを駆動させることで、順次光路に介在させて透過率を測定する。その際、受光部とレンズ間の距離は全て33mmとなるようにした。
FIG. 5 is a flowchart showing the operation of the control device (not shown in FIG. 4).
Next, a method for deriving a measurement value corrected by the control device in succession or individually in accordance with the flow procedure shown in FIG. 5 will be described.
First, the first step “step of finding the relationship between error amount and changing parameter” will be described. The changing parameter is only the power in this embodiment, but may be the distance between the integrating sphere and the test lens (position in the optical path of the test lens), the wavelength of the measurement light, or the like. Alternatively, the shape and material of the lens to be examined may be used. As described above, the transmittance is measured by driving the movable holder with the lenses having different powers and sequentially interposing them in the optical path. At that time, the distance between the light receiving portion and the lens was all set to 33 mm.

次に、第2の工程「補正式を導く工程」について説明する。第1工程で得た透過率の結果を図3のグラフに示す。横軸をレンズのパワー、縦軸を透過率にとると、グラフに示すように、レンズのパワーにより、測定値が異なる事が分かる。この結果から、計算実行プログラム等により、測定値6点について最小二乗法等により多項式近似し、関数を求める。本実施例でも、6次近似し次のような形の式が求められる。
Ta=aP+bP+cP+dP+eP+fP+g
ここで、Taは近似値、Pはパワー、a〜fは係数、gは定数(切片)である。
また、補正値Tcを求める補正式は次のようになる。
Tc=To/Ta・Tm=To/(ap+bp+cp+dp+ep+fp+g)・Tm
Next, the second step “step for deriving a correction formula” will be described. The graph of FIG. 3 shows the transmittance results obtained in the first step. When the horizontal axis represents the lens power and the vertical axis represents the transmittance, it can be seen that the measured values differ depending on the lens power, as shown in the graph. From this result, a function is obtained by polynomial approximation of the six measured values by the least square method or the like by a calculation execution program or the like. Also in this embodiment, a sixth-order approximation and the following form are obtained.
Ta = aP 6 + bP 5 + cP 4 + dP 3 + eP 2 + fP + g
Here, Ta is an approximate value, P is power, a to f are coefficients, and g is a constant (intercept).
The correction formula for obtaining the correction value Tc is as follows.
Tc = To / Ta · Tm = To / (ap 6 + bp 5 + cp 4 + dp 3 + ep 2 + fp + g) · Tm

次に、第3の工程「試料を測定する工程」について説明する。第1工程の誤差量測定レンズを、可動式ホルダを駆動させることで光路から退避させ、今度はパワーpが既知の被検レンズを受光部と33mmの位置にセットする。被検レンズは誤差量測定レンズとは別の可動ホルダ(不図示)にセットされており、PC等の制御装置からの命令により移動することができるように構成されている。透過率を測定し、その測定値Tmを制御PCに記憶する。   Next, the third step “step of measuring a sample” will be described. The error amount measuring lens in the first step is retracted from the optical path by driving the movable holder, and this time, a test lens with a known power p is set at a position 33 mm from the light receiving portion. The test lens is set in a movable holder (not shown) different from the error amount measurement lens, and is configured to be moved by a command from a control device such as a PC. The transmittance is measured, and the measured value Tm is stored in the control PC.

最後に、第4の工程「補正する工程」について説明する。この工程では、第2の工程で求めた補正式に、第3の工程で求めた測定値Tmを代入し、補正値Tcを求め、それらの結果をPC等の制御装置内に記憶し、必要に応じて表示器等に表示させることができる。   Finally, the fourth process “correcting process” will be described. In this step, the measurement value Tm obtained in the third step is substituted into the correction equation obtained in the second step to obtain a correction value Tc, and the result is stored in a control device such as a PC. Can be displayed on a display or the like.

なお、本実施例では、パワーの異なる6種のレンズを用いたが、2個以上の凸凹レンズの組合せでそのレンズ間距離を変化させる事でもパワーを可変させることができ、これによりパワーと誤差量の関係を取得するようにしても良い。   In this embodiment, six types of lenses having different powers are used. However, the power can be varied by changing the distance between the lenses by combining two or more convex and concave lenses. You may make it acquire the relationship of quantity.

以上の方法により測定値を補正する事により、受光部の感度ムラと、被検レンズの形状、材質、光路中の位置、測定波長による光束の収束又は発散に起因する測定誤差分を補正する事ができ、測定誤差を低減することができる。実際に、本実施例の補正を実施した場合、特に誤差の大きかったパワーの大きいレンズで、基準平面基板より透過率が5%以上も低く測定されていたものが、0.1%程度の差となり、大幅な絶対値精度向上が図れた。これにより、真空紫外域の分光透過率測定においても、凸凹様々な曲率を有するレンズを高精度に測定することができ、レンズ、及びレンズ表面に形成する反射防止膜の高精度な特性評価が可能となった。   By correcting the measured value by the above method, the sensitivity variation of the light receiving part and the measurement error due to the shape or material of the lens to be tested, the position in the optical path, and the convergence or divergence of the light flux depending on the measurement wavelength can be corrected. Measurement error can be reduced. Actually, when the correction of the present embodiment was performed, a lens with a large power, which had a particularly large error, was measured with a transmittance of 5% or more lower than that of the reference plane substrate. Thus, the absolute value accuracy was greatly improved. As a result, even in the measurement of spectral transmittance in the vacuum ultraviolet region, lenses having various curvatures can be measured with high accuracy, and the lens and the antireflection film formed on the lens surface can be evaluated with high accuracy. It became.

本発明の実施例1に係る補正値を求めるためのグラフである。It is a graph for calculating | requiring the correction value which concerns on Example 1 of this invention. 本発明の実施例1の一側面をしての測定装置の構成を示す概略断面図である。It is a schematic sectional drawing which shows the structure of the measuring device as one side of Example 1 of this invention. 本発明の実施例2に係る補正値を求めるためのグラフである。It is a graph for calculating | requiring the correction value which concerns on Example 2 of this invention. 本発明の実施例2の一側面をしての測定装置の構成を示す概略断面図である。It is a schematic sectional drawing which shows the structure of the measuring apparatus as one side of Example 2 of this invention. 図4の装置において実行される工程を説明するためのフローである。It is a flow for demonstrating the process performed in the apparatus of FIG. 従来の測定装置の構成を示す概略断面図である。It is a schematic sectional drawing which shows the structure of the conventional measuring apparatus. 発明が解決しようとする課題を説明するための概略断面図Schematic sectional view for explaining a problem to be solved by the invention

符号の説明Explanation of symbols

11 光源
12、13、15、17、19、21 ミラー
14 回折格子
16 スリット
18 セクタミラー
23 光電子増倍管
24 積分球
25 ホルダ
26 被検レンズ
DESCRIPTION OF SYMBOLS 11 Light source 12, 13, 15, 17, 19, 21 Mirror 14 Diffraction grating 16 Slit 18 Sector mirror 23 Photomultiplier tube 24 Integrating sphere 25 Holder 26 Test lens

Claims (7)

測定光が光検出手段に到達する光路中に、被検レンズを介在させて測定光を通過させた場合と、被検レンズを介在させない場合の光検出強度を計測し、その対比により被検レンズの透過率を測定する透過率測定方法であって、
光路中に介在させた被検レンズによる光束の収束又は発散に起因する前記透過率の測定誤差分を測定する測定誤差分測定工程と、
前記被検レンズの透過率測定値を前記測定誤差分に応じて補正する補正工程と
を有することを特徴とする透過率測定方法。
In the optical path where the measurement light reaches the light detection means, the light detection intensity is measured when the measurement light is passed with the test lens interposed and when the test light is not interposed. A transmittance measuring method for measuring the transmittance of
A measurement error measuring step for measuring a measurement error of the transmittance due to convergence or divergence of a light beam by a lens to be measured interposed in the optical path;
And a correction step of correcting the measured transmittance value of the lens to be measured in accordance with the measurement error.
前記測定誤差分測定工程は、光学特性が均一な同一材料から切り出した材料で作成された、形状の異なる複数種の誤差量測定レンズを使用して、それぞれの透過率を測定し、それらの測定値から被検レンズのパワーと透過率測定値誤差の関係を近似し、前記透過率測定値の補正を行うことを特徴とする請求項1に記載の測定方法。   In the measurement error measurement step, a plurality of types of error amount measurement lenses having different shapes and made from a material cut out from the same material having uniform optical characteristics are used to measure the respective transmittances, and to measure these transmittances. The measurement method according to claim 1, wherein a correction of the transmittance measurement value is performed by approximating a relationship between the power of the test lens and the transmittance measurement value error from the value. 前記誤差量測定レンズを使用して、被検レンズの前記光路中の位置又は測定波長と透過率測定値誤差の関係をさらに近似し、前記透過率測定値の補正を行うことを特徴とする請求項2に記載の測定方法。   The error measurement lens is used to further approximate a relationship between a position or a measurement wavelength in the optical path of the lens to be examined and a transmittance measurement value error, and correct the transmittance measurement value. Item 3. The measuring method according to Item 2. 前記被検レンズのレンズパワーと前記測定誤差分との関係を見出す工程、見出された関係から補正式を導く工程、被検レンズの透過率を測定する工程、及び測定された透過率を被検レンズのパワーにより補正する工程を、個別又は連続に経て補正した測定値を出力することを特徴とする、請求項1乃至3のいずれかに記載の測定方法。   The step of finding the relationship between the lens power of the test lens and the measurement error, the step of deriving a correction formula from the found relationship, the step of measuring the transmittance of the test lens, and the measured transmittance 4. The measurement method according to claim 1, wherein the measurement value corrected through the step of correcting by the power of the lens is individually or continuously corrected. 測定光が光検出手段に到達する光路中に、被検レンズを介在させて測定光を通過させた場合と、被検レンズを介在させない場合の光検出強度を計測し、その対比により被検レンズの透過率を測定する透過率測定装置であって、
光路中に介在させた被検レンズによる光束の収束又は発散に起因する前記透過率の測定誤差分を測定する測定誤差分測定手段と、
前記被検レンズの透過率測定値を前記測定誤差分に応じて補正する補正手段と
を有することを特徴とする透過率測定装置。
In the optical path where the measurement light reaches the light detection means, the light detection intensity is measured when the measurement light is passed with the test lens interposed and when the test light is not interposed. A transmittance measuring device for measuring the transmittance of
A measurement error measuring means for measuring the measurement error of the transmittance due to the convergence or divergence of the light beam by the lens to be measured interposed in the optical path;
A transmittance measuring apparatus comprising: correction means for correcting the measured transmittance value of the lens to be measured according to the measurement error.
前記測定誤差分測定手段は、光学特性が均一な同一材料から切り出した材料で作成された、形状の異なる複数種の誤差量測定レンズと、これらのレンズを択一的に前記光路中に介在させて該レンズの透過率を測定させ、それらの測定値から被検レンズのパワーと透過率測定値誤差の関係を近似する手段を備え、
前記補正手段は、前記被検レンズのパワーと透過率測定値誤差の関係に基づいて前記透過率測定値の補正を行うことを特徴とする請求項5に記載の測定装置。
The measurement error measuring means includes a plurality of types of error amount measuring lenses having different shapes made of a material cut out from the same material having uniform optical characteristics, and these lenses are alternatively interposed in the optical path. Means for measuring the transmittance of the lens and approximating the relationship between the measured lens power and the transmittance measurement value error from the measured values,
The measurement apparatus according to claim 5, wherein the correction unit corrects the transmittance measurement value based on a relationship between a power of the lens to be measured and a transmittance measurement value error.
前記測定誤差分測定手段は、前記誤差量測定レンズを使用して、被検レンズの前記光路中の位置又は測定波長と透過率測定値誤差の関係をさらに近似することを特徴とする請求項6に記載の測定装置。   7. The measurement error measurement means further uses the error amount measurement lens to further approximate a relationship between a position or a measurement wavelength of the lens to be measured in the optical path and a transmittance measurement value error. The measuring device described in 1.
JP2007193384A 2007-07-25 2007-07-25 Transmittance measuring method and device Pending JP2009031043A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007193384A JP2009031043A (en) 2007-07-25 2007-07-25 Transmittance measuring method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007193384A JP2009031043A (en) 2007-07-25 2007-07-25 Transmittance measuring method and device

Publications (1)

Publication Number Publication Date
JP2009031043A true JP2009031043A (en) 2009-02-12

Family

ID=40401717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007193384A Pending JP2009031043A (en) 2007-07-25 2007-07-25 Transmittance measuring method and device

Country Status (1)

Country Link
JP (1) JP2009031043A (en)

Similar Documents

Publication Publication Date Title
US9176048B2 (en) Normal incidence broadband spectroscopic polarimeter and optical measurement system
US10274370B2 (en) Inspection apparatus and method
US9170156B2 (en) Normal-incidence broadband spectroscopic polarimeter containing reference beam and optical measurement system
JP3995579B2 (en) Film thickness measuring device and reflectance measuring device
KR100940129B1 (en) Vacuum ultraviolet referencing reflectometer
EP3264033B1 (en) System and method to measure the thickness of ophthalmic lenses
JP4823289B2 (en) Reflective scatterometer
JP2002098591A (en) Spectral oval polarimeter provided with refractive lighting optical system
US7450225B1 (en) Correction of optical metrology for focus offset
KR101388424B1 (en) Apparatus for measuring a thickness using digital light processing and method using the same
US20130016343A1 (en) Referenced and stabilized optical measurement system
US6856395B2 (en) Reflectometer arrangement and method for determining the reflectance of selected measurement locations of measurement objects reflecting in a spectrally dependent manner
JP2009031043A (en) Transmittance measuring method and device
JP2009270847A (en) Reflectance measuring device and reflectance measuring method
Weidner Spectral reflectance
CN112747902A (en) Optical measurement method and processing apparatus
Li et al. Research on the irradiance calibration of a VUV dual-grating spectrometer based on synchrotron radiation
US12002698B2 (en) Metrology apparatus and method based on diffraction using oblique illumination and method of manufacturing semiconductor device using the metrology method
US11079326B1 (en) Method for testing curved reflective surfaces
TWI736222B (en) Measuring method of light transmittance
US20220005715A1 (en) Metrology apparatus and method based on diffraction using oblique illumination and method of manufacturing semiconductor device using the metrology method
JP2001281093A (en) Method and apparatus for measuring scattering
KR100897109B1 (en) Vacuum ultraviolet referencing reflectometer
Laubis et al. Metrology in the soft x-ray range: from EUV to the water window
JPH0791926A (en) Method and device for measuring characteristic value

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20090406

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100201

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20100630