JP2009264277A - Pump device with engine - Google Patents

Pump device with engine Download PDF

Info

Publication number
JP2009264277A
JP2009264277A JP2008115708A JP2008115708A JP2009264277A JP 2009264277 A JP2009264277 A JP 2009264277A JP 2008115708 A JP2008115708 A JP 2008115708A JP 2008115708 A JP2008115708 A JP 2008115708A JP 2009264277 A JP2009264277 A JP 2009264277A
Authority
JP
Japan
Prior art keywords
engine
cooling
power generation
pump device
exhaust pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008115708A
Other languages
Japanese (ja)
Inventor
Keiji Iino
啓司 飯野
Toshiyuki Kitazawa
俊幸 北澤
Hiroshi Inoue
啓 井上
広太 ▲徳▼備
Kota Tokubi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2008115708A priority Critical patent/JP2009264277A/en
Publication of JP2009264277A publication Critical patent/JP2009264277A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a technology can reduce the cost of a pump device with an engine having a power generation mechanism. <P>SOLUTION: This pump device 20 with the engine includes a frame 21 being a base, a pump body 23 sucking and discharging water 22, the engine 24 as a driving source for driving the pump body 23, a muffler 25 as an exhaust pipe connected to this engine 24 and passing exhaust gas, a thermal power generation element 10 arranged on an outer peripheral surface 26 of the muffler 25 as this exhaust pipe and generating electric power by a temperature difference, and a cooling pipe 28 as a cooling part arranged in a spiral shape along an outside surface 27 of this thermal power generation element 10 and cooling the thermal power generation element 10 by high pressure water as a cooling medium generated by the pump body 23. As a result of this, since the thermal power generation element is arranged on an outer peripheral surface of the exhaust pipe, there is no need to apply a special thermal measure, and the pump device with the engine having the power generation mechanism can be reduced in the cost. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、発電機構を備えているエンジン付きポンプ装置に関するものである。   The present invention relates to a pump device with an engine provided with a power generation mechanism.

従来、発電機構としてのオルタネータ(交流発電機)を備えたエンジン付きポンプ装置が知られている(例えば、特許文献1参照。)。
特開2006−97501公報(図2、図3)
Conventionally, a pump device with an engine provided with an alternator (alternator) as a power generation mechanism is known (for example, see Patent Document 1).
JP 2006-97501 A (FIGS. 2 and 3)

特許文献1を次図に基づいて説明する。
図9は従来のエンジン付きポンプ装置の基本構成を説明する図であり、水を吸入、吐出するエンジン付きポンプ装置100において、作業者はリコイルスタータ101を引いてエンジン102を始動させる。するとエンジン102で駆動させる水ポンプ103は、吸入口104から水を吸入し、吐出口105から吐出する。
また、エンジン102は、エンジン102に内蔵されたオルタネータ106(特許文献1、図3の符号50参照。)を駆動させる。この結果、オルタネータ106で動作電源を得ることができる。
Patent document 1 is demonstrated based on the following figure.
FIG. 9 is a diagram for explaining the basic configuration of a conventional pump device with an engine. In the pump device with an engine 100 for sucking and discharging water, an operator pulls the recoil starter 101 to start the engine 102. Then, the water pump 103 driven by the engine 102 sucks water from the suction port 104 and discharges it from the discharge port 105.
The engine 102 drives an alternator 106 (see Patent Document 1, reference numeral 50 in FIG. 3) built in the engine 102. As a result, the alternator 106 can obtain an operating power supply.

従来技術においては、オルタネータ106はエンジン102に内蔵されており、エンジン102の運転時には、オルタネータ106はかなりの高温に晒される。そのため、オルタネータ106に熱対策を施す必要があり、耐熱仕様にするために高価な材料を使用する。その結果、エンジン付きポンプ装置100は高価になる。すなわち、発電機構を備えているエンジン付きポンプ装置を低コスト化することができる技術の提供が求められている。   In the prior art, the alternator 106 is built in the engine 102, and the alternator 106 is exposed to a considerably high temperature when the engine 102 is in operation. For this reason, it is necessary to take measures against heat in the alternator 106, and expensive materials are used in order to achieve heat resistance specifications. As a result, the pump device 100 with the engine becomes expensive. That is, there is a demand for providing a technology that can reduce the cost of a pump device with an engine that includes a power generation mechanism.

本発明は、発電機構を備えているエンジン付きポンプ装置を低コスト化することができる技術を提供することを課題とする。   This invention makes it a subject to provide the technique which can reduce the cost of the pump apparatus with an engine provided with the electric power generation mechanism.

請求項1に係る発明は、ポンプ本体に駆動源としてのエンジンを備えているエンジン付きポンプ装置において、前記エンジンの排気管に、高温導体を臨ませ、冷却部に低温導体を臨ませるようにして、排気管と冷却部との間に、温度差で発電する熱発電素子を備えていることを特徴とする。   The invention according to claim 1 is a pump apparatus with an engine provided with an engine as a drive source in a pump body so that a high-temperature conductor faces the exhaust pipe of the engine and a low-temperature conductor faces the cooling portion. In addition, a thermoelectric generator that generates electric power with a temperature difference is provided between the exhaust pipe and the cooling unit.

請求項2に係る発明では、冷却部は、ポンプ本体で発生した高圧水を冷却媒体とすることを特徴とする。   The invention according to claim 2 is characterized in that the cooling section uses high-pressure water generated in the pump body as a cooling medium.

請求項1に係る発明では、排気ガスの熱と冷却部の温度差を利用し、熱発電素子で発電させる。熱発電素子は排気管の外周面に配置されているため、特別な熱対策を施す必要がない。この結果、発電機構を備えているエンジン付きポンプ装置を低コスト化することができる。
加えて、エンジンの駆動力を使用せずに発電するので、エンジンの効率を向上することができる。
更に、エンジンの動作電源として必要な容量以上に発電することが可能なので、例えば夜間作業時に必要な照明用の発電も行える。
In the invention according to claim 1, power is generated by the thermoelectric generator using the heat of the exhaust gas and the temperature difference between the cooling parts. Since the thermoelectric generator is disposed on the outer peripheral surface of the exhaust pipe, it is not necessary to take special heat countermeasures. As a result, the cost of the engine-equipped pump device including the power generation mechanism can be reduced.
In addition, since the power is generated without using the driving force of the engine, the efficiency of the engine can be improved.
Furthermore, since it is possible to generate more power than is necessary for the operating power of the engine, for example, it is possible to generate power for lighting that is necessary during night work.

請求項2に係る発明では、ポンプ本体で発生した高圧水を冷却媒体とする。常に新たな高圧水を使用するので、常に冷却し、温度差を維持することができる。   In the invention according to claim 2, high-pressure water generated in the pump body is used as the cooling medium. Since new high-pressure water is always used, it is always possible to cool and maintain the temperature difference.

本発明を実施するための最良の形態を添付図に基づいて以下に説明する。なお、図面は符号の向きに見るものとする。
図1は本発明に使用する熱発電素子の基本原理を説明する図であり、発電機構としての熱発電素子10は、高温側に設けられている高温導体11と、低温側に設けられている低温導体12、12と、高温導体11と低温導体12とに介設されるn型熱電半導体13及びp型熱電半導体14とからなる。
The best mode for carrying out the present invention will be described below with reference to the accompanying drawings. The drawings are viewed in the direction of the reference numerals.
FIG. 1 is a diagram for explaining the basic principle of a thermoelectric generator used in the present invention. A thermoelectric generator 10 as a power generation mechanism is provided on a high temperature conductor 11 provided on a high temperature side and on a low temperature side. The low-temperature conductors 12 and 12 are composed of an n-type thermoelectric semiconductor 13 and a p-type thermoelectric semiconductor 14 interposed between the high-temperature conductor 11 and the low-temperature conductor 12.

次に、この熱発電素子10の作用を説明する。
高温導体11は、高温の熱媒体から矢印(1)のように熱が供給されると高温が維持される。又、低温導体12、12は低温の媒体へ矢印(2)、(2)のように放熱することで低温が維持される。
このようにして、高温導体11と低温導体12、12との間に温度差が生じると、ゼーベック効果が起こる。
ゼーベック効果によれば、n型熱電半導体13で、矢印(3)のように、電子15が移動し、p型熱電半導体14で、矢印(4)のように、正孔16が移動する。この結果、矢印(5)のように、電流が生じる。
Next, the operation of the thermoelectric generator 10 will be described.
The high temperature conductor 11 is maintained at a high temperature when heat is supplied from a high temperature heat medium as indicated by an arrow (1). Further, the low temperature conductors 12 and 12 maintain the low temperature by radiating heat to the low temperature medium as indicated by arrows (2) and (2).
In this way, when a temperature difference is generated between the high temperature conductor 11 and the low temperature conductors 12 and 12, the Seebeck effect occurs.
According to the Seebeck effect, electrons 15 move in the n-type thermoelectric semiconductor 13 as indicated by an arrow (3), and holes 16 move in the p-type thermoelectric semiconductor 14 as indicated by an arrow (4). As a result, a current is generated as indicated by an arrow (5).

なお、n型及びp型熱電半導体の材料としては、ビスマス・テルル化合物が好適であるが、この他、鉛・テルル合金、シリコン・ゲルマニウム合金、コバルト・アンチモン化合物及び亜鉛・アンチモン化合物など、熱電材料であれば、種類は問わない。   As materials for n-type and p-type thermoelectric semiconductors, bismuth-tellurium compounds are suitable, but other thermoelectric materials such as lead-tellurium alloys, silicon-germanium alloys, cobalt-antimony compounds, and zinc-antimony compounds If so, the type does not matter.

図2は本発明に係る熱発電素子の外観を説明する図であり、熱発電素子10は、高温導体11と、低温導体12と、高温導体11と低温導体12で挟まれたn型熱電半導体13及びp型熱電半導体14とからなり、全体的に板状を呈する。   FIG. 2 is a diagram for explaining the appearance of the thermoelectric generator according to the present invention. The thermoelectric generator 10 includes a high-temperature conductor 11, a low-temperature conductor 12, and an n-type thermoelectric semiconductor sandwiched between the high-temperature conductor 11 and the low-temperature conductor 12. 13 and the p-type thermoelectric semiconductor 14 and has a plate shape as a whole.

図3は本発明に係るエンジン付きポンプ装置の斜視図であり、エンジン付きポンプ装置20は、ベースとなるフレーム21と、このフレーム21に設けられ水22を吸入、吐出すポンプ本体23と、フレーム21に設けられポンプ本体23を駆動させる駆動源としてのエンジン24と、このエンジン24に接続され排気ガスが通過する排気管としてのマフラー25と、この排気管としてのマフラー25の外周面26に設けられ温度差で発電する熱発電素子10と、この熱発電素子10の外面27に沿って螺旋状に設けられポンプ本体23で発生した冷却媒体としての高圧水で熱発電素子10を冷却する冷却部としての冷却配管28と、を備えている。   FIG. 3 is a perspective view of a pump device with an engine according to the present invention. The pump device with an engine 20 includes a frame 21 serving as a base, a pump main body 23 provided on the frame 21 for sucking and discharging water 22, and a frame. 21 provided on the engine 24 as a drive source for driving the pump body 23, a muffler 25 as an exhaust pipe connected to the engine 24 and through which exhaust gas passes, and an outer peripheral surface 26 of the muffler 25 as an exhaust pipe. A thermoelectric generator 10 that generates electric power with a temperature difference, and a cooling unit that is provided spirally along the outer surface 27 of the thermoelectric generator 10 and cools the thermoelectric generator 10 with high-pressure water as a cooling medium generated in the pump body 23 As a cooling pipe 28.

エンジン24の近傍に設けられている、31はエンジン24に供給する燃料を蓄える燃料タンク、32はスロットルボディーカバーである。   Provided in the vicinity of the engine 24, 31 is a fuel tank for storing fuel to be supplied to the engine 24, and 32 is a throttle body cover.

また、ポンプ本体23は、ポンプ本体23の側部にボルト33で固定され水を吸入する吸入口34と、この吸入口34に接続され一端が水22の中に入れられている吸入ホース35と、ポンプ本体23の上部にボルト36で固定され吸入した水を高圧水として吐出す吐出し口37と、この吐出し口37に接続され高圧水を導く吐出しホース38と、を備えている。
なお、吐出し口37には分岐口41が設けられ、この分岐口41に冷却配管28が接続されている。
The pump body 23 includes a suction port 34 that is fixed to a side portion of the pump body 23 with a bolt 33 and sucks water, and a suction hose 35 that is connected to the suction port 34 and that has one end in the water 22. A discharge port 37 that discharges the sucked water fixed as a high-pressure water by a bolt 36 to the upper part of the pump main body 23 and a discharge hose 38 that is connected to the discharge port 37 and guides the high-pressure water is provided.
The discharge port 37 is provided with a branch port 41, and a cooling pipe 28 is connected to the branch port 41.

図4は本発明に係るエンジン付きポンプ装置の平面図であり、エンジン付きポンプ装置20は、駆動源としてのエンジン24の側部にリコイルスタータ42を備えており、このリコイルスタータ42を作業者が操作してエンジン24を始動させる。
熱発電素子10の外面27に、冷却配管28が臨んでいる。この結果、放熱が効率よく行われる。
FIG. 4 is a plan view of a pump device with an engine according to the present invention. The pump device with an engine 20 includes a recoil starter 42 on a side portion of an engine 24 as a drive source. The engine 24 is operated to start.
A cooling pipe 28 faces the outer surface 27 of the thermoelectric generator 10. As a result, heat dissipation is performed efficiently.

図5は図4の5−5線断面図であり、エンジンの排気管としてのマフラー25と、冷却部としての冷却配管28との間に熱発電素子10、10が設けられている。排気管としてのマフラー25の外周面26に高温導体11、11が臨んでいる。冷却部としての冷却配管28に低温導体12、12が臨んでいる。   FIG. 5 is a cross-sectional view taken along line 5-5 of FIG. 4, and the thermoelectric generators 10 and 10 are provided between the muffler 25 as an engine exhaust pipe and the cooling pipe 28 as a cooling unit. The high-temperature conductors 11 and 11 face the outer peripheral surface 26 of the muffler 25 as an exhaust pipe. The low-temperature conductors 12 and 12 face the cooling pipe 28 serving as a cooling unit.

なお、43は固定カバーであり、この固定カバー43で熱発電素子10を排気管としてのマフラー25に固定する。また、固定カバー43を設けることで、熱発電素子10の外面27から効率よく放熱させることができる。   Reference numeral 43 denotes a fixed cover, which fixes the thermoelectric generator 10 to the muffler 25 as an exhaust pipe. Further, by providing the fixed cover 43, it is possible to efficiently dissipate heat from the outer surface 27 of the thermoelectric generator 10.

以上の構成からなるエンジン付きポンプ装置の作用を次に述べる。
図6は排気ガス及び高圧水の流れを示す図である。
(a)はエンジン24から排出される排気ガスの流れを示す図であり、駆動源としてのエンジン24を始動させると、矢印(6)のように、高温の排気ガスが排気管としてのマフラー25に流れ込む。
The operation of the engine-equipped pump device having the above configuration will be described below.
FIG. 6 is a diagram showing the flow of exhaust gas and high-pressure water.
(A) is a figure which shows the flow of the exhaust gas discharged | emitted from the engine 24, and when the engine 24 as a drive source is started, high temperature exhaust gas will be the muffler 25 as an exhaust pipe as shown by the arrow (6). Flow into.

(b)は冷却媒体としての高圧水の流れを示す図であり、矢印(7)に示すように、水が吸入口34からポンプ本体23に流れ込む。ポンプ本体23から吐出し口37に送り出された高圧水の一部は、矢印(8)に示すように、冷却配管28に流れ込む。   (B) is a figure which shows the flow of the high pressure water as a cooling medium, and water flows into the pump main body 23 from the inlet 34 as shown by the arrow (7). A part of the high-pressure water discharged from the pump body 23 to the discharge port 37 flows into the cooling pipe 28 as shown by an arrow (8).

図7は排気管部分での排気ガス及び高圧水の流れを説明する図であり、矢印(9)のように、高温の排気ガスが排気管としてのマフラー25内を流れている。この結果、排気管としてのマフラー25の内部は高温になる。   FIG. 7 is a diagram for explaining the flow of exhaust gas and high-pressure water in the exhaust pipe portion. As indicated by an arrow (9), high-temperature exhaust gas flows through the muffler 25 as an exhaust pipe. As a result, the inside of the muffler 25 as an exhaust pipe becomes high temperature.

一方、冷却媒体としての高圧水は、矢印(10)のように、冷却部としての冷却配管28を流れている。冷却配管28は排気管としてのマフラー25の周囲に巻付けられており、
高圧水は排気管としてのマフラー25の周囲を複数回にわたり回り、矢印(11)のように、外部へ排出される。
On the other hand, the high-pressure water as the cooling medium flows through the cooling pipe 28 as the cooling part as indicated by the arrow (10). The cooling pipe 28 is wound around the muffler 25 as an exhaust pipe,
The high-pressure water travels around the muffler 25 as an exhaust pipe a plurality of times and is discharged to the outside as indicated by an arrow (11).

冷却配管28は排気管としてのマフラー25の周囲に巻付けられているので、熱発電素子10、10の外面27、27を全体的に冷却することができる。また、外部から新しい水を吸入しているので、冷却媒体としての高圧水は低温に維持される。この結果、熱発電素子10の外面27は低温になる。   Since the cooling pipe 28 is wound around the muffler 25 as an exhaust pipe, the outer surfaces 27 and 27 of the thermoelectric generators 10 and 10 can be cooled as a whole. In addition, since new water is sucked from the outside, the high-pressure water as the cooling medium is maintained at a low temperature. As a result, the outer surface 27 of the thermoelectric generator 10 becomes a low temperature.

図8は図7の要部拡大図であり、排気ガスから伝わった熱は、低温側に伝わるため、矢印(12)のように、排気管としてのマフラー25から高温導体11に熱が伝わる。この結果、高温導体11は、高温になる。   FIG. 8 is an enlarged view of the main part of FIG. 7. Since the heat transmitted from the exhaust gas is transmitted to the low temperature side, the heat is transmitted from the muffler 25 as the exhaust pipe to the high temperature conductor 11 as indicated by the arrow (12). As a result, the high temperature conductor 11 becomes high temperature.

一方、低温導体12は、矢印(13)のように、冷却部としての冷却配管28側へ放熱する。この結果、低温導体12は、低温になる。すなわち、熱発電素子10の高温導体11側と、低温導体12側に温度差が生じる。そうすると、図1で説明した基本原理のように、矢印(14)に示す向きに、電流が流れて発電される。   On the other hand, the low temperature conductor 12 radiates heat toward the cooling pipe 28 as a cooling part as indicated by an arrow (13). As a result, the low temperature conductor 12 becomes low temperature. That is, a temperature difference occurs between the high temperature conductor 11 side and the low temperature conductor 12 side of the thermoelectric generator 10. Then, as in the basic principle described with reference to FIG. 1, electric current flows in the direction indicated by the arrow (14) to generate power.

尚、本発明に係るエンジン付きポンプ装置は、実施の形態では水ポンプに適用したが、高圧洗浄機や動力噴霧器にも適用可能であり、一般のポンプをエンジンで駆動させる機械に適用することは差し支えない。
請求項1の冷却部は、ポンプ本体で発生した高圧水を供給する他、外部から水道水などの冷却水を供給してもよい。
また、実施例では高温導体をマフラーに臨ませていたが、排気管の途中であればどこに臨ませてもよい。
The pump device with an engine according to the present invention is applied to a water pump in the embodiment, but can also be applied to a high-pressure washing machine and a power sprayer, and can be applied to a machine that drives a general pump with an engine. There is no problem.
In addition to supplying high-pressure water generated in the pump body, the cooling unit of claim 1 may supply cooling water such as tap water from the outside.
In the embodiment, the high-temperature conductor is exposed to the muffler, but may be exposed anywhere in the middle of the exhaust pipe.

本発明のエンジン付きポンプ装置は、水ポンプに好適である。   The pump device with an engine of the present invention is suitable for a water pump.

本発明に使用する熱発電素子の基本原理を説明する図である。It is a figure explaining the basic principle of the thermoelectric power generation element used for this invention. 本発明に係る熱発電素子の外観を説明する図である。It is a figure explaining the external appearance of the thermoelectric power generation element which concerns on this invention. 本発明に係るエンジン付きポンプ装置の斜視図である。It is a perspective view of the pump apparatus with an engine concerning the present invention. 本発明に係るエンジン付きポンプ装置の平面図である。It is a top view of the pump apparatus with an engine concerning the present invention. 図4の5−5線断面図である。FIG. 5 is a sectional view taken along line 5-5 of FIG. 排気ガス及び高圧水の流れを示す図である。It is a figure which shows the flow of exhaust gas and high pressure water. 排気管部分での排気ガス及び高圧水の流れを説明する図である。It is a figure explaining the flow of the exhaust gas and high pressure water in an exhaust pipe part. 図7の要部拡大図である。It is a principal part enlarged view of FIG. 従来のエンジン付きポンプ装置の基本構成を説明する図である。It is a figure explaining the basic composition of the conventional pump device with an engine.

符号の説明Explanation of symbols

10…熱発電素子(発電機構)、11…高温導体、12…低温導体、20…エンジン付きポンプ装置、23…ポンプ本体、24…エンジン(駆動源)、25…マフラー(排気管)、28…冷却配管(冷却部)。   DESCRIPTION OF SYMBOLS 10 ... Thermoelectric power generation element (power generation mechanism), 11 ... High temperature conductor, 12 ... Low temperature conductor, 20 ... Pump apparatus with an engine, 23 ... Pump main body, 24 ... Engine (drive source), 25 ... Muffler (exhaust pipe), 28 ... Cooling piping (cooling part).

Claims (2)

ポンプ本体に駆動源としてのエンジンを備えているエンジン付きポンプ装置において、
前記エンジンの排気管に、高温導体を臨ませ、冷却部に低温導体を臨ませるようにして、排気管と冷却部との間に、温度差で発電する熱発電素子を備えていることを特徴とするエンジン付きポンプ装置。
In a pump device with an engine having an engine as a drive source in the pump body,
The engine exhaust pipe has a high-temperature conductor facing it and a cooling conductor facing the low-temperature conductor, and is provided with a thermoelectric generator that generates power with a temperature difference between the exhaust pipe and the cooling section. A pump device with an engine.
前記冷却部は、前記ポンプ本体で発生した高圧水を冷却媒体とすることを特徴とする請求項1記載のエンジン付きポンプ装置。   The pump device with an engine according to claim 1, wherein the cooling unit uses high-pressure water generated in the pump body as a cooling medium.
JP2008115708A 2008-04-25 2008-04-25 Pump device with engine Pending JP2009264277A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008115708A JP2009264277A (en) 2008-04-25 2008-04-25 Pump device with engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008115708A JP2009264277A (en) 2008-04-25 2008-04-25 Pump device with engine

Publications (1)

Publication Number Publication Date
JP2009264277A true JP2009264277A (en) 2009-11-12

Family

ID=41390420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008115708A Pending JP2009264277A (en) 2008-04-25 2008-04-25 Pump device with engine

Country Status (1)

Country Link
JP (1) JP2009264277A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6268112A (en) * 1985-09-19 1987-03-28 Isuzu Motors Ltd Heat exchanger for thermal electricity generation
JP2000297699A (en) * 1999-04-16 2000-10-24 Nissan Motor Co Ltd Exhaust heat recovery power generation system for automobile
JP2001149495A (en) * 1999-11-29 2001-06-05 Fuji Heavy Ind Ltd Operation mode control device for fire pump
JP2005344572A (en) * 2004-06-01 2005-12-15 Denso Corp Thermoelectric generator
JP2006097501A (en) * 2004-09-28 2006-04-13 Honda Motor Co Ltd Dry running prevention device of water pump
JP2008035595A (en) * 2006-07-27 2008-02-14 Toyota Motor Corp Thermal power generation equipment and its manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6268112A (en) * 1985-09-19 1987-03-28 Isuzu Motors Ltd Heat exchanger for thermal electricity generation
JP2000297699A (en) * 1999-04-16 2000-10-24 Nissan Motor Co Ltd Exhaust heat recovery power generation system for automobile
JP2001149495A (en) * 1999-11-29 2001-06-05 Fuji Heavy Ind Ltd Operation mode control device for fire pump
JP2005344572A (en) * 2004-06-01 2005-12-15 Denso Corp Thermoelectric generator
JP2006097501A (en) * 2004-09-28 2006-04-13 Honda Motor Co Ltd Dry running prevention device of water pump
JP2008035595A (en) * 2006-07-27 2008-02-14 Toyota Motor Corp Thermal power generation equipment and its manufacturing method

Similar Documents

Publication Publication Date Title
JP5819221B2 (en) Ship fuel supply system
JP2010242700A (en) Power generator of water-cooled engine
JP5118604B2 (en) Engine drive power generator
CN102213128A (en) Internal combustion engine with thermoelectric generator
JP4691981B2 (en) Battery pack
JP2009293390A (en) Gas turbine engine
JP2009264277A (en) Pump device with engine
JP6096562B2 (en) Thermoelectric generator and ship equipped with the same
EP2784409A1 (en) A portable fuel heater to heat air and a method for heating air through said heater
TWI607150B (en) Photothermal source of fluid pumping device driven by self photovoltaic power
JP2009296686A (en) Portable power generator
JP6350297B2 (en) Thermoelectric generator
JP5222627B2 (en) Portable generator
JP2014195378A (en) Thermoelectric generator and marine vessel with the same
KR102199556B1 (en) thermoelectric generator
JP2008088840A (en) Thermal power generation device and thermal power generation method
JP6203947B2 (en) Power plant with gas turbine and hydrogen cooled generator
KR100712958B1 (en) Auxiliary power supply device utilizing thermoelectric generator for a engine
JP2006125321A (en) Exhaust heat recovery device
KR20140086290A (en) Thermoelectric generating unit
JP5108636B2 (en) snowblower
JP5222622B2 (en) Underwater generator
JP2014195377A (en) Thermoelectric generator and marine vessel with the same
JP2017115589A (en) Internal combustion engine
JP2018046594A (en) Portable power generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20101126

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20111124

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20111129

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120410

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120807