JP3106790B2 - Thin film characteristic value measuring method and apparatus - Google Patents
Thin film characteristic value measuring method and apparatusInfo
- Publication number
- JP3106790B2 JP3106790B2 JP05217202A JP21720293A JP3106790B2 JP 3106790 B2 JP3106790 B2 JP 3106790B2 JP 05217202 A JP05217202 A JP 05217202A JP 21720293 A JP21720293 A JP 21720293A JP 3106790 B2 JP3106790 B2 JP 3106790B2
- Authority
- JP
- Japan
- Prior art keywords
- thin film
- wavelength
- measuring
- absorption coefficient
- sample
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Length Measuring Devices By Optical Means (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、薄膜の膜厚、屈折率、
吸収係数の測定方法および装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin film having a thickness, a refractive index,
The present invention relates to a method and an apparatus for measuring an absorption coefficient.
【0002】[0002]
【従来の技術】薄膜特性値(膜厚、屈折率、吸収係数)
を光学的に測定する従来技術には、偏光解析法と入射角
依存反射特性解析法がある。いずれもレジスト膜に入射
した光が、空気と薄膜の境界面および薄膜の基板の境界
面で繰返し反射し干渉する物理現象に基づき、各特性値
を求めるものである。2. Description of the Related Art Thin film characteristics (film thickness, refractive index, absorption coefficient)
In the prior art for optically measuring, there are an ellipsometry and an incident angle dependent reflection characteristic analysis. In each case, each characteristic value is obtained based on a physical phenomenon in which light incident on the resist film repeatedly reflects and interferes with the interface between the air and the thin film and the interface between the thin film and the substrate.
【0003】偏光解析法(例えば田幸敏治他編、「光学
的測定ハンドブック」、pp256−265、朝倉書店
(1981))は、斜めから光を照射し、P偏光成分と
S偏光成分の反射強度と位相差から膜特性値を計算で求
める。偏光解析法で被測定膜の膜厚、屈折率、吸収係数
の3つの未知量を求めるには、2つ以上の入射角で偏光
解析を行う必要があるため、装置が複雑となり高速には
測定できない。また測定感度は入射角に依存するため、
被測定膜が未知の場合には、入射角を変えた測定を繰返
さなければ高精度に測定出来ない。The polarization analysis method (for example, “Optical Measurement Handbook”, edited by Toshiharu Tada et al., Pp. 256-265, Asakura Shoten (1981)) irradiates light obliquely and reflects the reflection intensity of a P-polarized component and an S-polarized component. The film characteristic value is calculated from the phase difference. In order to determine the three unknowns of the film thickness, refractive index, and absorption coefficient of the film to be measured by ellipsometry, it is necessary to perform ellipsometry at two or more incident angles. Can not. Also, since the measurement sensitivity depends on the angle of incidence,
When the film to be measured is unknown, high-precision measurement cannot be performed unless measurement at different incident angles is repeated.
【0004】入射角依存反射特性解析法は、入射角を変
化させたときの反射強度の変化から各特性値を求める方
法である。特開平2−128106号は、光学系全体を
機械的に走査して3つの入射角での強度反射率から膜
厚、屈折率、吸収係数を測定する方法を開示している。
しかし機械的に走査して反射光を検出する方式であるた
め高速には測定できない。また高精度に測定するには反
射率の検出精度を十分高くする必要があり、複雑で高価
な測定装置が必要になる。The incident angle dependent reflection characteristic analysis method is a method for obtaining each characteristic value from a change in reflection intensity when the incident angle is changed. JP-A-2-128106 discloses a method for mechanically scanning the entire optical system to measure the film thickness, refractive index, and absorption coefficient from the intensity reflectance at three incident angles.
However, it is not possible to measure at high speed because of the method of detecting reflected light by mechanical scanning. In order to measure with high accuracy, it is necessary to make the detection accuracy of the reflectance sufficiently high, and a complicated and expensive measuring device is required.
【0005】入射角依存反射特性を高速、安定に検出す
る方法として、等傾角干渉(マックス・ボルン他著、
「光学の原理II」、pp454−456、東海大学出版
会)と呼ばれる光学現象を利用したものがある。適当な
入射角範囲にわたる収束光で被測定膜を照明し、反射光
を検出用レンズに通過させると、検出用レンズの後焦点
面には干渉縞が生じる。これは等傾角干渉縞と呼ばれ、
その強度は入射角依存反射特性に対応している。そこで
等傾角干渉縞の強度分布をアレイセンサで撮像すれば、
可動部を用いずに入射角依存反射特性を検出でき、膜厚
や屈折率を求められる。特公昭62−49562号、特
開昭64−75902号、特開平4−313006号
は、照明用と検出用の対向する2つのレンズを用いた光
学系により等傾角干渉縞を検出し、干渉縞強度が極値と
なる入射角から膜厚と屈折率を求める方法を開示してい
る。As a method for detecting the incident angle dependent reflection characteristic at high speed and in a stable manner, equitilt interference (Max Born et al.,
There is an optical principle called "optical principle II", pp 454-456, Tokai University Press. When the film to be measured is illuminated with convergent light over an appropriate incident angle range and the reflected light is passed through the detection lens, interference fringes occur on the rear focal plane of the detection lens. This is called equi-tilt interference fringes,
The intensity corresponds to the incident angle dependent reflection characteristics. Therefore, if the intensity distribution of equi-tilt interference fringes is imaged by an array sensor,
The incident angle dependent reflection characteristic can be detected without using a movable part, and the film thickness and the refractive index can be obtained. JP-B-62-49562, JP-A-64-75902, and JP-A-4-313006 detect equi-tilt interference fringes by an optical system using two opposing lenses for illumination and detection. It discloses a method of obtaining a film thickness and a refractive index from an incident angle at which the intensity has an extreme value.
【0006】また特開平3−17505号では、光軸が
被測定膜に垂直な一つのレンズに照明光と反射光を通過
させ、同心円状に生じる等傾角干渉縞から膜厚と屈折率
を測定する方法を開示している。この方式では高NAレ
ンズを用いることで収束光を絞り込み、非常に小さな領
域の膜厚と屈折率の測定を可能にしている。しかし上記
した等傾角干渉縞を用いた従来技術はいずれも、吸収の
ある薄膜、すなわち吸収係数が0でない薄膜の測定につ
いては詳しく言及されていない。In Japanese Patent Application Laid-Open No. 3-17505, illumination light and reflected light are passed through one lens whose optical axis is perpendicular to the film to be measured, and the film thickness and the refractive index are measured from concentric equi-tilt interference fringes. A method for doing so is disclosed. In this method, the convergent light is narrowed down by using a high NA lens, and the measurement of the film thickness and the refractive index in a very small area is enabled. However, none of the above-mentioned prior arts using equi-tilt interference fringes describes in detail the measurement of an absorbing thin film, that is, a thin film having an absorption coefficient other than 0.
【0007】[0007]
【発明が解決しようとする課題】本発明は、等傾角干渉
縞を検出することにより、薄膜の膜厚と屈折率だけでな
く、吸収係数も高速、安定に測定する装置を提供するも
のである。SUMMARY OF THE INVENTION The present invention provides an apparatus for detecting not only the thickness and refractive index of a thin film but also an absorption coefficient at high speed and stably by detecting equi-tilt interference fringes. .
【0008】本発明の目的は、吸収性のある薄膜の膜厚
と特定波長における屈折率と吸収係数を測定する方法を
提供することにある。It is an object of the present invention to provide a method for measuring the thickness of a thin film having absorptivity, the refractive index at a specific wavelength, and the absorption coefficient.
【0009】本発明の他の目的は、吸収性のある薄膜の
膜厚と特定波長における屈折率と吸収係数を測定するた
めに、迷光を含まずに等傾角干渉縞の強度分布を正確に
検出できる光学系を提供することにある。Another object of the present invention is to accurately detect the intensity distribution of equi-tilt interference fringes without including stray light in order to measure the thickness of an absorptive thin film and the refractive index and absorption coefficient at a specific wavelength. It is to provide an optical system which can be used.
【0010】本発明の他の目的は、ホトレジスト等の感
光性薄膜の膜厚及び、感光波長における屈折率と吸収係
数の測定方法を提供することにある。It is another object of the present invention to provide a method for measuring the thickness of a photosensitive thin film such as a photoresist, and the refractive index and absorption coefficient at a photosensitive wavelength.
【0011】[0011]
【課題を解決するための手段】薄膜の吸収係数を求める
には、絶対値が正確な入射角依存強度反射率を測定する
必要がある。しかし被測定膜の等傾角干渉縞強度分布、
すなわち入射角依存反射光強度分布I(θ)は、照明光強
度分布S(θ)と入射角依存強度反射率R(θ)の積にな
り、I(θ)はR(θ)に一致しない。そこで本発明では照
明光強度分布S(θ)の影響を除去するため、測定波長で
の屈折率と吸収係数が既知の参照用鏡面試料の入射角依
存反射光強度分布Iref(θ)を検出し、さらに参照用鏡
面試料の測定波長での屈折率と吸収係数から入射角依存
強度反射率Rref(θ)を理論計算する。そして被測定膜
の入射角依存反射光強度分布I(θ)を参照用鏡面試料の
入射角依存反射光強度分布Iref(θ)で割算し、これに
参照用鏡面試料の入射角依存強度反射率Rref(θ)を乗
ずることで、被測定膜の入射角依存強度反射率R(θ)を
求める。To determine the absorption coefficient of a thin film, it is necessary to measure the incident angle dependent intensity reflectance whose absolute value is accurate. However, equidistant interference fringe intensity distribution of the film to be measured,
That is, the incident angle dependent reflected light intensity distribution I (θ) is the product of the illumination light intensity distribution S (θ) and the incident angle dependent intensity reflectance R (θ), and I (θ) does not match R (θ). . Therefore, in the present invention, in order to remove the influence of the illumination light intensity distribution S (θ), the incident angle dependent reflected light intensity distribution I ref (θ) of the reference mirror sample whose refractive index and absorption coefficient at the measurement wavelength are known is detected. Then, the incident angle dependent intensity reflectance R ref (θ) is theoretically calculated from the refractive index and the absorption coefficient of the reference mirror sample at the measurement wavelength. Then, the incident angle-dependent reflected light intensity distribution I (θ) of the film to be measured is divided by the incident angle-dependent reflected light intensity distribution I ref (θ) of the reference mirror sample, and the incident angle dependent intensity of the reference mirror sample is calculated. By multiplying the reflectance R ref (θ), the incident angle dependent intensity reflectance R (θ) of the film to be measured is obtained.
【0012】また光軸が被測定膜に垂直な一つのレンズ
に照明光と反射光を通過させて等傾角干渉縞を検出する
光学系を用いる場合には、レンズの光軸付近を通過する
照明光を遮るための遮光板を照明光学系に挿入する。こ
れにより迷光の影響を受けずに、等傾角干渉縞の強度分
布を正確に検出する。In the case where an optical system for detecting the equi-tilt interference fringes by passing illumination light and reflected light through one lens whose optical axis is perpendicular to the film to be measured is used, illumination passing near the optical axis of the lens is used. A light blocking plate for blocking light is inserted into the illumination optical system. Thus, the intensity distribution of the equi-tilt interference fringes is accurately detected without being affected by stray light.
【0013】感光性薄膜の膜厚と、感光波長における屈
折率と吸収係数を精度良く測定するには、感光波長での
測定だけでなく非感光波長での測定も行う。まず非感光
波長で等傾角干渉縞を検出し、膜厚と非感光波長におけ
る屈折率と吸収係数を求める。ここで求めた膜厚を既知
の値として、次に感光波長で等傾角干渉縞を検出し、感
光波長における屈折率と吸収係数を求める。In order to accurately measure the thickness of the photosensitive thin film and the refractive index and absorption coefficient at the photosensitive wavelength, not only the measurement at the photosensitive wavelength but also the measurement at the non-photosensitive wavelength are performed. First, equitilt interference fringes are detected at the non-photosensitive wavelength, and the film thickness, the refractive index and the absorption coefficient at the non-photosensitive wavelength are obtained. With the film thickness obtained here as a known value, next, equi-tilt interference fringes are detected at the photosensitive wavelength, and the refractive index and the absorption coefficient at the photosensitive wavelength are determined.
【0014】[0014]
【作用】参照用鏡面試料の入射角依存反射光強度分布I
ref(θ)は、照明光強度分布S(θ)と入射角依存強度反
射率Rref(θ)の積になる。このため被測定膜の入射角
依存反射光強度分布I(θ)を参照用鏡面試料の入射角依
存反射光強度分布Iref(θ)で割算すれば、照明光強度
分布S(θ)を消去でき、R(θ)/Rref(θ)となる。こ
れに参照用鏡面試料の入射角依存強度反射率Rref(θ)
の理論計算値を乗ずることで、被測定膜の入射角依存強
度反射率R(θ)が求まる。[Function] Incident angle dependent reflected light intensity distribution I of a mirror sample for reference
ref (θ) is the product of the illumination light intensity distribution S (θ) and the incident angle dependent intensity reflectance R ref (θ). Therefore, if the incident angle dependent reflected light intensity distribution I (θ) of the film to be measured is divided by the incident angle dependent reflected light intensity distribution I ref (θ) of the reference specular sample, the illumination light intensity distribution S (θ) is obtained. It can be erased and becomes R (θ) / R ref (θ). In addition, the incident angle-dependent intensity reflectance R ref (θ) of the mirror sample for reference
By multiplying by the theoretical calculation value of the above, the incident angle dependent intensity reflectance R (θ) of the film to be measured is obtained.
【0015】レンズの光軸付近では、レンズ表面が光軸
にほぼ垂直である。このため光軸が被測定膜に垂直なレ
ンズを用いた等傾角干渉縞検出光学系では、レンズ表面
で反射した光が迷光として検出されてしまう。しかし照
明光学系に遮光板を挿入し、光軸付近を通過する照明光
を遮れば迷光は生じず、等傾角干渉縞の強度分布を正確
に検出できる。Near the optical axis of the lens, the surface of the lens is substantially perpendicular to the optical axis. For this reason, in an equi-tilt interference fringe detection optical system using a lens whose optical axis is perpendicular to the film to be measured, light reflected on the lens surface is detected as stray light. However, if a light shielding plate is inserted into the illumination optical system to block illumination light passing near the optical axis, no stray light is generated, and the intensity distribution of the equi-tilt interference fringes can be accurately detected.
【0016】感光性薄膜は、感光波長域の吸収係数が大
きく、非感光波長域では吸収係数がほぼ0である。測定
光が感光波長の光の場合は、被測定膜に吸収性があるた
め、膜中を通過する間に振幅が減衰する。このため被測
定膜を通過する光の振幅が、被測定膜の表面で反射した
光に比べ小さくなり、等傾角干渉縞のコントラストが低
下する。この干渉縞は膜厚に関する情報を多く持ってい
ないため、膜厚、屈折率、吸収係数の3つの未知数を同
時に精度良く求められない。The photosensitive thin film has a large absorption coefficient in the photosensitive wavelength region, and has almost zero absorption coefficient in the non-photosensitive wavelength region. When the measurement light is light having a photosensitive wavelength, the amplitude is attenuated while passing through the film because the film to be measured has absorptivity. For this reason, the amplitude of the light passing through the film to be measured is smaller than the light reflected on the surface of the film to be measured, and the contrast of the equi-tilt interference fringes is reduced. Since this interference fringe does not have much information on the film thickness, three unknowns of the film thickness, the refractive index, and the absorption coefficient cannot be simultaneously and accurately obtained.
【0017】一方、非感光波長の測定光にすれば、被測
定膜での吸収がなく膜内で振幅が減衰しない。このため
膜厚に関する情報を十分含んだ良好なコントラストの等
傾角干渉縞を検出できる。そこで非感光波長の干渉縞か
ら、感光性薄膜の膜厚と非感光波長における屈折率と吸
収係数をまず求める。ここで求めた膜厚を既知の値とす
れば、感光波長での干渉縞から感光波長における屈折率
と吸収係数を求めることができる。On the other hand, if the measurement light is a non-photosensitive wavelength, there is no absorption in the film to be measured and the amplitude does not attenuate in the film. Therefore, it is possible to detect equi-tilt interference fringes having good contrast and sufficiently including information on the film thickness. Therefore, the thickness of the photosensitive thin film, the refractive index at the non-photosensitive wavelength, and the absorption coefficient are first determined from the interference fringes at the non-photosensitive wavelength. If the thickness determined here is a known value, the refractive index and the absorption coefficient at the photosensitive wavelength can be determined from the interference fringes at the photosensitive wavelength.
【0018】[0018]
【実施例】以下本発明の実施例を説明する。まず本発明
に関連する光学的な現象と、薄膜特性値(膜厚d、屈折
率n、吸収係数k)測定法の原理を説明する。なお薄膜
とは、図4に示すように、基板23上の薄膜21であ
り、空気と薄膜21の境界面24と、薄膜21と基板2
3の境界面25は平行であるとする。Embodiments of the present invention will be described below. First, optical phenomena related to the present invention and the principle of a method of measuring thin film characteristic values (thickness d, refractive index n, absorption coefficient k) will be described. As shown in FIG. 4, the thin film is the thin film 21 on the substrate 23, and the interface 24 between the air and the thin film 21, the thin film 21 and the substrate 2
3 is assumed to be parallel.
【0019】薄膜21に入射角θで照明光32が入射す
ると、境界面24での反射と透過および、境界面25で
の反射を繰り返す。2つの境界面は平行なため、薄膜か
ら反射された光は、同図に示すような平行光束33とな
る。この平行光束をレンズ6に通過させると、レンズの
後焦点面34上の1点Pに集光し干渉する。P点の位置
と干渉強度は入射角により変化するため、後焦点面34
上には明暗の縞が生じ、これは等傾角干渉縞と呼ばれ
る。等傾角干渉縞は、入射角に依存した薄膜の強度反射
率に対応しているので、この干渉縞を観測することで、
薄膜の膜厚、屈折率、吸収係数を測定する。When the illumination light 32 enters the thin film 21 at an incident angle θ, reflection and transmission at the boundary surface 24 and reflection at the boundary surface 25 are repeated. Since the two boundary surfaces are parallel, the light reflected from the thin film becomes a parallel light beam 33 as shown in FIG. When this parallel light beam passes through the lens 6, it is condensed and interferes with one point P on the rear focal plane 34 of the lens. Since the position of the point P and the interference intensity change depending on the incident angle, the rear focal plane 34
Bright and dark fringes occur on the upper part, which are called equi-tilt interference fringes. Since the equi-tilt interference fringes correspond to the intensity reflectance of the thin film depending on the incident angle, by observing the interference fringes,
The thickness, refractive index, and absorption coefficient of the thin film are measured.
【0020】薄膜の強度反射率Rは、以下の式で理論計
算される。なお添字 ' は複素数を示し、iは虚数単位
の記号である。The intensity reflectance R of the thin film is theoretically calculated by the following equation. The subscript 'indicates a complex number, and i is a symbol of an imaginary unit.
【0021】[0021]
【数1】 (Equation 1)
【0022】ここでr'は、薄膜の振幅(複素)反射率で
あり、r'*はr'の共役複素数である。変数を以下のよ
うに定義すると、r'は(数2)〜(数8)で表される。Where r 'is the amplitude (complex) reflectivity of the thin film, and r' * is the complex conjugate of r '. When the variables are defined as follows, r ′ is expressed by (Equation 2) to (Equation 8).
【0023】r01' :空気と薄膜21の境界面24での
振幅(複素)反射率 r12' :薄膜21と基板23との境界面25での振幅
(複素)反射率 δ' :薄膜内での一往復で生じる光路差 λ :照明光の波長 d :薄膜の膜厚 n0 :空気の屈折率(=1) n' :薄膜の複素屈折率。n'=n−ik n2' :基板の複素屈折率。n2'=n2−ik2 n2 :波長λにおける基板の屈折率 k2 :波長λにおける基板の吸収係数 θ :入射角 θ1' :薄膜内での屈折角 θ2' :基板内での屈折角R 01 ′: amplitude (complex) reflectance at the interface 24 between the air and the thin film 21 r 12 ′: amplitude at the interface 25 between the thin film 21 and the substrate 23
(Complex) reflectance δ ': optical path difference generated by one round trip in the thin film λ: wavelength of illumination light d: film thickness of the thin film n 0 : refractive index of air (= 1) n': complex refractive index of the thin film. n ′ = n−ik n 2 ′: complex refractive index of the substrate. n 2 ′ = n 2 −ik 2 n 2 : refractive index of substrate at wavelength λ k 2 : absorption coefficient of substrate at wavelength λ θ: incident angle θ 1 ′: refraction angle in thin film θ 2 ′: in substrate Angle of refraction
【0024】[0024]
【数2】 (Equation 2)
【0025】[0025]
【数3】 (Equation 3)
【0026】[0026]
【数4】 (Equation 4)
【0027】また境界面での振幅反射率はフレネルの式
で計算でき、照明光32がP偏光の場合、Further, the amplitude reflectance at the boundary surface can be calculated by the Fresnel equation. When the illumination light 32 is P-polarized light,
【0028】[0028]
【数5】 (Equation 5)
【0029】[0029]
【数6】 (Equation 6)
【0030】となり、照明光がS偏光の場合には、When the illumination light is S-polarized light,
【0031】[0031]
【数7】 (Equation 7)
【0032】[0032]
【数8】 (Equation 8)
【0033】となる。すなわち薄膜の強度反射率の理論
値Rthは、Rth(n0,d,n,k,n2,k2,θ,λ)という関
数で表現できる。## EQU1 ## That is, the theoretical value Rth of the intensity reflectance of the thin film can be expressed by a function of Rth (n 0 , d, n, k, n 2 , k 2 , θ, λ).
【0034】図5は、鏡面シリコン基板上の薄膜を、波
長365nmのP偏光光で照明したときの、入射角θに
依存した強度反射率Rの変化を理論計算した例である。
膜厚d、屈折率n、吸収係数kの組み合わせにより、強
度反射率Rの変化が異なることがわかる。吸収係数kが
増加すると、薄膜内で光エネルギが吸収されるため、強
度反射率Rが低下する傾向がある。また吸収係数kが異
なると、境界面での位相変化量が違うため、入射角依存
反射率が極値となる入射角も移動する。すなわち反射率
の極値となる入射角に着目した方法では、吸収のある薄
膜の特性値を測定できない。吸収のある薄膜の特性値を
測定するには、反射率の絶対値を用いる必要がある。FIG. 5 shows an example in which a change in the intensity reflectance R depending on the incident angle θ when a thin film on a mirror-finished silicon substrate is illuminated with P-polarized light having a wavelength of 365 nm is theoretically calculated.
It can be seen that the change in the intensity reflectance R differs depending on the combination of the film thickness d, the refractive index n, and the absorption coefficient k. When the absorption coefficient k increases, light energy is absorbed in the thin film, so that the intensity reflectance R tends to decrease. If the absorption coefficient k is different, the phase change amount at the boundary surface is different, so that the incident angle at which the incident angle-dependent reflectance becomes an extreme value also moves. In other words, the method focusing on the incident angle at which the reflectance has an extreme value cannot measure the characteristic value of the absorbing thin film. In order to measure the characteristic value of a thin film having absorption, it is necessary to use the absolute value of the reflectance.
【0035】入射角依存強度反射率の絶対値から薄膜特
性値を測定するには、被測定膜の入射角依存強度反射率
R(θ)を実測し、R(θ)と一致する理論反射率Rth
(n0,d,n,k,n2,k2,θ,λ)を探し出せばよい。これ
には以下に示す(数9)もしくは(数10)のいずれかの演
算を行う。In order to measure the characteristic value of the thin film from the absolute value of the incident angle dependent intensity reflectance, the incident angle dependent intensity reflectance R (θ) of the film to be measured is actually measured, and the theoretical reflectance matching R (θ) is measured. Rth
(n 0 , d, n, k, n 2 , k 2 , θ, λ) may be found. To do this, either one of the following (Equation 9) or (Equation 10) is performed.
【0036】[0036]
【数9】 (Equation 9)
【0037】[0037]
【数10】 (Equation 10)
【0038】ここで照明光はP偏光もしくはS偏光の直
線偏光でその偏光方向も既知とする。また空気の屈折率
n0、波長λ、波長λにおける基板の屈折率n2と吸収係
数k2も既知とし、これらは変数から除外してある。関
数M(d,n,k)は、実測反射率R(θ)と理論反射率Rth
(θ,d,n,k)の一致度を示す評価関数であり、(数9)
では複数の入射角での差の絶対値の総和、(数10)では
差の自乗の総和を演算するものである。そして評価関数
Mが最小な場合、実測反射率R(θ)と理論反射率Rth
(θ,d,n,k)が最も一致し、このときのd,n,kの
組を、波長λにおける被測定膜の測定値とすればよい。Here, the illumination light is linearly polarized light of P-polarized light or S-polarized light, and its polarization direction is also known. The refractive index n 0 of air, the wavelength λ, the refractive index n 2 of the substrate at the wavelength λ and the absorption coefficient k 2 are also known, and these are excluded from the variables. The function M (d, n, k) is obtained by measuring the measured reflectance R (θ) and the theoretical reflectance Rth.
An evaluation function indicating the degree of coincidence of (θ, d, n, k).
Calculates the sum of the absolute values of the differences at a plurality of incident angles, and (Equation 10) calculates the sum of the squares of the differences. When the evaluation function M is minimum, the measured reflectance R (θ) and the theoretical reflectance Rth
(θ, d, n, k) is the best, and the set of d, n, and k at this time may be the measured value of the film to be measured at the wavelength λ.
【0039】上記方式において、測定分解能の向上と計
算量の低減を両立する実施例を説明する。被測定膜で可
能性のある膜厚d、屈折率n、吸収係数kの最大、最小
をmax、minの添字で示し、測定分解能をdr、nr、kr
とすると、膜厚、屈折率、吸収係数の3つの未知数を決
定するために必要な(数9)もしくは(数10)の計算回数
C1は、An embodiment will be described in which both the improvement of the measurement resolution and the reduction of the calculation amount are achieved in the above-mentioned method. The maximum and minimum of the film thickness d, the refractive index n, and the absorption coefficient k that are possible in the film to be measured are indicated by subscripts of max and min, and the measurement resolution is dr , nr , kr .
Then, the number of calculations C 1 of (Equation 9) or (Equation 10) required to determine the three unknowns of the film thickness, the refractive index, and the absorption coefficient is
【0040】[0040]
【数11】 [Equation 11]
【0041】となる。ただし、Nd、Nn、Nkは各特
性値の分解点数である。dr、nr、krを小さくし高分
解能で計算すると、各分解点数が増加し、計算回数C1
は非常に膨大になる。そこで分解能を逐次向上させ計算
量を低減する。すなわち第1段階では測定分解能dr、
nr、krをある程度大きくして粗検出を行い、膜厚
d1、屈折率n1、吸収係数k1を求める。第2段階では
被測定膜の測定範囲をd1±Δd1、n1±Δn1、k1±
Δk1に限定するとともに測定分解能を小さくして膜厚
d2、屈折率n2、吸収係数k2を探索する。以降、被測
定膜の測定範囲と測定分解能をともに逐次小さくするこ
とで、必要な測定分解能に達するまでこの操作を繰り返
す。## EQU1 ## Here, Nd, Nn, and Nk are decomposition points of each characteristic value. When d r , n r , and k r are reduced and calculation is performed with high resolution, the number of decomposition points increases, and the number of calculations C 1
Will be very huge. Therefore, the resolution is sequentially improved and the amount of calculation is reduced. That is, in the first stage, the measurement resolution dr ,
Rough detection is performed by increasing n r and k r to some extent, and the film thickness d 1 , refractive index n 1 , and absorption coefficient k 1 are obtained. In the second stage, the measurement range of the film to be measured is d 1 ± Δd 1 , n 1 ± Δn 1 , k 1 ±
The film thickness d 2 , the refractive index n 2 , and the absorption coefficient k 2 are searched while limiting the measurement resolution to Δk 1 . Thereafter, this operation is repeated until the required measurement resolution is reached by sequentially reducing both the measurement range and the measurement resolution of the film to be measured.
【0042】これにより、膨大な計算を行わずに測定分
解能を向上できる。また第1段階での測定分解能が粗す
ぎると正しい結果に収束しないことがある。これを防止
するには、第1段階の粗検出では評価関数Mを最小な場
合を探すだけでなく、例えば最小値の2倍以下を満足す
る場合などの条件とし、複数のd、n、kの組合わせを
出力する。そして各粗検出結果に対して前記した第2段
階以降の処理を行い、最終的には評価関数Mを最小とす
るd、n、kの組合わせを求めればよい。As a result, the measurement resolution can be improved without performing enormous calculations. If the measurement resolution in the first stage is too coarse, it may not converge to a correct result. In order to prevent this, in the first stage of coarse detection, not only the case where the evaluation function M is minimized but also a condition such as satisfying twice or less of the minimum value, for example, a plurality of d, n, k Will be output. Then, the above-described second and subsequent steps are performed on each coarse detection result, and finally, a combination of d, n, and k that minimizes the evaluation function M may be obtained.
【0043】この方法での薄膜の膜厚d、屈折率n、吸
収係数kの測定を行うには、実測する被測定膜の入射角
依存強度反射率R(θ)の絶対値を正確に測定する必要が
ある。R(θ)を安定、高速に測定し、薄膜特性値を求め
る本発明の一実施例を図6を用いて説明する。In order to measure the thickness d, the refractive index n, and the absorption coefficient k of the thin film by this method, the absolute value of the incident angle dependent intensity reflectance R (θ) of the measured film to be measured is accurately measured. There is a need to. One embodiment of the present invention in which R (θ) is measured stably and at high speed to obtain a thin film characteristic value will be described with reference to FIG.
【0044】図6は薄膜の入射角依存強度反射率R(θ)
を測定し、薄膜の特性値を求める装置である。本測定装
置は光源1、コリメート用レンズ2、偏光素子3、単色
光透過フィルタ4、集光用の照明側レンズ5、検出側レ
ンズ6、検出側レンズ6の後焦点面34上で入射面内方
向の強度分布を検出する光量蓄積型のリニアセンサ7、
被測定膜の反射光強度分布を記憶する被測定膜メモリ
8、参照試料の反射光強度分布を記憶する参照試料メモ
リ9、センサの暗レベルを記憶する暗レベルメモリ1
2、被測定膜の入射角依存強度反射率を求める反射率演
算部10、(数9)もしくは(数10)の評価関数Mを用い
て薄膜特性値を求める特性値決定部11からなる。なお
照明側レンズ5と検出側レンズ6の光軸が試料面に入射
する角度はともにθdとする。FIG. 6 shows the incident angle dependent intensity reflectance R (θ) of the thin film.
Is a device for measuring a characteristic value of a thin film. The present measuring apparatus includes a light source 1, a collimating lens 2, a polarizing element 3, a monochromatic light transmission filter 4, a condensing illumination side lens 5, a detection side lens 6, and a detection side lens 6 on the rear focal plane 34 and in the incident plane. A light quantity accumulation type linear sensor 7 for detecting the intensity distribution in the direction;
Film memory 8 for storing the reflected light intensity distribution of the film to be measured, reference sample memory 9 for storing the reflected light intensity distribution of the reference sample, and dark level memory 1 for storing the dark level of the sensor
2. A reflectance calculation unit 10 for calculating the incident angle dependent intensity reflectance of the film to be measured, and a characteristic value determination unit 11 for obtaining a thin film characteristic value using the evaluation function M of (Equation 9) or (Equation 10). The angles at which the optical axes of the illumination side lens 5 and the detection side lens 6 enter the sample surface are both θd.
【0045】光源1をでた光は、コリメート用レンズ2
により平行光となり、偏光板3と単色光透過フィルタ4
を通過し、直線偏光の単色光となる。ここでは紙面に平
行なP偏光とする。P偏光単色光は照明側レンズ5によ
り収束され、試料を照明する。まず基板23上の被測定
膜21の反射光強度分布を測定する。ここで入射角θa
の照明光線32aは薄膜内で繰返し反射し、反射角θa
の平行光束33aとして反射される。図6では簡単のた
め2本の光線のみ記載した。平行光束33aは検出側レ
ンズ6を通過するとレンズの性質により、検出側レンズ
6の後焦点面34上の点Paに集光する。同様に入射角
θbの照明光線32bは、後焦点面34上の点Pbに集
光する。この様に光線の入射角θと後焦点面34上の集
光位置は1対1の関係があり、後焦点面上の反射光強度
分布は入射角依存反射光強度特性に対応する。The light emitted from the light source 1 is transmitted to a collimating lens 2.
Is converted into parallel light, and the polarizing plate 3 and the monochromatic light transmitting filter 4
And becomes monochromatic light of linearly polarized light. Here, the P-polarized light is parallel to the paper surface. The P-polarized monochromatic light is converged by the illumination side lens 5 and illuminates the sample. First, the reflected light intensity distribution of the film to be measured 21 on the substrate 23 is measured. Where the incident angle θa
Is repeatedly reflected in the thin film, and the reflection angle θa
Are reflected as a parallel light beam 33a. FIG. 6 shows only two light beams for simplicity. When passing through the detection-side lens 6, the parallel light beam 33 a condenses on a point Pa on the rear focal plane 34 of the detection-side lens 6 due to the nature of the lens. Similarly, the illumination light beam 32b having the incident angle θb is focused on a point Pb on the back focal plane. As described above, the incident angle θ of the light beam and the condensing position on the back focal plane 34 have a one-to-one relationship, and the reflected light intensity distribution on the rear focal plane corresponds to the incident angle dependent reflected light intensity characteristic.
【0046】いま検出側レンズ6が、よく収差補正され
正弦条件が成立したレンズであり、その焦点距離をfと
する。この場合、図7に示すように、検出側レンズ6の
光軸36から集光点Pまでの距離xと、光軸36と平行
光束33のなす角θpには、Now, the detection side lens 6 is a lens whose aberration is well corrected and the sine condition is satisfied, and its focal length is f. In this case, as shown in FIG. 7, the distance x from the optical axis 36 of the detection-side lens 6 to the focal point P and the angle θp formed by the optical axis 36 and the parallel light beam 33 are:
【0047】[0047]
【数12】 (Equation 12)
【0048】という関係がある。(数12)の正弦条件
は、レンズが良好な結像性能を有するために必要な条件
であり、顕微鏡対物レンズはこの条件を満足するように
設計されている。つまり検出側レンズ6には顕微鏡対物
レンズを用いれば良い。またθp=θ−θdであるた
め、There is a relationship as follows. The sine condition of (Equation 12) is a condition necessary for the lens to have good imaging performance, and the microscope objective lens is designed to satisfy this condition. That is, a microscope objective lens may be used as the detection lens 6. Since θp = θ−θd,
【0049】[0049]
【数13】 (Equation 13)
【0050】となる。そこでリニアセンサ7で検出した
検出側レンズ6の後焦点面34上の反射光強度分布I
(x)を、(数13)によりに変数変換すれば、入射角依存
反射光強度特性I(θ)が求まる。しかし光源1に水銀ラ
ンプなどを用いると、レーザを用いる場合に比べ照明光
の照度分布31を均一にできないため、照明光32a、
32bおよびその間の入射角の照明光強度分布S(θ)は
均一にならない。このため入射角依存反射光強度特性I
(θ)と入射角依存強度反射率R(θ)は単純な比例関係に
はならず、次式のようになる。Is as follows. Therefore, the reflected light intensity distribution I on the back focal plane 34 of the detection side lens 6 detected by the linear sensor 7
By transforming (x) into a variable according to (Equation 13), the incident angle dependent reflected light intensity characteristic I (θ) is obtained. However, when a mercury lamp or the like is used as the light source 1, the illuminance distribution 31 of the illumination light cannot be made uniform as compared with the case where a laser is used.
The illumination light intensity distribution S (θ) at 32b and the incident angle therebetween is not uniform. Therefore, the incident angle dependent reflected light intensity characteristic I
(θ) and the incident angle dependent intensity reflectance R (θ) do not have a simple proportional relationship, but are expressed by the following equation.
【0051】[0051]
【数14】 [Equation 14]
【0052】そこでR(θ)を求めるため、参照試料22
を試料面に置いたときの後焦点面34上の反射光強度分
布Iref(x)を測定し、(数13)によりに変数変換しI
ref(θ)を求める。参照試料22は、測定波長λにおけ
る参照試料の屈折率nrefと吸収係数krefが既知の鏡面
試料であれば何でもよい。例えば鏡面シリコンウェハな
どを用いればよい。参照試料の入射角依存強度反射率を
Rref(θ)とすると、Therefore, to obtain R (θ), the reference sample 22
Is placed on the sample surface, the reflected light intensity distribution I ref (x) on the back focal plane 34 is measured, and converted into a variable according to (Equation 13) to obtain I
Find ref (θ). The reference sample 22 may be any mirror surface sample having a known refractive index n ref and absorption coefficient k ref at the measurement wavelength λ. For example, a mirror-surface silicon wafer may be used. Assuming that the incident angle dependent intensity reflectance of the reference sample is R ref (θ),
【0053】[0053]
【数15】 (Equation 15)
【0054】と表される。数14を数15で辺々割算す
れば次式となる。Is represented by When Equation 14 is divided by Equation 15 from each side, the following equation is obtained.
【0055】[0055]
【数16】 (Equation 16)
【0056】すなわち、被測定膜21の入射角依存反射
光強度特性I(θ)と、参照試料22の入射角依存反射光
強度特性Iref(θ)の比を求めることにより、照明光強
度分布S(θ)を消去できる。That is, the ratio between the incident angle dependent reflected light intensity characteristic I (θ) of the film 21 to be measured and the incident angle dependent reflected light intensity characteristic I ref (θ) of the reference sample 22 is obtained, thereby obtaining the illumination light intensity distribution. S (θ) can be eliminated.
【0057】ここで参照試料22の入射角依存反射率特
性Rref(θ)は、変数を以下のように定義すると、(数1
7)〜(数20)により理論計算できる。Here, the incident angle dependent reflectance characteristic R ref (θ) of the reference sample 22 is defined by the following equation (1)
Theoretical calculation can be performed by 7) to (Equation 20).
【0058】rref' :空気と参照試料22の境界面2
6での振幅(複素)反射率 λ :照明光の波長 n0 :空気の屈折率(=1) nref' :測定波長λにおける基板の複素屈折率。n
ref'=nref−ikref nref :測定波長λにおける基板の屈折率 kref :測定波長λにおける基板の吸収係数 θ :入射角 θref' :参照試料22での屈折角R ref ': interface 2 between air and reference sample 22
The amplitude (complex) reflectance at 6 λ: the wavelength of the illumination light n 0 : the refractive index of air (= 1) n ref ′: the complex refractive index of the substrate at the measurement wavelength λ. n
ref ′ = n ref −ik ref n ref : refractive index of the substrate at the measurement wavelength λ k ref : absorption coefficient of the substrate at the measurement wavelength λ θ: incident angle θ ref ′: refraction angle at the reference sample 22
【0059】[0059]
【数17】 [Equation 17]
【0060】[0060]
【数18】 (Equation 18)
【0061】[0061]
【数19】 [Equation 19]
【0062】[0062]
【数20】 (Equation 20)
【0063】rref' :空気と参照試料22の境界面2
6での振幅(複素)反射率 λ :照明光の波長 n0 :空気の屈折率(=1) nref' :測定波長λにおける基板の複素屈折率。n
ref'=nref−ikref nref :測定波長λにおける基板の屈折率 kref :測定波長λにおける基板の吸収係数 θ :入射角 θref' :参照試料22での屈折角 上式で求めた参照試料22の入射角依存強度反射率R
ref(θ)の理論計算値を、数16の両辺に乗ずれば、R ref ': interface 2 between air and reference sample 22
The amplitude (complex) reflectance at 6 λ: the wavelength of the illumination light n 0 : the refractive index of air (= 1) n ref ′: the complex refractive index of the substrate at the measurement wavelength λ. n
ref ′ = n ref −ik ref n ref : refractive index of the substrate at the measurement wavelength λ k ref : absorption coefficient of the substrate at the measurement wavelength λ θ: incident angle θ ref ′: refraction angle at the reference sample 22 Incident angle dependent intensity reflectance R of reference sample 22
By multiplying the theoretical calculated value of ref (θ) by both sides of Equation 16,
【0064】[0064]
【数21】 (Equation 21)
【0065】となり、R(θ)が求まる。すなわち、被測
定膜21の入射角依存反射光強度特性測定値I(θ)を参
照試料22の入射角依存反射光強度特性測定値I
ref(θ)で割り、参照試料22の入射角依存強度反射率
の理論計算値Rref(θ)を乗ずることにより、被測定膜
の入射角依存強度反射率R(θ)を求めることができる。
図8は、以上の処理の概要を示したものである。And R (θ) is obtained. That is, the measured value of the incident angle dependent reflected light intensity characteristic I (θ) of the film to be measured 21 is used as the measured value of the incident angle dependent reflected light intensity characteristic I of the reference sample 22.
By dividing by ref (θ) and multiplying by the theoretical calculation value R ref (θ) of the incident angle dependent intensity reflectance of the reference sample 22, the incident angle dependent intensity reflectance R (θ) of the film to be measured can be obtained. .
FIG. 8 shows an outline of the above processing.
【0066】照明用レンズ5や検出用レンズ6などの光
束通過位置による透過率分布など、光学系中の光学素子
の不均一性を入射角θの関数と考えてT(θ)とおけば、
(数14)、(数15)は次式で表される。Considering the non-uniformity of the optical element in the optical system, such as the transmittance distribution depending on the light beam passing position of the illumination lens 5 and the detection lens 6, etc., as a function of the incident angle θ, T (θ)
(Equation 14) and (Equation 15) are represented by the following equations.
【0067】[0067]
【数22】 (Equation 22)
【0068】[0068]
【数23】 (Equation 23)
【0069】この場合も(数21)の演算を行なえば、S
(θ)と同様にT(θ)も消去できる。Also in this case, if the operation of (Equation 21) is performed, S
T (θ) can be erased similarly to (θ).
【0070】図6の反射率演算部10では、以上の処理
により、被測定膜の入射角依存強度反射率R(θ)を求め
る。そして特性値決定部11で被測定膜の膜厚d、屈折
率n、吸収係数kを求める。The reflectance calculating section 10 in FIG. 6 obtains the incident angle dependent intensity reflectance R (θ) of the film to be measured by the above processing. Then, the film thickness d of the film to be measured, the refractive index n, and the absorption coefficient k are obtained by the characteristic value determining unit 11.
【0071】本実施例によれば、照明光強度分布S(θ)
が均一でなくても、安定、高速に被測定膜の入射角依存
特性強度反射率R(θ)を求めることができ、膜特性値を
求めることができる。このため種々の光源を薄膜特性値
測定に用いることが可能になり、照明光学系の調整も容
易になる。また各光学素子の透過位置の違いによる透過
率の不均一性T(θ)の補正も行なわれるため、光学素子
の製造精度も緩和できる利点がある。According to this embodiment, the illumination light intensity distribution S (θ)
Is not uniform, the incident angle dependent characteristic intensity reflectance R (θ) of the film to be measured can be obtained stably and at high speed, and the film characteristic value can be obtained. For this reason, various light sources can be used for thin film characteristic value measurement, and adjustment of the illumination optical system is also facilitated. In addition, since the nonuniformity T (θ) of the transmittance due to the difference in the transmission position of each optical element is also corrected, there is an advantage that the manufacturing accuracy of the optical element can be reduced.
【0072】被測定膜の入射角依存強度反射率R(θ)を
さらに精度よく求めるには、暗レベル補正を行なえば良
い。これには照明光32が集光する位置から試料を退避
させ、このときのリニアセンサ7の出力を、暗レベル強
度分布Ib(x)とし、図6に示す暗レベルメモリ12に
記憶する。これを(数13)によりに変数変換しIb(θ)
を求め、次式によりR(θ)を求める。In order to obtain the incident angle dependent intensity reflectance R (θ) of the film to be measured with higher accuracy, it is sufficient to perform dark level correction. For this purpose, the sample is retracted from the position where the illumination light 32 is condensed, and the output of the linear sensor 7 at this time is stored as a dark level intensity distribution Ib (x) in the dark level memory 12 shown in FIG. This is converted into a variable according to (Equation 13) and Ib (θ)
And R (θ) is calculated by the following equation.
【0073】[0073]
【数24】 (Equation 24)
【0074】暗レベル補正により、リニアセンサ7の各
検出素子毎の暗レベルのばらつきを補正できる。これに
より被測定膜の入射角依存強度反射率R(θ)が高精度に
求まり、膜特性値の測定精度を向上できる。By the dark level correction, it is possible to correct the variation of the dark level for each detection element of the linear sensor 7. As a result, the incident angle dependent intensity reflectance R (θ) of the film to be measured is determined with high accuracy, and the measurement accuracy of the film characteristic value can be improved.
【0075】本実施例の測定手順を図9に示す。同図
(a)に示すように、載置台64に被測定膜を形成した基
板23と参照試料22を搭載し、以下の手順で測定す
る。FIG. 9 shows the measurement procedure of this embodiment. Same figure
As shown in (a), the substrate 23 on which the film to be measured is formed and the reference sample 22 are mounted on the mounting table 64, and the measurement is performed in the following procedure.
【0076】手順1:(1)載置台64を退避し、リニア
センサ7の暗レベル強度分布Ib(x)を検出する。(同図
(b)) 手順2:参照試料を測定位置に移動し、後焦点面反射光
強度分布Iref(x)を検出する。(同図(c)) 手順3:被測定膜基板23を測定位置に移動し、後焦点
面反射光強度分布I(x)を検出する。(同図(d)) 手順4:各検出信号を(数13)で変数変換し、I(θ)、
Iref(θ)、Ib(θ)を求める。Procedure 1: (1) The mounting table 64 is retracted, and the dark level intensity distribution Ib (x) of the linear sensor 7 is detected. (Same figure
(b)) Step 2: The reference sample is moved to the measurement position, and the back focal plane reflected light intensity distribution I ref (x) is detected. (FIG. 9C) Step 3: The film substrate 23 to be measured is moved to the measurement position, and the back focal plane reflected light intensity distribution I (x) is detected. (FIG. 4D) Step 4: Each detection signal is transformed into a variable by (Equation 13), and I (θ),
I ref (θ) and Ib (θ) are obtained.
【0077】手順5:(数24)で、被測定膜の入射角依
存強度反射率R(θ)を計算する。Step 5: Calculate the incident angle dependent intensity reflectance R (θ) of the film to be measured in (Equation 24).
【0078】手順6:(数9)もしくは(数10)の演算を
行い、膜特性値を決定する。Step 6: Calculation of (Equation 9) or (Equation 10) is performed to determine the film characteristic value.
【0079】この手順で測定すれば、経時変化的な光源
の光量低下が徐々に生じたとしても、R(θ)を正確に求
められ、常に膜特性値を高精度に測定できる。また被測
定膜基板23と参照試料22を交換することなく、効率
良く測定できる。もちろん被測定膜基板23と参照試料
22を人手により交換してもよい。同一基板上の多点測
定のような短時間の測定では、Iref(x)とIb(θ)を初
めに測定してメモリに記憶し、被測定膜の反射光強度分
布I(x)を測定するたびに読み出すようにすれば、さら
に効率的に測定できる。By measuring according to this procedure, even if the light amount of the light source changes gradually with time, R (θ) can be accurately obtained, and the film characteristic value can always be measured with high accuracy. Further, the measurement can be performed efficiently without exchanging the film substrate 23 to be measured and the reference sample 22. Of course, the film substrate 23 to be measured and the reference sample 22 may be replaced manually. In short-time measurement such as multi-point measurement on the same substrate, I ref (x) and I b (θ) are measured first and stored in a memory, and the reflected light intensity distribution I (x) of the film to be measured is obtained. If reading is performed every time measurement is performed, measurement can be performed more efficiently.
【0080】測定精度を向上する他の実施例を図10に
示す。本実施例では加算平均部13により、被測定膜2
1の後焦点面反射光強度分布I(x)をリニアセンサ7で
複数回検出し、それらの平均を被測定膜メモリ8に記憶
する。平均化効果でリニアセンサ7の駆動用電気回路で
重畳された白色ノイズ成分を低減できるため、S/N比
が向上し、各特性値の測定精度を向上できる。もちろん
参照試料の反射光強度分布と暗レベルも同様に検出した
方が、測定精度は向上する。FIG. 10 shows another embodiment for improving the measurement accuracy. In this embodiment, the film 2 to be measured is
The reflected light intensity distribution I (x) of the back focal plane 1 is detected a plurality of times by the linear sensor 7, and the average thereof is stored in the film memory 8 to be measured. Since the white noise component superimposed by the electric circuit for driving the linear sensor 7 can be reduced by the averaging effect, the S / N ratio is improved, and the measurement accuracy of each characteristic value can be improved. Of course, if the reflected light intensity distribution and the dark level of the reference sample are similarly detected, the measurement accuracy is improved.
【0081】また光源自体の光量変動を補正して測定す
る実施例を図11で説明する。本実施例は光量変動補正
部80、光電変換型の光量検出器58、光量検出器58
に照明光を導くハーフミラー55を図6の実施例に付加
したものである。図12に光量補正の原理を示す。(a)
はリニアセンサ7の走査周期信号φ、(b)はリニアセン
サ7の出力信号、(c)は光量検出器58の出力信号、
(d)は光量検出器58の出力信号をリニアセンサ7の走
査周期時間分だけ積分した信号である。An embodiment in which the light quantity fluctuation of the light source itself is corrected and measured will be described with reference to FIG. In this embodiment, a light amount fluctuation correction unit 80, a photoelectric conversion type light amount detector 58, a light amount detector 58
A half mirror 55 for guiding illumination light to the embodiment is added to the embodiment of FIG. FIG. 12 shows the principle of light quantity correction. (a)
Is a scanning cycle signal φ of the linear sensor 7, (b) is an output signal of the linear sensor 7, (c) is an output signal of the light amount detector 58,
(d) is a signal obtained by integrating the output signal of the light quantity detector 58 for the scanning cycle time of the linear sensor 7.
【0082】リニアセンサ7は、周期Tnの期間に各画
素に照射された光エネルギを蓄積し、次の周期に信号W
nを出力する。このため(c)に示すように光量変動があ
ると、蓄積される光エネルギも変動し、Wnは一定にな
らない。そこで(d)に示すように光量検出器58の出力
を走査周期時間分だけ積分した出力を、走査周期信号φ
に同期してサンプリングし、補正値Cnを得る。補正値
Cnは周期Tnの総光量に対応するので、信号Wnを補
正値Cnで割算すれば、光量変動に伴う出力信号Wnの
変動を補正できる。The linear sensor 7 accumulates the light energy applied to each pixel during the period Tn, and outputs the signal W in the next period.
Output n. For this reason, if the light amount fluctuates as shown in (c), the accumulated light energy also fluctuates, and Wn does not become constant. Therefore, as shown in (d), the output obtained by integrating the output of the light amount detector 58 by the scanning period is converted to the scanning period signal φ.
, And a correction value Cn is obtained. Since the correction value Cn corresponds to the total amount of light in the cycle Tn, a change in the output signal Wn due to a change in the amount of light can be corrected by dividing the signal Wn by the correction value Cn.
【0083】図13は上記補正を行う光量変動補正部8
0の実施例である。同図(a)はA/D変換器83、積分
回路81、サンプル・ホールド回路84、A/D変換器
85、デジタル割算器86からなる。同図(b)は、積分
回路81、サンプル・ホールド回路84、アナログ割算
器87、A/D変換器88からなる。積分回路81はリ
ニアセンサ7の一走査周期時間だけ、リニアセンサ7の
出力信号をアナログ積分するもので、サンプル・ホール
ド回路84は走査周期信号φに同期して積分回路81の
出力信号をサンプリングし、補正値Cnを出力する。
(a)はリニアセンサ7の出力信号Wnと補正値CnをA
/D変換した後、デジタル信号で割算を実行する。(b)
はリニアセンサ7の出力信号Wnと補正値Cnをアナロ
グ信号で割算してからA/D変換するものである。FIG. 13 shows a light amount fluctuation correcting section 8 for performing the above correction.
0 is an example. FIG. 9A includes an A / D converter 83, an integration circuit 81, a sample and hold circuit 84, an A / D converter 85, and a digital divider 86. FIG. 1B includes an integrating circuit 81, a sample and hold circuit 84, an analog divider 87, and an A / D converter 88. The integration circuit 81 performs an analog integration of the output signal of the linear sensor 7 for one scanning cycle time of the linear sensor 7, and the sample and hold circuit 84 samples the output signal of the integration circuit 81 in synchronization with the scanning cycle signal φ. , And outputs the correction value Cn.
(a) shows the output signal Wn of the linear sensor 7 and the correction value Cn as A
After the / D conversion, division is performed with the digital signal. (b)
Is for dividing the output signal Wn of the linear sensor 7 and the correction value Cn by an analog signal and then performing A / D conversion.
【0084】以上のようにリニアセンサ7の出力信号を
補正しながら、暗レベル強度分布Ib(x)、参照試料の
反射光強度分布Iref(x)、被測定膜基板23の反射光
強度分布I(x)を検出すれば、光量変動の影響を低減で
きるため、被測定膜の入射角依存強度反射率R(θ)が高
精度に求まる。これにより被測定膜の特性値の測定精度
が向上する。While correcting the output signal of the linear sensor 7 as described above, the dark level intensity distribution Ib (x), the reflected light intensity distribution I ref (x) of the reference sample, and the reflected light intensity distribution of the film substrate 23 to be measured. If I (x) is detected, the influence of the light quantity fluctuation can be reduced, so that the incident angle dependent intensity reflectance R (θ) of the film to be measured can be determined with high accuracy. Thereby, the measurement accuracy of the characteristic value of the film to be measured is improved.
【0085】以下、本発明の他の実施例を説明する。本
実施例は感光性薄膜の膜厚d、屈折率n、吸収係数kを
精度よく求めるものである。膜厚dは立体的な寸法であ
り波長に依存する値ではないが、屈折率nと吸収係数k
は膜材料の物性値であり波長により値が違う。特に感光
性薄膜の露光波長での屈折率nと吸収係数kの値は工業
上重要な意味を持つ。Hereinafter, another embodiment of the present invention will be described. In this embodiment, the thickness d, the refractive index n, and the absorption coefficient k of the photosensitive thin film are obtained with high accuracy. Although the film thickness d is a three-dimensional dimension and does not depend on the wavelength, the refractive index n and the absorption coefficient k
Is the physical property value of the film material, and the value differs depending on the wavelength. In particular, the values of the refractive index n and the absorption coefficient k at the exposure wavelength of the photosensitive thin film have industrial significance.
【0086】例えば半導体製造業では、感光性材料の一
種であるホトレジストを用い、原版パターンをウェーハ
表面に塗布したホトレジスト膜に転写し、微細回路パタ
ーンを形成する。製造工程では転写を安定に行うため、
膜厚測定による工程管理が通常行っている。しかし転写
条件は膜厚だけでなく、露光波長での屈折率nと吸収係
数kにも依存する。For example, in the semiconductor manufacturing industry, a photoresist, which is a kind of photosensitive material, is used, and an original pattern is transferred to a photoresist film applied on a wafer surface to form a fine circuit pattern. In the manufacturing process, in order to perform stable transfer,
Process control by film thickness measurement is usually performed. However, the transfer conditions depend not only on the film thickness but also on the refractive index n and the absorption coefficient k at the exposure wavelength.
【0087】図14(a)は、ホトレジストの吸収係数の
分光特性を示し、実線は露光前、破線は露光後の特性で
ある。吸収係数がほぼ0である波長域は非感光波長域で
あり、波長λaの光を照射しても、ホトレジスト膜は光
エネルギを吸収せず、化学的な組成は変化しない。つま
り波長λaの光では、ホトレジストは感光しない。そこ
で半導体工場の露光ラインでは、非感光波長域の黄色光
で室内照明を行い、不要な露光を防いでいる。一方、露
光前に吸収係数が大きい波長域はホトレジストの感光波
長域であり、感光波長域の波長λbの光を照射しホトレ
ジスト膜を露光すると、光エネルギを吸収して組成が変
わり、同図に示すように吸収係数が低下する。つまりパ
ターン転写とは、感光波長域の光でホトレジスト膜の所
定の領域を露光して吸収係数を低下させ、露光されずに
元の吸収係数を保った領域との化学的な組成の違いで、
原版パターンをレジスト膜に転写する作業といえる。FIG. 14A shows the spectral characteristics of the absorption coefficient of the photoresist. The solid line shows the characteristics before exposure and the broken line shows the characteristics after exposure. The wavelength region where the absorption coefficient is almost 0 is a non-photosensitive wavelength region, and the photoresist film does not absorb light energy and does not change its chemical composition even when irradiated with light of wavelength λa. That is, the photoresist is not exposed to light having the wavelength λa. Therefore, in an exposure line at a semiconductor factory, indoor illumination is performed with yellow light in a non-photosensitive wavelength range to prevent unnecessary exposure. On the other hand, the wavelength region where the absorption coefficient is large before the exposure is the photosensitive wavelength region of the photoresist, and when the photoresist film is exposed by irradiating light of wavelength λb of the photosensitive wavelength region, the light energy is absorbed and the composition changes. As shown, the absorption coefficient decreases. In other words, pattern transfer is a chemical composition difference between a region where the photoresist film is exposed to light in a photosensitive wavelength range to reduce the absorption coefficient by exposing the region to the original absorption coefficient without being exposed,
It can be said that this is the work of transferring the original pattern to the resist film.
【0088】パターン転写の安定化の一環として、露光
装置では一定の光エネルギを照射するような制御が行わ
れている。しかしこの制御では、露光前のホトレジスト
の吸収係数の値が異なれば、露光後の吸収係数(すなわ
ちホトレジスト膜の化学的な組成)が変動し、これがパ
ターン寸法誤差の要因となる。同様に、露光波長におけ
る屈折率の変動も誤差要因となる。従ってパターン転写
工程では、ホトレジスト膜の露光波長における屈折率と
吸収係数を、露光前に測定し管理することが重要であ
る。As part of stabilizing the pattern transfer, the exposure apparatus is controlled to irradiate a constant light energy. However, in this control, if the value of the absorption coefficient of the photoresist before exposure is different, the absorption coefficient after exposure (that is, the chemical composition of the photoresist film) fluctuates, which causes a pattern dimension error. Similarly, a change in the refractive index at the exposure wavelength also causes an error. Therefore, in the pattern transfer step, it is important to measure and manage the refractive index and absorption coefficient at the exposure wavelength of the photoresist film before exposure.
【0089】しかし感光性薄膜の膜厚と露光波長におけ
る屈折率と吸収係数を測定するには、次に述べるような
難しさがある。図14(b)に示すように、測定光32を
感光性の被測定膜21に照射すると、膜表面で反射する
被測定膜反射光33cと、被測定膜内に入射し基板23
との境界面で反射してから射出する被測定膜通過光33
dに分かれる。本発明の薄膜特性値測定法が、被測定膜
反射光33cと被測定膜通過光33dの干渉により生じ
る等傾角干渉縞から、薄膜特性値を測定することは先に
述べた。この場合、被測定膜反射光33cと被測定膜通
過光33dの振幅が等しいほど干渉縞のコントラストが
大きくなり、測定精度は向上する。However, there are the following difficulties in measuring the thickness of the photosensitive thin film, the refractive index at the exposure wavelength, and the absorption coefficient. As shown in FIG. 14B, when the measuring light beam 32 is irradiated on the photosensitive film 21 to be measured, the film light to be measured reflected 33c reflected on the film surface is incident on the film to be measured.
The light passing through the film to be measured 33 which is emitted after being reflected at the interface with
Divided into d. As described above, the thin film characteristic value measuring method of the present invention measures a thin film characteristic value from equi-tilt interference fringes generated by interference between the measured film reflected light 33c and the measured film passing light 33d. In this case, the contrast of the interference fringes increases as the amplitude of the film-to-be-measured reflected light 33c and the amplitude of the light-to-be-measured film passing light 33d are equal, and the measurement accuracy is improved.
【0090】これに対し、測定光32が感光波長λbの
光の場合は、被測定膜21に吸収性があるため、膜中を
通過する間に振幅が減衰する。このため被測定膜通過光
33dの振幅が被測定膜反射光33cに比べ小さくな
り、干渉縞のコントラストが低下する。On the other hand, when the measuring light 32 is light having the photosensitive wavelength λb, the amplitude is attenuated while passing through the film because the film 21 to be measured has absorptivity. Therefore, the amplitude of the light 33d passing through the film to be measured is smaller than the reflected light 33c of the film to be measured, and the contrast of the interference fringes is reduced.
【0091】図5の理論計算例でも吸収係数が大きいほ
ど等傾角干渉縞、すなわち入射角依存強度反射率の変化
が小さくなっている。膜中での吸収のためにコントラス
トが低下した干渉縞は、膜厚に関する情報を多く持って
いない。このため感光波長で測定した場合、吸収性のあ
る感光性薄膜の膜厚、屈折率、吸収係数の3つの未知数
を精度良く測定することは難しい。Also in the theoretical calculation example of FIG. 5, the greater the absorption coefficient, the smaller the change in the equi-tilt angle interference fringe, that is, the change in the incident angle dependent intensity reflectance. Interference fringes whose contrast has been reduced due to absorption in the film do not have much information about the film thickness. Therefore, when measuring at the photosensitive wavelength, it is difficult to accurately measure the three unknowns of the thickness, the refractive index, and the absorption coefficient of the photosensitive thin film having absorptivity.
【0092】このため感光性薄膜の特性値を精度良く測
定するため、感光波長での測定だけでなく非感光波長の
測定も行う。図14(c)に示すように、非感光波長λa
の測定光32を用いると、被測定膜通過光33dは膜内
で減衰しないため、膜厚に関する情報を十分含んだ良好
なコントラストの干渉縞を検出できる。そこで測定光3
2の波長が非感光波長λaの場合の干渉縞から、被測定
膜21の膜厚と非感光波長λaにおける屈折率と吸収係
数をまず求める。次に測定光32の波長を感光波長λb
として測定する。ここでは非感光波長λaでの測定で求
めた膜厚を既知の値として扱い、感光波長λbにおける
屈折率と吸収係数を求めればよい。Therefore, in order to accurately measure the characteristic value of the photosensitive thin film, not only the measurement at the photosensitive wavelength but also the measurement at the non-photosensitive wavelength are performed. As shown in FIG. 14 (c), the non-photosensitive wavelength λa
When the measurement light 32 is used, the light 33d passing through the film to be measured is not attenuated in the film, so that it is possible to detect interference fringes of good contrast sufficiently including information on the film thickness. Then measurement light 3
First, the thickness of the film 21 to be measured, the refractive index at the non-photosensitive wavelength λa, and the absorption coefficient are obtained from the interference fringe when the wavelength 2 is the non-photosensitive wavelength λa. Next, the wavelength of the measurement light 32 is changed to the photosensitive wavelength λb.
Measured as Here, the film thickness obtained by the measurement at the non-photosensitive wavelength λa may be treated as a known value, and the refractive index and the absorption coefficient at the photosensitive wavelength λb may be obtained.
【0093】本発明は感光性薄膜の吸収係数が分光特性
を有することに着目し、非感光波長と感光波長の2波長
で測定することにより、膜厚と露光波長における屈折率
と吸収係数を求める手法である。以下、本発明を2波長
測定法と呼ぶことにする。The present invention focuses on the fact that the absorption coefficient of the photosensitive thin film has spectral characteristics, and obtains the refractive index and the absorption coefficient at the film thickness and the exposure wavelength by measuring at two wavelengths, the non-photosensitive wavelength and the photosensitive wavelength. Method. Hereinafter, the present invention will be referred to as a two-wavelength measurement method.
【0094】以上の2波長測定法に基づく薄膜特性値測
定装置の実施例を図15に示す。本実施例は非感光波長
透過用単色光フィルタ4aと感光波長透過用単色光フィ
ルタ4bを交換できる光学系と、各波長での検出信号を
処理できるようにしたものである。非感光波長測定での
検出信号処理系は、被測定膜の反射光強度分布を記憶す
る被測定膜メモリ8a、参照試料の反射光強度分布を記
憶する参照試料メモリ9a、センサの暗レベルを記憶す
る暗レベルメモリ12a、被測定膜の入射角依存強度反
射率を求める反射率演算部10a、薄膜特性値を求める
特性値決定部11aからなる。FIG. 15 shows an embodiment of a thin film characteristic value measuring apparatus based on the above two-wavelength measuring method. In the present embodiment, an optical system capable of exchanging the non-photosensitive wavelength transmitting monochromatic optical filter 4a and the photosensitive wavelength transmitting monochromatic optical filter 4b, and capable of processing a detection signal at each wavelength. The detection signal processing system in the non-photosensitive wavelength measurement includes a measured film memory 8a that stores the reflected light intensity distribution of the measured film, a reference sample memory 9a that stores the reflected light intensity distribution of the reference sample, and a dark level of the sensor. The memory comprises a dark level memory 12a, a reflectance calculating unit 10a for calculating an incident angle dependent intensity reflectance of the film to be measured, and a characteristic value determining unit 11a for calculating a thin film characteristic value.
【0095】一方、感光波長測定での検出信号処理系
は、被測定膜の反射光強度分布を記憶する被測定膜メモ
リ8b、参照試料の反射光強度分布を記憶する参照試料
メモリ9b、センサの暗レベルを記憶する暗レベルメモ
リ12b、被測定膜の入射角依存強度反射率を求める反
射率演算部10b、薄膜特性値を求める特性値決定部1
1bからなる。感光波長の特性値決定部11bは、非感
光波長の特性値決定部11aで求めた膜厚dを既知の値
として用い、感光波長における屈折率nと吸収係数kを
求める。もちろん感光波長の特性値決定部11bは、非
感光波長の特性値決定部11aで求めた膜厚dを粗検出
結果として扱い、膜厚範囲をd±Δdに限定して膜厚を
再度に決定してもよい。On the other hand, the detection signal processing system in the photosensitive wavelength measurement includes a film memory 8b for storing the reflected light intensity distribution of the film to be measured, a reference sample memory 9b for storing the reflected light intensity distribution of the reference sample, and a sensor. A dark level memory 12b for storing a dark level, a reflectance calculating unit 10b for obtaining an incident angle dependent intensity reflectance of a film to be measured, and a characteristic value determining unit 1 for obtaining a thin film characteristic value.
1b. The characteristic value determining section 11b for the photosensitive wavelength uses the film thickness d obtained by the characteristic value determining section 11a for the non-photosensitive wavelength as a known value to determine the refractive index n and the absorption coefficient k at the photosensitive wavelength. Of course, the characteristic value determining unit 11b for the photosensitive wavelength treats the film thickness d obtained by the characteristic value determining unit 11a for the non-photosensitive wavelength as a rough detection result, determines the film thickness again by limiting the film thickness range to d ± Δd. May be.
【0096】2波長測定法は、感光性薄膜の測定に有益
なだけでなく、膜特性値決定のための計算量低減にも効
果がある。被測定膜で可能性のある膜厚d、屈折率n、
吸収係数kの最大、最小をmax、minの添字で示し、測定
分解能をdr、nr、krとする。1波長だけの測定で3
つの未知数を決定するために必要な、(数9)もしくは
(数10)の計算回数C1は、(数11)に示したように、The two-wavelength measurement method is not only useful for measuring a photosensitive thin film, but also effective for reducing the amount of calculation for determining film characteristic values. Possible thickness d, refractive index n,
Maximum absorption coefficient k, showed minimal max, with subscripts min, the measurement resolution d r, n r, and k r. 3 for one wavelength measurement
(Equation 9) or necessary to determine the three unknowns
The number of calculations C 1 in (Equation 10) is, as shown in (Equation 11),
【0097】[0097]
【数11】 [Equation 11]
【0098】と表される。ただし、Nd、Nn、Nkは
各特性値の分解点数である。一方、2波長測定では、非
感光波長における吸収係数が0、感光波長測定での膜厚
は既知として扱うことにすれば、計算回数C2はIs represented by Here, Nd, Nn, and Nk are decomposition points of each characteristic value. On the other hand, in the two-wavelength measurement, if the absorption coefficient at the non-photosensitive wavelength is treated as 0, and the film thickness in the photosensitive wavelength measurement is treated as known, the number of calculations C 2 becomes
【0099】[0099]
【数25】 (Equation 25)
【0100】となる。ここでIs obtained. here
【0101】[0101]
【数26】 (Equation 26)
【0102】であるので、Nd、Nkがともに2より大
きい場合は、C1>C2を満足する。薄膜特性値測定で
は、NdとNkは一般に2よりはるかに大きいので、2
波長測定をすることで、計算量を大幅に低減でき、高速
に特性値を決定できる。Therefore, when both Nd and Nk are larger than 2, C 1 > C 2 is satisfied. In thin film property measurement, Nd and Nk are generally much larger than 2, so that 2
By measuring the wavelength, the amount of calculation can be greatly reduced and the characteristic value can be determined at high speed.
【0103】次に吸収性のある感光性薄膜の特性値を精
度良く測定するための他の実施例を説明する。Next, another embodiment for accurately measuring the characteristic value of an absorptive photosensitive thin film will be described.
【0104】本実施例では、感光波長での測定を、十分
長い時間測定光を照射した露光後にも行う。図14(a)
に示すように、ホトレジストの感光波長λbの光を照射
しホトレジスト膜を露光すると、光エネルギを吸収して
組成が変わり、吸収係数が低下する。この状態では図1
4(d)に示すように、感光波長λbの測定光32を用い
ても、被測定膜通過光33dの膜内での減衰が少なくな
るため、膜厚に関する情報を含んだ干渉縞を検出でき
る。そこで、感光波長λbの測定光32を照射し始めた
ときの干渉縞sと、被測定膜21が測定光32により十
分露光し吸収係数が低下したときの干渉縞eを検出す
る。そしてまず干渉縞eより、露光後の膜厚d,屈折率
ne、吸収係数keを求める。次にここで求めた膜厚dを
既知の値として、干渉縞sから測定開始時の屈折率ns
と吸収係数ksを求める。In this embodiment, the measurement at the photosensitive wavelength is also performed after the exposure to the measurement light for a sufficiently long time. FIG. 14 (a)
As shown in (2), when the photoresist film is exposed by irradiating the photoresist film with light having the photosensitive wavelength λb, the light energy is absorbed, the composition is changed, and the absorption coefficient is reduced. In this state, FIG.
As shown in FIG. 4D, even when the measuring light 32 having the photosensitive wavelength λb is used, the attenuation of the light 33d passing through the film to be measured in the film is reduced, so that the interference fringe including the information on the film thickness can be detected. . Therefore, the interference fringes s when the measurement light 32 having the photosensitive wavelength λb starts to be irradiated and the interference fringes e when the film 21 to be measured is sufficiently exposed to the measurement light 32 and the absorption coefficient is reduced are detected. And from first interference fringes e, determine the thickness d of the post-exposure, the refractive index n e, the absorption coefficient k e. Next, assuming the film thickness d obtained here as a known value, the refractive index n s at the start of measurement from the interference fringe s.
And determine the absorption coefficient k s.
【0105】露光前後に膜厚変動がある場合などには、
膜厚範囲をd±Δdに限定して屈折率ns、吸収係数ks
とともに測定開始時の膜厚を再度決定してもよい。本発
明は、感光性薄膜の吸収係数が、露光後に減少すること
に着目し、露光前後の検出結果を用い、膜厚と露光波長
における屈折率と吸収係数を求める手法である。以下、
本発明を露光前後測定法と呼ぶことにする。When the film thickness fluctuates before and after the exposure,
Restricting the film thickness range to d ± Δd, the refractive index n s and the absorption coefficient k s
At the same time, the film thickness at the start of the measurement may be determined again. The present invention focuses on the fact that the absorption coefficient of a photosensitive thin film decreases after exposure, and uses a detection result before and after exposure to determine a refractive index and an absorption coefficient at a film thickness and an exposure wavelength. Less than,
The present invention will be referred to as a pre- and post-exposure measurement method.
【0106】上記した露光前後測定法に基づく薄膜特性
値測定装置の実施例を図16に示す。FIG. 16 shows an embodiment of a thin film characteristic value measuring apparatus based on the above-mentioned pre- and post-exposure measuring methods.
【0107】本実施例は、図6と同様な光学系、参照試
料の反射光強度分布を記憶する参照試料メモリ9、セン
サの暗レベルを記憶する暗レベルメモリ12、露光後の
膜特性値を求める信号処理系、測定開始時の膜特性値を
求める信号処理系からなる。露光後の膜特性値を求める
信号処理系は、露光後の被測定膜の反射光強度分布を記
憶する被測定膜メモリ8e、反射率演算部10e、特性
値決定部11eからなる。また測定開始時の膜特性値を
求める信号処理系は、測定開始時の反射光強度分布を記
憶する被測定膜メモリ8s、反射率演算部10s、特性
値決定部11sからなる。In this embodiment, an optical system similar to that of FIG. 6, a reference sample memory 9 for storing the reflected light intensity distribution of the reference sample, a dark level memory 12 for storing the dark level of the sensor, and a film characteristic value after exposure are stored. It consists of a signal processing system to be obtained and a signal processing system to obtain a film characteristic value at the start of measurement. The signal processing system for calculating the film characteristic value after exposure includes a film memory 8e for storing the reflected light intensity distribution of the film after exposure, a reflectance calculator 10e, and a characteristic value determiner 11e. A signal processing system for obtaining a film characteristic value at the start of measurement includes a measured film memory 8s for storing a reflected light intensity distribution at the start of measurement, a reflectance calculation unit 10s, and a characteristic value determination unit 11s.
【0108】測定開始時の特性値決定部11sは、露光
後の特性値決定部11eで求めた膜厚dを既知の値とし
て用い、測定開始時の屈折率nと吸収係数kを求める。
もちろん特性値決定部11sは、特性値決定部11eで
求めた膜厚dを粗検出結果として扱い、膜厚範囲をd±
Δdに限定して、測定開始時の屈折率nと吸収係数kと
ともに膜厚を再度決定してもよい。The characteristic value determining section 11s at the start of measurement uses the film thickness d obtained by the characteristic value determining section 11e after exposure as a known value to determine the refractive index n and the absorption coefficient k at the start of measurement.
Of course, the characteristic value determining unit 11s treats the film thickness d obtained by the characteristic value determining unit 11e as a rough detection result, and sets the film thickness range to d ±
The film thickness may be determined again along with the refractive index n and the absorption coefficient k at the start of the measurement, limited to Δd.
【0109】本発明を他の光学系の構成で実現する実施
例を図17で説明する。An embodiment in which the present invention is realized by another optical system will be described with reference to FIG.
【0110】本実施例は、図6で示した照明側レンズ5
と検出側レンズ6の光軸の入射角θdを0度にしたもの
で、照明側レンズ5と検出側レンズ6を、光軸が被測定
膜に垂直な一つの対物レンズ41に置き換えたものであ
る。In this embodiment, the illumination side lens 5 shown in FIG.
And the incident angle θd of the optical axis of the detection-side lens 6 is set to 0 degree, and the illumination-side lens 5 and the detection-side lens 6 are replaced with one objective lens 41 whose optical axis is perpendicular to the film to be measured. is there.
【0111】本測定装置の光学系は、光源1、コリメー
ト用レンズ2、偏光素子3、非感光波長透過用単色光フ
ィルタ4a、感光波長透過用単色光フィルタ4b、ハー
フミラー55、光電変換型の光量検出器58、ハーフミ
ラー43、対物レンズ41、リレーレンズ42、光量蓄
積型のリニアセンサ7からなる。リレーレンズ42は、
対物レンズ41の後焦点面34上の強度分布をリニアセ
ンサ7のセンサ面に投影する。信号処理系は、光量変動
補正部80、加算平均部13、被測定膜21の反射光強
度分布を記憶する被測定膜メモリ8、参照試料22の反
射光強度分布を記憶する参照試料メモリ9、センサの暗
レベルを記憶する暗レベルメモリ12、被測定膜21の
入射角依存強度反射率を求める反射率演算部10、数9
もしくは数10の評価関数Mを用いて薄膜特性値を求め
る特性値決定部11からなる。The optical system of this measuring apparatus includes a light source 1, a collimating lens 2, a polarizing element 3, a non-photosensitive wavelength transmitting monochromatic optical filter 4a, a photosensitive wavelength transmitting monochromatic optical filter 4b, a half mirror 55, and a photoelectric conversion type. It comprises a light quantity detector 58, a half mirror 43, an objective lens 41, a relay lens 42, and a light quantity accumulation type linear sensor 7. The relay lens 42
The intensity distribution on the rear focal plane 34 of the objective lens 41 is projected on the sensor surface of the linear sensor 7. The signal processing system includes a light amount variation correction unit 80, an averaging unit 13, a film memory 8 for storing the reflected light intensity distribution of the film 21 to be measured, a reference sample memory 9 for storing the reflected light intensity distribution of the reference sample 22, A dark level memory 12 for storing a dark level of the sensor; a reflectance calculating unit 10 for obtaining an incident angle dependent intensity reflectance of the film 21 to be measured;
Alternatively, it comprises a characteristic value determining unit 11 for obtaining a thin film characteristic value by using the evaluation function M of Expression 10.
【0112】本光学系は、数3から分かるように、光路
差が生じやすい入射角0度付近の干渉縞を検出できるた
め、測定感度を向上できる利点がある。また光学系の調
整が容易になることも本実施例の利点である。As can be seen from Equation 3, the present optical system can detect interference fringes near the incident angle of 0 ° where an optical path difference easily occurs, and thus has the advantage of improving the measurement sensitivity. Another advantage of this embodiment is that the adjustment of the optical system is facilitated.
【0113】次に上記光学系を用い、測定精度を向上す
るための他の実施例を説明する。まず精度劣化原因を説
明する。被測定膜に光軸が垂直な一つの対物レンズ41
を用いた光学系では、図18に示すように光軸付近を通
過する照明光32eによる迷光が、測定誤差要因とな
る。なぜなら対物レンズ41の光軸付近は光軸にほぼ垂
直なため、光軸付近を通過する照明光32eが対物レン
ズ41の表面で反射した光は、迷光としてリニアセンサ
7で検出されてしまう。このため本来検出すべき反射光
強度分布44に対し、リニアセンサ7で実際に検出され
る反射光強度分布45は、光軸周辺で強度が増加したも
のとなる。このため膜特性値の測定誤差が生じる。この
迷光は対物レンズ41と被測定膜21の間での反射によ
っても生じるため、試料を退避した状態で暗レベル検出
を行っても完全には除去できない。Next, another embodiment for improving the measurement accuracy by using the above optical system will be described. First, the cause of accuracy deterioration will be described. One objective lens 41 whose optical axis is perpendicular to the film to be measured
In the optical system using, stray light due to the illumination light 32e passing near the optical axis as shown in FIG. 18 causes a measurement error. Because the vicinity of the optical axis of the objective lens 41 is almost perpendicular to the optical axis, the light reflected by the surface of the objective lens 41 of the illumination light 32e passing near the optical axis is detected by the linear sensor 7 as stray light. Therefore, the reflected light intensity distribution 45 actually detected by the linear sensor 7 has an increased intensity around the optical axis with respect to the reflected light intensity distribution 44 to be detected originally. This causes a measurement error of the film characteristic value. Since this stray light is also generated by reflection between the objective lens 41 and the film 21 to be measured, it cannot be completely removed even if the dark level is detected with the sample retracted.
【0114】一方、対物レンズ41の光軸から離れたと
ころは、表面が光軸に対し傾いているため、ここを通過
する照明光32cの反射光はリレーレンズを通過できな
いため迷光にはならない。On the other hand, since the surface away from the optical axis of the objective lens 41 is inclined with respect to the optical axis, the reflected light of the illumination light 32c passing therethrough cannot pass through the relay lens, and therefore does not become stray light.
【0115】対物レンズ41の光軸付近を通過する照明
光32eによる迷光を除去するには、測定光波長を反射
防止するコーティングを対物レンズ41の表面に施すこ
とが有効である。測定光がある決められた1つの波長の
場合には、この方法でよい。しかし前述のように感光性
薄膜の測定するため、感光/非感光の2つの波長の測定
光を使用する場合は、両波長を共に反射防止する必要が
ある。このような反射防止コーティングを実現すること
は技術的に容易ではなく、できたとしても製造コストが
増加する。また感光性薄膜の種類や露光波長は多岐に及
ぶため、一つの測定装置で多くの種類の感光性薄膜を測
定するには、広い波長範囲での反射防止コーティングが
必要となり、これは実現困難である。そこで反射防止コ
ーティング以外の迷光防止法が必要となる。In order to remove stray light due to the illumination light 32e passing near the optical axis of the objective lens 41, it is effective to apply a coating for preventing reflection of the wavelength of the measurement light to the surface of the objective lens 41. This method may be used when the measurement light has a predetermined wavelength. However, as described above, in order to measure a photosensitive thin film, when measurement light having two wavelengths, photosensitive and non-photosensitive, is used, it is necessary to prevent reflection at both wavelengths. Realizing such an anti-reflection coating is not technically easy, and even if it can be done, the production cost increases. In addition, since the types of photosensitive thin films and the exposure wavelengths vary widely, measuring a large number of types of photosensitive thin films with a single measuring device requires an antireflection coating over a wide wavelength range, which is difficult to achieve. is there. Therefore, a stray light prevention method other than the antireflection coating is required.
【0116】反射防止コーティングによらない迷光防止
法の実施例を図19に示す。本実施例は光軸付近の照明
光線を遮光することで、対物レンズ41の光軸付近の迷
光を防止し、後焦点面上の反射光強度分布をリニアセン
サ7で検出する方法の原理図を示している。同図(a)の
実施例は、光軸付近を通過する照明光を遮光板46で遮
光し、ハーフミラー43で反射し、対物レンズ41に入
射させるものである。照明光32fは被測定膜21で反
射し、リニアセンサ7の領域7fで検出され、照明光3
2gは領域7gで検出される。光軸付近は照明されない
ので、迷光を含まず後焦点面上の反射光強度分布を検出
できる。FIG. 19 shows an embodiment of the stray light prevention method without using the antireflection coating. In this embodiment, the principle diagram of a method of blocking stray light near the optical axis of the objective lens 41 by blocking the illumination light rays near the optical axis and detecting the reflected light intensity distribution on the back focal plane by the linear sensor 7 is shown. Is shown. In the embodiment shown in FIG. 9A, the illumination light passing near the optical axis is shielded by the light shielding plate 46, reflected by the half mirror 43, and made incident on the objective lens 41. The illumination light 32f is reflected by the film 21 to be measured, detected by the area 7f of the linear sensor 7, and
2g is detected in region 7g. Since the vicinity of the optical axis is not illuminated, the reflected light intensity distribution on the back focal plane can be detected without including stray light.
【0117】同図(b)の実施例は、光軸付近を通過する
照明光を含めて、後焦点面の半分を遮光板47で遮光
し、ミラー48で反射し、対物レンズ41に入射させる
ものである。照明光32fは被測定膜21で反射し、リ
ニアセンサ7で検出される。この実施例でも光軸付近は
照明されないので、迷光を含まず後焦点面上の反射光強
度分布を検出できる。In the embodiment shown in FIG. 11B, half of the back focal plane including the illumination light passing near the optical axis is shielded by the light shielding plate 47, reflected by the mirror 48, and made incident on the objective lens 41. Things. The illumination light 32f is reflected by the film to be measured 21 and detected by the linear sensor 7. Also in this embodiment, since the vicinity of the optical axis is not illuminated, the reflected light intensity distribution on the back focal plane can be detected without including stray light.
【0118】感光性薄膜を感光波長で測定する場合に
は、照明光により被測定膜の化学的な組成が徐々に変化
する。このため感光性薄膜の露光を抑制しつつ、かつリ
ニアセンサ7が十分なS/N比で検出できる反射光量を
確保すべきである。図19(b)の実施例では、被測定膜
21を反射した光が直接リニアセンサ7に達する。この
ため被測定膜21に照射される照明光量が同一でも、ハ
ーフミラー43を使用する同図(a)の実施例に比べ、大
きな反射光量が得られる。被測定膜をあまり露光せずに
後焦点面上の反射光強度分布を精度よく測定できるた
め、感光性薄膜を感光波長で測定するには同図(b)の光
学系の構成が適している。When a photosensitive thin film is measured at a photosensitive wavelength, the chemical composition of the film to be measured gradually changes due to illumination light. For this reason, it is necessary to secure the amount of reflected light that can be detected by the linear sensor 7 at a sufficient S / N ratio while suppressing the exposure of the photosensitive thin film. In the embodiment shown in FIG. 19B, the light reflected from the film to be measured 21 reaches the linear sensor 7 directly. Therefore, even if the illumination light amount applied to the film to be measured 21 is the same, a larger reflected light amount can be obtained as compared with the embodiment of FIG. Since the reflected light intensity distribution on the back focal plane can be measured accurately without exposing the film to be measured much, the configuration of the optical system shown in FIG. .
【0119】図1は本発明において、図19(b)の実施
例の原理にもとづき光軸付近の迷光を防止した薄膜特性
値測定装置の実施例を示す。本実施例は、感光性薄膜を
測定するため2波長測定法を適用し、さらに感光/非感
光の2つの波長での測定を同時に行うことができる光学
系の構成を示している。FIG. 1 shows an embodiment of a thin film characteristic value measuring apparatus according to the present invention which prevents stray light near the optical axis based on the principle of the embodiment of FIG. 19 (b). The present embodiment shows a configuration of an optical system that can apply a two-wavelength measurement method for measuring a photosensitive thin film and can simultaneously perform measurement at two wavelengths of photosensitive / non-photosensitive.
【0120】まず光軸付近の迷光を防止する光学系の実
施例を主体に説明する。図1に示す光学系は、照明系、
光量検出系、後焦点面検出系、試料面検出系からなり、
同図において照明光は実線、試料面から反射光は破線で
示している。照明系は、水銀ランプ光源1、集光レンズ
48、赤外線を吸収する熱線吸収フィルタ49、シャッ
ター50、レンズ51、フィルタ4c、非感光波長透過
用単色光フィルタ4d、遮光板47、レンズ52、視野
絞り53、レンズ54、偏光板3、直角ミラー60、フ
ィールドレンズ61、結像レンズ62、無限遠補正系の
対物レンズ41からなる。光量検出系はハーフミラー5
5、ダイクロイックミラー56、非感光波長透過用単色
光フィルタ57、非感光波長光量検出器58a、感光波
長光量検出器58bからなる。First, an embodiment of an optical system for preventing stray light near the optical axis will be mainly described. The optical system shown in FIG.
It consists of a light quantity detection system, a back focal plane detection system, and a sample plane detection system.
In the figure, the illumination light is shown by a solid line, and the light reflected from the sample surface is shown by a broken line. The illumination system includes a mercury lamp light source 1, a condenser lens 48, a heat ray absorbing filter 49 for absorbing infrared rays, a shutter 50, a lens 51, a filter 4c, a monochromatic optical filter 4d for transmitting non-photosensitive wavelengths, a light shielding plate 47, a lens 52, and a visual field. It comprises an aperture 53, a lens 54, a polarizing plate 3, a right angle mirror 60, a field lens 61, an imaging lens 62, and an infinity correction system objective lens 41. Light quantity detection system is half mirror 5
5, a dichroic mirror 56, a non-photosensitive wavelength transmitting monochromatic optical filter 57, a non-photosensitive wavelength light quantity detector 58a, and a photosensitive wavelength light quantity detector 58b.
【0121】後焦点面検出系は、対物レンズ41、結像
レンズ62、直角ミラー60、フィールドレンズ61、
リレーレンズ67、ダイクロイックミラー68、非感光
波長透過用単色光フィルター69、非感光波長での後焦
点面強度分布検出用リニアセンサ7a、感光波長での後
焦点面強度分布検出用リニアセンサ7bからなる。試料
面検出系は対物レンズ41、結像レンズ62、直角ミラ
ー60、フィールドレンズ61、ハーフミラー66、非
感光波長透過用単色光フィルター71、TVカメラ72
からなる。なお移動機構65上の載置台64には、被測
定膜21を形成した基板23と参照試料22と試料面光
量検出器63が搭載され、測定位置にそれぞれを任意に
移動できる。また載置台64を測定位置から退避するこ
ともできる。試料面光量検出器63は、感光波長の測定
光の照射光量を測定するために設置されている。The back focal plane detecting system includes an objective lens 41, an image forming lens 62, a right angle mirror 60, a field lens 61,
A relay lens 67, a dichroic mirror 68, a monochromatic light filter 69 for transmitting a non-photosensitive wavelength, a linear sensor 7a for detecting a back focal plane intensity distribution at a non-photosensitive wavelength, and a linear sensor 7b for detecting a rear focal plane intensity distribution at a photosensitive wavelength. . The sample surface detection system includes an objective lens 41, an imaging lens 62, a right angle mirror 60, a field lens 61, a half mirror 66, a non-photosensitive wavelength transmitting monochromatic light filter 71, and a TV camera 72.
Consists of The substrate 23 on which the film 21 to be measured is formed, the reference sample 22, and the sample surface light amount detector 63 are mounted on the mounting table 64 on the moving mechanism 65, and can be arbitrarily moved to the measurement positions. Further, the mounting table 64 can be retracted from the measurement position. The sample surface light amount detector 63 is installed to measure the irradiation light amount of the measurement light having the photosensitive wavelength.
【0122】光源1は集光レンズ48により結像し、レ
ンズ51に入射させる。光源結像位置からレンズ51ま
では、レンズ51の焦点距離だけ離れており、遮光板4
7はレンズ51の後側焦点位置に置かれる。遮光板47
は、レンズ52とレンズ54により、直角ミラー60の
直交面34bに投影される。また直交面34bはフィー
ルドレンズ61と結像レンズ62により、対物レンズ4
1の後焦点面34と共役な位置関係にある。従って遮光
板47と対物レンズ41の後焦点面34は共役な位置関
係となり、遮光板47の位置を調節することで、対物レ
ンズ41の光軸周辺に照明光が達しないようにすること
ができ、迷光を防止できる。The light source 1 forms an image by the condenser lens 48 and makes it incident on the lens 51. The focal point of the lens 51 is apart from the light source image forming position to the lens 51,
7 is located at the rear focal position of the lens 51. Light shield plate 47
Is projected on the orthogonal plane 34b of the right-angle mirror 60 by the lens 52 and the lens 54. The orthogonal plane 34b is formed by the field lens 61 and the image forming lens 62 by the objective lens 4
1 has a conjugate positional relationship with the back focal plane 34. Therefore, the light-shielding plate 47 and the rear focal plane 34 of the objective lens 41 have a conjugate positional relationship, and by adjusting the position of the light-shielding plate 47, illumination light can be prevented from reaching around the optical axis of the objective lens 41. And stray light can be prevented.
【0123】なおシャッター50は、不要な光を非測定
膜に照射しないために設置されている。また被測定膜2
1を感光せずに試料面を観察したい場合は、フィルタ4
cを非感光波長光透過用フィルタ4dに交換すればよ
い。The shutter 50 is provided so as not to irradiate unnecessary light to the non-measurement film. Also, the film to be measured 2
If you want to observe the sample surface without exposing 1, filter 4
c may be replaced with the non-photosensitive wavelength light transmitting filter 4d.
【0124】光量検出器58a、58bは直交面34b
と共役な位置に設置され、いずれも光電変換面は遮光板
47を通過した全照明光束を検出できる感光面を有する
検出器を用いる。光量検出器58a、58bの検出信号
は光源1の光量変動を観測するもので、この検出信号を
用いれば光量変動による反射光強度分布検出信号の変動
を補正でき、測定精度を向上できる。The light quantity detectors 58a and 58b are orthogonal to the orthogonal plane 34b.
In each case, a detector having a photosensitive surface capable of detecting all illumination light beams passing through the light shielding plate 47 is used as the photoelectric conversion surface. The detection signals of the light amount detectors 58a and 58b are for observing the fluctuation of the light amount of the light source 1, and if this detection signal is used, the fluctuation of the reflected light intensity distribution detection signal due to the fluctuation of the light amount can be corrected, and the measurement accuracy can be improved.
【0125】レンズ51の手前で結像した光源像は、レ
ンズ51とレンズ52により、視野絞り53を設置した
位置に再結像する。視野絞り53はレンズ54とフィー
ルドレンズ61により、試料面の第1結像面70に投影
される。試料面の第1結像位置70は、無限遠補正系の
対物レンズ41と結像レンズ62により、試料面を結像
する位置である。従って、視野絞り53は試料面と共役
な位置関係にあり、視野絞り53の径を調整すること
で、試料面で照明光が照射される領域を制限できる。The light source image formed before the lens 51 is re-formed by the lenses 51 and 52 at the position where the field stop 53 is installed. The field stop 53 is projected by a lens 54 and a field lens 61 onto a first image plane 70 of the sample surface. The first imaging position 70 on the sample surface is a position where an image is formed on the sample surface by the objective lens 41 and the imaging lens 62 of the infinity correction system. Accordingly, the field stop 53 is in a conjugate positional relationship with the sample surface, and by adjusting the diameter of the field stop 53, the area of the sample surface to which the illumination light is irradiated can be limited.
【0126】被測定膜21で反射した光は、無限遠補正
系の対物レンズ41と結像レンズ62により、第1結像
面70に試料面の像を結像する。第1結像面70の試料
面像は、直角ミラー60とハーフミラー66で反射した
後、フィールドレンズ61の結像作用によりTVカメラ
72に結像する。本実施例では、試料に対し斜めに照明
光が入射するため、試料面の高さ位置が変われば、TV
カメラ72で撮像する試料面像が紙面の左右方向に移動
する。そこでTVカメラ72で検出した試料面像の左右
方向の位置を検出することで、試料面の高さ位置を一定
にする自動焦点合わせを実現できる。The light reflected by the film 21 to be measured forms an image of the sample surface on the first imaging surface 70 by the objective lens 41 and the imaging lens 62 of the infinity correction system. The sample surface image on the first image forming surface 70 is reflected by the right-angle mirror 60 and the half mirror 66, and then formed on the TV camera 72 by the image forming action of the field lens 61. In this embodiment, since the illumination light is obliquely incident on the sample, if the height position of the sample surface changes, the TV
The sample surface image picked up by the camera 72 moves in the left-right direction on the paper. Therefore, by detecting the position in the horizontal direction of the sample surface image detected by the TV camera 72, it is possible to realize automatic focusing in which the height position of the sample surface is kept constant.
【0127】被測定膜21で反射した光は、無限遠補正
系の対物レンズ41の後焦点面34上で、入射角依存強
度反射率に対応した反射光強度分布(等傾角干渉縞)を
生じる。後焦点面34上反射光強度分布は、結像レンズ
62とフィールドレンズ61により、直角ミラー60の
直交面34bにまず結像する。ただし結像位置は照明光
通過位置とは反対側になる。直交面34bに結像した後
焦点面34上の反射光強度分布は、直角ミラー60で反
射したのちレンズ67によりリニアセンサ7a、リニア
センサ7bに結像する。そしてリニアセンサ7a、7b
の検出信号により、被測定膜の特性値を求める。The light reflected by the film to be measured 21 produces a reflected light intensity distribution (equiangular interference fringes) corresponding to the incident angle dependent intensity reflectance on the rear focal plane 34 of the objective lens 41 of the infinity correction system. . The reflected light intensity distribution on the back focal plane 34 first forms an image on the orthogonal plane 34 b of the right-angle mirror 60 by the imaging lens 62 and the field lens 61. However, the imaging position is on the opposite side of the illumination light passing position. The reflected light intensity distribution on the focal plane 34 after being imaged on the orthogonal plane 34b is reflected by the right-angle mirror 60 and then imaged on the linear sensors 7a and 7b by the lens 67. And the linear sensors 7a, 7b
The characteristic value of the film to be measured is obtained from the detection signal of (1).
【0128】次に本実施例で、感光性薄膜を測定するた
め感光/非感光の2つの波長での測定を行う2波長測定
を同時に行う方法を説明する。Next, in this embodiment, a method of simultaneously performing two-wavelength measurement for measuring a photosensitive thin film at two wavelengths of photosensitive and non-photosensitive will be described.
【0129】2波長測定を同時に行うには、上記光学系
で用いられたフィルター等を以下に示す特性にすればよ
い。図2(a)は水銀ランプ光源1の分光強度特性を示し
ている。同図に示すように水銀ランプから発する光は、
輝線という発光強度が非常に強い波長があり、通常これ
らをi線(365nm)、e線(546.1nm)などと英
字で略称している。また同図(d)は半導体の露光に用い
られるホトレジストの吸収係数の分光特性の一例であ
る。In order to perform two-wavelength measurement at the same time, the filter and the like used in the above optical system may have the following characteristics. FIG. 2A shows the spectral intensity characteristics of the mercury lamp light source 1. As shown in the figure, the light emitted from the mercury lamp is
There are wavelengths called emission lines having a very strong light emission intensity, and these are generally abbreviated to i-line (365 nm), e-line (546.1 nm), and the like in English. FIG. 4D shows an example of the spectral characteristic of the absorption coefficient of a photoresist used for exposing a semiconductor.
【0130】ここでは感光波長をi線、非感光波長をe
線として本発明で先に説明した2波長測定を同時に行う
実施例を説明する。Here, the photosensitive wavelength is i-line, and the non-photosensitive wavelength is e.
A description will be given of an embodiment in which the two-wavelength measurement described above in the present invention is simultaneously performed as a line.
【0131】図1に示した照明系のフィルタ4cは、同
図(b)に示す特性のものを使う。フィルタ4cはi線の
単色光フィルタであるが、この種のフィルタは、原理的
に長波長側に副透過帯と呼ばれる透過域が生じる。本実
施例ではこの副透過帯を積極的に利用する。同図(c)は
水銀ランプ光源1の光をフィルタ4cに通過させたとき
の分光強度特性である。感光波長域ではi線だけの単色
光となるが、非感光波長は複数の輝線が残存する。この
ような分光特性の照明光で被測定膜21を照明し反射光
を検出する。As the filter 4c of the illumination system shown in FIG. 1, a filter having the characteristic shown in FIG. The filter 4c is an i-line monochromatic light filter, but in this type of filter, a transmission band called a sub-transmission band is generated on the long wavelength side in principle. In this embodiment, this sub-transmission band is positively used. FIG. 3C shows the spectral intensity characteristics when the light from the mercury lamp light source 1 passes through the filter 4c. In the photosensitive wavelength region, the light becomes monochromatic light of only the i-line, but a plurality of bright lines remain in the non-sensitive wavelength. The film 21 to be measured is illuminated with illumination light having such spectral characteristics, and reflected light is detected.
【0132】図1に示した後焦点面検出系のダイクロイ
ックミラー68には、同図(e)に示す特性のものを用い
る。こうすればダイクロイックミラー68の透過側は感
光波長のi線の単色光になる。従ってリニアセンサ7b
ではi線単色光で、対物レンズ41の後焦点面34上の
反射光強度分布を検出できる。ダイクロイックミラー6
8の反射側には複数の非感光波長の輝線が含まれるた
め、さらに同図(f)に示す非感光波長透過用単色光フィ
ルタ69を挿入する。この様にすることで、リニアセン
サ7aではe線単色光で、対物レンズ41の後焦点面3
4上の反射光強度分布を検出できる。また光量検出系の
ダイクロイックミラー56、非感光波長透過用単色光フ
ィルタ57にも同じ特性の光学素子を用いればよい。The dichroic mirror 68 of the back focal plane detecting system shown in FIG. 1 has a characteristic shown in FIG. In this case, the transmission side of the dichroic mirror 68 becomes i-line monochromatic light having a photosensitive wavelength. Therefore, the linear sensor 7b
Then, the reflected light intensity distribution on the back focal plane 34 of the objective lens 41 can be detected with i-line monochromatic light. Dichroic mirror 6
Since a plurality of bright lines of a non-photosensitive wavelength are included on the reflection side of 8, a non-photosensitive wavelength transmitting monochromatic optical filter 69 shown in FIG. In this way, the linear sensor 7a emits monochromatic light of the e-line and outputs the rear focal plane 3 of the objective lens 41.
4 can be detected. Optical elements having the same characteristics may be used for the dichroic mirror 56 and the non-photosensitive wavelength transmitting monochromatic optical filter 57 of the light amount detection system.
【0133】以上の特性のフィルタとダイクロイックミ
ラーを用い、図1の構成の光学系にすることにより、感
光波長と非感光波長の後焦点面反射光強度分布検出及び
光量検出を同時に行える。これにより、感光波長と非感
光波長の切換えが不要となり、高速に感光性薄膜の膜
厚、屈折率、吸収係数を測定できる。なお図1の試料面
検出系に挿入した非感光波長透過用単色光フィルタ71
も同図(f)の特性を有するものを用いれば、色収差の影
響を低減でき、良好な試料面像が得られる。By using the filter and the dichroic mirror having the above characteristics and using the optical system having the configuration shown in FIG. 1, the detection of the reflected light intensity distribution at the back focal plane and the detection of the amount of light at the photosensitive wavelength and the non-photosensitive wavelength can be performed simultaneously. As a result, switching between the photosensitive wavelength and the non-photosensitive wavelength becomes unnecessary, and the thickness, refractive index, and absorption coefficient of the photosensitive thin film can be measured at high speed. It should be noted that the monochromatic optical filter 71 for transmitting light-insensitive wavelength inserted into the sample surface detection system of FIG.
Also, if a material having the characteristics shown in FIG. 3F is used, the influence of chromatic aberration can be reduced and a good sample surface image can be obtained.
【0134】図3に、図1の薄膜測定装置の信号処理系
の実施例を示す。非感光波長の信号処理系は、リニアセ
ンサ7aと光量検出器58aの信号を入力する光量変動
補正部80、被測定膜の反射光強度分布を記憶する被測
定膜メモリ8a、参照試料の反射光強度分布を記憶する
参照試料メモリ9a、リニアセンサ7aの暗レベルを記
憶する暗レベルメモリ12a、被測定膜の入射角依存強
度反射率を求める反射率演算部10a、薄膜特性値を求
める特性値決定部11aからなる。FIG. 3 shows an embodiment of the signal processing system of the thin film measuring apparatus of FIG. The non-photosensitive wavelength signal processing system includes a light amount fluctuation correction unit 80 for inputting signals from the linear sensor 7a and the light amount detector 58a, a film memory 8a for storing the reflected light intensity distribution of the film to be measured, and a reflected light of the reference sample. A reference sample memory 9a for storing the intensity distribution, a dark level memory 12a for storing the dark level of the linear sensor 7a, a reflectance calculator 10a for obtaining an incident angle dependent intensity reflectance of a film to be measured, and a characteristic value determination for obtaining a thin film characteristic value. It comprises a part 11a.
【0135】反射率演算部10aは、差分回路90a、
91a、割算回路92a、非感光波長での参照試料の理
論反射率演算部93a、掛算回路94aにより数24の
演算を実行する。感光波長の信号処理系も、同様な構成
になっている。ただし感光波長の特性値決定部11b
は、非感光波長の特性値決定部11aで求めた膜厚dを
既知の値として用い、感光波長における屈折率nと吸収
係数kを求める。もちろん感光波長の特性値決定部11
bは、非感光波長の特性値決定部11aで求めた膜厚d
は粗検出結果として扱い、膜厚範囲をd±Δdに限定し
て、感光波長における屈折率と吸収係数とともに膜厚を
再度決定してもよい。The reflectivity calculating section 10a includes a difference circuit 90a,
The calculation of Equation 24 is performed by a reference circuit 91a, a division circuit 92a, a theoretical reflectance calculation unit 93a for a reference sample at a non-photosensitive wavelength, and a multiplication circuit 94a. The signal processing system for the photosensitive wavelength has a similar configuration. However, the characteristic value determining unit 11b for the photosensitive wavelength
Calculates the refractive index n and the absorption coefficient k at the photosensitive wavelength using the film thickness d obtained by the non-photosensitive wavelength characteristic value determining unit 11a as a known value. Of course, the characteristic value determining unit 11 for the photosensitive wavelength
b is the film thickness d obtained by the non-photosensitive wavelength characteristic value determination unit 11a.
May be treated as a rough detection result, the film thickness range may be limited to d ± Δd, and the film thickness may be determined again together with the refractive index and the absorption coefficient at the photosensitive wavelength.
【0136】前記実施例は、感光波長と非感光波長の測
定を同時に行うものであるが、もちろん図15に示した
ように、フィルタの交換により波長を限定してもかまわ
ない。この場合、光学系の光量検出器と後焦点面反射光
強度分布検出用リニアセンサは1式だけにしてもよい。
この場合、信号処理系も適宜省略できるであろう。また
光源1を水銀ランプとしたが、これは水銀キセノンラン
プなど、被測定膜の感光/非感光波長の光を発光する光
源であれば、他の光源を用いてもよい。In the above embodiment, the measurement of the photosensitive wavelength and the non-photosensitive wavelength are performed at the same time, but the wavelength may be limited by replacing the filter as shown in FIG. In this case, only one set of the light amount detector of the optical system and the linear sensor for detecting the back focal plane reflected light intensity distribution may be used.
In this case, the signal processing system could be omitted as appropriate. Further, the light source 1 is a mercury lamp, but any other light source such as a mercury xenon lamp may be used as long as it emits light having a photosensitive / non-sensitive wavelength of the film to be measured.
【0137】以上の実施例では、後焦点面の反射光強度
分布検出器として1次元に光電変換素子が配列されたリ
ニアセンサを用いていたが、2次元に光電変換素子が配
列されたTVカメラを用いてもよい。2次元検出器を用
いれば、後焦点面の2次元像を観察できるので、光学系
の調整が容易になる利点がある。In the above embodiment, the linear sensor having the photoelectric conversion elements arranged one-dimensionally is used as the reflected light intensity distribution detector on the back focal plane. However, the TV camera having the photoelectric conversion elements arranged two-dimensionally is used. May be used. If a two-dimensional detector is used, a two-dimensional image of the back focal plane can be observed, and thus there is an advantage that adjustment of the optical system is facilitated.
【0138】また実施例では照明方法として光源像を試
料面に結像させるクリティカル照明法で説明したが、本
発明では参照試料を用いることで照度むらの影響を除去
できるので、照明側レンズの後焦点面上に光源を結像さ
せるケーラー照明にしてもよい。In the embodiments, the critical illumination method in which a light source image is formed on a sample surface has been described as an illumination method. However, in the present invention, the influence of uneven illuminance can be eliminated by using a reference sample. Koehler illumination that forms an image of a light source on a focal plane may be used.
【0139】以上、本発明によれば、等傾角干渉縞を検
出することで、被測定膜の入射角依存強度反射率を絶対
値を正確に求めることができ、これにより薄膜の膜厚、
屈折率、吸収係数を高精度かつ高速に測定することが可
能になる。また工業上重要な感光性薄膜の測定において
も、感光材料の分光特性に着目した感光波長及び非感光
波長の2波長で検出することにより、感光波長における
屈折率と吸収係数も高精度かつ高速に測定できる。As described above, according to the present invention, the absolute value of the incident angle dependent intensity reflectance of the film to be measured can be accurately obtained by detecting the equi-tilt interference fringes.
It becomes possible to measure the refractive index and the absorption coefficient with high accuracy and at high speed. Also in the measurement of photosensitive thin films that are industrially important, the refractive index and absorption coefficient at the photosensitive wavelength can be measured with high precision and high speed by detecting at two wavelengths, the photosensitive wavelength and the non-photosensitive wavelength, focusing on the spectral characteristics of the photosensitive material. Can be measured.
【0140】[0140]
【発明の効果】本発明によれば、薄膜の膜厚、屈折率、
吸収係数を高精度に測定することができ、特にホトレジ
スト等の感光性薄膜の測定に有効である。例えば半導体
製造業においては、パターン寸法精度を劣化させるホト
レジスト膜の膜厚、屈折率、吸収係数の変動を容易に検
出できるため、ホトレジストの品質管理や塗布装置の動
作監視を従来より高精度に行える。これにより半導体製
造歩留まりの向上に大きく寄与できる。このほか、感光
性薄膜を用いるリソグラフィ技術を応用した各種工業分
野でも同様な効果が得られる。According to the present invention, the thickness of a thin film, the refractive index,
The absorption coefficient can be measured with high accuracy, and is particularly effective for measuring a photosensitive thin film such as a photoresist. For example, in the semiconductor manufacturing industry, variations in the thickness, refractive index, and absorption coefficient of a photoresist film that degrade pattern dimensional accuracy can be easily detected, so that photoresist quality control and operation monitoring of a coating device can be performed with higher precision than before. . This can greatly contribute to improvement in semiconductor manufacturing yield. In addition, a similar effect can be obtained in various industrial fields using a lithography technique using a photosensitive thin film.
【図1】本発明の薄膜特性値測定装置の構成図である。FIG. 1 is a configuration diagram of a thin film characteristic value measuring device of the present invention.
【図2】本発明の薄膜特性値測定装置に用いる光学素子
特性の説明図である。FIG. 2 is an explanatory diagram of optical element characteristics used in the thin film characteristic value measuring device of the present invention.
【図3】本発明の薄膜特性値測定装置の薄膜特性値測定
装置の信号処理系の機能ブロック図である。FIG. 3 is a functional block diagram of a signal processing system of the thin film characteristic value measuring device of the present invention.
【図4】等傾角干渉の原理図である。FIG. 4 is a diagram illustrating the principle of equi-tilt interference.
【図5】入射角依存強度反射率の理論計算例である。FIG. 5 is a theoretical calculation example of an incident angle dependent intensity reflectance.
【図6】鏡面参照試料を用いて被測定膜の入射角依存強
度反射率を求め薄膜特性値を測定する装置の構成図であ
る。FIG. 6 is a configuration diagram of an apparatus that obtains an incident angle dependent intensity reflectance of a film to be measured by using a mirror surface reference sample and measures a thin film characteristic value.
【図7】平行光束の入射角と後焦点面上集光位置の関係
の説明図である。FIG. 7 is an explanatory diagram of a relationship between an incident angle of a parallel light beam and a condensing position on a back focal plane.
【図8】鏡面参照試料を用いて被測定膜の入射角依存強
度反射率を求める方法の原理図である。FIG. 8 is a principle diagram of a method for obtaining an incident angle dependent intensity reflectance of a film to be measured by using a mirror reference sample.
【図9】被測定膜の入射角依存強度反射率を求める手順
の説明図である。FIG. 9 is an explanatory diagram of a procedure for obtaining an incident angle dependent intensity reflectance of a film to be measured.
【図10】加算平均処理で測定精度を向上する薄膜特性
値測定装置の構成図である。FIG. 10 is a configuration diagram of a thin film characteristic value measuring device that improves measurement accuracy by averaging processing.
【図11】照明光量変動補正により測定精度を向上する
薄膜特性値測定装置の構成図である。FIG. 11 is a configuration diagram of a thin film characteristic value measuring device that improves measurement accuracy by correcting illumination light amount fluctuation.
【図12】照明光量変動補正の原理図である。FIG. 12 is a principle diagram of illumination light amount fluctuation correction.
【図13】照明光量変動補正回路の機能ブロック図であ
る。FIG. 13 is a functional block diagram of an illumination light amount fluctuation correction circuit.
【図14】感光性薄膜を測定するための2波長測定法と
露光前後測定法の原理説明図である。FIG. 14 is a diagram illustrating the principle of a two-wavelength measurement method and a measurement method before and after exposure for measuring a photosensitive thin film.
【図15】2波長測定法を適用した薄膜特性値測定装置
の構成図である。FIG. 15 is a configuration diagram of a thin film characteristic value measuring apparatus to which a two-wavelength measuring method is applied.
【図16】露光前後測定法を適用した薄膜特性値測定装
置の構成図である。FIG. 16 is a configuration diagram of a thin film characteristic value measuring apparatus to which a method before and after exposure is applied.
【図17】光軸が被測定膜に垂直なレンズを検出光学系
に用いた薄膜特性値測定装置の構成図である。FIG. 17 is a configuration diagram of a thin film characteristic value measuring device using a lens whose optical axis is perpendicular to a film to be measured in a detection optical system.
【図18】光軸が被測定膜に垂直なレンズを用いた検出
光学系で生じる迷光の説明図である。FIG. 18 is an explanatory diagram of stray light generated in a detection optical system using a lens whose optical axis is perpendicular to a film to be measured.
【図19】光軸が被測定膜に垂直なレンズを用いた検出
光学系で生じる迷光防止方法の説明図である。FIG. 19 is an explanatory diagram of a method for preventing stray light generated in a detection optical system using a lens whose optical axis is perpendicular to a film to be measured.
1…光源 2…コリメート用レンズ 3…偏光板
4…単色光透過フィルタ 4a…非感光波長透過用
単色光フィルタ 4b…感光波長透過用単色光フィル
タ 4c…フィルタ 4d…非感光波長透過用フィ
ルタ 5…照明側レンズ 6…検出側レンズ 7
…リニアセンサ 7a…非感光波長光検出用リニアセ
ンサ 7b…感光波長光検出用リニアセンサ 8…
被測定膜メモリ 9…参照試料メモリ 10…反射
率演算部 11…特性値決定部 12…暗レベルメモリ 13…加算平均部 21…
被測定膜 22…参照試料 23…被測定膜を形成
した基板 24…空気と被測定膜の境界面 25…被測定膜を形成した基板と被測定膜の境界面
31…照明光照度むら 32…照明光 33…反射光 33c…被測定膜反
射光 33d…被測定膜通過光 34…検出側レン
ズの後焦点面 36…検出側レンズの光軸 41…対物レンズ 42…リレーレンズ 43…ハ
ーフミラー 44…迷光を含まない反射光強度分布
45…迷光を含んだ反射光強度分布 46…遮光板
47…遮光板 49…熱線吸収フィルタ 50
…シャッター 51…レンズ 52…レンズ 53…視野絞り
54…レンズ 55…ハーフミラー 56…ダイク
ロイックミラー 57…非感光波長透過用単色光フィ
ルタ 58…光量検出器 58a…非感光波長光量
検出器 58b…感光波長光量検出器 60…直角
ミラー 61…フィールドレンズ 62…結像レンズ 63…試料面光量検出器 64
…載置台 65…移動機構 66…ハーフミラー
67…リレーレンズ 68…ダイクロイックミラー
69…非感光波長透過用単色光フィルタ 70…
ハーフミラー 71…非感光波長透過用単色光フィルタ 72…TV
カメラ 73…暗レベル用記憶装置 80…光量変
動補正部 81…積分回路 83…A/D変換器
84…サンプル・ホールド回路 85…A/D変換
器 86…デジタル割算器 87…アナログ割算器
88…A/D変換器 80…光量変動補正部
90…差分回路 91…差分回路 92…割算回路
93…参照試料の理論反射率演算部 94…掛算
回路DESCRIPTION OF SYMBOLS 1 ... Light source 2 ... Collimating lens 3 ... Polarizing plate
DESCRIPTION OF SYMBOLS 4 ... Monochromatic light transmission filter 4a ... Monochromatic light filter for non-photosensitive wavelength transmission 4b ... Monochromatic light filter for photosensitive wavelength transmission 4c ... Filter 4d ... Non-photosensitive wavelength transmission filter 5 ... Illumination side lens 6 ... Detection side lens 7
... Linear sensor 7a ... Linear sensor for non-photosensitive wavelength light detection 7b ... Linear sensor for photosensitive wavelength light detection 8 ...
Membrane memory to be measured 9 ... Reference sample memory 10 ... Reflectance calculator 11 ... Characteristic value determiner 12 ... Dark level memory 13 ... Averaging unit 21 ...
Film under measurement 22 Reference sample 23 Substrate on which film to be measured is formed 24 Interface between air and film to be measured 25 Interface between substrate on which film to be measured is formed and film to be measured
31: Irradiation unevenness of illumination light 32: Illumination light 33: Reflected light 33c: Reflected light of the film to be measured 33d: Light passing through the film to be measured 34: Rear focal plane of the detection side lens 36 ... Optical axis of the detection side lens 41 ... Objective lens 42 ... Relay lens 43: half mirror 44: reflected light intensity distribution not including stray light
45: reflected light intensity distribution including stray light 46: light shielding plate 47: light shielding plate 49: heat ray absorption filter 50
… Shutter 51… Lens 52… Lens 53… Field stop
54 ... lens 55 ... half mirror 56 ... dichroic mirror 57 ... monochromatic light filter for non-photosensitive wavelength transmission 58 ... light quantity detector 58a ... non-photosensitive wavelength light quantity detector 58b ... photosensitive wavelength light quantity detector 60 ... right angle mirror 61 ... field lens 62 ... Imaging lens 63 ... Sample surface light quantity detector 64
… Mounting table 65… Moving mechanism 66… Half mirror
67: relay lens 68: dichroic mirror 69: monochromatic optical filter for non-photosensitive wavelength transmission 70:
Half mirror 71: Monochromatic light filter for non-photosensitive wavelength transmission 72: TV
Camera 73: dark level storage device 80: light quantity fluctuation correction unit 81: integration circuit 83: A / D converter
84 sample-hold circuit 85 A / D converter 86 digital divider 87 analog divider 88 A / D converter 80 light intensity fluctuation correction unit
Reference numeral 90: difference circuit 91: difference circuit 92: division circuit 93: theoretical reflectance calculation unit of a reference sample 94: multiplication circuit
───────────────────────────────────────────────────── フロントページの続き (72)発明者 窪田 仁志 神奈川県横浜市戸塚区吉田町292番地 株式会社日立製作所生産技術研究所内 (56)参考文献 特開 昭60−73407(JP,A) 特開 昭64−12208(JP,A) 特開 昭64−75902(JP,A) 特開 平1−262404(JP,A) 特開 平2−128106(JP,A) 特開 平3−17505(JP,A) 特開 平4−109147(JP,A) 特開 平4−313006(JP,A) 特開 平5−141924(JP,A) 特公 昭62−49562(JP,B2) (58)調査した分野(Int.Cl.7,DB名) G01B 11/06 G01N 21/45 G01N 21/59 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Hitoshi Kubota 292 Yoshida-cho, Totsuka-ku, Yokohama-shi, Kanagawa Pref. JP-A-64-12208 (JP, A) JP-A-64-75902 (JP, A) JP-A-1-262404 (JP, A) JP-A-2-128106 (JP, A) JP-A-3-17505 (JP) JP-A-4-109147 (JP, A) JP-A-4-313006 (JP, A) JP-A-5-141924 (JP, A) JP-B-62-49562 (JP, B2) (58) Field surveyed (Int.Cl. 7 , DB name) G01B 11/06 G01N 21/45 G01N 21/59
Claims (22)
測定する方法において、薄膜試料の等傾角干渉縞の強度
分布検出値と、測定波長における屈折率と吸収係数が既
知の参照試料の等傾角干渉縞の強度分布検出値と、該参
照試料の測定波長における入射角依存強度反射率特性の
理論計算値より、該薄膜試料の入射角依存強度反射率特
性を算出し、薄膜の膜厚、屈折率、吸収係数を測定する
ことを特徴とする薄膜特性値測定方法。1. A method for measuring a characteristic value of a thin film from an equi-tilt interference fringe of a thin film sample, comprising the steps of: detecting an intensity distribution of the equi-tilt interference fringe of the thin film sample; From the intensity distribution detected value of the equi-tilt interference fringes and the theoretical calculation value of the incident angle dependent intensity reflectance characteristic at the measurement wavelength of the reference sample, the incident angle dependent intensity reflectance characteristic of the thin film sample is calculated, and the film thickness of the thin film is calculated. A method for measuring characteristic values of a thin film, comprising measuring a refractive index and an absorption coefficient.
いて、薄膜試料の入射角依存強度反射率特性と、任意の
膜厚、屈折率、吸収係数の組を代入して理論計算した入
射角依存強度反射率特性を比較し、両者が最も一致する
場合の、膜厚、屈折率、吸収係数の組を測定結果として
出力することを特徴とする薄膜特性値測定方法。2. The method according to claim 1, wherein the incident angle-dependent intensity reflectance characteristic of the thin film sample and a set of an arbitrary film thickness, refractive index, and absorption coefficient are substituted to calculate the incident light. A thin film characteristic value measuring method comprising comparing angle-dependent intensity reflectivity characteristics and outputting a set of a film thickness, a refractive index, and an absorption coefficient as a measurement result when the two coincide with each other.
いて、試料を退避したときの等傾角干渉縞観測面での強
度分布検出値を用いて、該薄膜試料の入射角依存強度反
射率特性を算出することを特徴とする薄膜特性値測定方
法。3. The method according to claim 1, wherein an incident angle-dependent intensity reflectance of the thin film sample is determined by using a detected intensity distribution on an oblique interference fringe observation surface when the sample is retracted. A method for measuring a characteristic value of a thin film, comprising calculating a characteristic.
いて、等傾角干渉縞の強度分布を複数回の検出し、その
平均値を等傾角干渉縞の強度分布検出値とすることを特
徴とする薄膜特性値測定方法。4. The thin film characteristic value measuring method according to claim 1, wherein the intensity distribution of the equi-tilt interference fringes is detected a plurality of times, and the average value is used as a detected value of the intensity distribution of the equi-tilt interference fringes. Thin film characteristic value measuring method.
いて、照明光量検出値を用いて、薄膜試料と参照試料の
等傾角干渉縞の強度分布検出値を各々補正した後、該薄
膜試料の入射角依存強度反射率特性を算出することを特
徴とする薄膜特性値測定方法。5. The method for measuring a characteristic value of a thin film according to claim 1, wherein the detected values of the intensity distributions of the equi-tilt interference fringes of the thin film sample and the reference sample are corrected using the detected value of the illumination light amount. And calculating an incident angle dependent intensity reflectance characteristic of the thin film.
いて、薄膜試料の吸収係数が小さい波長における等傾角
干渉縞の強度分布検出値から膜厚を求め、該膜厚値及び
薄膜試料の吸収係数が大きい波長における等傾角干渉縞
の強度分布検出値から屈折率、吸収係数を測定すること
を特徴とする薄膜特性値測定方法。6. A thin film characteristic value measuring method according to claim 1, wherein a film thickness is obtained from an intensity distribution detected value of the equi-tilt angle interference fringe at a wavelength at which the absorption coefficient of the thin film sample is small, and the film thickness value and the thin film sample are determined. A method for measuring a characteristic value of a thin film, comprising measuring a refractive index and an absorption coefficient from an intensity distribution detection value of an equitilt interference fringe at a wavelength having a large absorption coefficient.
いて、薄膜試料の吸収係数が小さい波長と吸収係数が大
きい波長における等傾角干渉縞の強度分布検出値を同時
に検出することを特徴とする薄膜特性値測定方法。7. A method for measuring characteristic values of a thin film according to claim 6, wherein the detected values of the intensity distributions of the equitilt interference fringes at the wavelength where the absorption coefficient of the thin film sample is small and the wavelength where the absorption coefficient is large are simultaneously detected. Thin film characteristic value measurement method.
いて、感光性薄膜試料の非感光波長における等傾角干渉
縞の強度分布検出値から膜厚を求め、該膜厚値及び感光
性薄膜試料の感光波長における等傾角干渉縞の強度分布
検出値から屈折率、吸収係数を測定することを特徴とす
る薄膜特性値測定方法。8. The method of measuring thin film characteristics according to claim 1, wherein a film thickness is obtained from a detected value of the intensity distribution of equi-tilt interference fringes at a non-photosensitive wavelength of the photosensitive thin film sample. A method for measuring a characteristic value of a thin film, comprising measuring a refractive index and an absorption coefficient from an intensity distribution detected value of an equi-tilt interference fringe at a photosensitive wavelength of a sample.
いて、感光性薄膜試料の非感光波長と感光波長における
等傾角干渉縞の強度分布検出値を同時に検出することを
特徴とする薄膜特性値測定方法。9. A thin film characteristic value measuring method according to claim 8, wherein the intensity distribution detection values of the equi-tilt interference fringes at the non-photosensitive wavelength and the photosensitive wavelength of the photosensitive thin film sample are simultaneously detected. Value measurement method.
おいて、感光性薄膜試料を感光波長の光で十分露光して
吸収係数が小さくなった時の等傾角干渉縞の強度分布検
出値から該感光性薄膜試料の膜厚を求め、該膜厚値及び
露光開始時の該感光性薄膜試料の等傾角干渉縞の強度分
布検出値を用いて、露光開始時の該感光性薄膜試料の膜
厚と感光波長における屈折率と吸収係数を測定すること
を特徴とする薄膜特性値測定方法。10. A method for measuring characteristic values of a thin film according to claim 1, wherein the photosensitive thin film sample is sufficiently exposed to light having a photosensitive wavelength to reduce the absorption coefficient, and the intensity distribution of the equi-tilt interference fringes is used to determine the value. The film thickness of the photosensitive thin film sample at the start of exposure is determined using the film thickness value and the intensity distribution detection value of the equi-tilt interference fringes of the photosensitive thin film sample at the start of exposure. A method for measuring characteristic values of a thin film, comprising measuring a refractive index and an absorption coefficient at a thickness and a photosensitive wavelength.
おいて、光軸が薄膜試料に垂直な対物レンズを用い、ぼ
ぼ垂直方向からの照明光を含まない収束光で薄膜試料を
照明し、薄膜試料の等傾角干渉縞の強度分布を検出する
ことを特徴とする薄膜特性値測定方法。11. The thin film characteristic value measuring method according to claim 1, wherein the thin film sample is illuminated with convergent light that does not include illumination light from an almost vertical direction using an objective lens whose optical axis is perpendicular to the thin film sample. A thin film characteristic value measuring method characterized by detecting an intensity distribution of equi-tilt interference fringes of a thin film sample.
において、対物レンズの後焦点面上で照明光と薄膜試料
からの反射光が同一位置を通過することなく薄膜試料の
等傾角干渉縞の強度分布を検出することを特徴とする薄
膜特性値測定方法。12. A method for measuring a characteristic value of a thin film according to claim 11, wherein the illumination light and the reflected light from the thin film sample do not pass through the same position on the back focal plane of the objective lens. A method for measuring characteristic values of a thin film, comprising detecting an intensity distribution of a thin film.
を測定する方法において、薄膜試料の吸収係数の小さい
波長における等傾角干渉縞の強度分布検出値から膜厚を
求め、該膜厚値及び薄膜の吸収係数が大きい波長におけ
る等傾角干渉縞の強度分布検出値から屈折率、吸収係数
を測定することを特徴とする薄膜特性値測定方法。13. A method for measuring a characteristic value of a thin film from equidistant interference fringes of a thin film sample, wherein the film thickness is obtained from a detected intensity distribution value of the equitilt interference fringes at a wavelength having a small absorption coefficient of the thin film sample. And measuring a refractive index and an absorption coefficient from an intensity distribution detection value of an equi-tilt interference fringe at a wavelength having a large absorption coefficient of the thin film.
において、薄膜試料の吸収係数が小さい波長と吸収係数
が大きい波長における等傾角干渉縞の強度分布検出値を
同時に検出することを特徴とする薄膜特性値測定方法。14. A method for measuring a characteristic value of a thin film according to claim 13, wherein the intensity distribution detected values of the equi-tilt interference fringes at the wavelength where the absorption coefficient of the thin film sample is small and the wavelength where the absorption coefficient is large are simultaneously detected. Thin film characteristic value measurement method.
を測定する方法において、感光性薄膜試料の非感光波長
における等傾角干渉縞の強度分布検出値から膜厚を求
め、該膜厚値及び感光性薄膜試料の感光波長における等
傾角干渉縞の強度分布検出値から屈折率、吸収係数を測
定することを特徴とする薄膜特性値測定方法。15. A method for measuring a characteristic value of a thin film from equidistant interference fringes of a thin film sample, wherein a film thickness is obtained from an intensity distribution detection value of the equitilt interference fringes at a non-photosensitive wavelength of the photosensitive thin film sample. And measuring a refractive index and an absorption coefficient from a detected value of an intensity distribution of equi-tilt interference fringes at a photosensitive wavelength of a photosensitive thin film sample.
において、感光性薄膜試料の感光波長と非感光波長の等
傾角干渉縞の強度分布検出値を同時に検出することを特
徴とする薄膜特性値測定方法。16. A thin film characteristic value measuring method according to claim 15, wherein the intensity distribution detection values of the equi-tilt interference fringes at the photosensitive wavelength and the non-photosensitive wavelength of the photosensitive thin film sample are simultaneously detected. Value measurement method.
光素子と、試料に収束光を照射するため照明用レンズ
と、試料から反射する発散光をとらえる検出用レンズ
と、該検出用レンズの後焦点面上の強度分布を検出する
装置を有する薄膜特性値測定装置であって、薄膜試料の
後焦点面強度分布検出値と、屈折率と吸収係数が既知の
参照試料の後焦点面強度分布検出値と、参照試料の入射
角依存強度反射率特性の理論計算値から薄膜試料の入射
角依存強度反射率特性を算出する装置と、該入射角依存
強度反射率特性から薄膜の膜厚、屈折率、吸収係数を決
定する装置を備えたことを特徴とする薄膜特性値測定装
置。17. A light source, an optical element for limiting a wavelength, a polarizing element, an illumination lens for irradiating convergent light to a sample, a detection lens for capturing divergent light reflected from the sample, and the detection lens. A thin film characteristic value measuring device having a device for detecting an intensity distribution on a back focal plane of the thin film sample, wherein the detected value of the back focal plane intensity distribution of the thin film sample and the back focal plane intensity of the reference sample whose refractive index and absorption coefficient are known A device that calculates the incident angle dependent intensity reflectance characteristic of the thin film sample from the distribution detection value and the theoretical calculation value of the incident angle dependent intensity reflectance characteristic of the reference sample, and the film thickness of the thin film from the incident angle dependent intensity reflectance characteristic, A thin film characteristic value measuring device comprising a device for determining a refractive index and an absorption coefficient.
において、照明用レンズと検出用レンズを光軸が薄膜試
料に垂直な一つの対物レンズで兼用し、かつぼぼ垂直方
向からの照明光を含まない収束光で薄膜試料を照明する
光学系にしたことを特徴とする薄膜特性値測定装置。18. A thin film characteristic value measuring apparatus according to claim 17, wherein the illumination lens and the detection lens are shared by a single objective lens whose optical axis is perpendicular to the thin film sample, and the illumination light from a substantially vertical direction. An optical system for illuminating a thin film sample with convergent light that does not include a thin film.
において、対物レンズの後焦点面上で照明光と薄膜試料
からの反射光が同一位置を通過しない光学系にしたこと
を特徴とする薄膜特性値測定装置。19. An apparatus according to claim 18, wherein the illumination light and the reflected light from the thin film sample do not pass through the same position on the back focal plane of the objective lens. Thin film characteristic value measuring device.
において、薄膜試料の吸収係数が小さい波長と大きい波
長に照明波長を限定する光学素子を備えたことを特徴と
する薄膜特性値測定装置。20. The thin film characteristic value measuring device according to claim 17, further comprising an optical element for limiting an illumination wavelength to a wavelength having a small absorption coefficient and a wavelength having a large absorption coefficient of the thin film sample. .
において、薄膜試料の吸収係数が小さい波長と大きい波
長における等傾角干渉縞の強度分布を同時に検出する光
学系にしたことを特徴とする薄膜特性値測定装置。21. The thin film characteristic value measuring device according to claim 17, wherein an optical system for simultaneously detecting the intensity distribution of equi-tilt interference fringes at a wavelength where the absorption coefficient of the thin film sample is small and a wavelength where the absorption coefficient is large is provided. Thin film characteristic value measuring device.
において、薄膜参照試料を同時に載置台に搭載できる構
成にしたことを特徴とする薄膜特性値測定装置。22. The thin film characteristic value measuring device according to claim 17, wherein a thin film reference sample is simultaneously mounted on a mounting table.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP05217202A JP3106790B2 (en) | 1993-09-01 | 1993-09-01 | Thin film characteristic value measuring method and apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP05217202A JP3106790B2 (en) | 1993-09-01 | 1993-09-01 | Thin film characteristic value measuring method and apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0771924A JPH0771924A (en) | 1995-03-17 |
JP3106790B2 true JP3106790B2 (en) | 2000-11-06 |
Family
ID=16700470
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP05217202A Expired - Fee Related JP3106790B2 (en) | 1993-09-01 | 1993-09-01 | Thin film characteristic value measuring method and apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3106790B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008122394A (en) * | 2000-12-18 | 2008-05-29 | Centre National De La Recherche Scientifique | Ellipsometric measurement method and apparatus |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7304744B1 (en) | 1998-12-24 | 2007-12-04 | Sharp Kabushiki Kaisha | Apparatus and method for measuring the thickness of a thin film via the intensity of reflected light |
JP2000193424A (en) * | 1998-12-24 | 2000-07-14 | Sharp Corp | Method and device for measuring thickness of thin-film |
KR100393644B1 (en) * | 2001-11-16 | 2003-08-06 | 광주과학기술원 | Apparatus of measuring refractive index and absorption coefficient of an optical material simultaneously |
JP3742801B2 (en) * | 2003-03-18 | 2006-02-08 | 独立行政法人科学技術振興機構 | Film thickness acquisition method |
JP4084817B2 (en) * | 2005-09-16 | 2008-04-30 | テクノス株式会社 | Film thickness measuring method and film thickness measuring apparatus |
JP2012063321A (en) * | 2010-09-17 | 2012-03-29 | Hamamatsu Photonics Kk | Reflectivity measurement device, reflectivity measurement method, film thickness measurement device, and film thickness measurement method |
JP6564848B2 (en) * | 2015-03-17 | 2019-08-21 | 東レエンジニアリング株式会社 | Film thickness measuring apparatus and film thickness measuring method |
JP6965654B2 (en) * | 2017-09-19 | 2021-11-10 | 横河電機株式会社 | Fourier spectrophotometer |
KR102520711B1 (en) * | 2018-05-15 | 2023-04-12 | 삼성디스플레이 주식회사 | crystallization inspection apparatus and inspection method using the same |
-
1993
- 1993-09-01 JP JP05217202A patent/JP3106790B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008122394A (en) * | 2000-12-18 | 2008-05-29 | Centre National De La Recherche Scientifique | Ellipsometric measurement method and apparatus |
Also Published As
Publication number | Publication date |
---|---|
JPH0771924A (en) | 1995-03-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102386664B1 (en) | Spectroscopic beam profile metrology | |
US10274370B2 (en) | Inspection apparatus and method | |
US4999014A (en) | Method and apparatus for measuring thickness of thin films | |
US10495446B2 (en) | Methods and apparatus for measuring height on a semiconductor wafer | |
KR102549058B1 (en) | Optical measurement apparatus and optical measurement method | |
US5159412A (en) | Optical measurement device with enhanced sensitivity | |
US7511293B2 (en) | Scatterometer having a computer system that reads data from selected pixels of the sensor array | |
US5963326A (en) | Ellipsometer | |
JP3106790B2 (en) | Thin film characteristic value measuring method and apparatus | |
JP5297930B2 (en) | Defect inspection apparatus and method | |
EP1212580B1 (en) | Method and apparatus for performing optical measurements of layers and surface properties | |
US20080018897A1 (en) | Methods and apparatuses for assessing overlay error on workpieces | |
KR20230014710A (en) | Imaging systems for buried metrology targets | |
WO1993006618A1 (en) | Method and apparatus for forming pattern | |
US7767982B2 (en) | Optical auto focusing system and method for electron beam inspection tool | |
JPH04229863A (en) | Photomask tester | |
JPH03189545A (en) | Defect inspecting device | |
JP3219223B2 (en) | Characteristic value measuring method and device | |
JP2786270B2 (en) | Interferometric tilt or height detecting device, reduction projection type exposure device and method thereof | |
JPH0612753B2 (en) | Pattern detection method and apparatus thereof | |
JPH0769271B2 (en) | Defect inspection equipment | |
JP3202322B2 (en) | Mask inspection equipment | |
JPS62182612A (en) | Apparatus for measuring surface position of specimen | |
JPH05141917A (en) | Positioning device and positioning method | |
JPH10153487A (en) | Optical system of polarization analizer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070908 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080908 Year of fee payment: 8 |
|
LAPS | Cancellation because of no payment of annual fees |