JP2009262440A - Metal porous form with independent flow path - Google Patents

Metal porous form with independent flow path Download PDF

Info

Publication number
JP2009262440A
JP2009262440A JP2008115862A JP2008115862A JP2009262440A JP 2009262440 A JP2009262440 A JP 2009262440A JP 2008115862 A JP2008115862 A JP 2008115862A JP 2008115862 A JP2008115862 A JP 2008115862A JP 2009262440 A JP2009262440 A JP 2009262440A
Authority
JP
Japan
Prior art keywords
metal
flow path
porous
metal plates
holes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008115862A
Other languages
Japanese (ja)
Other versions
JP5079586B2 (en
Inventor
Shinya Mikuni
信也 三國
Yoshiya Eda
義弥 枝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Sky Aluminum Corp
Original Assignee
Furukawa Sky Aluminum Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Sky Aluminum Corp filed Critical Furukawa Sky Aluminum Corp
Priority to JP2008115862A priority Critical patent/JP5079586B2/en
Publication of JP2009262440A publication Critical patent/JP2009262440A/en
Application granted granted Critical
Publication of JP5079586B2 publication Critical patent/JP5079586B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laminated Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a porous form which includes a flow path can inhibit the mixing of a fluid such as a coolant and also, a high design freedom of the flow path, and can be easily manufactured inexpensively. <P>SOLUTION: This metal porous form is structured of flat metal sheets or foils, with a plurality of holes running through longitudinally, which are laminated in the height direction. The holes communicate with each other longitudinally and the metal sheet or the foil are laminated without a crosswise gap. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、ヒートシンク、熱交換器、フィルター、触媒担体などに使用される金属多孔体であって、特に、平板状の金属板または箔が積層されることにより形成された金属多孔体に関する。   The present invention relates to a porous metal body used for a heat sink, a heat exchanger, a filter, a catalyst carrier and the like, and particularly relates to a porous metal body formed by laminating flat metal plates or foils.

熱交換器、触媒担体、フィルター等には、反応界面を増加させるために表面積を大きくした多孔体が使用されている。金属、セラミックス等の構造体には、表面積を大きくするために、例えば、内部に空隙が設けられている。熱交換器の場合、この空隙に、冷媒等に使用される気体や液体を通過させて、熱交換効率を向上させている。   For heat exchangers, catalyst carriers, filters, etc., porous bodies having a large surface area are used in order to increase the reaction interface. In order to increase the surface area, for example, a void is provided in the structure such as metal or ceramic. In the case of a heat exchanger, a gas or liquid used for a refrigerant or the like is passed through the gap to improve heat exchange efficiency.

近年、電子デバイスの高速化、小型化に伴って、熱交換器には、高性能化、小型化が要求されており、例えば、連続した冷媒用微細流路を備えた金属製多孔体のヒートシンクが求められている。   In recent years, with the increase in the speed and downsizing of electronic devices, heat exchangers are required to have high performance and downsizing, for example, a metal porous heat sink having a continuous refrigerant microchannel. Is required.

従来の連続した流路を備えた多孔体として、粉末状素材を高温で成形・焼結させたものがある。しかし、この従来例では、空隙の大きさ、形状、方向等の制御が困難であるため、空隙の態様が不規則になりやすく、界面反応や熱交換に寄与しない空隙が生じることがあり、また独立した流路を作るのは困難である。さらに、使用する粉末は微細なことから、閉構造の細い流路が多くなり、このため圧力損失が大きいので、流体を高圧で送り出さなければならない。さらには、目詰りをおこした場合にその賦活処理が困難であり、また、高粘度の流体には不向きであるという問題もある。   As a conventional porous body having a continuous flow path, there is one obtained by molding and sintering a powdery material at a high temperature. However, in this conventional example, since it is difficult to control the size, shape, direction, etc. of the voids, the shape of the voids tends to be irregular, and voids that do not contribute to the interface reaction or heat exchange may occur. It is difficult to make an independent flow path. Furthermore, since the powder to be used is fine, there are many narrow channels with a closed structure, and the pressure loss is large. Therefore, the fluid must be sent out at a high pressure. Further, when clogging occurs, the activation process is difficult, and there is also a problem that it is not suitable for a high-viscosity fluid.

前記従来例の問題を解決する多孔体として、プレス成形によって波形又は凹凸を付けた複数の金属板と、該金属板の山部又は谷部同士を一致させて相互に重ね合わせることにより隣接した金属板の間に設けられた隙間とを備え、該金属板に貫通孔を設けた金属製の多孔体が開示されている(特許文献1)。   As a porous body that solves the problems of the conventional example, a plurality of metal plates that are corrugated or uneven by press molding, and adjacent metal by overlapping each other with the crests or troughs of the metal plates aligned with each other A metal porous body having a gap provided between the plates and having a through hole in the metal plate is disclosed (Patent Document 1).

しかし、この従来例でも、上下方向の流体通路となる貫通孔を設けて流路を均一化させてはいるが、隣接した金属板の間に隙間が設けられているので、上下方向の流路は独立した構成ではなく、流体が混ざり合うという問題がある。また、金属板の間に隙間が開いているので、金属板間の伝熱が悪くヒートシンクには不向きである。さらに、プレス加工が必要なので加工コストが高く、金属板に波形等がつけられているので、流路形状の設定自由度が小さい。   However, even in this conventional example, the through-holes serving as the vertical fluid passages are provided to make the flow paths uniform, but since the gaps are provided between the adjacent metal plates, the vertical flow paths are independent. There is a problem that the fluid is mixed instead of the above configuration. In addition, since there is a gap between the metal plates, heat transfer between the metal plates is poor and unsuitable for a heat sink. Furthermore, since pressing is necessary, the processing cost is high, and the corrugation and the like are attached to the metal plate, so the degree of freedom in setting the flow path shape is small.

また、他の従来例として、前記粉末状素材に代えて、繊維同士を接着や焼結により結合させた多孔体や発泡金属などがある。しかし、これら従来例の何れも、空隙の大きさ、形状、方向等の制御が困難であるため、空隙の態様が不規則になりやすく、界面反応や熱交換に寄与しない空隙が生じ、また独立した流路を作るのは困難である。
特開平8−29088号公報
Further, as other conventional examples, there are a porous body or a foam metal in which fibers are bonded by bonding or sintering instead of the powdery material. However, in any of these conventional examples, it is difficult to control the size, shape, direction, etc. of the voids, so that the shape of the voids is likely to be irregular, and voids that do not contribute to the interfacial reaction or heat exchange occur, and are independent. It is difficult to make a flow path.
JP-A-8-29088

本発明は上記事情に鑑み、冷媒等の流体が混ざり合うのを防止できる流路を備え、流路の設計自由度が高く、安価かつ簡易に製造できる多孔体を提供することを目的とする。   In view of the above circumstances, an object of the present invention is to provide a porous body that includes a flow path that can prevent a fluid such as a refrigerant from being mixed, has a high degree of design freedom of the flow path, and can be manufactured inexpensively and easily.

本発明の第1の態様は、縦方向に貫通した孔部を複数有する平板状の金属板または箔が、高さ方向に積層されて形成された金属多孔体であって、前記孔部が、縦方向にて相互に連通され、前記平板状の金属板または箔が、横方向の隙間を有さずに積み重ねられていることを特徴とする金属多孔体である。つまり、平板状の金属板または箔が積み重ねられて形成された金属多孔体には、その上下方向に貫通した流路が備えられるが、横方向には流路が設けられていないこととなる。なお、「横方向の隙間を有さず」とは、積み重ねられた平板状の金属板または箔の間に、流体の通路となる隙間が形成されていないことを意味する。   A first aspect of the present invention is a metal porous body formed by laminating a flat metal plate or foil having a plurality of holes penetrating in the vertical direction in the height direction, wherein the holes are It is a metal porous body characterized by being communicated with each other in the vertical direction, and the flat metal plates or foils are stacked without having a gap in the horizontal direction. That is, a porous metal body formed by stacking flat metal plates or foils is provided with a flow path penetrating in the vertical direction, but is not provided with a flow path in the lateral direction. “No gap in the horizontal direction” means that no gap serving as a fluid passage is formed between the stacked flat metal plates or foils.

本発明の第2の態様は、前記連通された孔部が非直線状であることを特徴とする金属多孔体である。   According to a second aspect of the present invention, there is provided a porous metal body characterized in that the communicating hole is non-linear.

本発明の第3の態様は、前記積層された平板状の金属板または箔が、相互に接合されていることを特徴とする金属多孔体である。ここで「接合」には、ロウ付け、溶接、拡散接合のように接触面同士を固着させることの他に、接触面同士を当接させた上で、締め具や枠体で固定させることも含む。   According to a third aspect of the present invention, there is provided a porous metal body characterized in that the stacked flat metal plates or foils are bonded to each other. Here, in “joining”, in addition to fixing the contact surfaces like brazing, welding, and diffusion bonding, the contact surfaces can be brought into contact with each other and then fixed with a fastener or a frame. Including.

本発明の第4の態様は、前記積層された平板状の金属板または箔が、その間に断熱材及び/または絶縁材を備えたことを特徴とする金属多孔体である。   According to a fourth aspect of the present invention, there is provided a porous metal body characterized in that the laminated flat metal plate or foil includes a heat insulating material and / or an insulating material therebetween.

第1の態様によれば、上下方向に貫通した流路は備えられているが、横方向には流路がないので、金属多孔体内部においては、流路を通過する流体は他の流路を通過する流体と混合することが防止される。従って、流体の通過経路の設計が容易であり、流路の位置に応じて異なる流体を使用することもできる。また、金属板または箔を積み重ねる際の位置合わせや孔部の形状、大きさを調節することで、使用目的に応じた流路を設定することができる。さらに、金属多孔体に用いる金属板または箔は平板状なので、孔部及び金属板の加工は容易であり、金属多孔体の製造コストを低減できる。さらには、金属多孔体の使用状況に応じて、孔部の大きさ、形状、位置などが相違する金属板または箔を積層させることにより、1つの流路を複数に分岐させたり、複数の流路を1つに集めたりすることができる点でも、流体の通過経路の設計自由度が大きい。   According to the first aspect, the flow path penetrating in the vertical direction is provided, but there is no flow path in the lateral direction. Therefore, in the metal porous body, the fluid passing through the flow path is another flow path. Mixing with the fluid passing through is prevented. Therefore, it is easy to design a fluid passage path, and different fluids can be used depending on the position of the flow path. Moreover, the flow path according to the intended purpose can be set by adjusting the alignment at the time of stacking metal plates or foils, and adjusting the shape and size of the hole. Furthermore, since the metal plate or foil used for a metal porous body is flat form, the process of a hole and a metal plate is easy, and the manufacturing cost of a metal porous body can be reduced. Furthermore, by laminating metal plates or foils having different hole sizes, shapes, positions, etc., depending on the usage situation of the porous metal body, one flow path may be branched into a plurality of flow paths or a plurality of flow paths. The degree of freedom in designing the passage path of the fluid is also great in that the paths can be collected into one.

第2の態様によれば、流路には曲部があるので、流体に乱流を発生させることができ、流体の界面における反応や熱交換を促進できる。また、積層された金属板の位置をずらすことにより、金属多孔体内部の流路形状を任意に選択できるので、金属多孔体の利用範囲を広げることができる。   According to the second aspect, since the channel has a curved portion, it is possible to generate a turbulent flow in the fluid and to promote reaction and heat exchange at the fluid interface. Further, by shifting the position of the stacked metal plates, the flow channel shape inside the metal porous body can be arbitrarily selected, so that the range of use of the metal porous body can be expanded.

第3の態様によれば、積層された金属板または箔は相互に接しているので、金属板または箔間における伝熱効率や通電性に優れている。また、金属多孔体を構成する金属板または箔相互間は固定されているので、金属多孔体の形状や流路形状の変化を防止できる。   According to the 3rd aspect, since the laminated metal plate or foil is mutually contacting, it is excellent in the heat-transfer efficiency and electrical conductivity between metal plates or foil. In addition, since the metal plates or the foils constituting the metal porous body are fixed, it is possible to prevent changes in the shape of the metal porous body and the shape of the flow path.

第4の態様によれば、金属多孔体の金属板または箔間に断熱効果、絶縁効果を与えることができるので、利用範囲を拡大できる。   According to the 4th aspect, since a heat insulation effect and an insulation effect can be given between the metal plates or foil of a metal porous body, a utilization range can be expanded.

次に、本発明の実施形態例に係る金属多孔体について、図面を用いながら説明する。図1の(a)図は実施形態例に係る金属多孔体の斜視図、同(b)図は実施形態例に係る金属多孔体の部分断面図、図2は他の実施形態例に係る金属多孔体の部分断面図、図3は実施形態例に係る金属多孔体を構成する金属板の平面図である。   Next, a porous metal body according to an embodiment of the present invention will be described with reference to the drawings. 1A is a perspective view of a porous metal body according to an embodiment, FIG. 1B is a partial cross-sectional view of the porous metal body according to the embodiment, and FIG. 2 is a metal according to another embodiment. FIG. 3 is a plan view of a metal plate constituting the porous metal body according to the embodiment.

本発明の実施形態例に係る金属多孔体1、11は、図1に示すように、縦方向に貫通した孔部3、13を有する平板状の金属板2、12を積み重ねた構成となっており、後述するように、孔部3、13が連通するように金属板2、12が積まれて使用される。   As shown in FIG. 1, the metal porous bodies 1 and 11 according to the embodiment of the present invention have a configuration in which flat metal plates 2 and 12 having holes 3 and 13 penetrating in the vertical direction are stacked. As will be described later, the metal plates 2 and 12 are stacked and used so that the holes 3 and 13 communicate with each other.

前記金属板2、12は、図1及び図3に示すように、平板の上下方向に貫通した孔部3、13を複数備え、この孔部3、13は平板上に規則的に配置されている。例えば、図1(a)の実施形態例では、孔部13は18個、つまり、ほぼ等間隔で3個並んだ楕円形の孔部13の縦列が、横方向にほぼ等間隔に6列配置されている。ここでは、前記縦列は隔列ごとにずれた態様となっている。一方、図3の実施形態例では、孔部3は48個、つまり、ほぼ等間隔で12個並んだ長方形の孔部3の横列が、縦方向にほぼ等間隔に4列配置されている。ここでは、前記横列は隔列ごとにずれた態様となっている。   As shown in FIGS. 1 and 3, the metal plates 2 and 12 are provided with a plurality of holes 3 and 13 penetrating in the vertical direction of the flat plate, and the holes 3 and 13 are regularly arranged on the flat plate. Yes. For example, in the embodiment shown in FIG. 1 (a), 18 holes 13 are provided, that is, six vertical rows of elliptical holes 13 arranged at almost equal intervals are arranged in six rows at almost equal intervals in the horizontal direction. Has been. Here, the column is shifted for each column. On the other hand, in the embodiment shown in FIG. 3, the number of the holes 3 is 48, that is, four rows of the rectangular holes 3 in which 12 holes are arranged at almost equal intervals are arranged in four rows at almost equal intervals in the vertical direction. Here, the said row | line | column has become the aspect shifted | deviated for every row.

前記金属板2、12の材料は、銅、鉄、ステンレスなど金属であれば特に限定されないが、例えば、重量が軽く加工性に優れる点でアルミニウムが好ましい。また、必要に応じて、例えば、耐食性や耐酸化性を高めるために、プレコート塗装板、表面処理板またはアルマイト板などの表面加工を施した金属板2、12や、触媒を担持させた金属板2、12を使用してもよい。   Although the material of the said metal plates 2 and 12 will not be specifically limited if it is metals, such as copper, iron, and stainless steel, For example, aluminum is preferable at the point which is lightweight and excellent in workability. In addition, if necessary, for example, metal plates 2 and 12 subjected to surface processing such as a pre-coated plate, a surface-treated plate or an alumite plate in order to improve corrosion resistance and oxidation resistance, or a metal plate carrying a catalyst. 2, 12 may be used.

前記金属板2、12及び孔部3、13の寸法は、特に限定されず、使用状況に応じて任意に設定することができるが、例えば、図3に示す実施形態例の金属板2は横7.5mm、縦4.5mm、厚さ0.4mmであり、48個ある孔部3は、おのおの、横0.2mm、縦0.5mmの長方形の貫通孔となっている。これら孔部3は、横方向を0.4mm間隔、縦方向を0.5mm間隔として、金属板2上に規則的に配置されている。図3に示す金属板2を0.2mmずつずらして積み重ね、ロウ付け接合することで、図1(b)に示す断面を有する金属多孔体1が形成される。   The dimensions of the metal plates 2 and 12 and the holes 3 and 13 are not particularly limited, and can be arbitrarily set according to the use situation. For example, the metal plate 2 of the embodiment shown in FIG. It is 7.5 mm, 4.5 mm long and 0.4 mm thick, and the 48 holes 3 are rectangular through holes each having a width of 0.2 mm and a length of 0.5 mm. These holes 3 are regularly arranged on the metal plate 2 with the horizontal direction being 0.4 mm apart and the vertical direction being 0.5 mm apart. The metal plates 2 shown in FIG. 3 are stacked by being shifted by 0.2 mm and brazed to form the porous metal body 1 having the cross section shown in FIG.

平板状の金属板2、12は、上下に隣接している他の金属板2、12とロウ付け接合により固着されているので、流路同士は相互に独立し、流路を通過する流体が他の流路を通過する流体と混合するのが防止される。また、金属板2、12同士がその表面部で接しているので、実施形態例に係る金属多孔体1、11は伝熱効率や通電性に優れている。   Since the flat metal plates 2 and 12 are fixed to the other metal plates 2 and 12 adjacent to each other by brazing, the flow paths are independent from each other, and the fluid passing through the flow paths Mixing with fluid passing through other channels is prevented. Moreover, since the metal plates 2 and 12 are in contact with each other at their surface portions, the metal porous bodies 1 and 11 according to the embodiment are excellent in heat transfer efficiency and electrical conductivity.

上記実施形態例では、金属製の平板を使用するため、前記楕円形または長方形の孔部3、13は、プレス加工、機械加工、エッチング、レーザーなどで高精度、均一、簡易に加工できる。また、金属板2、12をプレス加工にて波型としなくてもよく、また平板状の金属板2、12に孔部3、13を形成すればよいので、金属多孔体1、11の生産コストを抑えることができる。   In the above embodiment, since a metal flat plate is used, the elliptical or rectangular hole portions 3 and 13 can be processed with high precision, uniformity, and simpleness by pressing, machining, etching, laser, or the like. Further, the metal plates 2 and 12 do not have to be corrugated by press working, and the holes 3 and 13 may be formed in the flat metal plates 2 and 12, so that the production of the metal porous bodies 1 and 11 is performed. Cost can be reduced.

図1に示すように、実施形態例に係る金属多孔体1、11は、寸法及び孔部3、13の形態が同一構成である金属板2、12が、複数枚、積み重ねられた構造となっている。つまり、いずれの金属板も、孔部の形状、大きさが同一となるように加工されており、また各金属板に設けられた孔部は同じ数量で同じ配置となっている。実施形態例に係る金属多孔体1、11は、図1(a)では6枚の金属板12が、図1(b)では20枚の金属板2が積み重ねられている。このように、金属多孔体1、11を構成するおのおのの金属板2、12は同一の構成となっているので、金属多孔体1、11を作製する際に金属板2、12の積み重ね順位を検討しなくてもよく、生産効率に優れている。また、流路形状に応じて異なる金属板2、12を用意しておかなくてもよいので、金属板2、12の部品点数を減らすことができる。   As shown in FIG. 1, the porous metal bodies 1 and 11 according to the embodiment have a structure in which a plurality of metal plates 2 and 12 having the same configuration in dimensions and hole portions 3 and 13 are stacked. ing. That is, all the metal plates are processed so that the shape and size of the hole portions are the same, and the hole portions provided in each metal plate are arranged in the same quantity and in the same arrangement. In the metal porous bodies 1 and 11 according to the embodiment, six metal plates 12 are stacked in FIG. 1A and 20 metal plates 2 are stacked in FIG. 1B. Thus, since each metal plate 2 and 12 which comprises the metal porous bodies 1 and 11 has the same structure, when producing the metal porous bodies 1 and 11, the stacking order of the metal plates 2 and 12 is determined. It does not need to be considered and is excellent in production efficiency. Moreover, since it is not necessary to prepare the different metal plates 2 and 12 according to a flow path shape, the number of parts of the metal plates 2 and 12 can be reduced.

図1(a)の実施形態例では、おのおのの金属板12に対応して、金属多孔体11の側面部におのおの凹部と凸部が形成されるように、金属板12を左右に交互にずらした態様で積まれている。従って、この金属板12の配置に対応して、孔部13が連通して形成される流路は、各金属板12の厚さの間隔で段差部を有しつつ交互に左右にずれた細かい曲部を多数有する形状となる。これにより、18個の独立した流路を有する金属多孔体11が形成されるので、金属多孔体11内で流体が混ざり合うのが防止される。また、流路の段差部で流体に乱流を生じさせることができるので、流路壁面と流体との界面における熱交換や触媒反応を促進させることができる。さらに、前記18個の独立した流路は、金属多孔体の上側表面から略垂直方向に伸びているので、金属多孔体11内における流体の通過距離が短く、例えば、金属多孔体11を熱交換器の部品やヒートシンクとして使用する場合、冷媒の通過時間が短く急速冷却できる点で、熱交換効率に優れている。   In the embodiment shown in FIG. 1A, the metal plates 12 are alternately shifted left and right so that the concave portions and the convex portions are formed on the side surface portions of the metal porous body 11 corresponding to the respective metal plates 12. Are stacked in different ways. Therefore, in correspondence with the arrangement of the metal plate 12, the flow path formed by communicating the hole portions 13 has fine steps that are alternately shifted to the left and right while having step portions at intervals of the thickness of each metal plate 12. The shape has a large number of curved portions. Thereby, the metal porous body 11 having 18 independent flow paths is formed, so that the fluid is prevented from being mixed in the metal porous body 11. Moreover, since a turbulent flow can be generated in the step portion of the flow path, heat exchange and catalytic reaction at the interface between the flow path wall surface and the fluid can be promoted. Furthermore, since the 18 independent flow paths extend in a substantially vertical direction from the upper surface of the metal porous body, the passage distance of the fluid in the metal porous body 11 is short, for example, heat exchange of the metal porous body 11 When used as a heat sink component or heat sink, the heat exchange efficiency is excellent in that the passage time of the refrigerant is short and rapid cooling is possible.

一方、図1(b)の実施形態例では、金属多孔体1の側面部に、複数枚の金属板2にて1つの凹部が形成され、前記複数枚の金属板2に隣接する他の複数枚の金属板2にて1つの凸部が形成されるように、金属板2が斜めに0.2mmずつずらされた態様で積まれている。従って、前記金属板2の配置に対応して、孔部3が連通して形成される流路の形状は、前記凹部と凸部の形状に応じた屈曲部を有する階段状となっている。   On the other hand, in the embodiment shown in FIG. 1B, one concave portion is formed by a plurality of metal plates 2 in the side surface portion of the metal porous body 1, and another plurality of adjacent metal plates 2 are adjacent to each other. The metal plates 2 are stacked in such a manner that each metal plate 2 is obliquely shifted by 0.2 mm so that one convex portion is formed on the metal plate 2. Accordingly, the shape of the flow path formed by communicating the hole 3 corresponding to the arrangement of the metal plate 2 is a stepped shape having a bent portion corresponding to the shape of the concave portion and the convex portion.

このように、48個の独立した流路を有する金属多孔体1が形成されるので、金属多孔体1内で流体が混ざり合うのが防止される。また、流路の段差部で流体に乱流を生じさせることができるので、流路壁面と流体との界面における熱交換や触媒反応が促進される。さらに、この流路の形状は、金属多孔体1の表面に対して斜め方向に伸びる階段状となっており、図1(a)の実施形態例と比較して流体が流路壁面と接する面積が大きいので、金属多孔体1を、例えば、触媒担体として使用する場合には優れた反応効率が、フィルターとして使用する場合には優れた浄化効率が得られる。また、熱交換器の部品やヒートシンクとして使用する場合には、均一に冷却でき、熱交換効率が向上する。   Thus, since the metal porous body 1 having 48 independent flow paths is formed, it is possible to prevent fluid from being mixed in the metal porous body 1. Further, since a turbulent flow can be generated in the step portion of the flow path, heat exchange and catalytic reaction at the interface between the flow path wall surface and the fluid are promoted. Further, the shape of the flow path is a stepped shape extending in an oblique direction with respect to the surface of the metal porous body 1, and the area where the fluid contacts the flow path wall surface as compared with the embodiment of FIG. Therefore, when the metal porous body 1 is used as, for example, a catalyst carrier, excellent reaction efficiency is obtained, and when it is used as a filter, excellent purification efficiency is obtained. Moreover, when using as a heat exchanger component or a heat sink, it can cool uniformly and the heat exchange efficiency improves.

このように、本発明の実施形態例に係る金属多孔体1、11は、積層される金属板2、12の位置を調節することにより、その用途、使用条件に応じて、流路形状を任意に選択できる。また、平板状の金属板2、12を積層させることで、金属多孔体1、11が簡易に形成されるので、製造コストを低減できる。   As described above, the metal porous bodies 1 and 11 according to the embodiment of the present invention can have any flow channel shape according to the use and use conditions by adjusting the positions of the metal plates 2 and 12 to be laminated. Can be selected. Moreover, since the metal porous bodies 1 and 11 are simply formed by laminating the flat metal plates 2 and 12, the manufacturing cost can be reduced.

次に、本発明の金属多孔体の使用方法を説明する。図2に示すように、本発明の実施形態例に係る金属多孔体1を冷却装置や電子部品のヒートシンクとして使用する場合には、金属板2の側壁部に放熱フィン4を所定の間隔で複数接合させて使用する。金属多孔体1の流路に注入された流体の熱は各金属板2に伝わり、さらにその熱が各放熱フィン4に伝わって外部に放出されることで、流体が冷却される。このとき、金属板2の有する孔部3の大きさ、配置の選択や金属板2の位置合わせなどすることで、冷却装置や電子部品の使用状況に応じた流路を金属多孔体1に設定できる。従って、本発明の実施形態例に係る金属多孔体1を使用したヒートシンクは、あらゆる状況で高い放熱効率が得られるという利点がある。   Next, the usage method of the metal porous body of this invention is demonstrated. As shown in FIG. 2, when the porous metal body 1 according to the embodiment of the present invention is used as a cooling device or a heat sink for an electronic component, a plurality of radiating fins 4 are provided on the side wall of the metal plate 2 at a predetermined interval. Join and use. The heat of the fluid injected into the flow path of the metal porous body 1 is transmitted to each metal plate 2, and further, the heat is transmitted to each radiation fin 4 and released to the outside, whereby the fluid is cooled. At this time, by selecting the size and arrangement of the holes 3 of the metal plate 2 and aligning the metal plate 2, a flow path corresponding to the usage status of the cooling device and the electronic component is set in the metal porous body 1. it can. Therefore, the heat sink using the porous metal body 1 according to the embodiment of the present invention has an advantage that high heat dissipation efficiency can be obtained in all situations.

本発明の金属多孔体を触媒担体として使用する場合には、小さな孔部を多数設けた金属板を積み重ねるのが好ましい。このとき、金属板の位置合わせは、流路に多くの段差部が形成されるように調節する。流体の流路を多数設け、さらに各流路に多数の段差部を作ることで、金属多孔体の比表面積を大きくできるので、流路内壁における触媒の担持量と流体との接触面積が増大し、さらに、前記段差部により流体に乱流を生じさせることもできることから、触媒による反応効率が向上する。   When the porous metal body of the present invention is used as a catalyst carrier, it is preferable to stack metal plates provided with a large number of small holes. At this time, the alignment of the metal plate is adjusted so that many steps are formed in the flow path. Since the specific surface area of the porous metal body can be increased by providing a large number of fluid flow paths and creating a number of steps in each flow path, the amount of catalyst supported on the inner wall of the flow path and the contact area between the fluid increase. Furthermore, since the turbulent flow can be generated in the fluid by the stepped portion, the reaction efficiency by the catalyst is improved.

同様に、本発明の金属多孔体を熱交換器の部品またはフィルターとして使用する場合にも、小さな孔部を多数設けた金属板を積み重ね、流路に段差部が形成されるように金属板の位置合わせを行う。流体の流路を多数設け、さらに各流路に段差部を作ることで、金属多孔体の比表面積を大きくすることができるので、処理効率が向上する。   Similarly, when the metal porous body of the present invention is used as a heat exchanger component or filter, the metal plates provided with a large number of small holes are stacked so that a stepped portion is formed in the flow path. Perform alignment. Since the specific surface area of the porous metal body can be increased by providing a large number of fluid flow paths and creating step portions in the respective flow paths, the processing efficiency is improved.

次に、本発明の他の実施形態例を説明する。前記実施形態例では、金属板2、12に設けられた孔部3、13の形状は楕円形または長方形であったが、形状は特に限定されず、円形、台形または正方形などでもよい。また、孔部3、13の大きさも流体が流れる限り特に限定されない。図3の実施形態例の孔部3は、横0.2mm、縦0.5mmであったが、流体が高粘度の場合には、さらに大きな孔部にして圧力損失を低減させてもよい。また、図3の実施形態例では、金属板2の板厚は0.4mmであったが、段差部による流体の乱流を防止したい場合には、金属板の板厚を0.4mmよりも薄い金属箔を使用して流路の壁面をなだらかにしてもよく、また、段差部によって、より乱流を発生させたい場合には、金属板の板厚を0.4mmより厚くしてもよい。このように、金属板の板厚、孔部形状を変えることによっても、使用状況に適応した流路を設定することができる。   Next, another embodiment of the present invention will be described. In the embodiment, the shapes of the holes 3 and 13 provided in the metal plates 2 and 12 are elliptical or rectangular. However, the shape is not particularly limited, and may be circular, trapezoidal, square, or the like. Further, the size of the holes 3 and 13 is not particularly limited as long as the fluid flows. The hole 3 in the embodiment shown in FIG. 3 has a width of 0.2 mm and a length of 0.5 mm. However, when the fluid has a high viscosity, the pressure loss may be reduced by using a larger hole. In the embodiment shown in FIG. 3, the thickness of the metal plate 2 is 0.4 mm. However, when it is desired to prevent turbulent fluid flow due to the stepped portion, the thickness of the metal plate is less than 0.4 mm. A thin metal foil may be used to smooth the wall surface of the flow path, and the thickness of the metal plate may be made thicker than 0.4 mm if it is desired to generate more turbulent flow due to the stepped portion. . Thus, the flow path adapted to the use situation can be set also by changing the plate thickness and the hole shape of the metal plate.

前記実施形態例では、流路の形状は、金属多孔体の上側表面から略垂直方向に伸びている細かい曲部を多数有する形状、または斜め方向に伸びている階段状であったが、この代わりに、例えば、連通した孔部からなる流路が、らせん状となるようにまたは上記のような規則的な形状ではなく不規則な形状となるように、金属板を位置合わせしてもよい。これにより、例えば、流路を通過する流体に乱流を生じさせて、触媒反応や熱交換の効率を向上させることができる。さらには、必要に応じて、途中から流路の規則性を変化させてもよい。   In the embodiment, the shape of the flow path is a shape having a large number of fine curved portions extending in a substantially vertical direction from the upper surface of the metal porous body, or a step shape extending in an oblique direction. In addition, for example, the metal plate may be aligned so that the flow path formed of the communicating holes is spiral or has an irregular shape instead of the regular shape as described above. Thereby, for example, turbulent flow can be generated in the fluid passing through the flow path, and the efficiency of the catalytic reaction and heat exchange can be improved. Furthermore, you may change the regularity of a flow path from the middle as needed.

また、前記実施形態例の金属多孔体1、11では、寸法並びに孔部3、13の形状及び配置が同一の金属板2、12を積み重ねる際に所定の位置合わせをすることにより、所定の流路が形成されていたが、この代わりに、孔部の配置があらかじめ所定量ずれている金属板を積み重ねることで、金属板の位置合わせ作業をすることなく、所望の流路を形成させてもよい。また、孔部の大きさ、形状、位置などが相違する金属板を適宜積み重ねることにより、1つの流路を途中から複数に分岐させたり、複数の流路を途中から1つに集めたりすることができる。   Further, in the metal porous bodies 1 and 11 of the above-described embodiment, a predetermined flow is obtained by performing a predetermined alignment when stacking the metal plates 2 and 12 having the same dimensions and shapes and arrangement of the holes 3 and 13. Although the path was formed, instead of stacking metal plates whose holes are shifted by a predetermined amount in advance, it is possible to form a desired channel without performing alignment work of the metal plates. Good. In addition, by stacking metal plates with different hole sizes, shapes, positions, etc. as appropriate, one flow path may be branched into a plurality from the middle, or a plurality of flow paths may be gathered into one from the middle. Can do.

前記実施形態例では、金属板2、12はロウ付け接合で固着されていたが、この代わりに、溶接や拡散接合で固着させてもよい。また、金属板は、固着せずに、締め具で固定したり、フレームなどの枠体に組み込んで固定してもよい。締め具や枠体を用いると、おのおのの金属板は金属多孔体から分離可能となるので、金属多孔体を例えばフィルター等に使用する場合、目詰まりを容易に解消でき、再利用可能となる。   In the above embodiment, the metal plates 2 and 12 are fixed by brazing, but instead, they may be fixed by welding or diffusion bonding. Further, the metal plate may be fixed with a fastener without being fixed, or may be fixed by being incorporated into a frame such as a frame. When a fastener or a frame is used, each metal plate can be separated from the porous metal body. Therefore, when the porous metal body is used for a filter or the like, clogging can be easily eliminated and the metal plate can be reused.

前記実施形態例では、金属板2、12は隣接する金属板と直接接合されていたが、金属板間で熱が伝わるのを防止したい場合には、金属板間に断熱材を挟んでもよく、金属板間を絶縁したい場合には、金属板間に絶縁材を挟んでもよい。   In the embodiment, the metal plates 2 and 12 are directly joined to the adjacent metal plates. However, if it is desired to prevent heat from being transmitted between the metal plates, a heat insulating material may be sandwiched between the metal plates. When it is desired to insulate between the metal plates, an insulating material may be sandwiched between the metal plates.

また、前記実施形態例では、金属多孔体内に形成された流路は相互に独立していたが、流路間を所定位置で横方向に連通させたい場合には、孔部間をつなぐ凹溝または貫通孔が表面の所定部位に設けられた金属板を、所定位置に積み重ねてもよい。   In the above embodiment, the flow paths formed in the metal porous body are independent from each other. However, when it is desired to communicate between the flow paths in a lateral direction at a predetermined position, a concave groove that connects the holes is provided. Alternatively, metal plates provided with through-holes at predetermined sites may be stacked at predetermined positions.

本発明に係る金属製多孔体は、独立した流路を備え、また、その形状を高い自由度で設定することができるので、ヒートシンク、熱交換器、フィルター、触媒担体等の分野で利用価値が高い。   The metal porous body according to the present invention has an independent flow path, and its shape can be set with a high degree of freedom. Therefore, the metal porous body has utility value in fields such as a heat sink, a heat exchanger, a filter, and a catalyst carrier. high.

(a)図は実施形態例に係る金属多孔体の斜視図、同(b)図は実施形態例に係る金属多孔体の部分断面図である。(A) is a perspective view of a porous metal body according to an embodiment, and (b) is a partial cross-sectional view of the porous metal according to the embodiment. 他の実施形態例に係る金属多孔体の部分断面図である。It is a fragmentary sectional view of the metal porous body concerning other embodiments. 実施形態例に係る金属多孔体を構成する金属板の平面図である。It is a top view of the metal plate which comprises the metal porous body which concerns on the example of embodiment.

符号の説明Explanation of symbols

1、11 金属多孔体
2、12 金属板
3、13 孔部
4 放熱フィン
DESCRIPTION OF SYMBOLS 1,11 Metal porous body 2,12 Metal plate 3,13 Hole part 4 Radiation fin

Claims (4)

縦方向に貫通した孔部を複数有する平板状の金属板または箔が、高さ方向に積層されて形成された金属多孔体であって、
前記孔部が、縦方向にて相互に連通され、
前記平板状の金属板または箔が、横方向の隙間を有さずに積み重ねられていることを特徴とする金属多孔体。
A flat metal plate or foil having a plurality of holes penetrating in the vertical direction is a porous metal body formed by laminating in the height direction,
The holes communicate with each other in the longitudinal direction;
The porous metal body, wherein the flat metal plates or foils are stacked without having a gap in the horizontal direction.
前記連通された孔部が、非直線状であることを特徴とする請求項1に記載の金属多孔体。   The porous metal body according to claim 1, wherein the communicating hole is non-linear. 前記積層された平板状の金属板または箔が、相互に接合されていることを特徴とする請求項1に記載の金属多孔体。   The metal porous body according to claim 1, wherein the laminated flat metal plates or foils are bonded to each other. 前記積層された平板状の金属板または箔が、その間に断熱材及び/または絶縁材を備えたことを特徴とする請求項1に記載の金属多孔体。   The porous metal body according to claim 1, wherein the laminated flat metal plate or foil includes a heat insulating material and / or an insulating material therebetween.
JP2008115862A 2008-04-25 2008-04-25 Metal porous body having independent flow path Active JP5079586B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008115862A JP5079586B2 (en) 2008-04-25 2008-04-25 Metal porous body having independent flow path

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008115862A JP5079586B2 (en) 2008-04-25 2008-04-25 Metal porous body having independent flow path

Publications (2)

Publication Number Publication Date
JP2009262440A true JP2009262440A (en) 2009-11-12
JP5079586B2 JP5079586B2 (en) 2012-11-21

Family

ID=41388911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008115862A Active JP5079586B2 (en) 2008-04-25 2008-04-25 Metal porous body having independent flow path

Country Status (1)

Country Link
JP (1) JP5079586B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012193882A (en) * 2011-03-15 2012-10-11 Toshiba Corp Heat exchanger and method of manufacturing the same
CN103191610A (en) * 2013-04-25 2013-07-10 刘平清 Filtering combination network capable of catching PM2.5 fine particles
JP2016085033A (en) * 2016-02-15 2016-05-19 株式会社東芝 Heat exchanger
WO2021020527A1 (en) * 2019-07-30 2021-02-04 幸春 宮村 Method for manufacturing heat-generating element, heat-generating element, and heating unit
CN114747002A (en) * 2019-12-06 2022-07-12 三菱电机株式会社 Heat sink and method for manufacturing heat sink
WO2023079608A1 (en) * 2021-11-04 2023-05-11 三菱電機株式会社 Heat sink and method for manufacturing heat sink

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5882050A (en) 1997-04-15 1999-03-16 Williams; Peter C. Ferrule with relief to reduce galling

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0829088A (en) * 1994-07-11 1996-02-02 Nisshin Steel Co Ltd Perforated element of laminate of press-formed metal plates
JPH08121987A (en) * 1994-10-27 1996-05-17 Aisin Seiki Co Ltd Heat exchanger
JP2003001733A (en) * 2001-06-25 2003-01-08 Dainippon Printing Co Ltd Fine gap built-in body and method for manufacturing it
JP2003083688A (en) * 2001-09-07 2003-03-19 Furukawa Electric Co Ltd:The Plate heat-pipe integrated with fin and its manufacturing method
JP2005055006A (en) * 2003-08-05 2005-03-03 Mitsubishi Heavy Ind Ltd Laminated plate type heat exchanger
JP2007129104A (en) * 2005-11-04 2007-05-24 Furukawa Sky Kk Laminated junction heat sink

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0829088A (en) * 1994-07-11 1996-02-02 Nisshin Steel Co Ltd Perforated element of laminate of press-formed metal plates
JPH08121987A (en) * 1994-10-27 1996-05-17 Aisin Seiki Co Ltd Heat exchanger
JP2003001733A (en) * 2001-06-25 2003-01-08 Dainippon Printing Co Ltd Fine gap built-in body and method for manufacturing it
JP2003083688A (en) * 2001-09-07 2003-03-19 Furukawa Electric Co Ltd:The Plate heat-pipe integrated with fin and its manufacturing method
JP2005055006A (en) * 2003-08-05 2005-03-03 Mitsubishi Heavy Ind Ltd Laminated plate type heat exchanger
JP2007129104A (en) * 2005-11-04 2007-05-24 Furukawa Sky Kk Laminated junction heat sink

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012193882A (en) * 2011-03-15 2012-10-11 Toshiba Corp Heat exchanger and method of manufacturing the same
CN103191610A (en) * 2013-04-25 2013-07-10 刘平清 Filtering combination network capable of catching PM2.5 fine particles
JP2016085033A (en) * 2016-02-15 2016-05-19 株式会社東芝 Heat exchanger
WO2021020527A1 (en) * 2019-07-30 2021-02-04 幸春 宮村 Method for manufacturing heat-generating element, heat-generating element, and heating unit
JPWO2021020527A1 (en) * 2019-07-30 2021-11-18 幸春 宮村 Heating element manufacturing method, heating element and heating unit
JP7029867B2 (en) 2019-07-30 2022-03-04 幸春 宮村 Heating element manufacturing method, heating element and heating unit
CN114747002A (en) * 2019-12-06 2022-07-12 三菱电机株式会社 Heat sink and method for manufacturing heat sink
US12082369B2 (en) 2019-12-06 2024-09-03 Mitsubishi Electric Corporation Heat sink and sink manufacturing method
WO2023079608A1 (en) * 2021-11-04 2023-05-11 三菱電機株式会社 Heat sink and method for manufacturing heat sink

Also Published As

Publication number Publication date
JP5079586B2 (en) 2012-11-21

Similar Documents

Publication Publication Date Title
JP5079586B2 (en) Metal porous body having independent flow path
JP5495843B2 (en) Multipurpose microchannel microcomponent
US9531045B2 (en) Battery cooler
US6729389B2 (en) Heat transfer apparatus with zigzag passage
JP5157681B2 (en) Stacked cooler
US20130058042A1 (en) Laminated heat sinks
JP5342392B2 (en) Cooling system
JP2011071386A5 (en)
JP2010175245A6 (en) Multipurpose microchannel microcomponent
WO2017195254A1 (en) Loop heat pipe, manufacturing method for same, and electronic equipment
JP2009257755A (en) Fluid processing device and method therefor
JP2003008273A (en) Cooler and light source apparatus
JP5944104B2 (en) Heat exchanger
GB2552956A (en) Heat exchanger device
JP4013883B2 (en) Heat exchanger
KR101233346B1 (en) Micro Heat Exchanger Using Clad Metal Bonding and Manufacturing Method Thereof
JP6162836B2 (en) Heat exchanger
JP6479271B1 (en) Plate heat exchanger
JP6548193B2 (en) Fin member, temperature control device and method of manufacturing the same
JP2005106412A (en) Junction-type plate heat exchanger
JP4572911B2 (en) Heat exchanger
US20130056186A1 (en) Heat exchanger produced from laminar elements
JP2012199421A (en) Plate type cooler and manufacturing method of the same
JP6096642B2 (en) Fin for heat exchanger, heat sink using the same, and method for manufacturing fin for heat exchanger
KR102330582B1 (en) Micro-channel Printed Heat Exchanger and manufacturing there of

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100820

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20101025

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20101228

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110421

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110817

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120822

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120829

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5079586

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250