JP2009270456A - Diaphragm pump - Google Patents

Diaphragm pump Download PDF

Info

Publication number
JP2009270456A
JP2009270456A JP2008120099A JP2008120099A JP2009270456A JP 2009270456 A JP2009270456 A JP 2009270456A JP 2008120099 A JP2008120099 A JP 2008120099A JP 2008120099 A JP2008120099 A JP 2008120099A JP 2009270456 A JP2009270456 A JP 2009270456A
Authority
JP
Japan
Prior art keywords
diaphragm
pump
discharge
suction
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008120099A
Other languages
Japanese (ja)
Inventor
Hitoshi Onishi
人司 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP2008120099A priority Critical patent/JP2009270456A/en
Publication of JP2009270456A publication Critical patent/JP2009270456A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Reciprocating Pumps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To effectively reduce pulsation by simple structure, in a diaphragm pump for providing pump action by the vibration of a vibrating diaphragm. <P>SOLUTION: This diaphragm pump is provided so that both the front and reverse of a pulsation reducing diaphragm are formed as liquid chambers, and one of these front and reverse liquid chambers is made to communicate with a suction port or a delivery port, and the other is made to communicate with the delivery port or the suction port, and liquid is introduced to the front and reverse of the pulsation reducing diaphragm, and the pulsation is reduced. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、ダイヤフラムポンプに関する。   The present invention relates to a diaphragm pump.

振動するダイヤフラムによってポンプ作用を得るポンプとして、例えば圧電ポンプがある。圧電ポンプは、圧電振動子を一対のハウジングで挟着して該圧電振動子の表裏の少なくとも一方にポンプ室を形成し、該ポンプ室と吸入ポートとの間に該吸入ポートから該ポンプ室への流体流を許容しその逆方向の流体流を許さない吸入側逆止弁を設け、ポンプ室と吐出ポートとの間に該ポンプ室から吐出ポートへの流体流を許容しその逆方向の流体流を許さない吐出側逆止弁を設けている。圧電振動子が振動すると、ポンプ室の容積が大きくなる行程では、流入側逆止弁が開き吐出側逆止弁が閉じて吸入ポートからポンプ室内に流体が流入し、逆にポンプ室の容積が小さくなる行程では、吐出側逆止弁が開き吸入側逆止弁が閉じてポンプ室から吐出ポートに流体が吐出され、ポンプ作用が得られる。
登録実用新案第2535320号公報 実開昭61-144282号公報 特開2000-265963号公報 特開2000-274374号公報 特開2002-202061公報 特開2006-112368号公報
An example of a pump that obtains a pump action by a vibrating diaphragm is a piezoelectric pump. In the piezoelectric pump, a piezoelectric vibrator is sandwiched between a pair of housings, a pump chamber is formed on at least one of the front and back surfaces of the piezoelectric vibrator, and the suction port is connected to the pump chamber between the pump chamber and the suction port. A suction-side check valve is provided that allows fluid flow in the reverse direction but does not allow fluid flow in the opposite direction, and allows fluid flow from the pump chamber to the discharge port between the pump chamber and the discharge port. A discharge check valve that does not allow flow is provided. When the piezoelectric vibrator vibrates, in the process of increasing the volume of the pump chamber, the inflow side check valve opens and the discharge side check valve closes, and fluid flows into the pump chamber from the suction port. In the smaller stroke, the discharge-side check valve opens and the suction-side check valve closes, and fluid is discharged from the pump chamber to the discharge port, thereby obtaining a pump action.
Registered Utility Model No. 2535320 Japanese Utility Model Publication No. 61-144282 JP 2000-265963 A JP 2000-274374 A JP2002-202061 JP 2006-112368 A

このような動作原理のダイヤフラムポンプは、振動ダイヤフラムの振動によって、吸入ポートと吐出ポート内の圧力が変動する脈動が避けられない。脈動は、同時に大きな運転音(振動、騒音)やダイヤフラムに設けられた圧電振動子の耐久性劣化の原因となる。   In the diaphragm pump having such an operation principle, pulsation in which the pressure in the suction port and the discharge port fluctuates due to vibration of the vibration diaphragm is unavoidable. The pulsation simultaneously causes loud driving sound (vibration, noise) and deterioration of durability of the piezoelectric vibrator provided in the diaphragm.

従来のダイヤフラムポンプの脈動防止構造は一般に、振動ダイヤフラムとは別に設けた弾性材料からなる脈動軽減ダイヤフラムの表裏の一方の室を吸入ポート又は吐出ポートに連通させ、他方の室に空気を封入している。吸入ポート又は吐出ポートの圧力変動を密閉空気室の体積変化で吸収しようという考えであるが、本発明者の解析によると、空気室の体積変化ではその体積の1割から2割程度の体積変化の吸収であり、空気室の体積を大きくしなくては脈動を効果的に軽減することが困難である。また、長期間の使用により空気が減少し、脈動軽減効果が低下する問題もある。   Conventional diaphragm pump pulsation prevention structure generally has one chamber on the front and back of a pulsation reducing diaphragm made of an elastic material provided separately from the vibration diaphragm communicated with an intake port or a discharge port, and air is sealed in the other chamber. Yes. The idea is to absorb the pressure fluctuation of the suction port or the discharge port by the volume change of the sealed air chamber. According to the analysis of the present inventor, the volume change of the air chamber is about 10 to 20% of the volume change. It is difficult to effectively reduce the pulsation without increasing the volume of the air chamber. In addition, there is a problem that air is reduced by long-term use and the pulsation reducing effect is lowered.

また、本出願人は、このような圧電ポンプを用いてノートPCの発熱源(CPU、GPU、チップセット等)を冷却する水冷システムを開発中である。ノートPCに搭載するポンプは、安全規格であるUL規格を満足する必要があり、とくに耐電圧性を満たすようにハウジングを合成樹脂主体としたものにせざるをえない。合成樹脂製のハウジングは、材料に設計自由度のある配管部分と比べて、ハウジング自体が弾性変形しにくいため、逆止弁の開閉に伴う脈動(振動)の影響をうけやすい。従来、この圧電ポンプ(ダイヤフラムポンプ)の脈動防止構造は各種が提案されているが、構造が複雑化し、薄型化を妨げ、部品点数を増加させ、耐久性に問題があり、あるいは流量が犠牲になるという問題があった。   Further, the present applicant is developing a water cooling system for cooling a heat source (CPU, GPU, chipset, etc.) of a notebook PC using such a piezoelectric pump. The pump mounted on the notebook PC needs to satisfy the UL standard, which is a safety standard. In particular, the housing must be mainly made of synthetic resin so as to satisfy the voltage resistance. The housing made of synthetic resin is not easily elastically deformed as compared with the piping portion having a degree of freedom in design of the material, and thus is easily affected by pulsation (vibration) associated with opening and closing of the check valve. Conventionally, various pulsation prevention structures for this piezoelectric pump (diaphragm pump) have been proposed. However, the structure is complicated, obstructing the thinning, increasing the number of parts, causing problems in durability, or sacrificing the flow rate. There was a problem of becoming.

本発明は、簡単な構造で効果的に脈動の軽減ができるダイヤフラムポンプを得ることを目的とする。   An object of the present invention is to obtain a diaphragm pump capable of effectively reducing pulsation with a simple structure.

本発明者は、従来装置では、脈動軽減ダイヤフラムの表裏の一方を液室、他方を密閉空気室としていたのに対し、表裏の両方を液室とし、この表裏の液室の一方を吸入ポート又は吐出ポートに連通させ、他方を吐出ポート又は吸入ポートに連通させ、脈動軽減ダイヤフラムの表裏に液体を導入すれば、脈動の軽減効果が高いという事実に着目して本発明を完成したものである。   In the conventional apparatus, the front and back sides of the pulsation reducing diaphragm are liquid chambers and the other side is a sealed air chamber, whereas both front and back sides are liquid chambers, and one of the front and back liquid chambers is a suction port or The present invention has been completed by paying attention to the fact that the effect of reducing the pulsation is high if it is communicated with the discharge port, the other is communicated with the discharge port or the suction port, and the liquid is introduced into the front and back of the pulsation reduction diaphragm.

本発明は、振動ダイヤフラムの表裏の少なくとも一方にポンプ室を形成し、該ポンプ室と吸入ポートとの間に該吸入ポートから該ポンプ室への流体流を許容しその逆方向の流体流を許さない吸入側逆止弁を設け、上記ポンプ室と吐出ポートとの間に該ポンプ室から吐出ポートへの流体流を許容しその逆方向の流体流を許さない吐出側逆止弁を設け、振動ダイヤフラムを振動させてポンプ作用を得るダイヤフラムポンプにおいて、表裏にそれぞれ液室を形成する少なくとも一つの弾性材料からなる脈動軽減ダイヤフラムを設け、この脈動軽減ダイヤフラムの表裏の液室の一方を、吸入ポートと吐出ポートのいずれか一方に連通させ、他方を該吸入ポートと吐出ポートの他方に連通させたことを特徴としている。   According to the present invention, a pump chamber is formed on at least one of the front and back sides of the vibration diaphragm, and fluid flow from the suction port to the pump chamber is allowed between the pump chamber and the suction port, and fluid flow in the opposite direction is allowed. There is no suction side check valve, and there is a discharge side check valve between the pump chamber and the discharge port that allows fluid flow from the pump chamber to the discharge port and does not allow fluid flow in the opposite direction. In a diaphragm pump that vibrates the diaphragm and obtains a pumping action, a pulsation reducing diaphragm made of at least one elastic material that forms a liquid chamber on each side is provided, and one of the liquid chambers on the front and back of the pulsation reducing diaphragm is connected to an intake port. A feature is that one of the discharge ports communicates with the other, and the other communicates with the other of the suction port and the discharge port.

振動ダイヤフラムと、この振動ダイヤフラムとは平面位置を異ならせた脈動軽減ダイヤフラムとは、一対のハウジングで挟着支持し、該一対のハウジングにそれぞれ、振動ダイヤフラムの表裏の少なくとも一方にポンプ室を形成する凹部と、脈動軽減ダイヤフラムの表裏にそれぞれ液室を画成する凹部を形成することが望ましい。   A vibration diaphragm and a pulsation reduction diaphragm whose plane position is different from that of the vibration diaphragm are sandwiched and supported by a pair of housings, and a pump chamber is formed in at least one of the front and back surfaces of the vibration diaphragm in each of the pair of housings. It is desirable to form recesses and recesses that define liquid chambers on the front and back sides of the pulsation reducing diaphragm.

一対のハウジングには、さらに脈動軽減ダイヤフラムとは平面位置を異ならせて、穴あきのダミーダイヤフラムを挟着支持し、脈動軽減ダイヤフラムの表裏の液室の一方を、この穴あきダイヤフラムを含む流路を介して吸入ポートと吐出ポートのいずれかに連通させることができる。   The pair of housings are further supported by sandwiching and supporting a perforated dummy diaphragm with a plane position different from that of the pulsation reducing diaphragm, and one of the liquid chambers on the front and back of the pulsation reducing diaphragm is provided with a flow path including the perforated diaphragm. And can communicate with either the suction port or the discharge port.

本発明は、振動ダイヤフラムの表裏の一方のみにポンプ室を形成した2バルブタイプのダイヤフラムポンプだけでなく、振動ダイヤフラムの表裏にそれぞれポンプ室を形成し、この一対のポンプ室と単一の吸入ポートの間及び同一対のポンプ室と単一の吐出ポートの間にそれぞれ吸入側逆止弁と吐出側逆止弁を設けた4バルブタイプにも適用できる。   The present invention is not only a two-valve type diaphragm pump in which a pump chamber is formed on only one of the front and back sides of the vibration diaphragm, but also a pump chamber is formed on each of the front and back surfaces of the vibration diaphragm. And a four-valve type in which a suction-side check valve and a discharge-side check valve are provided between the pump chamber and a single discharge port.

この4バルブタイプでは、一対のハウジングの間に、振動ダイヤフラムと、一対の脈動軽減ダイヤフラムを挟着支持し、該一対のハウジングには振動ダイヤフラムの表裏にポンプ室を形成する凹部と、一対の脈動軽減ダイヤフラムの表裏に液室を形成する凹部とを形成し、この一対の脈動軽減ダイヤフラムの表裏の液室の一方を、吸入ポートと吐出ポートにそれぞれ連通させ、他方を該吐出ポートと吸入ポートにそれぞれ連通させることができる。   In this four-valve type, a vibration diaphragm and a pair of pulsation reduction diaphragms are sandwiched and supported between a pair of housings, a recess that forms a pump chamber on the front and back of the vibration diaphragm, and a pair of pulsations A recess for forming a liquid chamber is formed on the front and back of the reduction diaphragm, and one of the liquid chambers on the front and back of the pair of pulsation reduction diaphragms is connected to the suction port and the discharge port, respectively, and the other is connected to the discharge port and the suction port. Each can communicate.

脈動軽減ダイヤフラムは、具体的には、平面円形として、その周縁に一対のハウジングによって液密に挟着される環状ビードを設けることで、部品点数の削減ができる。   Specifically, the pulsation reducing diaphragm can be reduced in the number of parts by providing an annular bead sandwiched in a liquid-tight manner by a pair of housings on the periphery thereof as a flat circular shape.

4バルブタイプでは、振動ダイヤフラムを挟着する一対のハウジングにそれぞれ、一対のポンプ室の一方を形成する凹部と、該凹部に連通し該ハウジングの外面に開口する吸入側外部開口穴と吐出側外部開口穴を形成し、一対のハウジングの一方と他方に、互いに嵌合関係となって両ハウジングの吸入側外部開口穴と吐出側外部開口穴とを互いに連通させる対をなす筒状流路突起と接続穴とを形成し、一対のハウジングのうち、筒状流路突起を有する側のハウジングに、吸入側外部開口穴に連通する吸入ポートと、吐出側外部開口穴に連通する吐出ポートを形成することで、簡単な構成の4バルブタイプが得られる。   In the 4-valve type, each of a pair of housings sandwiching the vibration diaphragm has a recess forming one of the pair of pump chambers, a suction side external opening hole communicating with the recess and opening on the outer surface of the housing, and a discharge side external A cylindrical flow path protrusion that forms an opening hole and forms a pair in which one of the pair of housings and the other of the housing are in a fitting relationship with each other so that the suction-side external opening hole and the discharge-side external opening hole communicate with each other; A connection hole is formed, and a suction port that communicates with the suction-side external opening hole and a discharge port that communicates with the discharge-side external opening hole are formed in the housing on the side having the cylindrical flow path protrusion of the pair of housings. Thus, a 4-valve type with a simple configuration can be obtained.

吸入ポートと吐出ポートは、一対のハウジングのいずれか一方に双方を設けることができる。あるいは、同吸入ポートと吐出ポートを一対のハウジングの一方と他方に設ける態様も可能である。   Both the suction port and the discharge port can be provided in one of the pair of housings. Alternatively, a mode in which the suction port and the discharge port are provided on one and the other of the pair of housings is also possible.

量産品では、一対のハウジングは、ともに合成樹脂材料の成形品から形成するのがよい。   In a mass-produced product, the pair of housings are preferably formed from a molded product of a synthetic resin material.

また、4バルブタイプでは、一対のハウジングの一方のハウジングの接続穴に他方のハウジングの筒状流路突起を挿入するだけで液密な自由液流路が構成されるように、筒状流路突起には、太径部と、この太径部の上部に位置する細径部と、この太径部と細径部を分ける軸線に対して直交しない環状斜面とを設け、外部開口穴には、大径穴と、この大径穴より内側に位置する小径穴と、この大径穴と小径穴の境界に位置し上記接続穴が連通する、筒状流路突起の環状斜面に対応する軸線に対して直交しない環状斜面とを設け、筒状流路突起の細径部に嵌めたOリングがこの両環状斜面の間に圧縮挟着されて液密を保持するように構成することが好ましい。   Further, in the 4-valve type, the cylindrical flow path is configured such that a liquid-tight free liquid flow path is configured simply by inserting the cylindrical flow path protrusion of the other housing into the connection hole of one housing of the pair of housings. The protrusion is provided with a large-diameter portion, a thin-diameter portion located above the large-diameter portion, and an annular slope that is not orthogonal to the axis that separates the large-diameter portion and the thin-diameter portion. An axis corresponding to the annular inclined surface of the cylindrical flow path protrusion, which is located at the boundary between the large diameter hole and the small diameter hole and communicates with the connection hole. It is preferable to provide an annular inclined surface that is not orthogonal to the O-ring, and an O-ring fitted to the narrow diameter portion of the cylindrical channel protrusion is compressed and sandwiched between both annular inclined surfaces to maintain liquid tightness. .

振動ダイヤフラムは、具体的には、導電性金属薄板からなる少なくとも一枚のシムと少なくとも一層の圧電体層との交互積層構造を有する圧電振動子から構成すると、薄型のダイヤフラムポンプを得ることができる。   Specifically, when the vibration diaphragm is composed of a piezoelectric vibrator having an alternately laminated structure of at least one shim made of a conductive metal thin plate and at least one piezoelectric layer, a thin diaphragm pump can be obtained. .

本発明のダイヤフラムポンプは、ポンプ作用を司る振動ダイヤフラムとは別に、表裏にそれぞれ液室を形成する少なくとも一つの弾性材料からなる脈動軽減ダイヤフラムを設け、この脈動軽減ダイヤフラムの表裏の液室の一方を、吸入ポートと吐出ポートのいずれか一方に連通させ、他方を該吸入ポートと吐出ポートの他方に連通させたので、吸入ポート(吐出ポート)内の圧力変動を、吐出ポート(吸入ポート)内の液体圧力で吸収し、脈動(振動、騒音)を軽減することができる。   The diaphragm pump of the present invention is provided with a pulsation reducing diaphragm made of at least one elastic material that forms liquid chambers on the front and back sides separately from the vibrating diaphragm that controls the pump action, and one of the liquid chambers on the front and back sides of the pulsation reducing diaphragm is provided. Since the communication with one of the suction port and the discharge port and the other with the other of the suction port and the discharge port, the pressure fluctuation in the suction port (discharge port) is changed in the discharge port (suction port). Absorbs with liquid pressure and can reduce pulsation (vibration, noise).

図1ないし図6の実施形態は、ダイヤフラムを挟着する一対のハウジングを組み立てることで実質的な流路構造を構成できる、本出願人が特願2007-275908号で提案した4バルブダイヤフラムポンプに本発明を適用したものである。   The embodiment of FIGS. 1 to 6 is a four-valve diaphragm pump proposed by the present applicant in Japanese Patent Application No. 2007-275908 that can constitute a substantial flow path structure by assembling a pair of housings sandwiching a diaphragm. The present invention is applied.

最初に、図9について、4バルブダイヤフラムポンプの動作原理を説明する。このダイヤフラムポンプは、アッパハウジング10、ロアハウジング20、圧電振動子(ダイヤフラム)30、及び4つのアンブレラ(逆止弁)11、12、21、22を基本的な構成要素としている。アッパハウジング10と圧電振動子30の間、及びロアハウジング20と圧電振動子30の間にはそれぞれ、アッパポンプ室(可変容積室)13とロアポンプ室(可変容積室)23が形成されている。単一の吸入ポート31は、吸入側流路14Hと24Hに連通しており、吸入側流路14Hは吸入側逆止弁11を介してアッパポンプ室13に連通し、吸入側流路24Hは吸入側逆止弁21を介してロアポンプ室23に連通している。また、単一の吐出ポート32は、吐出側流路15Dと25Dに連通しており、吐出側流路15Dは吐出側逆止弁12を介してアッパポンプ室13に連通し、吐出側流路25Dは吐出側逆止弁22を介してロアポンプ室23に連通している。   First, the principle of operation of the 4-valve diaphragm pump will be described with reference to FIG. This diaphragm pump includes an upper housing 10, a lower housing 20, a piezoelectric vibrator (diaphragm) 30, and four umbrellas (check valves) 11, 12, 21, and 22 as basic components. An upper pump chamber (variable volume chamber) 13 and a lower pump chamber (variable volume chamber) 23 are formed between the upper housing 10 and the piezoelectric vibrator 30, and between the lower housing 20 and the piezoelectric vibrator 30, respectively. The single suction port 31 communicates with the suction side flow paths 14H and 24H, the suction side flow path 14H communicates with the upper pump chamber 13 via the suction side check valve 11, and the suction side flow path 24H It communicates with the lower pump chamber 23 via the side check valve 21. The single discharge port 32 communicates with the discharge-side flow paths 15D and 25D, and the discharge-side flow path 15D communicates with the upper pump chamber 13 via the discharge-side check valve 12, and the discharge-side flow path 25D. Communicates with the lower pump chamber 23 via the discharge check valve 22.

この4バルブダイヤフラムポンプは、圧電振動子30が正逆に弾性変形(振動)すると、アッパポンプ室13とロアポンプ室23のいずれか一方の容積が増大し他方の容積が減少する。アッパポンプ室13の容積が増大する行程はロアポンプ室23の容積が減少する行程であり、アッパポンプ室13の容積が増大するから吸入側逆止弁11が開いて吸入ポート31からアッパポンプ室13内に流体が流入し、ロアポンプ室23の容積が減少するからロアポンプ室23内の流体が吐出側逆止弁22を開いて吐出ポート32に流出する(図9(B))。逆にアッパポンプ室13の容積が減少する行程はロアポンプ室23の容積が増大する行程であり、ロアポンプ室23の容積が増大するから吸入側逆止弁21が開いて吸入ポート31からロアポンプ室23内に流体が流入し、アッパポンプ室13の容積が減少するからアッパポンプ室13内の流体が吐出側逆止弁12を開いて吐出ポート32に流出する(図9(A))。従って、吐出ポート32における脈動の周期を短くする(圧電振動子30の表裏の一方のみにポンプ室が形成される場合に比して半分にする)ことができる。   In the four-valve diaphragm pump, when the piezoelectric vibrator 30 is elastically deformed (vibrated) in the forward and reverse directions, the volume of one of the upper pump chamber 13 and the lower pump chamber 23 increases and the other volume decreases. The stroke in which the volume of the upper pump chamber 13 increases is the stroke in which the volume of the lower pump chamber 23 decreases. Since the volume of the upper pump chamber 13 increases, the suction side check valve 11 opens and fluid flows from the suction port 31 into the upper pump chamber 13. Flows in and the volume of the lower pump chamber 23 decreases, so that the fluid in the lower pump chamber 23 opens the discharge side check valve 22 and flows out to the discharge port 32 (FIG. 9B). Conversely, the stroke in which the volume of the upper pump chamber 13 decreases is a stroke in which the volume of the lower pump chamber 23 increases. Since the volume of the lower pump chamber 23 increases, the suction side check valve 21 opens and the suction port 31 opens into the lower pump chamber 23. Since the fluid flows into the upper pump chamber 13 and the volume of the upper pump chamber 13 decreases, the fluid in the upper pump chamber 13 opens the discharge-side check valve 12 and flows out to the discharge port 32 (FIG. 9A). Therefore, the pulsation cycle in the discharge port 32 can be shortened (halved compared to the case where the pump chamber is formed only on one of the front and back sides of the piezoelectric vibrator 30).

本実施形態は、以上の動作原理の4バルブダイヤフラムポンプを簡易な構造で実現し、さらに脈動を一層軽減するものであり、図1ないし図6についてその一実施形態を説明する。図1ないし図6では、図9と共通の構成要素には同一の符号を付している。   In the present embodiment, the four-valve diaphragm pump having the above operation principle is realized with a simple structure, and pulsation is further reduced. One embodiment of the present invention will be described with reference to FIGS. In FIG. 1 to FIG. 6, the same reference numerals are given to the same components as those in FIG.

図1ないし図6は、本実施形態の4バルブダイヤフラムポンプの第一の実施形態を示している。合成樹脂材料(例えばPBT(ポリブチレンテレフタレート)樹脂、PPS(ポリフェニレンスルフィド)樹脂)の成形品からなるアッパハウジング10には、図2に示すように、ロアハウジング20との対向面(合わせ面)に、アッパポンプ室13を形成する凹部13aが形成され、また、この凹部13aに連通する吸入側外部開口穴16と吐出側外部開口穴17が形成されている。この吸入側外部開口穴16と吐出側外部開口穴17は、図9の吸入側流路14Hと吐出側流路15Dを構成するもので、アッパハウジング10の外面に開口し、かつその開口端が吸入ポート31と吐出ポート32を構成している。   1 to 6 show a first embodiment of a four-valve diaphragm pump according to the present embodiment. As shown in FIG. 2, the upper housing 10 made of a synthetic resin material (for example, PBT (polybutylene terephthalate) resin, PPS (polyphenylene sulfide) resin) is formed on the opposite surface (mating surface) to the lower housing 20 as shown in FIG. A recess 13a that forms the upper pump chamber 13 is formed, and a suction-side external opening hole 16 and a discharge-side external opening hole 17 that communicate with the recess 13a are formed. The suction-side external opening hole 16 and the discharge-side external opening hole 17 constitute the suction-side flow path 14H and the discharge-side flow path 15D in FIG. 9, and open to the outer surface of the upper housing 10 and have an opening end thereof. A suction port 31 and a discharge port 32 are configured.

また、アッパハウジング10には、ロアハウジング20との対向面(合わせ面)に、連通路16aを介して吸入側外部開口穴16に連通する平面円形の吸入側液室(凹部)101と、連通路17aを介して吐出側外部開口穴17に連通する平面円形の吐出側液室(凹部)102が形成されている。アッパハウジング10には、図3に示すように、この吸入側液室101(吐出側液室102)と同心の環状突起103(104)が形成されている。   Further, the upper housing 10 has a planar circular suction side liquid chamber (concave portion) 101 communicating with the suction side external opening hole 16 via a communication passage 16a on a surface (mating surface) facing the lower housing 20 and a communication surface. A flat circular discharge side liquid chamber (concave portion) 102 communicating with the discharge side external opening hole 17 through the passage 17a is formed. As shown in FIG. 3, the upper housing 10 is formed with an annular protrusion 103 (104) concentric with the suction side liquid chamber 101 (discharge side liquid chamber 102).

同じく合成樹脂材料(同)の成形品からなるロアハウジング20には、同じく図2に示すように、アッパハウジング10との対向面(合わせ面)に、ロアポンプ室23を形成する凹部23aが形成され、また、この凹部23aに連通する吸入側外部開口穴26と吐出側外部開口穴27が形成されている。この吸入側外部開口穴26と吐出側外部開口穴27は、図9の吸入側流路24Hと吐出側流路25Dを構成するもので、ロアハウジング20の外面に開口している。   Similarly, as shown in FIG. 2, the lower housing 20 made of a synthetic resin material (same product) is provided with a recess 23 a that forms the lower pump chamber 23 on the surface facing the upper housing 10 (the mating surface). In addition, a suction-side external opening hole 26 and a discharge-side external opening hole 27 communicating with the recess 23a are formed. The suction-side external opening hole 26 and the discharge-side external opening hole 27 constitute the suction-side flow path 24H and the discharge-side flow path 25D in FIG. 9 and open to the outer surface of the lower housing 20.

また、ロアハウジング20には、アッパハウジング10との対向面(合わせ面)に、アッパハウジング10の吸入側液室101と位置の合致する平面円形の吐出側液室(凹部)201と、吐出側液室102と位置の合致する平面円形の吸入側液室(凹部)202が形成されている。ロアハウジング20には、図3に示すように、吸入側と吐出側の吐出側液室201(吸入側液室202)と同心に、アッパハウジング10の環状突起103(104)に対応する環状溝203(204)が形成されている。   Further, the lower housing 20 has a flat circular discharge side liquid chamber (concave portion) 201 that coincides with the suction side liquid chamber 101 of the upper housing 10 on a surface (mating surface) facing the upper housing 10, and a discharge side. A flat circular suction-side liquid chamber (concave portion) 202 whose position matches that of the liquid chamber 102 is formed. In the lower housing 20, as shown in FIG. 3, an annular groove corresponding to the annular protrusion 103 (104) of the upper housing 10 is concentric with the discharge side liquid chamber 201 (suction side liquid chamber 202) on the suction side and the discharge side. 203 (204) is formed.

平面円形をなす弾性材料からなる脈動軽減ダイヤフラム301(302)の周縁ビード部303(304)は、ロアハウジング20のこの環状溝203(204)に嵌められる。そして、ロアハウジング20上にアッパハウジング10を重ねて環状突起103(104)を環状溝203(204)に嵌め、環状ビード部303(304)を圧縮することで、脈動軽減ダイヤフラム301(302)の表裏(図の上下)にそれぞれ吸入側液室101(吐出側液室102)と吐出側液室201(吸入側液室202)が形成される。   The peripheral bead portion 303 (304) of the pulsation reducing diaphragm 301 (302) made of an elastic material having a flat circular shape is fitted into the annular groove 203 (204) of the lower housing 20. Then, the upper housing 10 is overlapped on the lower housing 20, the annular protrusion 103 (104) is fitted into the annular groove 203 (204), and the annular bead portion 303 (304) is compressed, so that the pulsation reducing diaphragm 301 (302) is compressed. A suction-side liquid chamber 101 (discharge-side liquid chamber 102) and a discharge-side liquid chamber 201 (suction-side liquid chamber 202) are formed on the front and back sides (upper and lower in the drawing), respectively.

図6に示すように、吐出側液室201は、液流路205を介して吐出側外部開口穴17(吐出側流路15D)に連通しており、吸入側液室202は、液流路305を介して吸入側外部開口穴16(吸入側流路14H)に連通している。   As shown in FIG. 6, the discharge side liquid chamber 201 communicates with the discharge side external opening hole 17 (discharge side flow path 15D) via the liquid flow path 205, and the suction side liquid chamber 202 has a liquid flow path. It communicates with the suction side external opening hole 16 (suction side flow path 14H) via 305.

図6は、吐出側液室201と吐出側外部開口穴17(吐出側流路15D)を連通させる液流路205と、吸入側液室202と吸入側外部開口穴16を連通させる液流路305の関係を示すために、図1のII-II断面図に、同図1の2つのVI-VI断面を重ねて描いたものである。液流路205と305の流路長は、図6では長く描かれているが、吐出側液室201と吐出側外部開口穴17、吸入側液室202と吸入側外部開口穴16は図1に示すように隣接しており、実際には短い(勿論、長さを問うものではない)。   FIG. 6 shows a liquid flow path 205 for communicating the discharge side liquid chamber 201 and the discharge side external opening hole 17 (discharge side flow path 15D), and a liquid flow path for communicating the suction side liquid chamber 202 and the suction side external opening hole 16. In order to show the relationship of 305, the two VI-VI cross sections of FIG. 1 are drawn on the II-II cross sectional view of FIG. The flow path lengths of the liquid flow paths 205 and 305 are drawn long in FIG. 6, but the discharge side liquid chamber 201 and the discharge side external opening hole 17, and the suction side liquid chamber 202 and the suction side external opening hole 16 are shown in FIG. As shown in Fig. 2, they are adjacent and are actually short (of course, they do not ask for length).

脈動軽減ダイヤフラム301(302)は、ゴム材料の加硫成形品または金属薄膜からなっており、吸入側液室101(吐出側液室102)と吐出側液室201(吸入側液室202)の圧力差に応じて弾性変形し、吸入側液室101(吐出側液室102)と吐出側液室201(吸入側液室202)の容積を変化させる。   The pulsation reducing diaphragm 301 (302) is made of a vulcanized molded product of rubber material or a metal thin film, and includes a suction side liquid chamber 101 (discharge side liquid chamber 102) and a discharge side liquid chamber 201 (suction side liquid chamber 202). It elastically deforms according to the pressure difference and changes the volume of the suction side liquid chamber 101 (discharge side liquid chamber 102) and the discharge side liquid chamber 201 (suction side liquid chamber 202).

逆止弁11と12は、吸入側外部開口穴16と吐出側外部開口穴17の凹部13a側の端部に設けられ、逆止弁21と22は、吸入側外部開口穴26と吐出側外部開口穴27の凹部23a側の端部に設けられている。図示実施形態の逆止弁11、12、21、22は、同一の形態のアンブレラバルブであり、図2に示すように、流路に接着もしくは溶着固定される穴あき基板11a、12a、22a、凹部23aに、弾性材料からなるアンブレラ11b、12b、22b、23bを装着してなっている。   The check valves 11 and 12 are provided at the end of the suction side external opening hole 16 and the discharge side external opening hole 17 on the recess 13a side, and the check valves 21 and 22 are provided with the suction side external opening hole 26 and the discharge side external opening hole. It is provided at the end of the opening hole 27 on the recess 23 a side. The check valves 11, 12, 21, 22 in the illustrated embodiment are umbrella valves of the same form, and as shown in FIG. 2, perforated substrates 11 a, 12 a, 22 a, which are bonded or welded to the flow path, Umbrellas 11b, 12b, 22b, and 23b made of an elastic material are attached to the recess 23a.

圧電振動子30は、アッパハウジング10とロアハウジング20の間に、Oリング33、34を介して液密に挟着保持され、凹部13aとの間にアッパポンプ室13を構成し、凹部23aとの間にロアポンプ室23を構成する。圧電振動子30は、導電性金属薄板からなるシムの表裏の少なくとも一方に圧電体を積層してなり、交番電界を与えることによりシムの面と垂直な方向に正逆に振動する周知のものであり、本実施形態は、圧電振動子30の構成の如何は問わない。例えばユニモルフ、バイモルフのいずれのタイプでもよい。   The piezoelectric vibrator 30 is held in a liquid-tight manner between the upper housing 10 and the lower housing 20 via O-rings 33 and 34, and constitutes an upper pump chamber 13 between the upper housing 10 and the lower housing 20, and is connected to the concave portion 23a. A lower pump chamber 23 is formed therebetween. The piezoelectric vibrator 30 is a well-known one that is formed by laminating a piezoelectric body on at least one of the front and back sides of a shim made of a conductive metal thin plate, and vibrates in the direction perpendicular to the surface of the shim by applying an alternating electric field. In the present embodiment, the configuration of the piezoelectric vibrator 30 does not matter. For example, any type of unimorph and bimorph may be used.

以上のアッパハウジング10の外部開口穴16(吸入側流路14H)とロアハウジング20の外部開口穴26(吸入側流路24H)は、図2に示すように、アッパハウジング10に一体に形成した吸入側筒状流路突起43Hと、ロアハウジング20に形成した吸入側接続穴42Hとによって連通し、アッパハウジング10の外部開口穴17(吐出側流路15D)とロアハウジング20の外部開口穴27(吐出側流路25D)は、アッパハウジング10に一体に形成した吐出側筒状流路突起43Dと、ロアハウジング20に形成した吐出側接続穴42Dとによって連通している。すなわち、吸入側筒状流路突起43Hと吸入側接続穴42Hは相互に嵌合関係となって外部開口穴16と26(吸入側流路14Hと24H)を連通させ、吐出側筒状流路突起43Dと吐出側接続穴42Hは相互に嵌合関係となって外部開口穴17と27(吐出側流路15Dと25D)を連通させる。この筒状流路突起43H(43D)と接続穴42H(42D)は、左右対称構造であり、その詳細を図3、図4で説明する。図2と図4では、上下を逆にして示している。   The external opening hole 16 (suction side flow path 14H) of the upper housing 10 and the external opening hole 26 (suction side flow path 24H) of the lower housing 20 are formed integrally with the upper housing 10 as shown in FIG. The suction side tubular channel protrusion 43H communicates with the suction side connection hole 42H formed in the lower housing 20, and the outer opening hole 17 (discharge side channel 15D) of the upper housing 10 and the outer opening hole 27 of the lower housing 20 are communicated. The (discharge side flow path 25D) communicates with a discharge side cylindrical flow path projection 43D formed integrally with the upper housing 10 and a discharge side connection hole 42D formed in the lower housing 20. That is, the suction side cylindrical flow path protrusion 43H and the suction side connection hole 42H are in a fitting relationship with each other, and the external opening holes 16 and 26 (suction side flow paths 14H and 24H) communicate with each other. The protrusion 43D and the discharge-side connection hole 42H are in a fitting relationship with each other and allow the external opening holes 17 and 27 (discharge-side flow paths 15D and 25D) to communicate with each other. The cylindrical channel protrusion 43H (43D) and the connection hole 42H (42D) have a bilaterally symmetric structure, and details thereof will be described with reference to FIGS. 2 and 4 are shown upside down.

ロアハウジング20に形成した外部開口穴26(27)は、図4に詳細に示すように、該ロアハウジング20の外面に開口する大径穴26a(27a)と、この大径穴26a(27a)より内側に位置する小径穴26b(27b)と、この大径穴26a(27a)と小径穴26b(27b)の境界に位置する軸線に対して直交しない環状斜面26c(27c)とを有している。また、ロアハウジング20に形成した接続穴42H(42D)は、この外部開口穴26(27)の環状斜面26c(27c)部分に位置させて、該外部開口穴26(27)と直交して連通するように形成されている。これらの外部開口穴26(27)及び接続穴42H(42D)は、成形型(抜き型)によりロアハウジング20と一体に成形されている。   As shown in detail in FIG. 4, the outer opening hole 26 (27) formed in the lower housing 20 includes a large-diameter hole 26a (27a) that opens to the outer surface of the lower housing 20, and the large-diameter hole 26a (27a). A small-diameter hole 26b (27b) located on the inner side, and an annular inclined surface 26c (27c) that is not orthogonal to the axis located at the boundary between the large-diameter hole 26a (27a) and the small-diameter hole 26b (27b) Yes. Further, the connection hole 42H (42D) formed in the lower housing 20 is positioned at the annular inclined surface 26c (27c) portion of the external opening hole 26 (27) and communicates perpendicularly with the external opening hole 26 (27). It is formed to do. The external opening hole 26 (27) and the connection hole 42H (42D) are integrally formed with the lower housing 20 by a forming die (punch die).

一方、アッパハウジング10に一体に形成した筒状流路突起43H(43D)は、図4、図5に詳細に示すように、太径部43aと、この太径部43aの上部に位置する細径部43bと、この太径部43aと細径部43bを分ける(の境界を定める)軸線に対して直交しない環状斜面43cとを有し、その軸部に、外部開口穴16(17)と連通する内部流路44が形成されている。この筒状流路突起43H(43D)も、成形型(抜き型)によりアッパハウジング10と一体に成形されている。   On the other hand, as shown in detail in FIGS. 4 and 5, the cylindrical channel protrusion 43 </ b> H (43 </ b> D) formed integrally with the upper housing 10 has a large-diameter portion 43 a and a thin portion positioned above the large-diameter portion 43 a. A diameter portion 43b, and an annular inclined surface 43c that separates (defines the boundary) between the large diameter portion 43a and the small diameter portion 43b and is not orthogonal to the axis, and the external opening hole 16 (17) is formed in the shaft portion. An internal flow path 44 that communicates is formed. The cylindrical channel protrusion 43H (43D) is also integrally formed with the upper housing 10 by a molding die (punch die).

外部開口穴26(27)の環状斜面26c(27c)と筒状流路突起43H(43D)の環状斜面43cとは対応関係にあり、図示例では、環状斜面26c(27c)(環状斜面43c)は、外部開口穴26(27)(筒状流路突起43H(43D))の軸線に対して45゜をなしている。この角度は、30゜〜60゜程度の範囲で変えることができる。筒状流路突起43H(43D)の細径部43bの周囲(環状斜面43cの上)には、Oリング46が嵌められており、筒状流路突起43H(43D)を接続穴42H(42D)に嵌めると、外部開口穴26(27)の環状斜面26c(27c)と筒状流路突起43H(43D)の環状斜面43cとの間に、Oリング46が挟着されて圧縮され、内部流路44によって、外部開口穴16と26(外部開口穴17と27)が連通する。   The annular slope 26c (27c) of the external opening hole 26 (27) and the annular slope 43c of the cylindrical channel protrusion 43H (43D) have a corresponding relationship. In the illustrated example, the annular slope 26c (27c) (annular slope 43c). Is 45 ° with respect to the axis of the external opening 26 (27) (cylindrical channel protrusion 43H (43D)). This angle can be changed within a range of about 30 ° to 60 °. An O-ring 46 is fitted around the small-diameter portion 43b of the cylindrical channel protrusion 43H (43D) (on the annular inclined surface 43c), and the cylindrical channel projection 43H (43D) is connected to the connection hole 42H (42D). ), The O-ring 46 is sandwiched and compressed between the annular inclined surface 26c (27c) of the external opening hole 26 (27) and the annular inclined surface 43c of the cylindrical channel protrusion 43H (43D), The external opening holes 16 and 26 (external opening holes 17 and 27) communicate with each other through the flow path 44.

従って、本実施形態の4バルブダイヤフラムポンプは、図2のように、アッパハウジング10とロアハウジング20を組み合わせ、アッパハウジング10の筒状流路突起43H(43D)をロアハウジング20の接続穴42H(42D)に嵌めることにより、外部開口穴26(27)の環状斜面26c(27c)と筒状流路突起43H(43D)の環状斜面43cとの間にOリング46を圧縮し、内部流路44によって、外部開口穴16と26(外部開口穴17と27)を連通させ、液密構造を得ることができる。   Therefore, the four-valve diaphragm pump of the present embodiment combines the upper housing 10 and the lower housing 20 as shown in FIG. 2, and the cylindrical flow path protrusion 43H (43D) of the upper housing 10 is connected to the connection hole 42H ( 42D), the O-ring 46 is compressed between the annular inclined surface 26c (27c) of the external opening hole 26 (27) and the annular inclined surface 43c of the cylindrical flow path protrusion 43H (43D), and the internal flow path 44 is compressed. Thus, the external opening holes 16 and 26 (external opening holes 17 and 27) can be communicated to obtain a liquid-tight structure.

アッパハウジング10とロアハウジング20の間には、圧電振動子30と脈動軽減ダイヤフラム301(302)が挟着される。すなわち、圧電振動子30は、アッパハウジング10とロアハウジング20の間に、Oリング33、34を介して液密に挟着保持され、凹部13aとの間にアッパポンプ室13を構成し、凹部23aとの間にロアポンプ室23を構成する。また、脈動軽減ダイヤフラム301(302)の周縁ビード部303(304)は、ロアハウジング20の環状溝203(204)に嵌められ、アッパハウジング10の環状突起103(104)を環状溝203(204)に嵌めることで周縁ビード部303(304)が圧縮される。その結果、脈動軽減ダイヤフラム301(302)の表裏(図の上下)にそれぞれ、液密(気密)の吸入側液室101(吐出側液室102)と吐出側液室201(吸入側液室202)が形成される。また、アッパハウジング10とロアハウジング20に跨る液流路205と305には、適宜シール手段を施す。   Between the upper housing 10 and the lower housing 20, a piezoelectric vibrator 30 and a pulsation reducing diaphragm 301 (302) are sandwiched. That is, the piezoelectric vibrator 30 is liquid-tightly sandwiched and held between the upper housing 10 and the lower housing 20 via O-rings 33 and 34, and constitutes the upper pump chamber 13 between the recess 13a and the recess 23a. A lower pump chamber 23 is formed between the two. The peripheral bead portion 303 (304) of the pulsation reducing diaphragm 301 (302) is fitted in the annular groove 203 (204) of the lower housing 20, and the annular protrusion 103 (104) of the upper housing 10 is inserted into the annular groove 203 (204). The peripheral bead portion 303 (304) is compressed by being fitted into the. As a result, the liquid-side (air-tight) suction-side liquid chamber 101 (discharge-side liquid chamber 102) and the discharge-side liquid chamber 201 (suction-side liquid chamber 202) on the front and back (upper and lower sides) of the pulsation reducing diaphragm 301 (302), respectively. ) Is formed. Further, sealing means is appropriately provided on the liquid flow paths 205 and 305 straddling the upper housing 10 and the lower housing 20.

以上の圧電ポンプは、圧電振動子30が正逆に弾性変形(振動)すると、前述のように、アッパポンプ室13とロアポンプ室23のいずれか一方の容積が増大し他方の容積が減少する。アッパポンプ室13の容積が増大する行程はロアポンプ室23の容積が減少する行程であり、アッパポンプ室13の容積が増大するから吸入側逆止弁11が開いて吸入ポート31からアッパポンプ室13内に流体が流入し、ロアポンプ室23の容積が減少するからロアポンプ室23内の流体が吐出側逆止弁22を開いて吐出ポート32に流出する。逆にアッパポンプ室13の容積が減少する行程はロアポンプ室23の容積が増大する行程であり、ロアポンプ室23の容積が増大するから吸入側逆止弁21が開いて吸入ポート31からロアポンプ室23内に流体が流入し、アッパポンプ室13の容積が減少するからアッパポンプ室13内の流体が吐出側逆止弁12を開いて吐出ポート32に流出する。   In the above piezoelectric pump, when the piezoelectric vibrator 30 is elastically deformed (vibrated) in the forward and reverse directions, as described above, the volume of either the upper pump chamber 13 or the lower pump chamber 23 increases and the other volume decreases. The stroke in which the volume of the upper pump chamber 13 increases is a stroke in which the volume of the lower pump chamber 23 decreases. Since the volume of the upper pump chamber 13 increases, the suction side check valve 11 opens and fluid flows from the suction port 31 into the upper pump chamber 13. Flows in and the volume of the lower pump chamber 23 decreases, so that the fluid in the lower pump chamber 23 opens the discharge side check valve 22 and flows out to the discharge port 32. Conversely, the stroke in which the volume of the upper pump chamber 13 decreases is a stroke in which the volume of the lower pump chamber 23 increases. Since the volume of the lower pump chamber 23 increases, the suction side check valve 21 opens and the suction port 31 opens into the lower pump chamber 23. Since the fluid flows into the upper pump chamber 13 and the volume of the upper pump chamber 13 decreases, the fluid in the upper pump chamber 13 opens the discharge-side check valve 12 and flows out to the discharge port 32.

このポンプ作用中においては、吸入側外部開口穴16と吐出側外部開口穴17内の圧力が変動する。この圧力変動は、連通路16aと17aを介して吸入側液室101と吐出側液室102に及び、吸入側液室101(吐出側液室102)の圧力が上昇するときには、脈動軽減ダイヤフラム301(302)が吐出側液室201(吸入側液室202)側に弾性変形し、下降するときには、吸入側液室101(吐出側液室102)側に弾性変形する。   During this pumping action, the pressure in the suction side external opening hole 16 and the discharge side external opening hole 17 varies. This pressure fluctuation reaches the suction-side liquid chamber 101 and the discharge-side liquid chamber 102 via the communication passages 16a and 17a. When the pressure in the suction-side liquid chamber 101 (discharge-side liquid chamber 102) increases, the pulsation reducing diaphragm 301 When (302) is elastically deformed toward the discharge side liquid chamber 201 (suction side liquid chamber 202) and descends, it is elastically deformed toward the suction side liquid chamber 101 (discharge side liquid chamber 102).

本実施形態において特徴的なことは、吐出側液室201(吸入側液室202)が液流路205(305)を介して吐出側外部開口穴17(吸入側外部開口穴16)に連通していることである。つまり、圧電振動子30がアッパハウジング10側に動く工程において、吐出側液室102と201内の液体の圧力が上昇するときには、脈動軽減ダイヤフラム302と301の反対側の吸入側液室202と101の圧力が下降しているから、同脈動軽減ダイヤフラム302と301はそれぞれ、吸入側液室202と101側に弾性変形して脈動を吸収する。同様に、圧電振動子30がロアハウジング20側に動く工程において、吸入側液室101と202内の液体の圧力が下降するときには、脈動軽減ダイヤフラム301と302の反対側の吐出側液室201と102の圧力が上昇しているから、同脈動軽減ダイヤフラム301と302はそれぞれ、吐出側液室101と202側に弾性変形して脈動を吸収する。このため、吸入ポート31と吐出ポート32内の液体圧力に表れる脈動(振動)を減少させる作用をする。   What is characteristic in this embodiment is that the discharge-side liquid chamber 201 (suction-side liquid chamber 202) communicates with the discharge-side external opening hole 17 (suction-side external opening hole 16) via the liquid flow path 205 (305). It is that. That is, when the pressure of the liquid in the discharge side liquid chambers 102 and 201 rises in the process of moving the piezoelectric vibrator 30 toward the upper housing 10 side, the suction side liquid chambers 202 and 101 on the opposite side of the pulsation reducing diaphragms 302 and 301 are used. Therefore, the pulsation reducing diaphragms 302 and 301 are elastically deformed toward the suction side liquid chambers 202 and 101, respectively, to absorb the pulsation. Similarly, when the pressure of the liquid in the suction side liquid chambers 101 and 202 decreases in the process of moving the piezoelectric vibrator 30 toward the lower housing 20, the discharge side liquid chamber 201 on the opposite side of the pulsation reducing diaphragms 301 and 302. Since the pressure at 102 increases, the pulsation reducing diaphragms 301 and 302 elastically deform toward the discharge side liquid chambers 101 and 202, respectively, to absorb the pulsation. Therefore, the pulsation (vibration) appearing in the liquid pressure in the suction port 31 and the discharge port 32 is reduced.

以上の実施形態では、アッパハウジング10の筒状流路突起43H(43D)をロアハウジング20の接続穴42H(42D)に嵌めるだけで液密構造を達成できるという利点があるが、例えば外部開口穴26(27)の開口端を別の部材によって塞ぐことで液密を保持することも可能であり、この場合には筒状流路突起43H(43D)と接続穴42H(42D)の液密を例えばOリングで確保すればよい。   In the above embodiment, there is an advantage that a liquid-tight structure can be achieved simply by fitting the cylindrical flow path protrusion 43H (43D) of the upper housing 10 into the connection hole 42H (42D) of the lower housing 20. It is also possible to maintain the liquid tightness by closing the opening end of 26 (27) with another member. In this case, the liquid tightness of the cylindrical flow path protrusion 43H (43D) and the connection hole 42H (42D) is maintained. For example, it may be secured by an O-ring.

以上の実施形態では、アッパハウジング10に吸入ポート31と吐出ポート32の双方を設けたが、ロアハウジング20に両ポートを形成し、あるいはアッパハウジング10とロアハウジング20にそれぞれ一つずつのポートを設けることもできる。その際のルールは、吸入側筒状流路突起を有する側のハウジングに、吸入ポートを設け、吐出側筒状流路突起を有する側のハウジングに、吐出ポートを設けるというルールである。また、図示実施形態では、吸入ポート31と吐出ポート32(吸入側外部開口穴16(26)と吐出側外部開口穴17(27))をハウジング10(20)の反対側に延長したが、同一の側に延長させてもよい。   In the above embodiment, both the suction port 31 and the discharge port 32 are provided in the upper housing 10, but both ports are formed in the lower housing 20, or one port is provided in each of the upper housing 10 and the lower housing 20. It can also be provided. The rule at that time is a rule that a suction port is provided in the housing on the side having the suction side cylindrical flow path projection, and a discharge port is provided in the housing on the side having the discharge side cylindrical flow path projection. In the illustrated embodiment, the suction port 31 and the discharge port 32 (the suction side external opening hole 16 (26) and the discharge side external opening hole 17 (27)) are extended to the opposite side of the housing 10 (20). You may extend to the side.

以上の実施形態は、4バルブダイヤフラムポンプに本発明を適用したものであるが、本発明は2バルブダイヤフラムポンプにも適用できる。図7と図8はその実施形態である。   In the above embodiment, the present invention is applied to a four-valve diaphragm pump, but the present invention can also be applied to a two-valve diaphragm pump. 7 and 8 show the embodiment.

図7と図8の実施形態は、図2、図6において、吸入側逆止弁21、吐出側逆止弁22及びその関連構成を除去し、ロアハウジング20に、凹部23、吐出側液室(凹部)201、吸入側液室(凹部)202を形成し、この吐出側液室201と吸入側液室202を液流路206で連通させた点では共通である。凹部23aと圧電振動子30によって空気室Aが構成される。凹部201と202の形状、仕様は同一である。違いは、図7の実施形態では、吐出側液室201と吸入側液室101の間に、図1ないし図6の実施形態と同様の脈動軽減ダイヤフラム301を位置させ、吐出側液室102と吐出側液室202との間に、穴Hを有する穴あきダイヤフラム302Hを位置させたのに対し、図8の実施形態では、吐出側液室102と吐出側液室202の間に、図1ないし図6の実施形態と同様の脈動軽減ダイヤフラム302を位置させ、吐出側液室201と吸入側液室101との間に、穴Hを有する穴あきダイヤフラム301Hを位置させた点にある。この他の構成は、図2の実施形態と同一であり、同一要素には同一の符号を付した。   The embodiment of FIGS. 7 and 8 is the same as that of FIGS. 2 and 6 except that the suction side check valve 21, the discharge side check valve 22 and related components are removed, and the lower housing 20 has a recess 23, a discharge side liquid chamber. This is common in that a (recess) 201 and a suction-side liquid chamber (recess) 202 are formed and the discharge-side liquid chamber 201 and the suction-side liquid chamber 202 are communicated with each other through a liquid flow path 206. The air chamber A is configured by the recess 23 a and the piezoelectric vibrator 30. The shapes and specifications of the recesses 201 and 202 are the same. The difference is that, in the embodiment of FIG. 7, a pulsation reducing diaphragm 301 similar to that of the embodiment of FIGS. 1 to 6 is positioned between the discharge side liquid chamber 201 and the suction side liquid chamber 101, and the discharge side liquid chamber 102 and Whereas a perforated diaphragm 302H having a hole H is located between the discharge side liquid chamber 202 and the discharge side liquid chamber 202, in the embodiment of FIG. The pulsation reducing diaphragm 302 similar to the embodiment of FIG. 6 is positioned, and a perforated diaphragm 301H having a hole H is positioned between the discharge side liquid chamber 201 and the suction side liquid chamber 101. Other configurations are the same as those in the embodiment of FIG. 2, and the same reference numerals are given to the same elements.

図7の実施形態では、吸入側液室101の脈動軽減ダイヤフラム301の背面に、穴あきダイヤフラム302Hを含む流路206により吐出側液室201に吐出側液圧が及ぼされているため、ポンプの吸入工程においては、吸入側液室101の減圧で脈動軽減ダイヤフラム301が吸入側液室101方向に変形し吸入側液室101側の減圧を小さくすることで脈動軽減作用が得られる。一方、ポンプの吐出工程においては、吐出側液室201側の圧力が高くなり脈動軽減ダイヤフラム301が同じく吸入側液室101方向に変形し圧力上昇を小さくすることで脈動軽減作用が得られる。また、図8の実施形態では、吐出側液室102の脈動軽減ダイヤフラム302の背面に、穴あきダイヤフラム301Hを含む流路206により吸入側液室202に吸入側液圧が及ぼされているため、ポンプの吐出工程において、吐出側液室102の圧力上昇により脈動軽減ダイヤフラム302が吸入側液室202側に変形し圧力上昇を小さくすることで脈動軽減作用が得られる。一方、ポンプの吸入工程においては、吸入側液室202側が減圧し、脈動軽減ダイヤフラム302が同じく吸入側液室202側に変形し吸入側液室202の減圧を小さくすることで脈動軽減作用が得られる。脈動軽減効果は、同時に運転音(振動、騒音)の軽減効果につながる。   In the embodiment of FIG. 7, the discharge side liquid pressure is exerted on the discharge side liquid chamber 201 by the flow path 206 including the perforated diaphragm 302H on the back surface of the pulsation reducing diaphragm 301 of the suction side liquid chamber 101. In the inhalation step, the pulsation reducing diaphragm 301 is deformed in the direction of the suction side liquid chamber 101 due to the decompression of the suction side liquid chamber 101, and the pulsation mitigating action is obtained by reducing the decompression on the suction side liquid chamber 101 side. On the other hand, in the discharge process of the pump, the pressure on the discharge side liquid chamber 201 is increased, and the pulsation reducing diaphragm 301 is similarly deformed in the direction of the suction side liquid chamber 101 to reduce the pressure rise, thereby obtaining a pulsation reducing action. Further, in the embodiment of FIG. 8, the suction side liquid pressure is exerted on the suction side liquid chamber 202 by the flow path 206 including the perforated diaphragm 301H on the back surface of the pulsation reducing diaphragm 302 of the discharge side liquid chamber 102. In the discharge process of the pump, the pulsation reducing diaphragm 302 is deformed to the suction side liquid chamber 202 side due to the pressure increase in the discharge side liquid chamber 102 to reduce the pressure increase, thereby obtaining the pulsation reducing action. On the other hand, in the pump suction process, the suction side liquid chamber 202 side is depressurized, and the pulsation reducing diaphragm 302 is similarly deformed to the suction side liquid chamber 202 side to reduce the pressure reduction of the suction side liquid chamber 202, thereby obtaining a pulsation reducing action. It is done. The pulsation reducing effect leads to a driving noise (vibration, noise) reduction effect at the same time.

図7の実施形態と図8の実施形態は、脈動軽減ダイヤフラム301(302)を吸入ポート31側もしくは吐出ポート32側に設けることで、脈動軽減効果をポンプの吸入工程でより効果的に発揮させるか、吐出工程でより効果的に発揮させるかを選択できるという利点がある。穴あきダイヤフラムには勿論ダイヤフラムとしての機能はなく、実質的にはシール部材として機能している。穴あきダイヤフラムを用いることなく、同様の流路を形成することは可能である。   In the embodiment of FIG. 7 and the embodiment of FIG. 8, the pulsation reducing diaphragm 301 (302) is provided on the suction port 31 side or the discharge port 32 side, so that the pulsation reduction effect is more effectively exhibited in the pump suction process. There is an advantage that it is possible to select whether to make it more effective in the discharge process. Of course, the perforated diaphragm does not function as a diaphragm, but substantially functions as a seal member. It is possible to form a similar flow path without using a perforated diaphragm.

以上の実施形態では、脈動軽減ダイヤフラム301(302)(及び穴あきダイヤフラム301H、302H)を、筒状流路突起43H(43D)と逆止弁11、12、21、22の間に設けているが、筒状流路突起43H(43D)と吸入ポート31、吐出ポート32の間に設けてもよい。   In the above embodiment, the pulsation reducing diaphragm 301 (302) (and the perforated diaphragms 301H and 302H) are provided between the cylindrical flow path protrusion 43H (43D) and the check valves 11, 12, 21, and 22. However, it may be provided between the cylindrical flow path protrusion 43H (43D), the suction port 31, and the discharge port 32.

以上の実施形態では、ダイヤフラムとして圧電振動子を例示したが、本発明は他の振動するダイヤフラムを用いた液体ポンプに広く適用できる。   In the above embodiment, the piezoelectric vibrator is exemplified as the diaphragm. However, the present invention can be widely applied to liquid pumps using other vibrating diaphragms.

上記実施形態では、ハウジング及びこれに関連する要素に便宜上「アッパ」「ロア」の名前を付けたが、使用状態でのそれを限定するものではないことは明らかである。   In the above embodiment, the housing and related elements are named “upper” and “lower” for convenience, but it is obvious that the housing and the elements are not limited to those in use.

本発明を4バルブダイヤフラムポンプ(圧電ポンプ)に適用した実施形態を示す平面図である。It is a top view which shows embodiment which applied this invention to the 4-valve diaphragm pump (piezoelectric pump). 図1のII-II線に沿う断面展開図である。FIG. 2 is a developed sectional view taken along line II-II in FIG. 1. 図2のIII部拡大断面図である。FIG. 3 is an enlarged cross-sectional view of a part III in FIG. 2. 図2のIV部拡大断面図である。FIG. 4 is an enlarged cross-sectional view of a part IV in FIG. 2. (A)、(B)は、ロアハウジングから突出させた筒状流路突起の形状例とOリングの関係を示す、見る方向を変えた斜視図である。(A), (B) is the perspective view which changed the view direction which shows the relationship between the example of the shape of the cylindrical flow path protrusion protruded from the lower housing, and an O-ring. 吐出側液室と吐出側外部開口穴及び吸入側液室と吸入側外部開口穴の連通関係を示す、図2に対応させて描いた断面図である。FIG. 3 is a cross-sectional view drawn corresponding to FIG. 2, showing a communication relationship between a discharge side liquid chamber and a discharge side external opening hole, and a suction side liquid chamber and a suction side external opening hole. 本発明を2バルブダイヤフラムポンプ(圧電ポンプ)に適用した実施形態を示す、図2に対応する断面展開図である。FIG. 3 is a developed sectional view corresponding to FIG. 2, showing an embodiment in which the present invention is applied to a two-valve diaphragm pump (piezoelectric pump). 本発明を2バルブダイヤフラムポンプ(圧電ポンプ)に適用した別の実施形態を示す、図2に対応する断面展開図である。FIG. 4 is a developed sectional view corresponding to FIG. 2, showing another embodiment in which the present invention is applied to a two-valve diaphragm pump (piezoelectric pump). (A)、(B)は、4バルブダイヤフラムポンプの原理を示すスケルトン図である。(A) and (B) are skeleton diagrams showing the principle of a four-valve diaphragm pump.

符号の説明Explanation of symbols

10 アッパハウジング
11 12 21 22 逆止弁
13 アッパポンプ室
13a 凹部
14H 24H 吸入側流路
15D 25D 吐出側流路
16 26 吸入側外部開口穴
17 27 吐出側外部開口穴
20 ロアハウジング
23 ロアポンプ室
23a 凹部
30 圧電振動子(ダイヤフラム)
31 吸入ポート
32 吐出ポート
33 34 Oリング
40 自由液流路
40 外部開口穴
26a 27a 大径穴
26b 27b 小径穴
26c 27c 環状斜面
42H 42D 接続穴
43H 43D 筒状流路突起
43a 太径部
43b 細径部
43c 環状斜面
44 内部流路
46 Oリング
101 吸入側液室(凹部)
102 吐出側液室(凹部)
103 104 環状突起
201 202 液室(凹部)
203 204 環状溝
205 305 液流路
301 302 脈動軽減ダイヤフラム
303 304 周縁ビード部
DESCRIPTION OF SYMBOLS 10 Upper housing 11 12 21 22 Check valve 13 Upper pump chamber 13a Recess 14H 24H Suction side flow path 15D 25D Discharge side flow path 16 26 Suction side external opening hole 17 27 Discharge side external opening hole 20 Lower housing 23 Lower pump chamber 23a Recess 30 Piezoelectric vibrator (diaphragm)
31 Suction port 32 Discharge port 33 34 O-ring 40 Free liquid flow path 40 External opening hole 26a 27a Large diameter hole 26b 27b Small diameter hole 26c 27c Annular slope 42H 42D Connection hole 43H 43D Cylindrical flow path protrusion 43a Large diameter part 43b Small diameter Portion 43c Annular slope 44 Internal channel 46 O-ring 101 Suction side liquid chamber (recess)
102 Discharge side liquid chamber (concave)
103 104 Annular projection 201 202 Liquid chamber (concave)
203 204 Annular groove 205 305 Liquid flow path 301 302 Pulsation reduction diaphragm 303 304 Peripheral bead portion

Claims (10)

振動ダイヤフラムの表裏の少なくとも一方にポンプ室を形成し、該ポンプ室と吸入ポートとの間に該吸入ポートから該ポンプ室への流体流を許容しその逆方向の流体流を許さない吸入側逆止弁を設け、上記ポンプ室と吐出ポートとの間に該ポンプ室から吐出ポートへの流体流を許容しその逆方向の流体流を許さない吐出側逆止弁を設け、振動ダイヤフラムを振動させてポンプ作用を得るダイヤフラムポンプにおいて、
表裏にそれぞれ液室を形成する少なくとも一つの弾性材料からなる脈動軽減ダイヤフラムを設け、
この脈動軽減ダイヤフラムの表裏の液室の一方を、上記吸入ポートと吐出ポートのいずれか一方に連通させ、他方を該吸入ポートと吐出ポートの他方に連通させたことを特徴とするダイヤフラムポンプ。
A pump chamber is formed on at least one of the front and back sides of the vibration diaphragm, and a suction side reverse that does not allow a fluid flow from the suction port to the pump chamber between the pump chamber and the suction port and does not allow a reverse fluid flow. A stop valve is provided, and a discharge-side check valve is provided between the pump chamber and the discharge port to permit fluid flow from the pump chamber to the discharge port and not to reverse fluid flow, and to vibrate the vibration diaphragm. In a diaphragm pump that obtains a pumping action,
A pulsation reducing diaphragm made of at least one elastic material that forms a liquid chamber on each side is provided.
A diaphragm pump characterized in that one of the liquid chambers on the front and back sides of the pulsation reducing diaphragm is connected to one of the suction port and the discharge port, and the other is connected to the other of the suction port and the discharge port.
請求項1記載のダイヤフラムポンプにおいて、上記振動ダイヤフラムと、この振動ダイヤフラムとは平面位置を異ならせた上記脈動軽減ダイヤフラムとは、一対のハウジングで挟着されていて、該一対のハウジングにそれぞれ、振動ダイヤフラムの表裏の少なくとも一方にポンプ室を形成する凹部と、脈動軽減ダイヤフラムの表裏にそれぞれ液室を画成する凹部が形成されているダイヤフラムポンプ。 2. The diaphragm pump according to claim 1, wherein the vibration diaphragm and the vibration reduction diaphragm whose plane positions are different from each other are sandwiched between a pair of housings, and each of the pair of housings is vibrated. A diaphragm pump in which a recess for forming a pump chamber is formed on at least one of the front and back sides of the diaphragm, and a recess for defining a liquid chamber on the front and back sides of the pulsation reducing diaphragm. 請求項2記載のダイヤフラムポンプにおいて、上記一対のハウジングには、上記脈動軽減ダイヤフラムとは平面位置を異ならせて、穴あきのダミーダイヤフラムが挟着支持されており、上記脈動軽減ダイヤフラムの表裏の液室の一方を、この穴あきダイヤフラムを含む流路を介して吸入ポートと吐出ポートのいずれかに連通させたダイヤフラムポンプ。 3. The diaphragm pump according to claim 2, wherein a hole-shaped dummy diaphragm is sandwiched and supported by the pair of housings so that a planar position is different from that of the pulsation reducing diaphragm, and liquid chambers on the front and back sides of the pulsation reducing diaphragm are provided. A diaphragm pump in which one of the two is connected to either the suction port or the discharge port through a flow path including the perforated diaphragm. 請求項2記載のダイヤフラムポンプにおいて、上記ポンプ室は、振動ダイヤフラムの表裏にそれぞれ形成されており、この一対のポンプ室と単一の吸入ポートの間及び同一対のポンプ室と単一の吐出ポートの間にそれぞれ上記吸入側逆止弁と吐出側逆止弁が設けられているダイヤフラムポンプ。 3. The diaphragm pump according to claim 2, wherein the pump chambers are respectively formed on the front and back sides of the vibration diaphragm, and between the pair of pump chambers and a single suction port and between the same pair of pump chambers and a single discharge port. A diaphragm pump provided with the suction-side check valve and the discharge-side check valve, respectively. 請求項4記載のダイヤフラムポンプにおいて、上記一対のハウジングの間には、上記振動ダイヤフラムと、一対の脈動軽減ダイヤフラムが挟着支持されており、該一対のハウジングには振動ダイヤフラムの表裏にポンプ室を形成する凹部と、一対の脈動軽減ダイヤフラムの表裏に液室を形成する凹部とが形成されており、この一対の脈動軽減ダイヤフラムの表裏の液室の一方を、上記吸入ポートと吐出ポートにそれぞれ連通させ、他方を該吐出ポートと吸入ポートにそれぞれ連通させたダイヤフラムポンプ。 5. The diaphragm pump according to claim 4, wherein the vibration diaphragm and a pair of pulsation reduction diaphragms are sandwiched and supported between the pair of housings, and a pump chamber is provided on the front and back of the vibration diaphragm in the pair of housings. A concave portion to be formed and a concave portion for forming a liquid chamber are formed on the front and back sides of the pair of pulsation reducing diaphragms, and one of the liquid chambers on the front and back sides of the pair of pulsation reducing diaphragms communicates with the suction port and the discharge port, respectively. A diaphragm pump in which the other communicates with the discharge port and the suction port. 請求項1ないし5のいずれか1項記載のダイヤフラムポンプにおいて、上記脈動軽減ダイヤフラムは、平面円形でその周縁に、一対のハウジングによって液密に挟着される環状ビードを備えているダイヤフラムポンプ。 The diaphragm pump according to any one of claims 1 to 5, wherein the pulsation reducing diaphragm has a flat circular shape and an annular bead sandwiched liquid-tightly by a pair of housings on a peripheral edge thereof. 請求項2ないし6のいずれか1項記載のダイヤフラムポンプにおいて、上記振動ダイヤフラムを挟着する一対のハウジングにはそれぞれ、上記一対のポンプ室の一方を形成する凹部と、該凹部に連通し該ハウジングの外面に開口する吸入側外部開口穴と吐出側外部開口穴が形成されており、
一対のハウジングの一方と他方に、互いに嵌合関係となって両ハウジングの吸入側外部開口穴と吐出側外部開口穴とを互いに連通させる対をなす筒状流路突起と接続穴とが形成されており、
一対のハウジングのうち、筒状流路突起を有する側のハウジングに、吸入側外部開口穴に連通する上記吸入ポートと、吐出側外部開口穴に連通する上記吐出ポートが形成されているダイヤフラムポンプ。
7. The diaphragm pump according to claim 2, wherein a pair of housings sandwiching the vibration diaphragm includes a recess that forms one of the pair of pump chambers, and the housing communicated with the recess. A suction-side external opening hole and a discharge-side external opening hole are formed on the outer surface of the
One of the pair of housings and the other are formed with a cylindrical flow path projection and a connection hole that form a pair and are connected to each other so that the suction side external opening hole and the discharge side external opening hole of both housings communicate with each other. And
A diaphragm pump in which the suction port that communicates with the suction-side external opening hole and the discharge port that communicates with the discharge-side external opening hole are formed in a housing on the side having the cylindrical flow path protrusion of the pair of housings.
請求項7記載のダイヤフラムポンプにおいて、上記吸入ポートと吐出ポートは、一対のハウジングのいずれか一方に双方が設けられているダイヤフラムポンプ。 8. The diaphragm pump according to claim 7, wherein the suction port and the discharge port are both provided in one of a pair of housings. 請求項7または8記載のダイヤフラムポンプにおいて、上記筒状流路突起は、太径部と、この太径部の上部に位置する細径部と、この太径部と細径部を分ける軸線に対して直交しない環状斜面とを有し、
上記外部開口穴は、大径穴と、この大径穴より内側に位置する小径穴と、この大径穴と小径穴の境界に位置し上記接続穴が連通する、上記筒状流路突起の環状斜面に対応する軸線に対して直交しない環状斜面とを有し、
上記筒状流路突起の細径部に嵌めたOリングがこの両環状斜面の間に圧縮挟着されて液密を保持するダイヤフラムポンプ。
9. The diaphragm pump according to claim 7, wherein the cylindrical flow path protrusion has a large diameter portion, a small diameter portion positioned above the large diameter portion, and an axis that divides the large diameter portion and the small diameter portion. An annular slope that is not orthogonal to the
The external opening hole is a large-diameter hole, a small-diameter hole located inside the large-diameter hole, and the cylindrical flow path protrusion of the cylindrical flow-path protrusion that is located at the boundary between the large-diameter hole and the small-diameter hole and communicates with the connection hole. An annular slope that is not orthogonal to the axis corresponding to the annular slope,
A diaphragm pump in which an O-ring fitted to the narrow diameter portion of the cylindrical flow path projection is compressed and sandwiched between the two annular inclined surfaces to maintain liquid tightness.
請求項1ないし9のいずれか1項記載のダイヤフラムポンプにおいて、上記振動ダイヤフラムは圧電振動子であるダイヤフラムポンプ。 The diaphragm pump according to any one of claims 1 to 9, wherein the vibration diaphragm is a piezoelectric vibrator.
JP2008120099A 2008-05-02 2008-05-02 Diaphragm pump Withdrawn JP2009270456A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008120099A JP2009270456A (en) 2008-05-02 2008-05-02 Diaphragm pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008120099A JP2009270456A (en) 2008-05-02 2008-05-02 Diaphragm pump

Publications (1)

Publication Number Publication Date
JP2009270456A true JP2009270456A (en) 2009-11-19

Family

ID=41437245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008120099A Withdrawn JP2009270456A (en) 2008-05-02 2008-05-02 Diaphragm pump

Country Status (1)

Country Link
JP (1) JP2009270456A (en)

Similar Documents

Publication Publication Date Title
US10502328B2 (en) Valve and fluid control appratus
US9237854B2 (en) Valve, fluid control device
US7972124B2 (en) Piezoelectric micro-blower
JP5494658B2 (en) Valve, fluid device and fluid supply device
JP4279662B2 (en) Small pump
TW200821470A (en) Diaphragm pump and thin channel structure
EP2090781A1 (en) Piezoelectric micro-blower
JP6743994B2 (en) Valve and fluid control device including valve
JP2007198165A (en) Diaphragm pump
JP2012217684A (en) Fluid control device
TWI623687B (en) Pump
TWM507977U (en) Piezoelectric pump
JP5107767B2 (en) 4-valve diaphragm pump
JP2009270456A (en) Diaphragm pump
JP2010230015A (en) Pump device
JP2009180163A (en) Diaphragm pump
JP3707380B2 (en) Diaphragm pump
JP2007309293A (en) Diaphragm pump and connection structure of pipe passage
JP4586371B2 (en) Pump device and diaphragm actuator
JP6963458B2 (en) Valve device
JP2009041501A (en) Diaphragm pump
JP6643845B2 (en) Leak prevention valve for micro pump
CN109751227A (en) It is a kind of for the valve head structure of diaphragm pump and with its diaphragm pump
TWM507978U (en) Piezoelectric pump
JP2010019224A (en) Diaphragm pump

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110705