JP2009180163A - Diaphragm pump - Google Patents

Diaphragm pump Download PDF

Info

Publication number
JP2009180163A
JP2009180163A JP2008020423A JP2008020423A JP2009180163A JP 2009180163 A JP2009180163 A JP 2009180163A JP 2008020423 A JP2008020423 A JP 2008020423A JP 2008020423 A JP2008020423 A JP 2008020423A JP 2009180163 A JP2009180163 A JP 2009180163A
Authority
JP
Japan
Prior art keywords
pair
diaphragm
pump
housings
suction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008020423A
Other languages
Japanese (ja)
Inventor
Hitoshi Onishi
人司 大西
Satoshi Yamada
聡 山田
Jiro Nakajima
二郎 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP2008020423A priority Critical patent/JP2009180163A/en
Publication of JP2009180163A publication Critical patent/JP2009180163A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Reciprocating Pumps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a diaphragm pump can reducing pulsation with a very simple structure in diaphragm pumps which have a vibration diaphragm gripped between a pair of housings, have a pump chamber formed in at least one of an upper and a lower part of the vibration diaphragm, are provided with a suction side check valve allowing fluid flow from a suction port to the pump chamber and not allowing fluid flow in a reverse direction between the pump chamber and the suction port, are provided with a delivery side check valve allowing fluid flow from the pump chamber to a delivery port and not allowing fluid flow in a reverse direction between the pump chamber and the delivery port, and provide pump action by vibrating the vibration diaphragm. <P>SOLUTION: In this diaphragm pump, a pulsation reduction diaphragm composed of a pair of elastic materials corresponding to the suction port and the delivery port is gripped between the pair of housings with keeping different flat surface position from the vibration diaphragm, a recess part defining a variable volume liquid chamber and a variable volume air chamber at an upper and a lower part of the pair of pulsation reduction diaphragms is formed in the pair of housings respectively, and the pair of variable volume liquid chambers are communicated to the suction port and the delivery port respectively. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、ダイヤフラムポンプに関する。   The present invention relates to a diaphragm pump.

振動するダイヤフラムによってポンプ作用を得るポンプとして、例えば圧電ポンプがある。圧電ポンプは、圧電振動子を一対のハウジングで挟着して該圧電振動子の上下の少なくとも一方にポンプ室を形成し、該ポンプ室と吸入ポートとの間に該吸入ポートから該ポンプ室への流体流を許容しその逆方向の流体流を許さない吸入側逆止弁を設け、ポンプ室と吐出ポートとの間に該ポンプ室から吐出ポートへの流体流を許容しその逆方向の流体流を許さない吐出側逆止弁を設けている。圧電振動子が振動すると、ポンプ室の容積が大きくなる行程では、流入側逆止弁が開き吐出側逆止弁が閉じて吸入ポートからポンプ室内に流体が流入し、逆にポンプ室の容積が小さくなる行程では、吐出側逆止弁が開き吸入側逆止弁が閉じてポンプ室から吐出ポートに流体が吐出され、ポンプ作用が得られる。   An example of a pump that obtains a pump action by a vibrating diaphragm is a piezoelectric pump. In the piezoelectric pump, a piezoelectric vibrator is sandwiched between a pair of housings to form a pump chamber in at least one of the upper and lower sides of the piezoelectric vibrator, and the suction port is connected to the pump chamber between the pump chamber and the suction port. A suction-side check valve is provided that allows fluid flow in the reverse direction but does not allow fluid flow in the opposite direction, and allows fluid flow from the pump chamber to the discharge port between the pump chamber and the discharge port. A discharge check valve that does not allow flow is provided. When the piezoelectric vibrator vibrates, in the process of increasing the volume of the pump chamber, the inflow side check valve opens and the discharge side check valve closes, and fluid flows into the pump chamber from the suction port. In the smaller stroke, the discharge-side check valve opens and the suction-side check valve closes, and fluid is discharged from the pump chamber to the discharge port, thereby obtaining a pump action.

本出願人は、このような圧電ポンプを用いてノートPCの発熱源(CPU、GPU、チップセット等)を冷却する水冷システムを開発中である。ノートPCに搭載するポンプは、安全規格であるUL規格を満足する必要があり、とくに耐電圧性を満たすようにハウジングを合成樹脂主体としたものにせざるをえない。合成樹脂製のハウジングは、材料に設計自由度のある配管部分と比べて、ハウジング自体が弾性変形しにくいため、逆止弁の開閉に伴う脈動(振動)の影響をうけやすい。従来、この圧電ポンプ(ダイヤフラムポンプ)の脈動防止構造は各種が提案されているが、構造が複雑化し、薄型化を妨げ、部品点数を増加させ、耐久性に問題があり、あるいは流量が犠牲になるという問題があった。
特開平10-288160号公報 特開平10-331771号公報 特開2000-265964号公報 特開2000-274374号公報 特開2002-322986公報 特開2005-2208100号公報 特開2006-200524号公報 特許3784566号公報
The present applicant is developing a water cooling system that cools a heat source (CPU, GPU, chipset, etc.) of a notebook PC using such a piezoelectric pump. The pump mounted on the notebook PC needs to satisfy the UL standard, which is a safety standard. In particular, the housing must be mainly made of synthetic resin so as to satisfy the voltage resistance. The housing made of synthetic resin is not easily elastically deformed as compared with the piping portion having a degree of freedom in design of the material, and thus is easily affected by pulsation (vibration) associated with opening and closing of the check valve. Conventionally, various pulsation prevention structures for this piezoelectric pump (diaphragm pump) have been proposed. However, the structure is complicated, obstructing the thinning, increasing the number of parts, causing problems in durability, or sacrificing the flow rate. There was a problem of becoming.
Japanese Patent Laid-Open No. 10-288160 Japanese Patent Laid-Open No. 10-331771 JP 2000-265964 A JP 2000-274374 A JP 2002-322986 JP Japanese Unexamined Patent Publication No. 2005-2208100 JP 2006-200524 Japanese Patent No. 3785656

本発明は、極めて簡単な構造で脈動の軽減ができるダイヤフラムポンプを得ることを目的とする。   An object of this invention is to obtain the diaphragm pump which can reduce a pulsation with a very simple structure.

本発明は、振動ダイヤフラムを挟着する一対のハウジングによって、同時に一対の脈動軽減ダイヤフラムを挟着し、この一対の脈動軽減ダイヤフラムの上下にそれぞれ、吸入ポート及び吐出ポートに連通する可変容積の液室と空気室とを形成すれば、簡単な構造でかつ組立性に優れた薄型のダイヤフラムポンプが得られるとの着眼に基づいてなされたものである。   According to the present invention, a pair of pulsation reduction diaphragms are sandwiched simultaneously by a pair of housings that sandwich a vibration diaphragm, and a variable volume liquid chamber that communicates with the suction port and the discharge port above and below the pair of pulsation reduction diaphragms, respectively. If the air chamber is formed, a thin diaphragm pump having a simple structure and excellent assemblability can be obtained.

すなわち本発明は、振動ダイヤフラムを一対のハウジングで挟着して該振動ダイヤフラムの上下の少なくとも一方にポンプ室を形成し、該ポンプ室と吸入ポートとの間に該吸入ポートから該ポンプ室への流体流を許容しその逆方向の流体流を許さない吸入側逆止弁を設け、上記ポンプ室と吐出ポートとの間に該ポンプ室から吐出ポートへの流体流を許容しその逆方向の流体流を許さない吐出側逆止弁を設け、振動ダイヤフラムを振動させてポンプ作用を得るダイヤフラムポンプにおいて、一対のハウジングの間に、上記振動ダイヤフラムとは平面位置を異ならせて、上記吸入ポート及び吐出ポートに対応する一対の弾性材料からなる脈動軽減ダイヤフラムを挟着し、かつ、一対のハウジングにそれぞれ、該一対の脈動軽減ダイヤフラムの上下にそれぞれ可変容積の液室と空気室を画成する凹部を形成し、この一対の可変容積の液室をそれぞれ吸入ポート及び吐出ポートに連通させたことを特徴としている。   That is, according to the present invention, a vibration diaphragm is sandwiched between a pair of housings to form a pump chamber in at least one of the upper and lower sides of the vibration diaphragm, and the suction port is connected to the pump chamber between the pump chamber and the suction port. A suction-side check valve that allows fluid flow but does not allow fluid flow in the opposite direction is provided, and fluid flow from the pump chamber to the discharge port is allowed between the pump chamber and the discharge port, and fluid in the opposite direction is allowed. In a diaphragm pump that is provided with a discharge-side check valve that does not allow flow and that vibrates the vibration diaphragm to obtain a pumping action, the suction port and the discharge are disposed between a pair of housings with a plane position different from that of the vibration diaphragm. A pair of pulsation reduction diaphragms made of a pair of elastic materials corresponding to the ports are sandwiched, and the pair of pulsation reduction diaphragms are respectively disposed above and below the pair of housings. Each a recess defining a fluid chamber and an air chamber of variable volume, is characterized in that communicates the liquid chamber of the pair of variable volume, each suction port and a discharge port.

脈動軽減ダイヤフラムは、具体的には、平面円形として、その周縁に一対のハウジングによって液密に挟着される環状ビードを設けることで、部品点数の削減ができる。   Specifically, the pulsation reducing diaphragm can be reduced in the number of parts by providing an annular bead sandwiched in a liquid-tight manner by a pair of housings on the periphery thereof as a flat circular shape.

本発明は、振動ダイヤフラムの上下の一方のみにポンプ室を形成した2バルブタイプのダイヤフラムポンプだけでなく、振動ダイヤフラムの上下にそれぞれポンプ室を形成し、この一対のポンプ室と単一の吸入ポートの間及び同一対のポンプ室と単一の吐出ポートの間にそれぞれ吸入側逆止弁と吐出側逆止弁を設けた4バルブタイプにも適用できる。   The present invention is not limited to a two-valve type diaphragm pump in which a pump chamber is formed only on one of the upper and lower sides of the vibration diaphragm, and a pump chamber is formed on each of the upper and lower portions of the vibration diaphragm. And a four-valve type in which a suction-side check valve and a discharge-side check valve are provided between the pump chamber and a single discharge port.

4バルブタイプでは、振動ダイヤフラムを挟着する一対のハウジングにそれぞれ、一対のポンプ室の一方を形成する凹部と、該凹部に連通し該ハウジングの外面に開口する吸入側外部開口穴と吐出側外部開口穴を形成し、一対のハウジングの一方と他方に、互いに嵌合関係となって両ハウジングの吸入側外部開口穴と吐出側外部開口穴とを互いに連通させる対をなす筒状流路突起と接続穴とを形成し、一対のハウジングのうち、筒状流路突起を有する側のハウジングに、吸入側外部開口穴に連通する吸入ポートと、吐出側外部開口穴に連通する吐出ポートを形成することで、簡単な構成の4バルブタイプが得られる。   In the 4-valve type, each of a pair of housings sandwiching the vibration diaphragm has a recess forming one of the pair of pump chambers, a suction side external opening hole communicating with the recess and opening on the outer surface of the housing, and a discharge side external A cylindrical flow path protrusion that forms an opening hole and forms a pair in which one of the pair of housings and the other of the housing are in a fitting relationship with each other so that the suction-side external opening hole and the discharge-side external opening hole communicate with each other; A connection hole is formed, and a suction port that communicates with the suction-side external opening hole and a discharge port that communicates with the discharge-side external opening hole are formed in the housing on the side having the cylindrical flow path protrusion of the pair of housings. Thus, a 4-valve type with a simple configuration can be obtained.

吸入ポートと吐出ポートは、一対のハウジングのいずれか一方に双方を設けることができる。あるいは、同吸入ポートと吐出ポートを一対のハウジングの一方と他方に設ける態様も可能である。   Both the suction port and the discharge port can be provided in one of the pair of housings. Alternatively, a mode in which the suction port and the discharge port are provided on one and the other of the pair of housings is also possible.

量産品では、一対のハウジングは、ともに合成樹脂材料の成形品から形成するのがよい。   In a mass-produced product, the pair of housings are preferably formed from a molded product of a synthetic resin material.

また、4バルブタイプでは、一対のハウジングの一方のハウジングの接続穴に他方のハウジングの筒状流路突起を挿入するだけで液密な自由液流路が構成されるように、筒状流路突起には、太径部と、この太径部の上部に位置する細径部と、この太径部と細径部を分ける軸線に対して直交しない環状斜面とを設け、外部開口穴には、大径穴と、この大径穴より内側に位置する小径穴と、この大径穴と小径穴の境界に位置し上記接続穴が連通する、筒状流路突起の環状斜面に対応する軸線に対して直交しない環状斜面とを設け、筒状流路突起の細径部に嵌めたOリングがこの両環状斜面の間に圧縮挟着されて液密を保持するように構成することが好ましい。   Further, in the 4-valve type, the cylindrical flow path is configured such that a liquid-tight free liquid flow path is configured simply by inserting the cylindrical flow path protrusion of the other housing into the connection hole of one housing of the pair of housings. The protrusion is provided with a large-diameter portion, a thin-diameter portion located above the large-diameter portion, and an annular slope that is not orthogonal to the axis that separates the large-diameter portion and the thin-diameter portion. An axis corresponding to the annular inclined surface of the cylindrical flow path protrusion, which is located at the boundary between the large diameter hole and the small diameter hole and communicates with the connection hole. It is preferable to provide an annular inclined surface that is not orthogonal to the O-ring, and an O-ring fitted to the narrow diameter portion of the cylindrical channel protrusion is compressed and sandwiched between both annular inclined surfaces to maintain liquid tightness. .

振動ダイヤフラムは、具体的には、導電性金属薄板からなる少なくとも一枚のシムと少なくとも一層の圧電体層との交互積層構造を有する圧電振動子から構成すると、薄型のダイヤフラムポンプを得ることができる。   Specifically, when the vibration diaphragm is composed of a piezoelectric vibrator having an alternately laminated structure of at least one shim made of a conductive metal thin plate and at least one piezoelectric layer, a thin diaphragm pump can be obtained. .

本発明のダイヤフラムポンプは、振動ダイヤフラムを挟着する一対のハウジングの間に、該振動ダイヤフラムとは平面位置を異ならせて、吸入ポート及び吐出ポートに対応する一対の弾性材料からなる脈動軽減ダイヤフラムを挟着し、かつ一対のハウジングにそれぞれ、該一対の脈動軽減ダイヤフラムの上下にそれぞれ可変容積の液室と空気室を画成する凹部を形成し、この一対の可変容積の液室をそれぞれ吸入ポート及び吐出ポートに連通させたので、極めて簡単に脈動軽減構造を構成することができる。   The diaphragm pump of the present invention includes a pulsation reducing diaphragm made of a pair of elastic materials corresponding to the suction port and the discharge port between a pair of housings sandwiching the vibration diaphragm so that the plane position of the diaphragm is different from that of the vibration diaphragm. A pair of housings are formed on the top and bottom of the pair of pulsation-reducing diaphragms, respectively, to form recesses that define a variable volume liquid chamber and an air chamber. In addition, since the discharge port communicates with the discharge port, the pulsation reducing structure can be configured very easily.

この実施形態は、ダイヤフラムを挟着する一対のハウジングを組み立てることで実質的な流路構造を構成できる、本出願人が特願2007-275908号で提案した4バルブダイヤフラムポンプに本発明を適用したものである。   In this embodiment, the present invention is applied to a 4-valve diaphragm pump proposed by the present applicant in Japanese Patent Application No. 2007-275908, which can constitute a substantial flow path structure by assembling a pair of housings sandwiching a diaphragm. Is.

最初に、図7について、4バルブダイヤフラムポンプの動作原理を説明する。このダイヤフラムポンプは、アッパハウジング10、ロアハウジング20、圧電振動子(ダイヤフラム)30、及び4つのアンブレラ(逆止弁)11、12、21、22を基本的な構成要素としている。アッパハウジング10と圧電振動子30の間、及びロアハウジング20と圧電振動子30の間にはそれぞれ、アッパポンプ室(可変容積室)13とロアポンプ室(可変容積室)23が形成されている。単一の吸入ポート31は、吸入側流路14Hと24Hに連通しており、吸入側流路14Hは吸入側逆止弁11を介してアッパポンプ室13に連通し、吸入側流路24Hは吸入側逆止弁21を介してロアポンプ室23に連通している。また、単一の吐出ポート32は、吐出側流路15Dと25Dに連通しており、吐出側流路15Dは吐出側逆止弁12を介してアッパポンプ室13に連通し、吐出側流路25Dは吐出側逆止弁22を介してロアポンプ室23に連通している。   First, the operation principle of the 4-valve diaphragm pump will be described with reference to FIG. This diaphragm pump includes an upper housing 10, a lower housing 20, a piezoelectric vibrator (diaphragm) 30, and four umbrellas (check valves) 11, 12, 21, and 22 as basic components. An upper pump chamber (variable volume chamber) 13 and a lower pump chamber (variable volume chamber) 23 are formed between the upper housing 10 and the piezoelectric vibrator 30, and between the lower housing 20 and the piezoelectric vibrator 30, respectively. The single suction port 31 communicates with the suction side flow paths 14H and 24H, the suction side flow path 14H communicates with the upper pump chamber 13 via the suction side check valve 11, and the suction side flow path 24H It communicates with the lower pump chamber 23 via the side check valve 21. The single discharge port 32 communicates with the discharge-side flow paths 15D and 25D, and the discharge-side flow path 15D communicates with the upper pump chamber 13 via the discharge-side check valve 12, and the discharge-side flow path 25D. Communicates with the lower pump chamber 23 via the discharge check valve 22.

この4バルブダイヤフラムポンプは、圧電振動子30が正逆に弾性変形(振動)すると、アッパポンプ室13とロアポンプ室23のいずれか一方の容積が増大し他方の容積が減少する。アッパポンプ室13の容積が増大する行程はロアポンプ室23の容積が減少する行程であり、アッパポンプ室13の容積が増大するから吸入側逆止弁11が開いて吸入ポート31からアッパポンプ室13内に流体が流入し、ロアポンプ室23の容積が減少するからロアポンプ室23内の流体が吐出側逆止弁22を開いて吐出ポート32に流出する(図7(B))。逆にアッパポンプ室13の容積が減少する行程はロアポンプ室23の容積が増大する行程であり、ロアポンプ室23の容積が増大するから吸入側逆止弁21が開いて吸入ポート31からロアポンプ室23内に流体が流入し、アッパポンプ室13の容積が減少するからアッパポンプ室13内の流体が吐出側逆止弁12を開いて吐出ポート32に流出する(図7(A))。従って、吐出ポート32における脈動の周期を短くする(圧電振動子30の上下の一方のみにポンプ室が形成される場合に比して半分にする)ことができる。   In the four-valve diaphragm pump, when the piezoelectric vibrator 30 is elastically deformed (vibrated) in the forward and reverse directions, the volume of one of the upper pump chamber 13 and the lower pump chamber 23 increases and the other volume decreases. The stroke in which the volume of the upper pump chamber 13 increases is a stroke in which the volume of the lower pump chamber 23 decreases. Since the volume of the upper pump chamber 13 increases, the suction side check valve 11 opens and fluid flows from the suction port 31 into the upper pump chamber 13. Flows in and the volume of the lower pump chamber 23 decreases, so that the fluid in the lower pump chamber 23 opens the discharge-side check valve 22 and flows out to the discharge port 32 (FIG. 7B). Conversely, the stroke in which the volume of the upper pump chamber 13 decreases is a stroke in which the volume of the lower pump chamber 23 increases. Since the volume of the lower pump chamber 23 increases, the suction side check valve 21 opens and the suction port 31 opens into the lower pump chamber 23. Since the fluid flows into the upper pump chamber 13 and the volume of the upper pump chamber 13 decreases, the fluid in the upper pump chamber 13 opens the discharge-side check valve 12 and flows out to the discharge port 32 (FIG. 7A). Therefore, the pulsation cycle at the discharge port 32 can be shortened (halved compared to the case where the pump chamber is formed only on one of the upper and lower sides of the piezoelectric vibrator 30).

本実施形態は、以上の動作原理の4バルブダイヤフラムポンプを簡易な構造で実現し、さらに脈動を一層軽減するものであり、図1ないし図5についてその一実施形態を説明する。図1ないし図5では、図7と共通の構成要素には同一の符号を付している。   In the present embodiment, the four-valve diaphragm pump having the above operation principle is realized with a simple structure, and the pulsation is further reduced. One embodiment of the present invention will be described with reference to FIGS. In FIG. 1 to FIG. 5, the same reference numerals are given to the same components as those in FIG.

図1、図2は、本4バルブダイヤフラムポンプの全体構造を示している。合成樹脂材料(例えばPBT(ポリブチレンテレフタレート)樹脂、PPS(ポリフェニレンスルフィド)樹脂)の成形品からなるアッパハウジング10には、ロアハウジング20との対向面(合わせ面)に、アッパポンプ室13を形成する凹部13aが形成され、また、この凹部13aに連通する吸入側外部開口穴16と吐出側外部開口穴17が形成されている。この吸入側外部開口穴16と吐出側外部開口穴17は、図7の吸入側流路14Hと吐出側流路15Dを構成するもので、アッパハウジング10の外面に開口し、かつその開口端が吸入ポート31と吐出ポート32を構成している。   1 and 2 show the overall structure of the present four-valve diaphragm pump. An upper pump chamber 13 is formed on the upper housing 10 made of a synthetic resin material (for example, PBT (polybutylene terephthalate) resin, PPS (polyphenylene sulfide) resin) on the surface facing the lower housing 20 (mating surface). A recess 13a is formed, and a suction-side external opening hole 16 and a discharge-side external opening hole 17 communicating with the recess 13a are formed. The suction-side external opening hole 16 and the discharge-side external opening hole 17 constitute the suction-side flow path 14H and the discharge-side flow path 15D shown in FIG. 7, and open to the outer surface of the upper housing 10 and have an opening end thereof. A suction port 31 and a discharge port 32 are configured.

また、アッパハウジング10には、ロアハウジング20との対向面(合わせ面)に、連通路16aを介して吸入側外部開口穴16に連通する平面円形の吸入側液室(凹部)101と、連通路17aを介して17に連通する平面円形の吐出側液室(凹部)102が形成されている。アッパハウジング10には、図3に示すように、この吸入側液室101(吐出側液室102)と同心の環状突起103(104)が形成されている。   Further, the upper housing 10 has a planar circular suction side liquid chamber (concave portion) 101 communicating with the suction side external opening hole 16 via a communication passage 16a on a surface (mating surface) facing the lower housing 20 and a communication surface. A flat circular discharge side liquid chamber (concave portion) 102 communicating with 17 through the passage 17a is formed. As shown in FIG. 3, the upper housing 10 is formed with an annular protrusion 103 (104) concentric with the suction side liquid chamber 101 (discharge side liquid chamber 102).

同じく合成樹脂材料(同)の成形品からなるロアハウジング20には、アッパハウジング10との対向面(合わせ面)に、ロアポンプ室23を形成する凹部23aが形成され、また、この凹部23aに連通する吸入側外部開口穴26と吐出側外部開口穴27が形成されている。この吸入側外部開口穴26と吐出側外部開口穴27は、図7の吸入側流路24Hと吐出側流路25Dを構成するもので、ロアハウジング20の外面に開口している。   Similarly, the lower housing 20 formed of a synthetic resin material (same product) is provided with a recess 23a that forms a lower pump chamber 23 on the surface (mating surface) facing the upper housing 10, and communicates with the recess 23a. A suction-side external opening hole 26 and a discharge-side external opening hole 27 are formed. The suction-side external opening hole 26 and the discharge-side external opening hole 27 constitute the suction-side flow path 24H and the discharge-side flow path 25D in FIG. 7 and open to the outer surface of the lower housing 20.

また、ロアハウジング20には、アッパハウジング10との対向面(合わせ面)に、アッパハウジング10の吸入側液室101に対応する平面円形の空気室(凹部)201と、吐出側液室102に対応する平面円形の空気室(凹部)202が形成されている。ロアハウジング20には、図3に示すように、空気室201(202)と同心に、アッパハウジング10の環状突起103(104)に対応する環状溝203(204)が形成されている。   Further, the lower housing 20 has a plane circular air chamber (recessed portion) 201 corresponding to the suction side liquid chamber 101 of the upper housing 10 and a discharge side liquid chamber 102 on the surface (mating surface) facing the upper housing 10. A corresponding flat circular air chamber (concave portion) 202 is formed. As shown in FIG. 3, an annular groove 203 (204) corresponding to the annular protrusion 103 (104) of the upper housing 10 is formed in the lower housing 20 concentrically with the air chamber 201 (202).

平面円形をなす脈動軽減ダイヤフラム301(302)の周縁ビード部303(304)は、ロアハウジング20のこの環状溝203(204)に嵌められる。そして、ロアハウジング20上にアッパハウジング10を重ねて環状突起103(104)を環状溝203(204)に嵌め、環状ビード部303(304)を圧縮することで、脈動軽減ダイヤフラム301(302)の図の上下にそれぞれ吸入側液室101(吐出側液室102)と空気室201(202)が形成される。空気室201(202)は密閉しても大気に開放してもよい。   The peripheral bead portion 303 (304) of the pulsation reducing diaphragm 301 (302) having a flat circular shape is fitted into the annular groove 203 (204) of the lower housing 20. Then, the upper housing 10 is overlapped on the lower housing 20, the annular protrusion 103 (104) is fitted into the annular groove 203 (204), and the annular bead portion 303 (304) is compressed, so that the pulsation reducing diaphragm 301 (302) is compressed. A suction-side liquid chamber 101 (discharge-side liquid chamber 102) and an air chamber 201 (202) are formed above and below the figure, respectively. The air chamber 201 (202) may be sealed or opened to the atmosphere.

脈動軽減ダイヤフラム301(302)は、ゴム材料の加硫成形品からなっており、吸入側液室101(吐出側液室102)と空気室201(202)の圧力差に応じて弾性変形し、吸入側液室101(吐出側液室102)と空気室201(202)の容積を変化させる。   The pulsation reducing diaphragm 301 (302) is made of a vulcanized molded product of rubber material, and elastically deforms according to the pressure difference between the suction side liquid chamber 101 (discharge side liquid chamber 102) and the air chamber 201 (202), The volumes of the suction side liquid chamber 101 (discharge side liquid chamber 102) and the air chamber 201 (202) are changed.

逆止弁11と12は、吸入側外部開口穴16と吐出側外部開口穴17の凹部13a側の端部に設けられ、逆止弁21と22は、吸入側外部開口穴26と吐出側外部開口穴27の凹部23a側の端部に設けられている。図示実施形態の逆止弁11、12、21、22は、同一の形態のアンブレラバルブであり、流路に接着もしくは溶着固定される穴あき基板11a、12a、22a、凹部23aに、弾性材料からなるアンブレラ11b、12b、22b、23bを装着してなっている。   The check valves 11 and 12 are provided at the end of the suction side external opening hole 16 and the discharge side external opening hole 17 on the recess 13a side, and the check valves 21 and 22 are provided with the suction side external opening hole 26 and the discharge side external opening hole. It is provided at the end of the opening hole 27 on the recess 23 a side. The check valves 11, 12, 21, and 22 in the illustrated embodiment are umbrella valves of the same form, and are made of elastic material on the perforated substrates 11 a, 12 a, 22 a, and the recesses 23 a that are bonded or welded to the flow path. Umbrellas 11b, 12b, 22b, and 23b are mounted.

圧電振動子30は、アッパハウジング10とロアハウジング20の間に、Oリング33、34を介して液密に挟着保持され、凹部13aとの間にアッパポンプ室13を構成し、凹部23aとの間にロアポンプ室23を構成する。圧電振動子30は、導電性金属薄板からなるシムの表裏の少なくとも一方に圧電体を積層してなり、交番電界を与えることによりシムの面と垂直な方向に正逆に振動する周知のものであり、本実施形態は、圧電振動子30の構成の如何は問わない。例えばユニモルフ、バイモルフのいずれのタイプでもよい。   The piezoelectric vibrator 30 is held in a liquid-tight manner between the upper housing 10 and the lower housing 20 via O-rings 33 and 34, and constitutes an upper pump chamber 13 between the upper housing 10 and the lower housing 20, and is connected to the concave portion 23a. A lower pump chamber 23 is formed therebetween. The piezoelectric vibrator 30 is a well-known one that is formed by laminating a piezoelectric body on at least one of the front and back sides of a shim made of a conductive metal thin plate, and vibrates in the direction perpendicular to the surface of the shim by applying an alternating electric field. In the present embodiment, the configuration of the piezoelectric vibrator 30 does not matter. For example, any type of unimorph and bimorph may be used.

以上のアッパハウジング10の外部開口穴16(吸入側流路14H)とロアハウジング20の外部開口穴26(吸入側流路24H)は、図2に示すように、アッパハウジング10に一体に形成した吸入側筒状流路突起43Hと、ロアハウジング20に形成した吸入側接続穴42Hとによって連通し、アッパハウジング10の外部開口穴17(吐出側流路15D)とロアハウジング20の外部開口穴27(吐出側流路25D)は、アッパハウジング10に一体に形成した吐出側筒状流路突起43Dと、ロアハウジング20に形成した吐出側接続穴42Dとによって連通している。すなわち、吸入側筒状流路突起43Hと吸入側接続穴42Hは相互に嵌合関係となって外部開口穴16と26(吸入側流路14Hと24H)を連通させ、吐出側筒状流路突起43Dと吐出側接続穴42Hは相互に嵌合関係となって吐出側流路15Dと25D(吐出側流路15Dと25D)を連通させる。この筒状流路突起43H(43D)と接続穴42H(42D)は、左右対称構造であり、その詳細を図4、図5で説明する。図2と図4では、上下を逆にして示している。   The external opening hole 16 (suction side flow path 14H) of the upper housing 10 and the external opening hole 26 (suction side flow path 24H) of the lower housing 20 are formed integrally with the upper housing 10 as shown in FIG. The suction side tubular channel protrusion 43H communicates with the suction side connection hole 42H formed in the lower housing 20, and the outer opening hole 17 (discharge side channel 15D) of the upper housing 10 and the outer opening hole 27 of the lower housing 20 are communicated. The (discharge side flow path 25D) communicates with a discharge side cylindrical flow path projection 43D formed integrally with the upper housing 10 and a discharge side connection hole 42D formed in the lower housing 20. That is, the suction side cylindrical flow path protrusion 43H and the suction side connection hole 42H are in a fitting relationship with each other, and the external opening holes 16 and 26 (suction side flow paths 14H and 24H) communicate with each other. The protrusion 43D and the discharge side connection hole 42H are in a fitting relationship with each other, and connect the discharge side flow paths 15D and 25D (discharge side flow paths 15D and 25D). The cylindrical channel protrusion 43H (43D) and the connection hole 42H (42D) have a bilaterally symmetric structure, and details thereof will be described with reference to FIGS. 2 and 4 are shown upside down.

ロアハウジング20に形成した外部開口穴26(27)は、図4に詳細に示すように、該ロアハウジング20の外面に開口する大径穴26a(27a)と、この大径穴26a(27a)より内側に位置する小径穴26b(27b)と、この大径穴26a(27a)と小径穴26b(27b)の境界に位置する軸線に対して直交しない環状斜面26c(27c)とを有している。また、ロアハウジング20に形成した接続穴42H(42D)は、この外部開口穴26(27)の環状斜面26c(27c)部分に位置させて、該外部開口穴26(27)と直交して連通するように形成されている。これらの外部開口穴26(27)及び接続穴42H(42D)は、成形型(抜き型)によりロアハウジング20と一体に成形されている。   As shown in detail in FIG. 4, the outer opening hole 26 (27) formed in the lower housing 20 includes a large-diameter hole 26a (27a) that opens to the outer surface of the lower housing 20, and the large-diameter hole 26a (27a). A small-diameter hole 26b (27b) located on the inner side, and an annular inclined surface 26c (27c) that is not orthogonal to the axis located at the boundary between the large-diameter hole 26a (27a) and the small-diameter hole 26b (27b) Yes. Further, the connection hole 42H (42D) formed in the lower housing 20 is positioned at the annular inclined surface 26c (27c) portion of the external opening hole 26 (27) and communicates perpendicularly with the external opening hole 26 (27). It is formed to do. The external opening hole 26 (27) and the connection hole 42H (42D) are integrally formed with the lower housing 20 by a forming die (punch die).

一方、アッパハウジング10に一体に形成した筒状流路突起43H(43D)は、図4、図5に詳細に示すように、太径部43aと、この太径部43aの上部に位置する細径部43bと、この太径部43aと細径部43bを分ける(の境界を定める)軸線に対して直交しない環状斜面43cとを有し、その軸部に、外部開口穴16(17)と連通する内部流路44が形成されている。この筒状流路突起43H(43D)も、成形型(抜き型)によりアッパハウジング10と一体に成形されている。   On the other hand, as shown in detail in FIGS. 4 and 5, the cylindrical channel protrusion 43 </ b> H (43 </ b> D) formed integrally with the upper housing 10 has a large-diameter portion 43 a and a thin portion positioned above the large-diameter portion 43 a. A diameter portion 43b, and an annular inclined surface 43c that separates (defines the boundary) between the large diameter portion 43a and the small diameter portion 43b and is not orthogonal to the axis, and the external opening hole 16 (17) is formed in the shaft portion. An internal flow path 44 that communicates is formed. The cylindrical channel protrusion 43H (43D) is also integrally formed with the upper housing 10 by a molding die (punch die).

外部開口穴26(27)の環状斜面26c(27c)と筒状流路突起43H(43D)の環状斜面43cとは対応関係にあり、図示例では、環状斜面26c(27c)(環状斜面43c)は、外部開口穴26(27)(筒状流路突起43H(43D))の軸線に対して45゜をなしている。この角度は、30゜〜60゜程度の範囲で変えることができる。筒状流路突起43H(43D)の細径部43bの周囲(環状斜面43cの上)には、Oリング46が嵌められており、筒状流路突起43H(43D)を接続穴42H(42D)に嵌めると、外部開口穴26(27)の環状斜面26c(27c)と筒状流路突起43H(43D)の環状斜面43cとの間に、Oリング46が挟着されて圧縮され、内部流路44によって、外部開口穴16と26(外部開口穴17と27)が連通する。   The annular slope 26c (27c) of the external opening hole 26 (27) and the annular slope 43c of the cylindrical channel protrusion 43H (43D) have a corresponding relationship. In the illustrated example, the annular slope 26c (27c) (annular slope 43c). Is 45 ° with respect to the axis of the external opening 26 (27) (cylindrical channel protrusion 43H (43D)). This angle can be changed within a range of about 30 ° to 60 °. An O-ring 46 is fitted around the small-diameter portion 43b of the cylindrical channel protrusion 43H (43D) (on the annular inclined surface 43c), and the cylindrical channel projection 43H (43D) is connected to the connection hole 42H (42D). ), The O-ring 46 is sandwiched and compressed between the annular inclined surface 26c (27c) of the external opening hole 26 (27) and the annular inclined surface 43c of the cylindrical channel protrusion 43H (43D), The external opening holes 16 and 26 (external opening holes 17 and 27) communicate with each other through the flow path 44.

従って、本実施形態の4バルブダイヤフラムポンプは、図2のように、アッパハウジング10とロアハウジング20を組み合わせ、アッパハウジング10の筒状流路突起43H(43D)をロアハウジング20の接続穴42H(42D)に嵌めるだけで、外部開口穴26(27)の環状斜面26c(27c)と筒状流路突起43H(43D)の環状斜面43cとの間にOリング46を圧縮し、内部流路44によって、外部開口穴16と26(外部開口穴17と27)を連通させ、液密構造を得ることができる。   Therefore, the four-valve diaphragm pump of the present embodiment combines the upper housing 10 and the lower housing 20 as shown in FIG. 2, and the cylindrical flow path protrusion 43H (43D) of the upper housing 10 is connected to the connection hole 42H ( 42D), the O-ring 46 is compressed between the annular inclined surface 26c (27c) of the external opening hole 26 (27) and the annular inclined surface 43c of the cylindrical flow path protrusion 43H (43D), and the internal flow path 44 is compressed. Thus, the external opening holes 16 and 26 (external opening holes 17 and 27) can be communicated to obtain a liquid-tight structure.

アッパハウジング10とロアハウジング20の間には、圧電振動子30と脈動軽減ダイヤフラム301(302)が挟着される。すなわち、圧電振動子30は、アッパハウジング10とロアハウジング20の間に、Oリング33、34を介して液密に挟着保持され、凹部13aとの間にアッパポンプ室13を構成し、凹部23aとの間にロアポンプ室23を構成する。また、脈動軽減ダイヤフラム301(302)の周縁ビード部303(304)は、ロアハウジング20の環状溝203(204)に嵌められ、アッパハウジング10の環状突起103(104)を環状溝203(204)に嵌めることで周縁ビード部303(304)が圧縮される。その結果、脈動軽減ダイヤフラム301(302)の図の上下にそれぞれ、液密(気密)の吸入側液室101(吐出側液室102)と空気室201(202)が形成される。   Between the upper housing 10 and the lower housing 20, a piezoelectric vibrator 30 and a pulsation reducing diaphragm 301 (302) are sandwiched. That is, the piezoelectric vibrator 30 is liquid-tightly sandwiched and held between the upper housing 10 and the lower housing 20 via O-rings 33 and 34, and constitutes the upper pump chamber 13 between the recess 13a and the recess 23a. A lower pump chamber 23 is formed between the two. The peripheral bead portion 303 (304) of the pulsation reducing diaphragm 301 (302) is fitted in the annular groove 203 (204) of the lower housing 20, and the annular protrusion 103 (104) of the upper housing 10 is inserted into the annular groove 203 (204). The peripheral bead portion 303 (304) is compressed by being fitted into the. As a result, a liquid-tight (air-tight) suction-side liquid chamber 101 (discharge-side liquid chamber 102) and an air chamber 201 (202) are formed above and below the pulsation reducing diaphragm 301 (302), respectively.

以上の圧電ポンプは、圧電振動子30が正逆に弾性変形(振動)すると、前述のように、アッパポンプ室13とロアポンプ室23のいずれか一方の容積が増大し他方の容積が減少する。アッパポンプ室13の容積が増大する行程はロアポンプ室23の容積が減少する行程であり、アッパポンプ室13の容積が増大するから吸入側逆止弁11が開いて吸入ポート31からアッパポンプ室13内に流体が流入し、ロアポンプ室23の容積が減少するからロアポンプ室23内の流体が吐出側逆止弁22を開いて吐出ポート32に流出する。逆にアッパポンプ室13の容積が減少する行程はロアポンプ室23の容積が増大する行程であり、ロアポンプ室23の容積が増大するから吸入側逆止弁21が開いて吸入ポート31からロアポンプ室23内に流体が流入し、アッパポンプ室13の容積が減少するからアッパポンプ室13内の流体が吐出側逆止弁12を開いて吐出ポート32に流出する。   In the above piezoelectric pump, when the piezoelectric vibrator 30 is elastically deformed (vibrated) in the forward and reverse directions, as described above, the volume of either the upper pump chamber 13 or the lower pump chamber 23 increases and the other volume decreases. The stroke in which the volume of the upper pump chamber 13 increases is a stroke in which the volume of the lower pump chamber 23 decreases. Since the volume of the upper pump chamber 13 increases, the suction side check valve 11 opens and fluid flows from the suction port 31 into the upper pump chamber 13. Flows in and the volume of the lower pump chamber 23 decreases, so that the fluid in the lower pump chamber 23 opens the discharge side check valve 22 and flows out to the discharge port 32. Conversely, the stroke in which the volume of the upper pump chamber 13 decreases is a stroke in which the volume of the lower pump chamber 23 increases. Since the volume of the lower pump chamber 23 increases, the suction side check valve 21 opens and the suction port 31 opens into the lower pump chamber 23. Since the fluid flows into the upper pump chamber 13 and the volume of the upper pump chamber 13 decreases, the fluid in the upper pump chamber 13 opens the discharge-side check valve 12 and flows out to the discharge port 32.

このポンプ作用中においては、吸入側外部開口穴16と吐出側外部開口穴17内の圧力が変動する。この圧力変動は、連通路16aと17aを介して吸入側液室101と吐出側液室102に及び、吸入側液室101(吐出側液室102)の圧力が上昇するときには、脈動軽減ダイヤフラム301(302)が空気室201(202)側に弾性変形し、下降するときには、吸入側液室101(吐出側液室102)側に弾性変形する。このため、吸入ポート31と吐出ポート32内の液体圧力に表れる脈動(振動)を減少させる作用をする。   During this pumping action, the pressure in the suction side external opening hole 16 and the discharge side external opening hole 17 varies. This pressure fluctuation reaches the suction-side liquid chamber 101 and the discharge-side liquid chamber 102 via the communication passages 16a and 17a. When the pressure in the suction-side liquid chamber 101 (discharge-side liquid chamber 102) increases, the pulsation reducing diaphragm 301 When (302) elastically deforms toward the air chamber 201 (202) and descends, it elastically deforms toward the suction side liquid chamber 101 (discharge side liquid chamber 102). Therefore, the pulsation (vibration) appearing in the liquid pressure in the suction port 31 and the discharge port 32 is reduced.

以上の実施形態では、アッパハウジング10の筒状流路突起43H(43D)をロアハウジング20の接続穴42H(42D)に嵌めるだけで液密構造を達成できるという利点があるが、例えば外部開口穴26(27)の開口端を別の部材によって塞ぐことで液密を保持することも可能であり、この場合には筒状流路突起43H(43D)と接続穴42H(42D)の液密を例えばOリングで確保すればよい。   In the above embodiment, there is an advantage that a liquid-tight structure can be achieved simply by fitting the cylindrical flow path protrusion 43H (43D) of the upper housing 10 into the connection hole 42H (42D) of the lower housing 20. It is also possible to maintain the liquid tightness by closing the opening end of 26 (27) with another member. In this case, the liquid tightness of the cylindrical flow path protrusion 43H (43D) and the connection hole 42H (42D) is maintained. For example, it may be secured by an O-ring.

以上の実施形態では、アッパハウジング10に吸入ポート31と吐出ポート32の双方を設けたが、ロアハウジング20に両ポートを形成し、あるいはアッパハウジング10とロアハウジング20にそれぞれ一つずつのポートを設けることもできる。その際のルールは、吸入側筒状流路突起を有する側のハウジングに、吸入ポートを設け、吐出側筒状流路突起を有する側のハウジングに、吐出ポートを設けるというルールである。また、図示実施形態では、吸入ポート31と吐出ポート32(吸入側外部開口穴16(26)と吐出側外部開口穴17(27))をハウジング10(20)の反対側に延長したが、同一の側に延長させてもよい。   In the above embodiment, both the suction port 31 and the discharge port 32 are provided in the upper housing 10, but both ports are formed in the lower housing 20, or one port is provided in each of the upper housing 10 and the lower housing 20. It can also be provided. The rule at that time is a rule that a suction port is provided in the housing on the side having the suction side cylindrical flow path projection, and a discharge port is provided in the housing on the side having the discharge side cylindrical flow path projection. In the illustrated embodiment, the suction port 31 and the discharge port 32 (the suction side external opening hole 16 (26) and the discharge side external opening hole 17 (27)) are extended to the opposite side of the housing 10 (20). You may extend to the side.

以上の実施形態は、4バルブダイヤフラムポンプに本発明を適用したものであるが、本発明は2バルブダイヤフラムポンプにも適用できる。図6は、その実施形態であり、図2において、吸入側逆止弁21、吐出側逆止弁22及びその関連構成を除去し、ロアハウジング20に、凹部23aと、空気室201(202)だけを形成した実施形態に相当する。凹部23aと圧電振動子30によって空気室Aが構成される。この他の構成は、図2の実施形態と同一であり、同一要素には同一の符号を付した。   In the above embodiment, the present invention is applied to a four-valve diaphragm pump, but the present invention can also be applied to a two-valve diaphragm pump. FIG. 6 shows an embodiment thereof. In FIG. 2, the suction side check valve 21, the discharge side check valve 22 and the related components are removed, and a recess 23a and an air chamber 201 (202) are formed in the lower housing 20. This corresponds to an embodiment in which only the above is formed. The air chamber A is configured by the recess 23 a and the piezoelectric vibrator 30. Other configurations are the same as those in the embodiment of FIG. 2, and the same reference numerals are given to the same elements.

また、以上の実施形態では、脈動軽減ダイヤフラム301(302)を、筒状流路突起43H(43D)と逆止弁11、12、21、22の間に設けているが、筒状流路突起43H(43D)と吸入ポート31、吐出ポート32の間に設けてもよい。   Further, in the above embodiment, the pulsation reducing diaphragm 301 (302) is provided between the cylindrical flow path protrusion 43H (43D) and the check valves 11, 12, 21, 22; 43H (43D) may be provided between the suction port 31 and the discharge port 32.

以上の実施形態では、ダイヤフラムとして圧電振動子を例示したが、本発明は他の振動するダイヤフラムを用いた液体ポンプに広く適用できる。   In the above embodiment, the piezoelectric vibrator is exemplified as the diaphragm. However, the present invention can be widely applied to liquid pumps using other vibrating diaphragms.

上記実施形態では、ハウジング及びこれに関連する要素に便宜上「アッパ」「ロア」の名前を付けたが、使用状態でのそれを限定するものではないことは明らかである。   In the above embodiment, the housing and related elements are named “upper” and “lower” for convenience, but it is obvious that the housing and the elements are not limited to those in use.

本発明を4バルブダイヤフラムポンプ(圧電ポンプ)に適用した実施形態を示す平面図である。It is a top view which shows embodiment which applied this invention to the 4-valve diaphragm pump (piezoelectric pump). 図1のII-II線に沿う断面展開図である。FIG. 2 is a developed sectional view taken along line II-II in FIG. 1. 図2のIII部拡大断面図である。FIG. 3 is an enlarged cross-sectional view of a part III in FIG. 2. 図2のIV部拡大断面図である。FIG. 4 is an enlarged cross-sectional view of a part IV in FIG. 2. (A)、(B)は、ロアハウジングから突出させた筒状流路突起の形状例とOリングの関係を示す、見る方向を変えた斜視図である。(A), (B) is the perspective view which changed the view direction which shows the relationship between the example of the shape of the cylindrical flow path protrusion protruded from the lower housing, and an O-ring. 本発明を2バルブダイヤフラムポンプ(圧電ポンプ)に適用した実施形態を示す、図2に対応する断面展開図である。FIG. 3 is a developed sectional view corresponding to FIG. 2, showing an embodiment in which the present invention is applied to a two-valve diaphragm pump (piezoelectric pump). (A)、(B)は、4バルブダイヤフラムポンプの原理を示すスケルトン図である。(A) and (B) are skeleton diagrams showing the principle of a four-valve diaphragm pump.

符号の説明Explanation of symbols

10 アッパハウジング
11 12 21 22 逆止弁
13 アッパポンプ室
13a 凹部
14H 24H 吸入側流路
15D 25D 吐出側流路
16 26 吸入側外部開口穴
17 27 吐出側外部開口穴
20 ロアハウジング
23 ロアポンプ室
23a 凹部
30 圧電振動子(ダイヤフラム)
31 吸入ポート
32 吐出ポート
33 34 Oリング
40 自由液流路
40 外部開口穴
26a 27a 大径穴
26b 27b 小径穴
26c 27c 環状斜面
42H 42D 接続穴
43H 43D 筒状流路突起
43a 太径部
43b 細径部
43c 環状斜面
44 内部流路
46 Oリング
101 吸入側液室(凹部)
102 吐出側液室(凹部)
103 104 環状突起
201 202 空気室(凹部)
203 204 環状溝
301 302 脈動軽減ダイヤフラム
303 304 周縁ビード部
DESCRIPTION OF SYMBOLS 10 Upper housing 11 12 21 22 Check valve 13 Upper pump chamber 13a Recess 14H 24H Suction side flow path 15D 25D Discharge side flow path 16 26 Suction side external opening hole 17 27 Discharge side external opening hole 20 Lower housing 23 Lower pump chamber 23a Recess 30 Piezoelectric vibrator (diaphragm)
31 Suction port 32 Discharge port 33 34 O-ring 40 Free liquid flow path 40 External opening hole 26a 27a Large diameter hole 26b 27b Small diameter hole 26c 27c Annular slope 42H 42D Connection hole 43H 43D Cylindrical flow path protrusion 43a Large diameter part 43b Small diameter Portion 43c Annular slope 44 Internal channel 46 O-ring 101 Suction side liquid chamber (recess)
102 Discharge side liquid chamber (concave)
103 104 Annular projection 201 202 Air chamber (concave)
203 204 Annular groove 301 302 Pulsation reduction diaphragm 303 304 Peripheral bead portion

Claims (8)

振動ダイヤフラムを一対のハウジングで挟着して該振動ダイヤフラムの上下の少なくとも一方にポンプ室を形成し、該ポンプ室と吸入ポートとの間に該吸入ポートから該ポンプ室への流体流を許容しその逆方向の流体流を許さない吸入側逆止弁を設け、上記ポンプ室と吐出ポートとの間に該ポンプ室から吐出ポートへの流体流を許容しその逆方向の流体流を許さない吐出側逆止弁を設け、振動ダイヤフラムを振動させてポンプ作用を得るダイヤフラムポンプにおいて、
上記一対のハウジングの間に、上記振動ダイヤフラムとは平面位置を異ならせて、上記吸入ポート及び吐出ポートに対応する一対の弾性材料からなる脈動軽減ダイヤフラムを挟着し、かつ、
上記一対のハウジングにそれぞれ、該一対の脈動軽減ダイヤフラムの上下にそれぞれ可変容積の液室と空気室を画成する凹部を形成し、この一対の可変容積の液室をそれぞれ上記吸入ポート及び吐出ポートに連通させたことを特徴とするダイヤフラムポンプ。
A vibration diaphragm is sandwiched between a pair of housings to form a pump chamber on at least one of the upper and lower sides of the vibration diaphragm, and fluid flow from the suction port to the pump chamber is allowed between the pump chamber and the suction port. A suction-side check valve that does not allow fluid flow in the reverse direction is provided, and the fluid flow from the pump chamber to the discharge port is allowed between the pump chamber and the discharge port, and discharge is not allowed in the reverse direction. In a diaphragm pump that has a side check valve and obtains a pump action by vibrating a vibrating diaphragm,
A pulsation reducing diaphragm made of a pair of elastic materials corresponding to the suction port and the discharge port is sandwiched between the pair of housings with a plane position different from that of the vibration diaphragm, and
The pair of housings are respectively formed with concave portions defining a variable volume liquid chamber and an air chamber above and below the pair of pulsation reducing diaphragms, and the pair of variable volume liquid chambers are respectively connected to the suction port and the discharge port. Diaphragm pump characterized by being connected to
請求項1記載のダイヤフラムポンプにおいて、上記脈動軽減ダイヤフラムは、平面円形でその周縁に、一対のハウジングによって液密に挟着される環状ビードを備えているダイヤフラムポンプ。 2. The diaphragm pump according to claim 1, wherein the pulsation reducing diaphragm includes a circular bead having a circular shape and a liquid crystal sandwiched between a pair of housings on the periphery thereof. 請求項1または2記載のダイヤフラムポンプにおいて、上記ポンプ室は、振動ダイヤフラムの上下にそれぞれ形成されており、この一対のポンプ室と単一の吸入ポートの間及び同一対のポンプ室と単一の吐出ポートの間にそれぞれ上記吸入側逆止弁と吐出側逆止弁が設けられているダイヤフラムポンプ。 3. The diaphragm pump according to claim 1, wherein the pump chambers are respectively formed above and below the vibration diaphragm, and between the pair of pump chambers and a single suction port and between the same pair of pump chambers and a single pump chamber. A diaphragm pump provided with the suction side check valve and the discharge side check valve, respectively, between the discharge ports. 請求項3記載のダイヤフラムポンプにおいて、上記振動ダイヤフラムを挟着する一対のハウジングにはそれぞれ、上記一対のポンプ室の一方を形成する凹部と、該凹部に連通し該ハウジングの外面に開口する吸入側外部開口穴と吐出側外部開口穴が形成されており、
一対のハウジングの一方と他方に、互いに嵌合関係となって両ハウジングの吸入側外部開口穴と吐出側外部開口穴とを互いに連通させる対をなす筒状流路突起と接続穴とが形成されており、
一対のハウジングのうち、筒状流路突起を有する側のハウジングに、吸入側外部開口穴に連通する上記吸入ポートと、吐出側外部開口穴に連通する上記吐出ポートが形成されているダイヤフラムポンプ。
4. The diaphragm pump according to claim 3, wherein each of the pair of housings sandwiching the vibration diaphragm includes a recess that forms one of the pair of pump chambers, and a suction side that communicates with the recess and opens to the outer surface of the housing. External opening hole and discharge side external opening hole are formed,
One of the pair of housings and the other are formed with a cylindrical flow path projection and a connection hole that form a pair and are connected to each other so that the suction side external opening hole and the discharge side external opening hole of both housings communicate with each other. And
A diaphragm pump in which the suction port that communicates with the suction-side external opening hole and the discharge port that communicates with the discharge-side external opening hole are formed in a housing on the side having the cylindrical flow path protrusion of the pair of housings.
請求項4記載のダイヤフラムポンプにおいて、上記吸入ポートと吐出ポートは、一対のハウジングのいずれか一方に双方が設けられているダイヤフラムポンプ。 5. The diaphragm pump according to claim 4, wherein the suction port and the discharge port are both provided in one of a pair of housings. 請求項4または5記載のダイヤフラムポンプにおいて、上記一対のハウジングはともに合成樹脂材料の成形品からなっているダイヤフラムポンプ。 6. The diaphragm pump according to claim 4, wherein both of the pair of housings are formed of a synthetic resin material. 請求項4ないし6のいずれか1項記載のダイヤフラムポンプにおいて、上記筒状流路突起は、太径部と、この太径部の上部に位置する細径部と、この太径部と細径部を分ける軸線に対して直交しない環状斜面とを有し、
上記外部開口穴は、大径穴と、この大径穴より内側に位置する小径穴と、この大径穴と小径穴の境界に位置し上記接続穴が連通する、上記筒状流路突起の環状斜面に対応する軸線に対して直交しない環状斜面とを有し、
上記筒状流路突起の細径部に嵌めたOリングがこの両環状斜面の間に圧縮挟着されて液密を保持するダイヤフラムポンプ。
The diaphragm pump according to any one of claims 4 to 6, wherein the cylindrical flow path protrusion includes a large diameter portion, a small diameter portion located above the large diameter portion, and the large diameter portion and the small diameter. An annular slope that is not orthogonal to the axis that divides the part,
The external opening hole is a large-diameter hole, a small-diameter hole located inside the large-diameter hole, and the cylindrical flow path protrusion of the cylindrical flow-path protrusion that is located at the boundary between the large-diameter hole and the small-diameter hole and communicates with the connection hole. An annular slope that is not orthogonal to the axis corresponding to the annular slope,
A diaphragm pump in which an O-ring fitted to the narrow diameter portion of the cylindrical flow path projection is compressed and sandwiched between the two annular inclined surfaces to maintain liquid tightness.
請求項1ないし7のいずれか1項記載のダイヤフラムポンプにおいて、上記振動ダイヤフラムは圧電振動子であるダイヤフラムポンプ。 8. The diaphragm pump according to claim 1, wherein the vibration diaphragm is a piezoelectric vibrator.
JP2008020423A 2008-01-31 2008-01-31 Diaphragm pump Withdrawn JP2009180163A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008020423A JP2009180163A (en) 2008-01-31 2008-01-31 Diaphragm pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008020423A JP2009180163A (en) 2008-01-31 2008-01-31 Diaphragm pump

Publications (1)

Publication Number Publication Date
JP2009180163A true JP2009180163A (en) 2009-08-13

Family

ID=41034334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008020423A Withdrawn JP2009180163A (en) 2008-01-31 2008-01-31 Diaphragm pump

Country Status (1)

Country Link
JP (1) JP2009180163A (en)

Similar Documents

Publication Publication Date Title
JP6625103B2 (en) Pump cassette
JP5494658B2 (en) Valve, fluid device and fluid supply device
TW200821470A (en) Diaphragm pump and thin channel structure
US9237854B2 (en) Valve, fluid control device
JP4873014B2 (en) Piezoelectric micro blower
US7431574B2 (en) Pump actuated by diaphragm
JPH08210528A (en) Valve
JP6111161B2 (en) Fluid handling apparatus and fluid handling method
JP2007198165A (en) Diaphragm pump
JP2005172206A (en) Check valve
JP2015505349A (en) Pump device including safety valve device
JP5107767B2 (en) 4-valve diaphragm pump
JP2009180163A (en) Diaphragm pump
TWM507977U (en) Piezoelectric pump
JP2010230015A (en) Pump device
JP2007309293A (en) Diaphragm pump and connection structure of pipe passage
JP2009270456A (en) Diaphragm pump
JP2008180104A (en) Diaphragm pump
JP4586371B2 (en) Pump device and diaphragm actuator
JP2005337068A (en) Diaphragm pump
JP5154284B2 (en) Diaphragm pump
JP6643845B2 (en) Leak prevention valve for micro pump
JP5000571B2 (en) 4-valve piezoelectric pump with built-in driver
JP2005337070A (en) Diaphragm pump
JP2007309292A (en) Diaphragm pump and flow passage structure

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110405