JPH0791926A - Method and device for measuring characteristic value - Google Patents

Method and device for measuring characteristic value

Info

Publication number
JPH0791926A
JPH0791926A JP20071993A JP20071993A JPH0791926A JP H0791926 A JPH0791926 A JP H0791926A JP 20071993 A JP20071993 A JP 20071993A JP 20071993 A JP20071993 A JP 20071993A JP H0791926 A JPH0791926 A JP H0791926A
Authority
JP
Japan
Prior art keywords
thin film
sample
incident angle
characteristic
absorption coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20071993A
Other languages
Japanese (ja)
Other versions
JP3219223B2 (en
Inventor
Toshiharu Nagatsuka
俊治 永塚
Hisafumi Iwata
尚史 岩田
Yoshihiko Aiba
良彦 相場
Hitoshi Kubota
仁志 窪田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP20071993A priority Critical patent/JP3219223B2/en
Publication of JPH0791926A publication Critical patent/JPH0791926A/en
Application granted granted Critical
Publication of JP3219223B2 publication Critical patent/JP3219223B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To make it possible to measure the film thickness, refractive index and adsorption coefficient of an objective thin film to be measured, by the measurement of a reflected light intensity change of the thin film when the incident angle of a lighting beam is changed. CONSTITUTION:A lighting beam 15 from a light source 1 is converged on an objective thin film 12 to be measured by a lens 5 on a lighting side, the reflected beam 16 is converged by a lens 6 of a detecting side on a detector 7 set on a focal plane, and the detected signal is stored in a memory 8 as the incident- angle-dependent characteristics I(theta) of a reflected light intensity of the thin film 12. About a reference sample 13 also, the same measurement is carried out, detected signal thereof is stored in the memory 9 as the incident-angle- dependent characteristics Iref(theta) of a reflected light intensity of the reference sample 13. These I(theta) and Iref(theta) are divided by each other by an operation part 10, the incident-angle-dependent characteristics R(theta) of the reflectance of the thin film 12 is obtained, from these and the incident-angle-dependent characteristics Rref(theta) of the reflectance of the reference sample 13 theoretically found. The R(theta) is operated by an operation part 11, and the film thickness, refractive index and absorption coefficient of the thin film 12 are obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、薄膜や鏡面の特性値、
即ち、薄膜の膜厚や屈折率,吸収係数などを測定する方
法及び装置に係り、特に、LSI製造工程中のレジスト
膜の状態計測などに用いて好適な特性値測定方法及び装
置に関する。
BACKGROUND OF THE INVENTION The present invention relates to the characteristic values of thin films and mirror surfaces,
That is, the present invention relates to a method and apparatus for measuring the film thickness, refractive index, absorption coefficient, etc. of a thin film, and particularly to a characteristic value measuring method and apparatus suitable for use in measuring the state of a resist film during an LSI manufacturing process.

【0002】[0002]

【従来の技術】薄膜の特性値を測定する方法には、ま
ず、田幸敏治他編「光学的測定ハンドブック」朝倉書店
(1981)発行 pp.256−265などに開示さ
れる偏光解析法がある。これは、一般に、測定対象とな
る薄膜に斜方から光を照射し、主に反射光のP偏光とS
偏光の位相変化の差に注目する方法である。
2. Description of the Related Art A method for measuring the characteristic value of a thin film is first described by Toshiharu Tayuki et al., "Optical Measurement Handbook," Asakura Shoten (1981), pp. 256-265 and the like are ellipsometry methods. In general, the thin film to be measured is obliquely irradiated with light, and mainly P-polarized light and S
This is a method that focuses on the difference in the phase change of the polarized light.

【0003】また、反射率を用いて薄膜の膜厚や屈折
率,吸収係数を測定する反射率解析法もあり、特開昭6
4−75902号公報や特開昭63−128210号公
報,特開平3−17505号公報などに開示されてい
る。特開昭64ー75902号公報や特開昭63ー12
8210号公報に開示されている反射率解析法は、測定
光の入射角変化に伴う反射光強度変化、即ち、反射光強
度の入射角依存特性を測定し、その3つの極値の入射角
を用いて薄膜の特性値を求める方法である。特開平3ー
17505号公報に開示されている反射率解析法は、検
出レンズの後側で光強度を検出することで求めた反射光
強度の入射角依存特性より、薄膜の特性値を求める方法
である。
There is also a reflectance analysis method for measuring the film thickness, the refractive index, and the absorption coefficient of a thin film by using the reflectance.
No. 4-75902, Japanese Patent Laid-Open No. 63-128210, Japanese Patent Laid-Open No. 3-17505. JP-A-64-75902 and JP-A-63-12
The reflectance analysis method disclosed in Japanese Patent Publication No. 8210 measures the change in reflected light intensity associated with the change in incident angle of measurement light, that is, the incident angle dependent characteristic of the reflected light intensity, and determines the incident angles of the three extreme values. It is a method of obtaining the characteristic value of a thin film by using the method. The reflectance analysis method disclosed in Japanese Patent Application Laid-Open No. 3-17505 is a method for obtaining a characteristic value of a thin film from an incident angle dependence characteristic of reflected light intensity obtained by detecting light intensity on the rear side of a detection lens. Is.

【0004】[0004]

【発明が解決しようとする課題】上記の偏光解析法によ
り薄膜の特性値を高精度に測定するためには、偏光子や
検光子を精度良く回転させる必要があるため、装置が大
掛かりとなり、かつ高価になるという問題があった。
In order to measure the characteristic value of the thin film with high accuracy by the above-mentioned polarization analysis method, it is necessary to rotate the polarizer and the analyzer with high accuracy, and the apparatus becomes large in scale, and There was a problem of becoming expensive.

【0005】また、特開昭64ー75902号公報や特
開昭63ー128210号公報,特開平3−17505
号公報に開示されている反射率解析法により薄膜の特性
値を高精度に測定するためには、まず、反射光強度の入
射角依存特性を高精度に測定する必要がある。
Further, JP-A-64-75902, JP-A-63-128210 and JP-A-3-17505.
In order to measure the characteristic value of the thin film with high accuracy by the reflectance analysis method disclosed in Japanese Patent Publication, it is necessary to measure the incident angle dependence property of the reflected light intensity with high accuracy.

【0006】しかし、特開昭64ー75902号公報や
特開昭63ー128210号公報に開示されている反射
率解析法のような測定光の入射角を機械的に走査する方
法では、可動部を有するために、高速かつ高精度な測定
が非常に困難であるし、反射光強度の入射角依存特性の
中の極値を示す3点の情報のみしか用いないため、反射
光強度の入射角依存特性の測定誤差の影響を大きく受け
るという問題がある。
However, in the method of mechanically scanning the incident angle of the measuring light, such as the reflectance analysis method disclosed in JP-A-64-75902 and JP-A-63-128210, the movable part is Therefore, high-speed and high-accuracy measurement is very difficult, and since only three points of information showing the extreme values in the incident angle dependence characteristics of reflected light intensity are used, the incident angle of reflected light intensity There is a problem that it is greatly affected by the measurement error of the dependence characteristic.

【0007】これに対し、特開平3ー17505号公報
に開示されている反射率解析法は、反射光強度の入射角
依存特性測定の光学系に可動部が含まれず、また、特開
昭64ー75902号公報や特開昭63ー128210
号公報に開示されている反射率解析法よりも、一般に、
反射光強度の入射角依存特性の多くの測定点を用いるた
め、高速かつ高精度な測定に向いている。
On the other hand, in the reflectance analysis method disclosed in Japanese Unexamined Patent Publication No. 3-17505, the moving part is not included in the optical system for measuring the incident angle dependence characteristic of the reflected light intensity, and the Japanese Laid-Open Patent Publication No. -75902 and JP-A-63-128210
In general, rather than the reflectance analysis method disclosed in the publication,
Since many measurement points of the incident angle dependence characteristic of the reflected light intensity are used, it is suitable for high-speed and high-precision measurement.

【0008】しかし、特開平3ー17505号公報に記
載されるように光源としてレーザを用いる場合には、次
のような問題が生じる。即ち、レジスト膜を測定する場
合には、露光波長での測定値が重要な意味を持つのであ
るが、露光波長、即ち、i線やg線などの水銀の輝線ス
ペクトルと同一波長を持つレーザが存在せず、また、そ
れに近い波長のガスレーザを用いるにしても、装置が大
掛かりとなるという問題がある。さらに、測定可能な波
長がレーザ光源の存在する波長に限られるという問題点
もある。
However, when a laser is used as a light source as described in Japanese Patent Laid-Open No. 3-17505, the following problems occur. That is, when measuring a resist film, the measured value at the exposure wavelength is important, but a laser having the same wavelength as the exposure wavelength, that is, the emission line spectrum of mercury such as i-line or g-line is used. Even if a gas laser that does not exist and has a wavelength close to that does not exist, there is a problem that the device becomes large in size. Further, there is a problem that the measurable wavelength is limited to the wavelength where the laser light source exists.

【0009】そこで、レジスト膜を測定する際には、水
銀ランプなどの光源から干渉フィルタなどによってi線
やg線などの波長の光を抽出して用いる必要があるが、
これには以下の問題を生ずる。また、測定対象をレジス
ト膜に限定しない場合でも、任意波長での測定値が必要
である場合には、キセノンランプなどの白色光源から必
要な波長の光を取り出して用いなければならないため、
やはり以下の問題を生ずる。
Therefore, when measuring the resist film, it is necessary to extract light of wavelengths such as i-line and g-line from a light source such as a mercury lamp with an interference filter or the like.
This causes the following problems. Further, even when the measurement target is not limited to the resist film, if the measurement value at an arbitrary wavelength is required, it is necessary to extract and use the light of the required wavelength from a white light source such as a xenon lamp.
After all, the following problems occur.

【0010】特開平3ー17505号公報などに開示さ
れる反射率解析法にみられる収束光照明を用いた光学系
で反射率の入射角依存特性を測定する方法では、まず、
強度分布一定の平面波を作って反射光強度の入射角依存
特性を測定し、これに一定係数を乗ずることによって反
射光強度を反射率に変換する必要がある。この場合、光
源として水銀ランプなどを用いると、照度むらがあり、
その影響を避けるために、照明光集光位置にピンホール
を置かなくてはならない。しかし、ピンホールを用いる
と、光量を制限されてしまい、充分なS/N比で反射光
強度の入射角依存特性を測定するということができな
い。このため、ピンホールを用いないようにすることが
考えられるが、この場合、光源の照度むらの分布形状を
予め知られていないと、精度良く反射光強度の入射角依
存特性を測定することができず、従って、薄膜の特性値
を正確に求めることができない。
In the method of measuring the incident angle dependence characteristic of the reflectance with an optical system using convergent light illumination, which is found in the reflectance analysis method disclosed in Japanese Patent Laid-Open No. 3-17505, etc., first,
It is necessary to convert the reflected light intensity into a reflectance by forming a plane wave with a constant intensity distribution, measuring the incident angle dependence characteristic of the reflected light intensity, and multiplying this by a constant coefficient. In this case, if a mercury lamp or the like is used as the light source, there is uneven illuminance,
To avoid this effect, a pinhole must be placed at the position where the illumination light is collected. However, if a pinhole is used, the amount of light is limited, and it is not possible to measure the incident angle dependence characteristic of the reflected light intensity with a sufficient S / N ratio. Therefore, it is possible to avoid using pinholes. In this case, if the distribution shape of the illuminance unevenness of the light source is not known in advance, it is possible to accurately measure the incident angle dependence characteristic of the reflected light intensity. Therefore, the characteristic value of the thin film cannot be accurately obtained.

【0011】即ち、レジスト膜の測定に際し、露光波長
として照明光の波長を利用する場合などでは、レーザ以
外の光源を用いた場合、反射光強度の入射角依存特性か
ら反射率の入射角依存特性への変換が大きな課題とな
る。
That is, when the wavelength of the illumination light is used as the exposure wavelength when measuring the resist film, when a light source other than a laser is used, the incident angle dependence characteristic of the reflectance is changed from the incident angle dependence characteristic of the reflected light intensity. Conversion to is a big issue.

【0012】本発明の目的は、かかる問題を解消し、可
動部を有さない光学系とレーザ以外の照明光を用いて薄
膜の特性値を決定する場合に、光源の照度むらを取り除
き、測定に必要な反射率の入射角依存特性を精度良く求
めることができるようにした方法及び装置を提供するこ
とにある。
An object of the present invention is to eliminate such a problem and remove the illuminance unevenness of the light source to determine the characteristic value of the thin film when the characteristic value of the thin film is determined by using the illumination system other than the optical system having no movable part and the illumination light. It is an object of the present invention to provide a method and an apparatus capable of accurately obtaining the incident angle dependence characteristic of reflectance necessary for the above.

【0013】[0013]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、屈折率及び吸収係数が既知である参照試
料の反射光強度の入射角依存特性Iref(θ)の測定、及
び前記参照試料の反射率の入射角依存特性Rref(θ)の
計算を予め行なっておく。測定対象である薄膜の反射光
強度の入射角依存特性I(θ)を測定し、これを、前記I
ref(θ)で割った後で前記Rref(θ)を乗ずる。
In order to achieve the above object, the present invention provides a measurement of an incident angle dependent characteristic Iref (θ) of reflected light intensity of a reference sample whose refractive index and absorption coefficient are known, and The incident angle dependence characteristic Rref (θ) of the reflectance of the reference sample is calculated in advance. The incident angle dependent characteristic I (θ) of the reflected light intensity of the thin film to be measured is measured and
After dividing by ref (θ), the Rref (θ) is multiplied.

【0014】薄膜の膜厚値、屈折率値、吸収係数値を種
々に変化させて反射率の入射角依存特性理論値を計算
し、以上の手順で求めた反射率の入射角依存特性測定値
と重なる理論値を探索することにより、測定対象薄膜の
膜厚、屈折率、吸収係数を決定する。
The incident angle-dependent characteristic theoretical value of the reflectance obtained by the above procedure is calculated by variously changing the film thickness value, the refractive index value, and the absorption coefficient value of the thin film, and the calculated value. By searching for a theoretical value that overlaps with, the film thickness, refractive index, and absorption coefficient of the thin film to be measured are determined.

【0015】[0015]

【作用】測定対象の薄膜の反射光強度の入射角依存特性
I(θ)は、その反射率の入射角依存特性R(θ)と照明光
の照度むらS(θ)との積で表わされる。同様に、参照試
料の反射光強度の入射角依存特性Iref(θ)も、その反
射率の入射角依存特性Rref(θ)と照明光の照度むらS
(θ)との積で表わされる。そこで、測定対象の薄膜の反
射光強度の入射角依存特性I(θ)を参照試料の反射光強
度の入射角依存特性Iref(θ)で除算すると、これらに
共通するS(θ)の項が消去され、測定対象の薄膜の反射
率の入射角依存特性R(θ)と参照試料の反射率の入射角
依存特性Rref(θ)との比が求まる。参照試料の反射率
の入射角依存特性Rref(θ)は、参照試料の屈折率及び
吸収係数が既知であるため、理論計算で求めることがで
き、これを上記の比に乗算することにより、測定対象の
薄膜の反射率の入射角依存特性R(θ)を求めることがで
きる。
The incident angle dependence characteristic I (θ) of the reflected light intensity of the thin film to be measured is represented by the product of the incident angle dependence characteristic R (θ) of its reflectance and the illuminance unevenness S (θ) of the illumination light. . Similarly, the incident angle dependence characteristic Iref (θ) of the reflected light intensity of the reference sample also has the incident angle dependence characteristic Rref (θ) of its reflectance and the illuminance unevenness S of the illumination light.
It is expressed as the product of (θ). Therefore, when the incident angle dependence characteristic I (θ) of the reflected light intensity of the thin film to be measured is divided by the incident angle dependence characteristic Iref (θ) of the reflected light intensity of the reference sample, the term of S (θ) common to these is obtained. The ratio of the incident angle dependence characteristic R (θ) of the reflectance of the thin film to be measured and the reflectance of the reference sample Rref (θ) is obtained. The incident angle dependence characteristic Rref (θ) of the reflectance of the reference sample can be obtained by theoretical calculation because the refractive index and the absorption coefficient of the reference sample are known, and can be measured by multiplying the ratio by the above. The incident angle dependence characteristic R (θ) of the reflectance of the target thin film can be obtained.

【0016】即ち、本発明によれば、水銀ランプなど照
度むらを有する光源を用いても、その照度むらを測定す
ることなく、測定対象の薄膜の各入射角に対応した絶対
反射率を容易に算出することができる。
That is, according to the present invention, even if a light source having uneven illuminance such as a mercury lamp is used, the absolute reflectance corresponding to each incident angle of the thin film to be measured can be easily measured without measuring the uneven illuminance. It can be calculated.

【0017】薄膜の膜厚値や屈折率値,吸収係数値を種
々に変化させて反射率の入射角依存特性理論値を計算
し、上記手順により求まった反射率の入射角依存特性測
定値と重なる理論値を探索することにより、その理論値
の計算に用いた膜厚値,屈折率値,吸収係数値を測定対
象薄膜の特性値とすることができる。
The incident angle-dependent characteristic theoretical value of the reflectance is calculated by variously changing the film thickness value, the refractive index value, and the absorption coefficient value of the thin film, and the measured value of the incident angle-dependent characteristic of the reflectance obtained by the above procedure is used. By searching for overlapping theoretical values, the film thickness value, refractive index value, and absorption coefficient value used in the calculation of the theoretical values can be used as the characteristic values of the thin film to be measured.

【0018】[0018]

【実施例】以下、本発明の実施例を図面を用いて説明す
る。図1は本発明による特性値測定方法及び装置の一実
施例を示す図であって、1は光源、2はコリメート用レ
ンズ、3は偏光板、4は波長限定用光学素子、5は照明
側レンズ、6は検出側レンズ、7は検出器、8,9は記
憶装置、10,11は演算部、12は測定対象薄膜、1
2aはベアシリコンウエハ、13は参照試料、14は照
度分布、15は照明光線、16は平行反射光束、17は
検出側レンズ6の後焦点面、18は反射強度検出軸(X
軸)である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing an embodiment of a characteristic value measuring method and apparatus according to the present invention, in which 1 is a light source, 2 is a collimating lens, 3 is a polarizing plate, 4 is a wavelength limiting optical element, and 5 is an illumination side. A lens, 6 is a detection side lens, 7 is a detector, 8 and 9 are storage devices, 10 and 11 are arithmetic units, 12 is a thin film to be measured, 1
2a is a bare silicon wafer, 13 is a reference sample, 14 is an illuminance distribution, 15 is an illumination light beam, 16 is a parallel reflected light beam, 17 is the back focal plane of the detection side lens 6, and 18 is the reflection intensity detection axis (X
Axis).

【0019】この実施例は、薄膜の反射強度の入射角依
存特性を測定することにより、薄膜の特性値を測定する
ものである。ここでは、可動部を用いずに薄膜の膜厚や
屈折率,吸収係数の測定を行なうので、高速かつ高精度
な測定が可能となる。以下、この実施例について説明す
る。
In this embodiment, the characteristic value of the thin film is measured by measuring the incident angle dependence characteristic of the reflection intensity of the thin film. Here, since the film thickness, the refractive index, and the absorption coefficient of the thin film are measured without using the movable part, it is possible to perform high speed and highly accurate measurement. Hereinafter, this embodiment will be described.

【0020】図1において、光源1からの照明光線15
はコリメート用レンズ2で平行光線とされ、偏光板3及
び波長限定用光学素子4を通り、集光用の照明側レンズ
5によって所定位置に設置されたベアシリコンウエハ1
2a上の測定対象薄膜12または参照試料13に集光さ
れる。この照明光線15の測定対象薄膜12または参照
試料13への入射角をθとする。測定対象薄膜12また
は参照試料13からの反射光線16は、検出側レンズ6
により、この検出側レンズ6の後焦点面17上に収束さ
れる。この後焦点面17上に反射光強度の検出器7が設
けられている。照明光線15が照射されるのが測定対象
薄膜12であるときの検出器7の検出結果は記憶装置8
に記憶され、照明光線15が照射されるのが参照試料1
3であるときの検出器7の検出結果は記憶装置9に記憶
される。記憶装置8,9のデータが演算部10で演算さ
れて測定対象薄膜12の反射率が求められ、この反射率
が演算部11で演算されて測定対象薄膜12の膜厚や屈
折率,吸収係数などの特性値が求められる。
In FIG. 1, an illumination light beam 15 from the light source 1
Is collimated by the collimating lens 2, passes through the polarizing plate 3 and the wavelength limiting optical element 4, and is placed at a predetermined position by the illumination side lens 5 for condensing.
It is focused on the thin film 12 to be measured or the reference sample 13 on 2a. The incident angle of the illumination light beam 15 on the measurement target thin film 12 or the reference sample 13 is θ. The reflected light beam 16 from the thin film 12 to be measured or the reference sample 13 is detected by the detection lens 6
Thus, it is converged on the rear focal plane 17 of the detection side lens 6. After this, a detector 7 for the intensity of reflected light is provided on the focal plane 17. The detection result of the detector 7 when the thin film 12 to be measured is irradiated with the illumination light beam 15 is stored in the storage device 8.
Is stored in the reference sample 1 and is irradiated with the illumination light beam 15.
The detection result of the detector 7 when the value is 3 is stored in the storage device 9. The data of the storage devices 8 and 9 are calculated by the calculation unit 10 to obtain the reflectance of the measurement target thin film 12, and the reflectance is calculated by the calculation unit 11 to calculate the film thickness, the refractive index, and the absorption coefficient of the measurement target thin film 12. Characteristic values such as

【0021】このように収束光線を用いることにより、
広い範囲の入射角に対応する反射光強度を同時に測定
し、測定対象薄膜12の反射率の入射角依存特性を高速
に測定することができる。
By using the convergent rays in this way,
The reflected light intensity corresponding to a wide range of incident angles can be measured at the same time, and the incident angle dependence characteristic of the reflectance of the measurement target thin film 12 can be measured at high speed.

【0022】まず、測定対象薄膜12が設置された場
合、入射角θの照明光線15は、測定対象薄膜12に入
射すると、この薄膜12内で多重反射して反射角θの平
行光束16が反射される。ここでは、図面を簡略化する
ために、平行反射光束16は2本しか図示していない。
この平行反射光束16は、検出側レンズ6により、検出
側レンズ6の後焦点面17上に集光する。
First, when the thin film 12 to be measured is installed, when the illumination light beam 15 having an incident angle θ is incident on the thin film 12 to be measured, it is multiply reflected within the thin film 12 and a parallel light beam 16 having a reflection angle θ is reflected. To be done. Here, in order to simplify the drawing, only two parallel reflected light beams 16 are shown.
The parallel reflected light flux 16 is condensed on the rear focal plane 17 of the detection side lens 6 by the detection side lens 6.

【0023】ここで、図2に示すように、検出側レンズ
6の後焦点面17上の中心から集光位置までの反射強度
検出軸(X軸)に沿う距離をxとし、検出側レンズ6の
光軸に対して平行反射光束16のなす角度をaとする
と、検出側レンズ6が良く収差補正されているときには
正弦条件が成立しているため、距離xと角度aの間に次
の数1に示す関係が成立する。
Here, as shown in FIG. 2, the distance along the reflection intensity detection axis (X axis) from the center on the rear focal plane 17 of the detection side lens 6 to the condensing position is x, and the detection side lens 6 If the angle formed by the parallel reflected light beam 16 with respect to the optical axis is defined as a, the sine condition is satisfied when the detection-side lens 6 is well corrected for aberration. The relationship shown in 1 is established.

【0024】[0024]

【数1】 [Equation 1]

【0025】f:検出側レンズ6の焦点距離 即ち、検出側レンズ6の後焦点面17上にとったX軸1
8上の反射光強度を測定し、上記数1を用いることによ
り、測定対象薄膜12の反射光強度の入射角依存特性I
(θ)を得ることができる。
F: focal length of the detection-side lens 6, that is, the X-axis 1 taken on the rear focal plane 17 of the detection-side lens 6.
By measuring the reflected light intensity on 8 and using the above equation 1, the incident angle dependence characteristic I of the reflected light intensity of the thin film 12 to be measured is measured.
(θ) can be obtained.

【0026】ところで、レーザ光のように照明光線の照
度分布が均一の場合には、得られた測定対象薄膜12の
反射光強度の入射角依存特性I(θ)に反射光強度から反
射率への変換のための定数を乗算するだけで測定対象薄
膜12の反射率の入射角依存特性R(θ)を求めることが
できるのであるが、光源1として水銀ランプなどを用い
る場合には、レーザと異なって照明光線15の照度分布
14は均一にできないため、得られた測定対象薄膜12
の反射光強度の入射角依存特性I(θ)から上記のように
単純には測定対象薄膜12の反射率の入射角依存特性R
(θ)を求めることができない。
By the way, when the illuminance distribution of the illuminating light beam such as laser light is uniform, the incident angle dependence characteristic I (θ) of the reflected light intensity of the thin film 12 to be measured is changed from the reflected light intensity to the reflectance. The incident angle dependence characteristic R (θ) of the reflectance of the thin film 12 to be measured can be obtained only by multiplying it by a constant for converting Differently, the illuminance distribution 14 of the illuminating light beam 15 cannot be made uniform, so that the obtained measurement target thin film 12
From the incident angle dependence characteristic I (θ) of the reflected light intensity, the incident angle dependence characteristic R of the reflectance of the thin film 12 to be measured is simply as described above.
(θ) cannot be calculated.

【0027】そこで、この実施例では、検出器7で測定
された測定対象薄膜12の反射光強度の入射角依存特性
I(θ)を記憶装置8に格納して保持し、次に、参照試料
13について同様の測定を行なう。そして、検出器7の
測定結果を参照試料13の反射光強度の入射角依存特性
Iref(θ)として記憶装置9に格納する。参照試料13
としては、屈折率及び吸収係数が既知の鏡面試料であれ
ば何であってもよく、例えば、ベアシリコンウェハなど
を用いることができる。
Therefore, in this embodiment, the incident angle dependent characteristic I (θ) of the reflected light intensity of the thin film 12 to be measured measured by the detector 7 is stored and held in the storage device 8, and then the reference sample is stored. The same measurement is performed for 13. Then, the measurement result of the detector 7 is stored in the storage device 9 as the incident angle dependence characteristic Iref (θ) of the reflected light intensity of the reference sample 13. Reference sample 13
Any may be used as long as it is a specular sample having a known refractive index and absorption coefficient. For example, a bare silicon wafer or the like can be used.

【0028】いま、参照試料13の反射率の入射角依存
特性をRref(θ)とし、照明光線15の照度分布14を
入射角θの関数S(θ)とすると、参照試料13の反射光
強度の入射角依存特性Iref(θ)は次の数2で表わすこ
とができる。
Now, assuming that the incident angle dependence characteristic of the reflectance of the reference sample 13 is Rref (θ) and the illuminance distribution 14 of the illumination light beam 15 is a function S (θ) of the incident angle θ, the reflected light intensity of the reference sample 13 is shown. The incident angle dependent characteristic Iref (θ) of can be expressed by the following equation 2.

【0029】[0029]

【数2】 [Equation 2]

【0030】また、測定対象薄膜12の反射光強度の入
射角依存特性I(θ)は、その反射率の入射角依存特性を
R(θ)とすると、
Further, regarding the incident angle dependence characteristic I (θ) of the reflected light intensity of the thin film 12 to be measured, if the incident angle dependence characteristic of the reflectance is R (θ),

【0031】[0031]

【数3】 [Equation 3]

【0032】と表わされるので、この数3を上記数2で
辺々割算することにより、次の数4に示すように、測定
結果である反射光強度の入射角依存特性I(θ),Iref
(θ)の比が求められて未知の値S(θ)を消去することが
できる。
[Mathematical formula-see original document] Therefore, by dividing this formula 3 by the above formula 2, the incident angle dependence characteristic I (θ) of the reflected light intensity, which is the measurement result, can be obtained as shown in the following formula 4. Iref
The unknown value S (θ) can be eliminated by obtaining the ratio of (θ).

【0033】[0033]

【数4】 [Equation 4]

【0034】ここで、参照試料13の反射率の入射角依
存特性Rref(θ)は参照試料13の既知の屈折率及び吸
収係数を用いて、後述する数8〜数13などにより、理
論計算で求まるので、この既知の反射率の入射角依存特
性Rref(θ)を上記数4の両辺に乗ずることにより、次
の数5が得られて測定対象薄膜12の反射率の入射角依
存特性Rref(θ) が得られる。
Here, the incident angle dependence characteristic Rref (θ) of the reflectance of the reference sample 13 is theoretically calculated by using the known refractive index and absorption coefficient of the reference sample 13 by the following equations 8 to 13. Since this is obtained, the following formula 5 is obtained by multiplying the known incident angle dependence characteristic Rref (θ) of the reflectance on both sides of the above formula 4, and the incident angle dependence characteristic Rref (Rref ( θ) is obtained.

【0035】[0035]

【数5】 [Equation 5]

【0036】即ち、測定結果である反射光強度の入射角
依存特性I(θ),Iref(θ)と、理論計算結果である参
照試料13の反射率の入射角依存特性Rref(θ)を用い
た数5の左辺の計算により、測定対象薄膜12の膜厚や
屈折率,吸収係数の決定に必要な測定対象薄膜12の反
射率の入射角依存特性R(θ)を求めることができる。か
かる演算が演算部10によって行なわれる。
That is, the incident angle dependence characteristics I (θ) and Iref (θ) of the reflected light intensity, which are the measurement results, and the incident angle dependence characteristics Rref (θ) of the reflectance of the reference sample 13, which are the theoretical calculation results, are used. The incident angle dependence characteristic R (θ) of the reflectance of the measurement target thin film 12 necessary for determining the film thickness, the refractive index, and the absorption coefficient of the measurement target thin film 12 can be obtained by the calculation on the left side of the equation 5. Such calculation is performed by the calculation unit 10.

【0037】なお、かかる反射率入射角依存特性R(θ)
の算出方式によると、照明光線15の照度分布14だけ
でなく、各光学素子の透過位置の違いによる透過率の不
均一性の補正もなされる。即ち、光学系中の全光学素子
の不均一性を1つにまとめ、これを入射角θの関数 T
(θ)とすると、上記数2,数3はこれを含めて次の数
6,数7のように表わされる。
The reflectance incident angle dependence characteristic R (θ)
According to the above calculation method, not only the illuminance distribution 14 of the illumination light beam 15 but also the nonuniformity of the transmittance due to the difference in the transmission position of each optical element is corrected. That is, the inhomogeneities of all the optical elements in the optical system are combined into one, and this is treated as a function T of the incident angle θ.
Letting (θ), the above equations 2 and 3 are expressed as the following equations 6 and 7 including them.

【0038】[0038]

【数6】 [Equation 6]

【0039】[0039]

【数7】 [Equation 7]

【0040】そこで、数7を数6で辺辺割算し、その結
果の両辺に既知の参照試料13の反射率の入射角依存特
性Rref(θ)を乗ずると、上記数5が得られて、S(θ)
と同様に、T(θ)もやはり消去される。従って、各光学
素子の透過位置の違いによる透過率の不均一性の影響も
除かれる。
Therefore, by dividing the expression 7 by the expression 6, and multiplying both sides of the result by the incident angle dependence characteristic Rref (θ) of the reflectance of the known reference sample 13, the above expression 5 is obtained. , S (θ)
Similarly, T (θ) is also erased. Therefore, the influence of non-uniformity of the transmittance due to the difference in the transmission position of each optical element can be eliminated.

【0041】演算部11は、以上のようにして求められ
た測定対象薄膜12の反射率の入射角依存特性R(θ)か
ら、測定対象薄膜12の膜厚や屈折率,吸収係数を求め
るものである。次に、この点について説明する。
The calculation unit 11 obtains the film thickness, the refractive index, and the absorption coefficient of the measurement target thin film 12 from the incident angle dependence characteristic R (θ) of the reflectance of the measurement target thin film 12 obtained as described above. Is. Next, this point will be described.

【0042】理論計算による薄膜の反射率の入射角依存
特性Rth(θ)は、薄膜の膜厚や屈折率,吸収係数を定め
れば、境界面での振幅反射率を示すフレネル係数及び多
重干渉理論式を用いて求まる。いま、図3に示すような
モデルを考えた場合、入射光線15の強度を1としたと
きの検出側レンズ6の後焦点面17上の収束点Pにおけ
る反射光強度は、次の数8のRで表わされる。これは強
度の反射率を表わす。なお、数8〜数13までは入射光
線15をP偏光としたときの式である。
The incident angle dependence characteristic Rth (θ) of the reflectance of the thin film obtained by theoretical calculation is the Fresnel coefficient and the multiple interference showing the amplitude reflectance at the boundary surface, if the film thickness, the refractive index and the absorption coefficient of the thin film are determined. It can be obtained using a theoretical formula. Now, when considering the model as shown in FIG. 3, the reflected light intensity at the convergence point P on the rear focal plane 17 of the detection side lens 6 when the intensity of the incident light ray 15 is set to Represented by R. This represents the reflectance of intensity. It should be noted that Equations 8 to 13 are equations when the incident light ray 15 is P-polarized light.

【0043】[0043]

【数8】 [Equation 8]

【0044】但し、rpは振幅反射率で複素数、〔rp
はrpの共役な複素数であって、
However, r p is an amplitude reflectance and is a complex number, [r p ].
Is a complex complex number of r p ,

【0045】[0045]

【数9】 [Equation 9]

【0046】但し、測定対象薄膜12はベアシリコンウ
エハ12a上に形成されているものとし、 δ :測定対象薄膜12内での一往復で生じる光路差 r01p:空気と測定対象薄膜12の境界面でのP偏光光
の振幅反射率 r12p:測定対象薄膜12とベアシリコンウエハ12a
との境界面でのP偏光光の振幅反射率 であり、
However, it is assumed that the thin film 12 to be measured is formed on the bare silicon wafer 12a, δ: optical path difference generated in one round trip in the thin film 12 to be measured r 01p : boundary surface between air and the thin film 12 to be measured Amplitude reflectance of P-polarized light at 12 r 12p : thin film 12 to be measured and bare silicon wafer 12a
Is the amplitude reflectance of P-polarized light at the interface with

【0047】[0047]

【数10】 [Equation 10]

【0048】λ :照明光の波長 d :薄膜の膜厚 θ1 :空気から薄膜への入射角θの光線の薄膜内での
屈折角
Λ: wavelength of illumination light d: film thickness of thin film θ 1 : angle of refraction within the thin film of a light ray having an incident angle θ from air to the thin film

【0049】[0049]

【数11】 [Equation 11]

【0050】[0050]

【数12】 [Equation 12]

【0051】θ2 :空気から薄膜への入射角θの光線
のベアシリコンウェハ内での屈折角 と表わされる。但し、n0は空気の屈折率であって1と
みなせる。n1c,n2cは夫々測定対象薄膜12と参照試
料13としてのベアシリコンウェハとの複素屈折率、即
ち、屈折率を実部,吸収係数を虚部に持つ複素数であ
る。また、θ1,θとθとは、スネルの法則により、
次の数13で示す関係がある。
Θ 2 : It is expressed as a refraction angle of a light beam having an incident angle θ from the air to the thin film in the bare silicon wafer. However, n 0 is the refractive index of air and can be regarded as 1. n 1c and n 2c are complex refractive indices of the thin film 12 to be measured and the bare silicon wafer as the reference sample 13, that is, complex numbers having the refractive index as the real part and the absorption coefficient as the imaginary part. Further, θ 1 , θ 2 and θ are given by Snell's law,
There is a relationship shown by the following Expression 13.

【0052】[0052]

【数13】 [Equation 13]

【0053】入射光線である照明光線15としてS偏光
を用いる場合には、数9において、r01pとr12p
を次の数14,数15で夫々示すr01s,r12sに置換す
ることにより、振幅反射率rs が求まる。
When S-polarized light is used as the illuminating light ray 15 which is the incident light ray, by replacing r 01p and r 12p in equation 9 with r 01s and r 12s shown in the following equations 14 and 15, respectively . , The amplitude reflectance r s is obtained.

【0054】[0054]

【数14】 [Equation 14]

【0055】[0055]

【数15】 [Equation 15]

【0056】但し、r01s:空気と薄膜の境界面でのS
偏光光の振幅反射率 r12s:薄膜とベアシリコンウエハとの境界面でのS偏
光光の振幅反射率 従って、入射光線である照明光線15の偏光状態が既知
であれば、測定対象薄膜12の反射率の入射角依存特性
の理論値Rth(θ)を理論計算によって求めることができ
る。
Where r 01s : S at the interface between air and thin film
Amplitude reflectance of polarized light r 12s : Amplitude reflectance of S-polarized light at the boundary surface between the thin film and the bare silicon wafer Therefore, if the polarization state of the incident light beam 15 is known, The theoretical value Rth (θ) of the incident angle dependence characteristic of reflectance can be obtained by theoretical calculation.

【0057】薄膜の膜厚や屈折率,吸収係数の3つの特
性値の取り方により、反射率の入射角依存特性の理論値
Rth(θ)は様々な形状をとる。そこで、これら3つの特
性値を割り振り、実測による測定対象薄膜12の反射率
の入射角依存特性R(θ)に最もよく重なる理論値Rth
(θ)を探索し、それを生成する3つの特性値の組を測定
対象薄膜12の膜厚,屈折率,吸収係数の測定結果とし
て出力する。
The theoretical value Rth (θ) of the incident angle dependence characteristic of the reflectance takes various shapes depending on how to take the three characteristic values of the thin film thickness, the refractive index and the absorption coefficient. Therefore, by assigning these three characteristic values, the theoretical value Rth that best overlaps the incident angle dependence characteristic R (θ) of the reflectance of the measurement target thin film 12 by actual measurement.
(θ) is searched, and a set of three characteristic values that generate it is output as the measurement result of the film thickness, refractive index, and absorption coefficient of the thin film 12 to be measured.

【0058】3次元空間の各座標軸に夫々3つの特性値
を割り振り、空間内の各点に相当する3つの特性値を用
いて反射率の入射角依存特性の理論値Rth(θ)を計算
し、実測値から求めた反射率の入射角依存特性R(θ)と
の重なり具合いを算出する。これらR(θ)とRth(θ)の
重なり具合いの評価関数としては、例えば、次の数16
あるいは数17に示すものを用いる。
Three characteristic values are assigned to each coordinate axis of the three-dimensional space, and the theoretical value Rth (θ) of the incident angle dependent characteristic of reflectance is calculated using the three characteristic values corresponding to each point in the space. Then, the degree of overlap with the incident angle dependence characteristic R (θ) of the reflectance obtained from the measured value is calculated. As an evaluation function of the degree of overlap between R (θ) and Rth (θ), for example, the following equation 16
Alternatively, the one shown in Expression 17 is used.

【0059】[0059]

【数16】 [Equation 16]

【0060】[0060]

【数17】 [Equation 17]

【0061】数16はMがある複数の入射角における反
射率の入射角依存特性の理論値Rth(θ)と反射率の入射
角依存特性の実測値R(θ)との差の絶対値の総和を表わ
し、数17はかかる差の2乗の総和を表わしている。か
かるMを最小とする反射率の入射角依存特性の理論値R
th(θ) を探索し、その理論値Rth(θ)を生成する3つ
の特性値を結果として出力する。
Equation 16 is the absolute value of the difference between the theoretical value Rth (θ) of the incident angle dependence characteristic of the reflectance and the measured value R (θ) of the incident angle dependence characteristic of the reflectance at a plurality of incident angles with M. The total sum is represented by the equation (17). Theoretical value R of the incident angle dependence characteristic of the reflectance that minimizes M
The th (θ) is searched, and three characteristic values that generate the theoretical value Rth (θ) are output as a result.

【0062】測定結果の高分解能化と計算時間の短縮化
とを両立させるために、反射率の入射角依存特性の理論
値Rth(θ)を計算する3つの特性値の組に相当する3次
元空間内の各点の間隔を順次狭くするようにしていって
もよい。第1段階では、3次元空間内に設定する反射率
の入射角依存特性の理論値Rth(θ)を計算する格子点を
粗く取る。その中で最もよく反射率の入射角依存特性の
実測値R(θ)と反射率の入射角依存特性の理論値Rth
(θ)とを一致させる特性値の値の組である格子点を探索
する。第2段階では、その格子点の周辺の3次元空間を
第1段階より細かく分割し、最もよく反射率の入射角依
存特性の実測値R(θ)と反射率の入射角依存特性の理論
値Rth(θ)とを一致させる特性値の組である格子点を探
索する。以下同様にして、格子点の間隔が目標の測定分
解能に達するまでかかる操作を繰り返す。
In order to achieve both high resolution of measurement results and shortening of calculation time, a three-dimensional structure corresponding to a set of three characteristic values for calculating the theoretical value Rth (θ) of the incident angle dependence characteristic of reflectance The intervals between the points in the space may be gradually reduced. In the first stage, rough grid points are calculated for calculating the theoretical value Rth (θ) of the incident angle dependence characteristic of reflectance set in the three-dimensional space. Of these values, the measured value R (θ) of the incident angle dependence characteristic of reflectance and the theoretical value Rth of the incident angle dependence characteristic of reflectance are the best.
A grid point that is a set of characteristic values that matches (θ) is searched for. In the second step, the three-dimensional space around the lattice point is divided into smaller pieces than in the first step, and the measured value R (θ) of the incident angle dependence characteristic of the reflectance and the theoretical value of the incident angle dependence characteristic of the reflectance are the best. A lattice point that is a set of characteristic values that matches Rth (θ) is searched for. In the same manner, this operation is repeated until the interval between the grid points reaches the target measurement resolution.

【0063】第1段階でより大きな格子点間隔から探索
を開始するために、上記Mを小さくする格子点であれ
ば、このMを最小とする格子点以外の点をも第2段階以
降まで残すようにしてもよい。複数の格子点の周辺で前
記の通り順次格子点間隔を狭めて探索を進めた後に、M
を最小とする格子点の選択を行なう。この操作により、
格子点を粗くした場合でも、Mを最小とする格子点の誤
検出を防止できる。
In order to start the search from a larger grid point interval in the first stage, if the grid point is to reduce M, the points other than the grid point that minimizes M are left up to the second stage and thereafter. You may do it. After proceeding with the search by gradually narrowing the grid point intervals around the plurality of grid points as described above, M
Select the grid point that minimizes. By this operation,
Even if the grid points are roughened, it is possible to prevent erroneous detection of grid points that minimize M.

【0064】測定対象薄膜12の反射率の入射角依存特
性R(θ)をさらに精度良く求めるためには、測定対象薄
膜12の測定結果である反射光強度の入射角依存特性I
(θ)と参照資料13の反射光強度の入射角依存特性Ire
f(θ)に対して暗レベル補正を行なう必要がある。測定
対象薄膜12を検出側レンズ6の前から取り除いた状態
で検出器7により光強度を検出し、この検出した光強度
を、便宜上、入射角θの関数Ib(θ)として、次の数1
8から測定対象薄膜12の反射率の入射角依存特性R
(θ) を求める。
In order to obtain the incident angle dependence characteristic R (θ) of the reflectance of the thin film 12 to be measured more accurately, the incident angle dependence characteristic I of the reflected light intensity, which is the measurement result of the thin film 12 to be measured, is measured.
(θ) and the incident angle dependence characteristic Ire of the reflected light intensity of Reference Material 13
It is necessary to perform dark level correction on f (θ). The light intensity is detected by the detector 7 with the thin film 12 to be measured removed from the front of the detection side lens 6, and this detected light intensity is used as a function Ib (θ) of the incident angle θ for the sake of convenience,
8 to the incident angle dependence characteristic R of the reflectance of the thin film 12 to be measured
Find (θ).

【0065】[0065]

【数18】 [Equation 18]

【0066】これにより、検出器7の出力の暗レベル補
正(0レベル補正)と迷光の影響の除去とを同時に行な
うことができ、測定対象薄膜12の反射率の入射角依存
特性R(θ)が高精度に得られる。
Thus, the dark level correction (0 level correction) of the output of the detector 7 and the removal of the influence of stray light can be carried out at the same time, and the incident angle dependence characteristic R (θ) of the reflectance of the thin film 12 to be measured. Can be obtained with high precision.

【0067】参照試料13と測定対象薄膜12の反射光
強度の入射角依存特性Iref(θ),I(θ)は同じ光量で
測定されなければならない。このため、光源1に光量変
動がある場合には、参照試料13の反射光強度の入射角
依存特性Iref(θ)を測定対象薄膜12の反射光強度の
入射角依存特性I(θ)の測定を行なう度に測り直すこと
により、光量変動による誤差を小さくできる。この場
合、測定対象薄膜12のウェハと参照試料13のウェハ
との交換を人手によって行なうようにしてもよいが、図
4に示すように、ウェハチャック19上の中央部に測定
対象薄膜のウェハ21を、端部に参照試料片20を取り
付けて、図5(a),(b),(c)の順序で参照試料
片20と測定対象薄膜のウェハ21との反射光強度の入
射角依存特性を測定するようにしてもよい。かかる構成
とすることにより、作業者は測定対象薄膜のウェハ21
と参照試料片20と移し替えが不要となり、効率的な測
定が可能となる。
The incident angle dependence characteristics Iref (θ) and I (θ) of the reflected light intensity of the reference sample 13 and the thin film 12 to be measured must be measured with the same light quantity. Therefore, when the light amount of the light source 1 varies, the incident angle dependence characteristic Iref (θ) of the reflected light intensity of the reference sample 13 is measured as the incident angle dependence characteristic I (θ) of the thin film 12 to be measured. By performing the measurement again each time, the error due to the fluctuation of the light amount can be reduced. In this case, the wafer of the measurement target thin film 12 and the wafer of the reference sample 13 may be exchanged manually, but as shown in FIG. The reference sample piece 20 is attached to the end portion, and the incident angle dependence characteristic of the reflected light intensity of the reference sample piece 20 and the wafer 21 of the thin film to be measured in the order of FIGS. 5A, 5B, and 5C. May be measured. With such a configuration, the operator can measure the thin film wafer 21
Therefore, it is not necessary to transfer the reference sample piece 20 and the reference sample piece 20, and efficient measurement becomes possible.

【0068】光量が安定している光源1を使用する場合
には、参照試料13の反射光強度の入射角依存特性Ire
f(θ)は一度測定しておけばよく、その測定結果を記憶
装置9に格納しておき、測定対象薄膜12の反射光強度
の入射角依存特性I(θ)の測定を行なう毎に読み出すよ
うにすることにより、やはり効率的な測定が可能とな
る。
When the light source 1 whose light quantity is stable is used, the incident angle dependence characteristic Ire of the reflected light intensity of the reference sample 13
It suffices to measure f (θ) once, store the measurement result in the storage device 9, and read it every time the incident angle dependence characteristic I (θ) of the reflected light intensity of the measurement target thin film 12 is measured. By doing so, efficient measurement is possible.

【0069】図6は光源の光量変動をさらに厳密に補正
することができるようにした本発明による特性値測定方
法及び装置の他の実施例を示す図であって、22〜25
は記憶装置、26は演算部、27は光量センサ、28は
モニタ用レンズ、29はハーフミラーであり、図1に対
応する部分には同一符号を付けて重複する説明を省略す
る。
FIG. 6 is a view showing another embodiment of the characteristic value measuring method and apparatus according to the present invention which is capable of correcting the light quantity variation of the light source more strictly.
Is a storage device, 26 is a calculation unit, 27 is a light amount sensor, 28 is a monitor lens, and 29 is a half mirror. The parts corresponding to those in FIG.

【0070】同図において、まず、上記のようにして参
照試料の反射光強度の入射角依存特性Iref(θ)と暗レ
ベルIb(θ)を測定し、夫々記憶装置22,23とに格
納しておく。また、夫々の測定時での光源(図示せず)
の光量値も、ハーフミラー29からモニタ用レンズ28
を通る光源からの光を光量センサ27が検出することに
より、測定し、夫々記憶装置24,25に格納してお
く。
In the figure, first, the incident angle dependence characteristic Iref (θ) of the reflected light intensity and the dark level Ib (θ) of the reference sample are measured as described above and stored in the storage devices 22 and 23, respectively. Keep it. Also, a light source (not shown) at each measurement
The light amount value of the monitor lens 28 from the half mirror 29
The light amount sensor 27 detects the light from the light source passing through and measures it, and stores it in the storage devices 24 and 25, respectively.

【0071】次に、測定対象薄膜12の反射光強度の入
射角依存特性I(θ)を測定し、演算部26において、記
憶装置22に格納された参照試料の反射光強度の入射角
依存特性Iref(θ)と測定対象薄膜12の反射光強度の
入射角依存特性I(θ)とを記憶装置24に格納された光
源の光量値でもって補正するとともに、記憶装置23に
格納された暗レベルIb(θ)を記憶装置24に格納され
た光源の光量値でもって補正し、このように補正された
参照試料の反射光強度の入射角依存特性Iref(θ),測
定対象薄膜12の反射光強度の入射角依存特性I(θ)及
び暗レベルIb(θ)を用いて上記数18に演算を行な
う。
Next, the incident angle dependence characteristic I (θ) of the reflected light intensity of the thin film 12 to be measured is measured, and the calculation unit 26 calculates the incident angle dependence characteristic of the reflected light intensity of the reference sample stored in the storage device 22. Iref (θ) and the incident angle dependent characteristic I (θ) of the reflected light intensity of the thin film 12 to be measured are corrected by the light amount value of the light source stored in the storage device 24, and the dark level stored in the storage device 23 is corrected. Ib (θ) is corrected by the light amount value of the light source stored in the storage device 24, and the incident angle dependent characteristic Iref (θ) of the reflected light intensity of the reference sample thus corrected, the reflected light of the measurement target thin film 12 Using the incident angle dependence characteristic I (θ) of the intensity and the dark level Ib (θ), the calculation is carried out in the above equation (18).

【0072】これにより、光源の光量変動による影響が
非常に高い精度で除かれることになる。
As a result, the influence of the fluctuation of the light amount of the light source can be removed with extremely high accuracy.

【0073】図7は本発明による特性値測定方法及び装
置のさらに他の実施例を示す図であって、30は平均演
算部、31,32は記憶装置であり、図1に対応する部
分には同一符号を付けて重複する説明を省略する。
FIG. 7 is a diagram showing still another embodiment of the characteristic value measuring method and apparatus according to the present invention, in which 30 is an averaging unit and 31 and 32 are storage devices. Are denoted by the same reference numerals and redundant description will be omitted.

【0074】検出器7の検出信号には、通常、検出器7
自身のS/N比などに起因する白色ノイズが混入してい
るため、測定した測定対象薄膜の反射率の入射角依存特
性R(θ)から上記のようにして求める測定対象薄膜の膜
厚や屈折率,吸収係数の検出精度が低下する。この実施
例は、かかる検出精度の低下を防止するものである。
The detection signal of the detector 7 is usually the detector 7
Since white noise due to the S / N ratio of the device itself is mixed, the film thickness of the measurement target thin film obtained as described above from the incident angle dependence characteristic R (θ) of the reflectance of the measurement target thin film, The detection accuracy of the refractive index and absorption coefficient is reduced. This embodiment prevents such a decrease in detection accuracy.

【0075】図7において、参照試料(図示せず)の反
射光強度の入射角依存特性Iref(θ),測定対象薄膜1
2の反射光強度の入射角依存特性I(θ)及び暗レベルI
b(θ)の測定は夫々複数回ずつ行なわれ、夫々の測定で
の検出器7の複数の検出信号の平均値を平均演算部30
で求められる。このように求められた参照試料の反射光
強度の入射角依存特性Iref(θ)と暗レベルIb(θ)とは
夫々記憶装置31,32に格納される。そして、同様に
複数回の測定の平均として求められた測定対象薄膜12
の反射光強度の入射角依存特性I(θ)が演算部10に供
給され、記憶装置31,32に格納された参照試料の反
射光強度の入射角依存特性Iref(θ)と暗レベルIb
(θ)とを用いて上記数18の演算が行なわれる。
In FIG. 7, the incident angle dependence characteristic Iref (θ) of the reflected light intensity of the reference sample (not shown), the thin film 1 to be measured.
2. Incidence angle dependence characteristic I (θ) of reflected light intensity and dark level I
The measurement of b (θ) is performed a plurality of times, and the average value of the plurality of detection signals of the detector 7 in each measurement is calculated by the averaging unit 30.
Required by. The incident angle dependence characteristic Iref (θ) of the reflected light intensity of the reference sample and the dark level Ib (θ) thus obtained are stored in the storage devices 31 and 32, respectively. Then, similarly, the thin film 12 to be measured, which is obtained as an average of a plurality of measurements
The incident angle dependent characteristic I (θ) of the reflected light intensity of the reference sample is supplied to the calculation unit 10, and the incident angle dependent characteristic Iref (θ) of the reflected light intensity of the reference sample stored in the storage devices 31 and 32 and the dark level Ib.
The calculation of the above equation 18 is performed using (θ).

【0076】このように平均演算部30によって検出器
7の複数回の検出信号を平均化することにより、検出器
7に発生する白色ノイズが平均化されて低減し、かかる
白色ノイズに影響されない参照試料の反射光強度の入射
角依存特性Iref(θ),測定対象薄膜12の反射光強度
の入射角依存特性I(θ)及び暗レベルIb(θ) が得られ
る。従って、測定対象薄膜12の膜厚や屈折率,吸収係
数の検出精度が向上する。
By thus averaging the detection signals of the detector 7 a plurality of times by the averaging unit 30, the white noise generated in the detector 7 is averaged and reduced, and is not affected by the white noise. The incident angle dependent characteristic Iref (θ) of the reflected light intensity of the sample, the incident angle dependent characteristic I (θ) of the reflected light intensity of the measurement target thin film 12 and the dark level Ib (θ) are obtained. Therefore, the detection accuracy of the film thickness, the refractive index, and the absorption coefficient of the thin film 12 to be measured is improved.

【0077】以上の実施例では、照明光線15の照明方
向や検出器7の検出方向は斜方としたが、照明側レンズ
5と検出側レンズ6とを1つのレンズで共用し、垂直照
明・垂直検出としてもよい。但し、かかる垂直検出方式
では、光学系の調整が簡単である反面、図8に示すよう
に、共用レンズ6’と試料との間での表面反射によって
反射光強度の入射角依存特性I(θ)に誤差が生じる。ま
た、かかる共用レンズ6’として顕微鏡用の対物レンズ
を用いる場合には、対物レンズは複数個のレンズからな
っているため、図9に示すように、光軸付近を通る光線
の各レンズの表面での反射により、反射光強度の入射角
依存特性I(θ)に誤差が生じる。
In the above embodiments, the illumination direction of the illumination light beam 15 and the detection direction of the detector 7 are oblique. However, the illumination side lens 5 and the detection side lens 6 are shared by one lens, and vertical illumination Vertical detection may be used. However, in such a vertical detection method, adjustment of the optical system is easy, but as shown in FIG. 8, due to surface reflection between the shared lens 6 ′ and the sample, the incident angle dependence characteristic I (θ) of the reflected light intensity is obtained. Error occurs in). When an objective lens for a microscope is used as the shared lens 6 ', since the objective lens is composed of a plurality of lenses, as shown in FIG. Due to the reflection at 1, an error occurs in the incident angle dependent characteristic I (θ) of the reflected light intensity.

【0078】図10はかかる問題を解消することができ
るようにした本発明による特性値測定方法及び装置のさ
らに他の実施例の要部を示す図であって、33は遮光
板、34はミラー、35はハーフミラーであり、前出図
面に対応する部部には同一符号をつけて重複する説明を
省略する。
FIG. 10 is a view showing the essential parts of still another embodiment of the characteristic value measuring method and apparatus according to the present invention, which is capable of solving such a problem, in which 33 is a light shielding plate and 34 is a mirror. , 35 are half mirrors, and the same reference numerals are given to the parts corresponding to the above-mentioned drawings, and duplicate description will be omitted.

【0079】同図において、図示しない光源からの照明
光線15は、その光軸付近の部分が遮光板33で遮光さ
れ、ミラー34,ハーフミラー35を通り、共用レンズ
6’を介して測定対象薄膜12などに照射される。これ
により、照明光線15の光軸部分で共用レンズ6’によ
って反射される光や、共用レンズ6’と測定対象薄膜1
2との間で反射が繰り返される光がなくなる。
In the same figure, the illumination light beam 15 from a light source (not shown) is shielded by the light shielding plate 33 in the vicinity of its optical axis, passes through the mirror 34 and the half mirror 35, and passes through the shared lens 6'and the thin film to be measured. 12 and so on. As a result, the light reflected by the common lens 6'in the optical axis portion of the illumination light beam 15 and the common lens 6'and the thin film 1 to be measured.
No light is repeatedly reflected between the two.

【0080】測定対象薄膜をレジスト膜とし、露光波長
の照明光を用いて測定を行なう場合には、レジスト膜は
照明光により露光されて変質する。レジスト膜の露光を
抑制し、かつレジスト膜の反射光強度の入射角依存特性
I(θ)の測定S/N比を向上させるためには、図11に
示すように、ミラー36,37でもって照明光15が共
用レンズ6’の一部を通過するようにし、平行反射光束
16は共用レンズ6’の他の部分を通過するようにす
る。この場合、図10に示した実施例と同じ照明光量と
しても、図10の実施例とは異なってハーフミラを使用
しないので、大きな反射光量が得られ、レジスト膜をあ
まり感光せずにその反射光強度の入射角依存特性をS/
N比良く測定することができる。
When a thin film to be measured is a resist film and measurement is performed using illumination light having an exposure wavelength, the resist film is exposed to the illumination light and is altered. In order to suppress the exposure of the resist film and improve the measured S / N ratio of the incident angle dependent characteristic I (θ) of the reflected light intensity of the resist film, as shown in FIG. The illumination light 15 passes through a part of the shared lens 6 ', and the parallel reflected light beam 16 passes through another part of the shared lens 6'. In this case, even if the amount of illumination light is the same as that of the embodiment shown in FIG. 10, unlike the embodiment of FIG. 10, since half mirror is not used, a large amount of reflected light is obtained, and the reflected light is not exposed to the resist film so much. The incident angle dependence of intensity is S /
It is possible to measure with good N ratio.

【0081】以上の実施例で使用される検出器7として
は1次元センサでも、また、2次元センサでもよい。1
次元センサを用いれば、検出信号の読出しに要する時間
が短くなるから、上記の検出信号の複数回読出しを行な
って平均化する場合、その読出し回数を多くすることが
でき、従って、センサに生ずる白色ノイズの影響を充分
に抑圧することができる。2次元センサを用いれば、検
出信号の読出しに要する時間、即ち、複数回読出しによ
る平均を求めるために要する時間が増すが、その代わ
り、後焦点面17の2次元画像を見ることができるの
で、光学系の調整が容易になるという利点がある。
The detector 7 used in the above embodiments may be a one-dimensional sensor or a two-dimensional sensor. 1
If a dimension sensor is used, the time required to read the detection signal is shortened. Therefore, when the detection signal is read multiple times and averaged, the number of times of reading can be increased, and therefore the white color generated in the sensor can be increased. The influence of noise can be sufficiently suppressed. If a two-dimensional sensor is used, the time required to read out the detection signal, that is, the time required to obtain the average by reading out multiple times increases, but instead, the two-dimensional image of the back focal plane 17 can be viewed, There is an advantage that the adjustment of the optical system becomes easy.

【0082】また、照明方法としては、光源像を測定対
象薄膜や参照試料の面に結像させるクリティカル照明、
照明側レンズの後焦点面上に結像させるケーラー照明の
いずれでもよい。以上の実施例では、参照試料との比較
によって照度むらの影響を除去するので、後焦点面に光
源像が結像するケーラー照明を用いても、問題なく測定
対象薄膜の反射率の入射角依存特性R(θ)を検出でき
る。
As the illumination method, critical illumination for forming a light source image on the surface of the thin film to be measured or the surface of the reference sample,
Any of the Koehler illuminations that forms an image on the back focal plane of the illumination side lens may be used. In the above examples, since the effect of uneven illuminance is removed by comparison with the reference sample, even if Koehler illumination in which a light source image is formed on the back focal plane is used, there is no problem depending on the incident angle dependence of the reflectance of the thin film to be measured. The characteristic R (θ) can be detected.

【0083】さらに、照明光線はP偏光としてもよい
し、S偏光としてもよく、また、振幅比が既知であれ
ば、P偏光とS偏光とを含んでいてもよい。P偏光の光
線の薄膜内多重干渉を考慮した反射率の入射角依存特性
は上記数8〜数13を用いて求めることができ、S偏光
の光線についても同様の理論式で計算でき、両方の偏光
を含む場合でも、やはりこれらの式を用いて計算した偏
光毎の反射率と振幅比とから反射率の入射角依存特性を
計算することができる。
Further, the illumination light beam may be P-polarized light or S-polarized light, and may include P-polarized light and S-polarized light if the amplitude ratio is known. The incident angle dependence characteristic of the reflectance considering the multiple interference in the thin film of the P-polarized light beam can be obtained by using the above-mentioned equations 8 to 13, and the S-polarized light ray can be calculated by the same theoretical formula. Even in the case of including polarized light, the incident angle dependence characteristic of the reflectance can be calculated from the reflectance and the amplitude ratio for each polarized light calculated using these expressions.

【0084】図12は本発明による特性値測定方法及び
装置のさらに他の実施例を示す図であって、38〜41
は記憶装置であり、図1に対応する部分には同一符号を
つけて重複する説明を省略する。
FIG. 12 is a view showing still another embodiment of the characteristic value measuring method and apparatus according to the present invention.
Is a storage device, and the portions corresponding to those in FIG.

【0085】この実施例は、測定対象薄膜の吸収係数が
大きい場合でも、その特性値を精度良く求めることがで
きるようにしたものである。測定対象薄膜の吸収係数が
大きいと、この測定対象薄膜内に入射し、さらに下地で
反射されて測定対象薄膜から射出される光線がほとんど
なくなるため、測定対象薄膜の表面で反射した光線との
干渉することによって生じる反射光強度の入射角依存特
性I(θ)の振動の振幅が小さくなる。このため、波形照
合時にパラメータの違いによる反射率の入射角依存特性
の違いが小さくなり、測定対象薄膜の膜厚や屈折率,吸
収係数の3つの特性値を同時に決定しようとすると、そ
の決定精度が低下する。
In this embodiment, even if the thin film to be measured has a large absorption coefficient, its characteristic value can be accurately obtained. When the absorption coefficient of the thin film to be measured is large, there are almost no light rays that enter the thin film to be measured and are reflected by the underlying layer and emitted from the thin film to be measured. As a result, the amplitude of the vibration of the incident angle dependent characteristic I (θ) of the reflected light intensity caused by the reduction becomes small. Therefore, the difference in the incident angle-dependent characteristics of the reflectance due to the difference in the parameters during the waveform matching becomes small, and if the three characteristic values of the film thickness, refractive index, and absorption coefficient of the measurement target thin film are to be determined at the same time, the accuracy of the determination will be small. Is reduced.

【0086】これを防ぐためには、長波長の測定光を1
種類以上用いればよい。吸収係数は分光特性を有し、長
波長になる程小さくなるため、まず、長波長の測定光を
用いて測定対象薄膜の膜厚、屈折率及び吸収係数を測定
する。膜厚には分光特性はないため、ここで求められた
膜厚値と露光波長の測定光による反射光強度の入射角依
存特性I(θ)とから、露光波長における屈折率及び吸収
係数の2つの特性値を求めればよい。
In order to prevent this, the measurement light of long wavelength is set to 1
You can use more than one type. Since the absorption coefficient has a spectral characteristic and becomes smaller as the wavelength becomes longer, the film thickness, the refractive index, and the absorption coefficient of the thin film to be measured are first measured using the measurement light having the long wavelength. Since there is no spectral characteristic in the film thickness, from the film thickness value obtained here and the incident angle dependence characteristic I (θ) of the reflected light intensity by the measuring light of the exposure wavelength, the refractive index and the absorption coefficient of 2 at the exposure wavelength are calculated. It is only necessary to obtain two characteristic values.

【0087】これを実現するために、図12に示す実施
例では、測定光である照明光線15の波長限定用光学素
子4が複数の波長分だけ用いられ、これらが容易に交換
できるようにしておく。また、予め長波長測定光を用い
たときの参照試料と暗レベルとの反射率の入射角依存特
性を検出し、夫々を記憶装置38,40に格納し、ま
た、本来の測定光波長における参照試料と暗レベルの反
射率の入射角依存特性を検出し、夫々を記憶装置39,
41に格納しておく。長波長測定光を用いる際には記憶
装置38,40に格納されたデータを使用し、本来の波
長の測定光を用いる際には記憶装置39,41に格納さ
れたデータを使用する。
In order to realize this, in the embodiment shown in FIG. 12, the wavelength limiting optical element 4 of the illumination light beam 15 which is the measurement light is used for a plurality of wavelengths so that they can be easily replaced. deep. Further, the incident angle dependence characteristics of the reflectance between the reference sample and the dark level when the long-wavelength measurement light is used are detected in advance, and the characteristics are stored in the storage devices 38 and 40, respectively. The incident angle-dependent characteristics of the reflectance of the sample and the dark level are detected and stored in the storage device 39,
It is stored in 41. When the long wavelength measurement light is used, the data stored in the storage devices 38 and 40 is used, and when the measurement light of the original wavelength is used, the data stored in the storage devices 39 and 41 is used.

【0088】以上のように、この実施例では、測定対象
薄膜の任意の波長、特に、短波長における特性値を測定
することができる。
As described above, in this embodiment, the characteristic value of the thin film to be measured can be measured at any wavelength, especially at a short wavelength.

【0089】図13は本発明による特性値測定方法及び
装置のさらに他の実施例を示す図であって、42〜44
は記憶装置であり、図1に対応する部分には同一符号を
つけて重複する説明を省略する。
FIG. 13 is a view showing still another embodiment of the characteristic value measuring method and apparatus according to the present invention, which are 42 to 44.
Is a storage device, and the portions corresponding to those in FIG.

【0090】レジスト膜を測定対象薄膜とする場合、レ
ジスト膜の吸収係数が大きく、図12に示した実施例と
同様、露光波長において3つの特性値を同時に精度良く
決めることができない場合には、この実施例が適してい
る。
When the resist film is used as the thin film to be measured, if the absorption coefficient of the resist film is large and the three characteristic values cannot be simultaneously and accurately determined at the exposure wavelength, as in the embodiment shown in FIG. This embodiment is suitable.

【0091】レジスト膜の吸収係数が大きい場合には、
レジスト膜内に入射し、その下地で反射してレジスト膜
から射出する光がほとんどなくなるため、レジスト膜の
反射光強度の入射角依存特性I(θ)の振動の振幅が小
さくなる。このため、波長照合時にパラメータの違いに
よる反射率の入射角依存特性の違いが小さくなり、レジ
スト膜の膜厚や屈折率,吸収係数の3つの特性値を同時
に決定する場合、その決定精度が低下する。
When the absorption coefficient of the resist film is large,
Since there is almost no light that enters the resist film, is reflected by the underlying layer, and exits from the resist film, the amplitude of vibration of the incident angle dependent characteristic I (θ) of the reflected light intensity of the resist film becomes small. For this reason, the difference in the incident angle dependence characteristic of the reflectance due to the difference in the parameters at the time of wavelength matching becomes small, and when the three characteristic values of the resist film thickness, the refractive index, and the absorption coefficient are determined at the same time, the determination accuracy is reduced. To do.

【0092】そこで、図13に示す実施例では、レジス
ト膜の吸収係数が大きい場合には、レジスト膜を、ま
ず、露光して吸収係数を小さくしてしまい、そのときの
反射光強度の入射角依存特性から膜厚を求め、その膜厚
値を測定、即ち露光開始時の反射光強度の入射角依存特
性から露光開始時のレジスト膜の屈折率と吸収係数とを
求める。
Therefore, in the embodiment shown in FIG. 13, when the absorption coefficient of the resist film is large, the resist film is first exposed to reduce the absorption coefficient, and the incident angle of the reflected light intensity at that time is decreased. The film thickness is obtained from the dependence characteristic, and the film thickness value is measured, that is, the refractive index and the absorption coefficient of the resist film at the start of exposure are obtained from the incident angle dependence characteristic of the reflected light intensity at the start of exposure.

【0093】以下、図13により、この実施例をさらに
具体的に説明する。
Hereinafter, this embodiment will be described more specifically with reference to FIG.

【0094】同図において、レジスト膜の露光後及び露
光開始時、即ち測定開始時での検出器7の検出信号を、
夫々反射光強度の入射角依存特性Ie(θ),Is
(θ)として記憶装置42に夫々格納する。また、参考
試料及び検出時の暗レベルの反射率の入射角依存特性
も、夫々記憶装置43,44に格納しておく。そして、
露光により吸収係数が小さくなったときの反射光強度の
入射角依存特性Ie(θ)を用いて、まず、レジスト膜
の膜厚を求め、この膜厚値と露光開始時の反射光強度の
入射角依存特性Is(θ)を用いて露光開始時の屈折率
と吸収係数を求める。
In the figure, the detection signals of the detector 7 after exposure of the resist film and at the start of exposure, that is, at the start of measurement,
Incident angle dependence characteristics Ie (θ) and Is of reflected light intensity
(Θ) is stored in the storage device 42. Further, the reference sample and the incident angle dependence characteristics of the dark level reflectance at the time of detection are also stored in the storage devices 43 and 44, respectively. And
First, the film thickness of the resist film is obtained using the incident angle dependence characteristic Ie (θ) of the reflected light intensity when the absorption coefficient is decreased by the exposure, and this film thickness value and the reflected light intensity at the start of exposure The refractive index and the absorption coefficient at the start of exposure are obtained using the angle-dependent characteristic Is (θ).

【0095】反射光強度の入射角依存特性Ie(θ)と
しては、充分長い時間測定光を照射した後の、あるいは
吸収係数が充分小さくなって反射光が充分増加した後の
反射光強度の入射角依存特性を用いればよい。
As the incident angle dependence characteristic Ie (θ) of the reflected light intensity, the reflected light intensity is incident after the measurement light is irradiated for a sufficiently long time or after the absorption coefficient is sufficiently reduced and the reflected light is sufficiently increased. The angle-dependent characteristic may be used.

【0096】この実施例においては、図14に示すよう
に、測定用の光源(図示せず)の他に、レジスト膜を露
光することを目的とする光源46と露光用レンズ47と
からなる露光光照明系45を用い、レジスト膜12の測
定部分に露光用の光線48を照射するようにしてもよ
い。このように露光用光源と測定用光源とを別々にする
ことにより、露光波長と測定波長を任意、かつ独立に設
定することができる。
In this embodiment, as shown in FIG. 14, in addition to a light source for measurement (not shown), a light source 46 for exposing the resist film and an exposure lens 47 are used for exposure. The light illumination system 45 may be used to irradiate the measuring portion of the resist film 12 with the light beam 48 for exposure. By thus separating the exposure light source and the measurement light source, the exposure wavelength and the measurement wavelength can be set arbitrarily and independently.

【0097】[0097]

【発明の効果】以上の説明のように、本発明によれば、
薄膜、特に、LSI製造工程中のレジスト膜の膜厚や屈
折率,吸収係数を高精度に測定することができるため、
露光・現像後のレジストパターン線幅寸法の精度を悪化
させるレジスト膜の膜厚や屈折率,吸収係数の変動を容
易に検出することが可能となり、LSIの歩留まり向上
に大きく寄与できる。
As described above, according to the present invention,
Since it is possible to measure the thickness, refractive index, and absorption coefficient of a thin film, particularly the resist film during the LSI manufacturing process with high accuracy,
It is possible to easily detect variations in the film thickness, refractive index, and absorption coefficient of the resist film that deteriorate the accuracy of the resist pattern line width dimension after exposure and development, which can greatly contribute to the improvement in the yield of LSI.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による特性値測定方法及び装置の一実施
例を示す図である。
FIG. 1 is a diagram showing an embodiment of a characteristic value measuring method and apparatus according to the present invention.

【図2】図1における検出側レンズの集光作用を示す図
である。
FIG. 2 is a diagram showing a condensing action of a detection side lens in FIG.

【図3】図1での薄膜内の多重干渉を説明するための図
である。
FIG. 3 is a diagram for explaining multiple interference in a thin film in FIG.

【図4】図1に示した実施例において、測定対象薄膜と
参照試料との交換手段の一具体例を示す斜視図である。
FIG. 4 is a perspective view showing a specific example of a means for exchanging a thin film to be measured and a reference sample in the embodiment shown in FIG.

【図5】図4に示した交換手段による交換手順の一例を
説明する図である。
FIG. 5 is a diagram illustrating an example of a replacement procedure by the replacement means shown in FIG.

【図6】本発明による特性値測定方法及び装置の他の実
施例を示す図である。
FIG. 6 is a diagram showing another embodiment of the characteristic value measuring method and apparatus according to the present invention.

【図7】本発明による特性値測定方法及び装置のさらに
他の実施例を示す図である。
FIG. 7 is a diagram showing still another embodiment of the characteristic value measuring method and apparatus according to the present invention.

【図8】レンズ表面での多重反射を説明する図である。FIG. 8 is a diagram illustrating multiple reflection on a lens surface.

【図9】レンズ表面での多重反射を説明する図である。FIG. 9 is a diagram illustrating multiple reflection on a lens surface.

【図10】本発明による特性値測定方法及び装置のさら
に他の実施例の要部を示す図である。
FIG. 10 is a diagram showing a main part of still another embodiment of the characteristic value measuring method and apparatus according to the present invention.

【図11】本発明による特性値測定方法及び装置のさら
に他の実施例の要部を示す図である。
FIG. 11 is a diagram showing a main part of still another embodiment of the characteristic value measuring method and apparatus according to the present invention.

【図12】本発明による特性値測定方法及び装置のさら
に他の実施例を示す図である。
FIG. 12 is a diagram showing still another embodiment of the characteristic value measuring method and apparatus according to the present invention.

【図13】本発明による特性値測定方法及び装置のさら
に他の実施例を示す図である。
FIG. 13 is a diagram showing still another embodiment of the characteristic value measuring method and apparatus according to the present invention.

【図14】本発明による特性値測定方法及び装置のさら
に他の実施例の要部を示す図である。
FIG. 14 is a diagram showing a main part of still another embodiment of the characteristic value measuring method and apparatus according to the present invention.

【符号の説明】[Explanation of symbols]

1 光源 2 コリメート用レンズ 3 偏光板 4 波長限定用光学素子 5 照明側レンズ 6 検出側レンズ 7 検出器 8,9 記憶装置 10,11 演算部 12 測定対象薄膜 12a ベアシリコンウエハ 13 参照試料 15 照明光線 16 反射平行光束 17 検出側レンズ6の後焦点面 19 ウエハチャック 20 参照試料片 21 測定対象薄膜付きウェハ 22〜25 記憶装置 26 演算部 27 光量センサ 28 モニタ用レンズ 29 ハーフミラー 30 平均演算装置 31,32 記憶装置 33 遮光板 34 ミラー 35 ハーフミラー 36,37 ミラー 38〜44 記憶装置 45 露光光照明系 46 露光用光源 47 露光用レンズ 48 露光光線 DESCRIPTION OF SYMBOLS 1 light source 2 collimating lens 3 polarizing plate 4 wavelength limiting optical element 5 illumination side lens 6 detection side lens 7 detector 8, 9 storage device 10, 11 arithmetic unit 12 thin film to be measured 12a bare silicon wafer 13 reference sample 15 illumination light beam 16 Reflected parallel light flux 17 Rear focal plane of detection side lens 19 Wafer chuck 20 Reference sample piece 21 Wafer with measurement target thin film 22-25 Storage device 26 Calculation unit 27 Light intensity sensor 28 Monitor lens 29 Half mirror 30 Average calculation device 31, 32 storage device 33 light-shielding plate 34 mirror 35 half mirrors 36, 37 mirrors 38-44 storage device 45 exposure light illumination system 46 exposure light source 47 exposure lens 48 exposure light beam

───────────────────────────────────────────────────── フロントページの続き (72)発明者 窪田 仁志 神奈川県横浜市戸塚区吉田町292番地 株 式会社日立製作所生産技術研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hitoshi Kubota, 292 Yoshida-cho, Totsuka-ku, Yokohama, Kanagawa Prefecture

Claims (16)

【特許請求の範囲】[Claims] 【請求項1】 薄膜試料を収束光で照明し、試料から反
射する発散光を検出するレンズの後焦点面強度分布から
薄膜の特性値を測定する方法において、 屈折率と吸収係数が既知の参照試料の後焦点面強度分布
と、該参照試料の反射率の入射角依存特性の理論計算値
を用い、薄膜試料の後焦点面強度分布を反射率の入射角
依存特性に変換した後、薄膜の膜厚、屈折率、吸収係数
のどれか1つ以上を算出することを特徴とする特性値測
定方法。
1. A method for measuring a characteristic value of a thin film from a back focal plane intensity distribution of a lens, which illuminates a thin film sample with convergent light and detects divergent light reflected from the sample, and a reference having a known refractive index and absorption coefficient. After converting the back focal plane intensity distribution of the thin film sample into the incident angle dependent characteristic of the reflectance by using the theoretical calculation value of the back focal plane intensity distribution of the sample and the reflectance of the reference sample, A method for measuring a characteristic value, which comprises calculating at least one of a film thickness, a refractive index, and an absorption coefficient.
【請求項2】 請求項1において、 試料を退避して検出した後焦点面強度分布を用いて、薄
膜試料の反射率の入射角依存特性を算出することを特徴
とする特性値測定方法。
2. The characteristic value measuring method according to claim 1, wherein the incident angle dependence characteristic of the reflectance of the thin film sample is calculated by using the focal plane intensity distribution after the sample is retracted and detected.
【請求項3】 請求項1において、 照明光強度検出値を用いて、薄膜試料の反射率の入射角
依存特性を算出することを特徴とする特性値測定方法。
3. The characteristic value measuring method according to claim 1, wherein the incident angle dependence characteristic of the reflectance of the thin film sample is calculated using the detected value of the illumination light intensity.
【請求項4】 請求項1において、 後焦点面強度が複数回の測定結果の平均値であることを
特徴とする特性値測定方法。
4. The characteristic value measuring method according to claim 1, wherein the back focal plane intensity is an average value of a plurality of measurement results.
【請求項5】 請求項1において、 薄膜試料の後焦点面強度分布を変換して求めた反射率の
入射角依存特性と、任意の膜厚、屈折率、吸収係数の組
を代入して理論計算した反射率の入射角依存特性を比較
し、両者が最も一致する場合の、膜厚、屈折率、吸収係
数の組を算出することを特徴とする特性値測定方法。
5. The theory according to claim 1, wherein the incident angle dependence characteristic of reflectance obtained by converting the back focal plane intensity distribution of the thin film sample and a set of arbitrary film thickness, refractive index and absorption coefficient are substituted. A method for measuring a characteristic value, characterized in that the calculated incident angle dependence characteristics of the reflectance are compared with each other, and a pair of the film thickness, the refractive index, and the absorption coefficient is calculated when the two best match.
【請求項6】 請求項1において、 薄膜の吸収係数の小さい波長で膜厚を求め、該膜厚値を
用いて薄膜の吸収係数が大きい波長での屈折率、吸収係
数のどれか1つ以上を算出することを特徴とする特性値
測定方法。
6. The method according to claim 1, wherein the film thickness is obtained at a wavelength at which the absorption coefficient of the thin film is small, and one or more of a refractive index and an absorption coefficient at a wavelength at which the absorption coefficient of the thin film is large is obtained using the film thickness value. A method for measuring a characteristic value, which comprises:
【請求項7】 請求項1において、 感光性の薄膜を感光する前後の後焦点面強度分布を検
出,記憶し、記憶した感光後の後焦点面強度分布から膜
厚を求め、該膜厚値を用いて感光前の後焦点面強度分布
から、薄膜の感光前の屈折率,吸収係数のどれか1つ以
上を算出することを特徴とする特性値測定方法。
7. The film thickness value according to claim 1, wherein the back focal plane intensity distribution before and after exposing the photosensitive thin film is detected and stored, and the film thickness is obtained from the stored back focal plane intensity distribution after exposure. Is used to calculate at least one of the refractive index and the absorption coefficient of the thin film before exposure from the back focal plane intensity distribution before exposure.
【請求項8】 薄膜の吸収係数の小さい波長で膜厚を求
め、該膜厚値を用いて薄膜の吸収係数が大きい波長での
屈折率,吸収係数のどれか1つ以上を算出することを特
徴とする特性値測定方法。
8. A method for obtaining a film thickness at a wavelength having a small absorption coefficient of a thin film, and using the film thickness value to calculate at least one of a refractive index and an absorption coefficient at a wavelength having a large absorption coefficient of the thin film. Characteristic characteristic value measuring method.
【請求項9】 感光性の薄膜を感光して吸収係数を小さ
くした後で膜厚を求め、該膜厚値を用いて感光開始時の
薄膜の吸収係数が大きいときの屈折率,吸収係数のどれ
か1つ以上算出することを特徴とする特性値測定方法。
9. A photosensitive thin film is exposed to light to reduce its absorption coefficient, and then the film thickness is obtained. The film thickness value is used to determine the refractive index and absorption coefficient when the absorption coefficient of the thin film at the start of exposure is large. A method for measuring a characteristic value, which comprises calculating one or more of them.
【請求項10】 薄膜の特性値を測定する装置であっ
て、 光源と、 試料を収束光で照明するレンズと、 試料から反射する発散光を検出するレンズと、 該レンズの後焦点面強度分布を検出する装置と、 屈折率と吸収係数が既知の参照試料と、 薄膜試料と参照試料の後焦点面強度分布と参照試料の反
射率の入射角依存特性の理論計算値から薄膜試料の反射
率の入射角依存特性を算出し、さらに薄膜試料の反射率
の入射角依存特性から薄膜の膜厚、屈折率、吸収係数の
どれか1つ以上を算出する演算装置とからなる薄膜特性
値測定装置。
10. A device for measuring a characteristic value of a thin film, comprising: a light source, a lens for illuminating a sample with convergent light, a lens for detecting divergent light reflected from the sample, and a back focal plane intensity distribution of the lens. A thin film sample, a reference sample with a known refractive index and absorption coefficient, a thin film sample and a reference sample, the back focal plane intensity distribution, and the theoretical calculation value of the incident angle dependence characteristics of the reflectance of the reference sample. Thin film characteristic value measuring device comprising an arithmetic unit for calculating the incident angle dependent characteristic of the thin film sample and further calculating one or more of the film thickness, the refractive index and the absorption coefficient of the thin film from the incident angle dependent characteristic of the reflectance of the thin film sample. .
【請求項11】 請求項10において、 薄膜試料と参照試料を同時に載置台に搭載することを特
徴とする薄膜特性値測定装置。
11. The thin film characteristic value measuring device according to claim 10, wherein the thin film sample and the reference sample are simultaneously mounted on a mounting table.
【請求項12】 請求項10において、 試料を収束光で照明するレンズが、光軸が試料に対し垂
直で、反射光を検出するレンズと兼用し、光軸付近には
照明光を通過させないことを特徴とする薄膜特性値測定
装置。
12. The lens for illuminating a sample with convergent light according to claim 10, wherein the optical axis is perpendicular to the sample and also serves as a lens for detecting reflected light, and the illumination light does not pass near the optical axis. A thin film characteristic value measuring device characterized by:
【請求項13】 請求項10において、 試料を収束光で照明するレンズが、光軸が試料に対し垂
直で、反射光を検出するレンズと兼用し、光軸付近には
照明光を通過させず、また照明光と反射光のレンズ透過
位置が異なることを特徴とする薄膜特性値測定装置。
13. The lens for illuminating a sample with convergent light according to claim 10, wherein the optical axis is perpendicular to the sample and also serves as a lens for detecting reflected light, and the illumination light does not pass near the optical axis. Further, a thin film characteristic value measuring device characterized in that the lens transmission positions of the illumination light and the reflected light are different.
【請求項14】 請求項10において、 光源から異なる波長光を取り出す装置と、 各波長での後焦点面強度分布の検出値を記憶する装置
と、 試料の吸収係数が小さい波長での後焦点面強度分布から
膜厚を求め、その膜厚値とその他の各波長での後焦点面
強度分布から屈折率、吸収係数のどれか1つ以上を算出
する演算装置とを有することを特徴とする薄膜特性値測
定装置。
14. The device for extracting light of different wavelengths from a light source, the device for storing the detected value of the intensity distribution of the back focal plane at each wavelength, and the back focal plane at the wavelength where the absorption coefficient of the sample is small according to claim 10. A thin film having a calculation device for obtaining a film thickness from the intensity distribution and calculating at least one of a refractive index and an absorption coefficient from the film thickness value and the back focal plane intensity distribution at other wavelengths. Characteristic value measuring device.
【請求項15】 請求項10において、 測定対象を感光性薄膜として、感光前と感光後に検出し
た後焦点面強度分布の検出値を記憶する装置と、 感光後の後焦点面強度分布から膜厚を求め、その膜厚値
と感光前の後焦点面強度分布から薄膜の感光前の屈折
率,吸収係数のどれか1つ以上を算出する演算装置とを
有することを特徴とする薄膜特性値測定装置。
15. The apparatus according to claim 10, wherein the measurement target is a photosensitive thin film, and a device for storing the detected values of the back focal plane intensity distribution detected before and after the exposure, and the film thickness from the back focal plane intensity distribution after the exposure. And a calculation device for calculating at least one of the refractive index and the absorption coefficient of the thin film before exposure from the film thickness value and the back focal plane intensity distribution before exposure. apparatus.
【請求項16】 鏡面試料を収束光で照明し、該鏡面試
料から反射する発散光を検出するレンズの後焦点面強度
分布から、該鏡面の特性値を測定する方法において、 屈折率と吸収係数が既知の参照試料の後焦点面強度分布
と、該参照試料の反射率の入射角依存特性の理論計算値
とを用い、 該鏡面試料の後焦点面強度分布を反射率の入射角依存特
性に変換した後、鏡面の屈折率、吸収係数のどれか1つ
以上を算出することを特徴とする特性値測定方法。
16. A method of measuring a characteristic value of a specular surface from a back focal plane intensity distribution of a lens for illuminating a specular sample with convergent light and detecting divergent light reflected from the specular sample, the method comprising: Is used to calculate the back focal plane intensity distribution of the reference sample and the theoretical calculation value of the incident angle dependent characteristic of the reflectance of the reference sample, and the back focal plane intensity distribution of the specular sample is set to the incident angle dependent characteristic of the reflectance. After conversion, at least one of the refractive index and the absorption coefficient of the mirror surface is calculated, and the characteristic value measuring method is characterized.
JP20071993A 1993-08-12 1993-08-12 Characteristic value measuring method and device Expired - Fee Related JP3219223B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20071993A JP3219223B2 (en) 1993-08-12 1993-08-12 Characteristic value measuring method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20071993A JP3219223B2 (en) 1993-08-12 1993-08-12 Characteristic value measuring method and device

Publications (2)

Publication Number Publication Date
JPH0791926A true JPH0791926A (en) 1995-04-07
JP3219223B2 JP3219223B2 (en) 2001-10-15

Family

ID=16429071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20071993A Expired - Fee Related JP3219223B2 (en) 1993-08-12 1993-08-12 Characteristic value measuring method and device

Country Status (1)

Country Link
JP (1) JP3219223B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11351830A (en) * 1998-06-05 1999-12-24 Dainippon Printing Co Ltd Method for inspecting film thickness unevenness of coating material
JP2007033361A (en) * 2005-07-29 2007-02-08 Kumamoto Univ Method and device for measuring thin film thickness
WO2010110926A3 (en) * 2009-03-27 2011-01-13 N&K Technology, Inc. Method and apparatus for phase-compensated sensitivity-enhanced spectroscopy (pcses)
US8699023B2 (en) 2010-09-17 2014-04-15 Hamamatsu Photonics K.K. Reflectivity measuring device, reflectivity measuring method, membrane thickness measuring device, and membrane thickness measuring method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11351830A (en) * 1998-06-05 1999-12-24 Dainippon Printing Co Ltd Method for inspecting film thickness unevenness of coating material
JP2007033361A (en) * 2005-07-29 2007-02-08 Kumamoto Univ Method and device for measuring thin film thickness
WO2010110926A3 (en) * 2009-03-27 2011-01-13 N&K Technology, Inc. Method and apparatus for phase-compensated sensitivity-enhanced spectroscopy (pcses)
US8699023B2 (en) 2010-09-17 2014-04-15 Hamamatsu Photonics K.K. Reflectivity measuring device, reflectivity measuring method, membrane thickness measuring device, and membrane thickness measuring method
DE112011103113B4 (en) 2010-09-17 2022-11-10 Hamamatsu Photonics K.K. Reflectivity measurement method, membrane thickness measurement device and membrane thickness measurement method

Also Published As

Publication number Publication date
JP3219223B2 (en) 2001-10-15

Similar Documents

Publication Publication Date Title
US10274370B2 (en) Inspection apparatus and method
KR960013677B1 (en) Apparatus and method for interferometrically measuring the thickness of thin films using full aperture irradiation
US4999014A (en) Method and apparatus for measuring thickness of thin films
US5543919A (en) Apparatus and method for performing high spatial resolution thin film layer thickness metrology
KR102549058B1 (en) Optical measurement apparatus and optical measurement method
JP5790644B2 (en) Inspection apparatus and inspection method
US11131629B2 (en) Apparatus and methods for measuring phase and amplitude of light through a layer
JP2009204621A (en) Method and apparatus for angular-resolved spectroscopic lithography characterization
JPH0330802B2 (en)
KR940016660A (en) Thin Film Thickness Measurement Apparatus and Method
JP2002532696A (en) Method and apparatus for optically controlling the manufacturing process of a microstructured surface in semiconductor manufacturing
JPH03183904A (en) Detection of shape of object
JP7303887B2 (en) Scaling Index for Quantifying Weighing Sensitivity to Process Variation
US7450225B1 (en) Correction of optical metrology for focus offset
JP3106790B2 (en) Thin film characteristic value measuring method and apparatus
KR100627783B1 (en) Method for producing a library
JP3139020B2 (en) Photomask inspection apparatus and photomask inspection method
JP3219223B2 (en) Characteristic value measuring method and device
JPH04229864A (en) Photomask tester
JPS62182612A (en) Apparatus for measuring surface position of specimen
Matsukata et al. Technology for high density CD measurement of EUV-processed resist patterns across a wafer ensuring high throughput and precision
JPWO2021154617A5 (en)
JPH0447243B2 (en)
JPH06347244A (en) Method and apparatus for measurement of surface roughness

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070810

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080810

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080810

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090810

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees