JP6162836B2 - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP6162836B2
JP6162836B2 JP2016026280A JP2016026280A JP6162836B2 JP 6162836 B2 JP6162836 B2 JP 6162836B2 JP 2016026280 A JP2016026280 A JP 2016026280A JP 2016026280 A JP2016026280 A JP 2016026280A JP 6162836 B2 JP6162836 B2 JP 6162836B2
Authority
JP
Japan
Prior art keywords
flow path
thin plate
section
heat exchanger
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2016026280A
Other languages
Japanese (ja)
Other versions
JP2016085033A (en
Inventor
新藤 尊彦
尊彦 新藤
光章 加藤
光章 加藤
高松 伴直
伴直 高松
久野 勝美
勝美 久野
卓也 本郷
卓也 本郷
理 鬼頭
理 鬼頭
松岡 敬
敬 松岡
悟 窪谷
悟 窪谷
原口 智
智 原口
久里 裕二
裕二 久里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2016026280A priority Critical patent/JP6162836B2/en
Publication of JP2016085033A publication Critical patent/JP2016085033A/en
Application granted granted Critical
Publication of JP6162836B2 publication Critical patent/JP6162836B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/08Elements constructed for building-up into stacks, e.g. capable of being taken apart for cleaning
    • F28F3/086Elements constructed for building-up into stacks, e.g. capable of being taken apart for cleaning having one or more openings therein forming tubular heat-exchange passages

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

本発明の実施形態は、温度差のある流体間で熱交換するためのマイクロチャネルを有する熱交換器に関する。 Embodiments of the present invention relates to a heat exchanger having a micro channel for heat exchange between fluids with temperature difference.

近年、半導体素子の高集積化による発熱密度の増大、及び、携帯電話に代表される電子機器の小型化に対応するため、小型で高い熱交換性能を有する放熱機器の開発が求められている。また、地球温暖化防止の観点から、従来排熱として廃棄されていた低温の熱源からも、効率良くエネルギーを回収しようという機運が高まっている。そのために異方性多孔質材料を用いた、特許文献1に示されるマイクロチャネル熱交換器が提案されている。
この熱交換器では、孔径と孔方向をそろえた材料を用いることで、圧力損失を低減し、孔径や流路幅のバラツキ等の制御を可能にしている。また、高温流体と低温流体の流路を近接させて積層し、かつ流体を対向させて流しているので、高い熱交換効率を実現している。
In recent years, in order to cope with an increase in heat generation density due to high integration of semiconductor elements and miniaturization of electronic devices typified by mobile phones, development of heat dissipation devices that are small and have high heat exchange performance is required. In addition, from the viewpoint of preventing global warming, there is a growing momentum for efficiently recovering energy from low-temperature heat sources that have been discarded as waste heat. For this purpose, a microchannel heat exchanger disclosed in Patent Document 1 using an anisotropic porous material has been proposed.
In this heat exchanger, by using a material having the same hole diameter and hole direction, pressure loss is reduced, and variations in hole diameter and flow path width can be controlled. In addition, since the flow paths of the high temperature fluid and the low temperature fluid are stacked close to each other and the fluids are made to face each other, high heat exchange efficiency is realized.

しかしながら、全ての高温流体の流路と低温流体の流路が隣り合う構成は困難であるため、流体と多孔質材料間の熱伝達率が高く、かつ多孔質材料の熱伝導率が低い場合には、フィン孔率が低下してしまうという問題があった。また、封止板を用いて高温・低温流体を分配するため、圧力損失の増加、製造性の低下、及び、コスト増を招いていた。   However, since it is difficult to make all the high-temperature fluid flow paths and low-temperature fluid flow paths adjacent to each other, the heat transfer coefficient between the fluid and the porous material is high, and the heat conductivity of the porous material is low. Has a problem that the fin porosity decreases. Moreover, since the high-temperature and low-temperature fluid is distributed using the sealing plate, the pressure loss is increased, the productivity is lowered, and the cost is increased.

特許文献2に示される積層型流路要素では、流れと直交する方向に流路を積層すると共に、入口から熱交換部分までは高温・低温流路を互いに近づく方向に配置し、また、熱交換部分から出口までは高温・低温流路を互いに離れる方向に配置することで、高温流路と低温流路が流れと垂直な1方向で互いに隣り合う構造を有しており、また、流路分配用の封止板を必要としない構成となっている。   In the laminated flow path element disclosed in Patent Document 2, the flow paths are stacked in a direction orthogonal to the flow, and the high temperature / low temperature flow paths are arranged in a direction approaching each other from the inlet to the heat exchange portion, and heat exchange is performed. From the part to the outlet, the high-temperature and low-temperature channels are arranged in directions away from each other, so that the high-temperature channel and the low-temperature channel are adjacent to each other in one direction perpendicular to the flow. It is the structure which does not require the sealing plate for use.

しかしながら、高温・低温流体は1方向にしか隣接しないことから熱交換性能は制限されると共に、また、入口・出口部分の流路の開口率は50%以下であることから圧力損失の増加は避けられない。   However, the heat exchange performance is limited because the hot and cold fluids are adjacent to each other in only one direction, and the opening ratio of the flow path at the inlet / outlet is less than 50%, so avoid an increase in pressure loss. I can't.

特開2010−216736号公報JP 2010-216736 A 特開2009−30870号公報JP 2009-30870 A 特開2008−147240号公報JP 2008-147240 A

本発明は上記課題を解決するためになされたものであり、高い熱交換性能を有する熱交換器を提供することを目的とする。 The present invention has been made in order to solve the above-described problems, and an object thereof is to provide a heat exchanger having high heat exchange performance.

本発明に係る熱交換器は、複数の孔を有する熱伝導性の薄板を隣接する薄板の孔と孔とが互いに連通するように順次積層していくことにより、積層方向の両端で開口し、積層方向に貫通する複数の流路が形成された薄板積層体を有する熱交換器であって、前記複数の流路は、第1の伝熱媒体が流れる複数の第1の流路からなる第1の流路群と、第2の伝熱媒体が流れる複数の第2の流路からなる第2の流路群とを含み、二次元投影平面視野において前記薄板の孔の相対的な位置および形状の少なくとも一方を、漸次変えて薄板を積層させる構造を含み、前記薄板積層体において少なくとも2つの異なる方向熱移動を生じるように前記第1の流路群に属する第1の流路と前記第2の流路群に属する第2の流路とが少なくとも2つの異なる方向で互いに隣り合って配置され、前記第1の流路群に通流されるために高温領域に存在する前記第1の伝熱媒体が前記薄板積層体に伝熱しうるように前記複数の薄板が相互に熱的に接続され、かつ、前記第2の流通群に通流されるために前記高温領域よりも温度の低い低温領域に存在する前記第2の伝熱媒体が前記薄板積層体に伝熱しうるように前記複数の薄板が相互に熱的に接続されている、ことを特徴とする。 The heat exchanger according to the present invention sequentially opens the heat conductive thin plate having a plurality of holes so that the holes and holes of the adjacent thin plates communicate with each other. A heat exchanger having a thin-plate laminate in which a plurality of flow paths penetrating in the stacking direction are formed, wherein the plurality of flow paths are formed of a plurality of first flow paths through which a first heat transfer medium flows. 1 channel group and a second channel group composed of a plurality of second channels through which the second heat transfer medium flows, and the relative positions of the holes of the thin plate in a two-dimensional projection plane field of view, and at least one of shape, comprises a structure for stacking thin varied gradually, said to produce a heat transfer at least two different directions in a thin plate stack, a first flow passage belonging to the first channel group the second flow path and at least two different people belonging to the second flow path group In are arranged next to each other, said plurality of thin plates each other so that the first heat transfer medium present in the high temperature region can conducts the heat to the thin laminate for flowing through the first flow path group And the second heat transfer medium existing in the low temperature region having a temperature lower than the high temperature region can be transferred to the thin plate laminate in order to be thermally connected to the second flow group. As described above, the plurality of thin plates are thermally connected to each other .

(a)は第1の実施形態に係る熱交換器を模式的に示す内部透視斜視図、(b)〜(k)は(a)の熱交換器の各部位での流路断面を示す断面模式図。(A) is an internal see-through | perspective perspective view which shows the heat exchanger which concerns on 1st Embodiment typically, (b)-(k) is a cross section which shows the flow-path cross section in each site | part of the heat exchanger of (a). Pattern diagram. (a)(b)は熱交換器の製造方法を説明するための図。(A) (b) is a figure for demonstrating the manufacturing method of a heat exchanger. (a)は第1の実施形態に係る熱交換器の変形例を示す内部透視斜視図、(b)〜(k)は(a)の熱交換器の各部位での流路断面を示す断面模式図。(A) is an internal perspective view which shows the modification of the heat exchanger which concerns on 1st Embodiment, (b)-(k) is a cross section which shows the flow-path cross section in each part of the heat exchanger of (a). Pattern diagram. (a)は第2の実施形態に係る熱交換器を模式的に示す内部透視斜視図、(b)〜(m)は(a)の熱交換器の各部位での流路断面を示す断面模式図。(A) is an internal see-through | perspective perspective view which shows the heat exchanger which concerns on 2nd Embodiment typically, (b)-(m) is a cross section which shows the flow-path cross section in each site | part of the heat exchanger of (a). Pattern diagram. 第4の実施形態に係る熱交換器の一部を拡大して示す拡大斜視図。The expansion perspective view which expands and shows a part of heat exchanger concerning a 4th embodiment. (a)は第5の実施形態に係る熱交換器の入口側を模式的に示す斜視図、(b)は流体の流速分布と温度分布を模式的に示す分布図。(A) is a perspective view which shows typically the inlet side of the heat exchanger which concerns on 5th Embodiment, (b) is a distribution map which shows typically the flow velocity distribution and temperature distribution of a fluid. (a)は第6の実施形態に係る熱交換器の入口側を模式的に示す斜視図、(b)は流体の流速分布と温度分布を模式的に示す分布図。(A) is a perspective view which shows typically the inlet side of the heat exchanger which concerns on 6th Embodiment, (b) is a distribution map which shows typically the flow velocity distribution and temperature distribution of a fluid.

本発明の好ましい実施の形態を以下に説明する。   A preferred embodiment of the present invention will be described below.

(1)本実施形態の熱交換器は、複数の孔を有する熱伝導性の薄板を隣接する薄板の孔と孔とが互いに連通するように順次積層していくことにより、積層方向の両端で開口し、積層方向に貫通する複数の流路が形成された薄板積層体を有する熱交換器であって、前記複数の流路は、第1の伝熱媒体が流れる複数の第1の流路からなる第1の流路群と、第2の伝熱媒体が流れる複数の第2の流路からなる第2の流路群とを含み、二次元投影平面視野において前記薄板の孔の相対的な位置および形状の少なくとも一方を変えて薄板を積層させることにより、前記薄板積層体において少なくとも2つの異なる方向に熱移動を生じるように前記第1の流路群に属する第1の流路と前記第2の流路群に属する第2の流路とが互いに隣り合って配置されている。   (1) The heat exchanger according to the present embodiment sequentially stacks the heat conductive thin plates having a plurality of holes so that the holes of the adjacent thin plates communicate with each other. A heat exchanger having a thin plate laminate in which a plurality of flow paths that open and penetrate in the stacking direction are formed, wherein the plurality of flow paths are a plurality of first flow paths through which a first heat transfer medium flows. And a second flow path group consisting of a plurality of second flow paths through which the second heat transfer medium flows, and relative to the holes of the thin plate in a two-dimensional projection plane field of view The first flow path belonging to the first flow path group and the first flow path group so as to cause heat transfer in at least two different directions in the thin plate laminate by laminating the thin plates by changing at least one of the various positions and shapes The second flow paths belonging to the second flow path group are arranged adjacent to each other. That.

本実施形態では、二次元投影平面視野において薄板の孔の相対的な位置を変えて(孔を位置ずれさせて)薄板を積層し、第1の流路と第2の流路とを互いに隣り合わせて近接配置し、薄板積層体において2つの異なる方向に、すなわち一方側からは第1の流路群を通って第1の伝熱媒体を一方向に流し、これに対向する他方側からは第2の流路群を通って第2の伝熱媒体を前記一方向に対向する対向方向に流す(図1、図3)。   In this embodiment, in the two-dimensional projection plane field of view, the thin plate is laminated by changing the relative positions of the holes of the thin plate (by shifting the holes), and the first flow path and the second flow path are adjacent to each other. The first heat transfer medium flows in one direction through the first flow path group from two different directions in the thin plate laminate, that is, from one side, and from the other side opposite to the first heat transfer medium. The second heat transfer medium is passed through the two flow path groups in the opposite direction opposite to the one direction (FIGS. 1 and 3).

また、本実施形態では、二次元投影平面視野において薄板の孔の相対的な形状を変えて(流路の断面形状を変更し、及び/又は流路を分岐させた後に合流させて)薄板を積層し、第1の流路と第2の流路とを互いに隣り合わせて近接配置し、薄板積層体において2つの異なる方向に、すなわち一方側からは第1の流路群を通って第1の伝熱媒体を一方向に流し、これに対向する他方側からは第2の流路群を通って第2の伝熱媒体を前記一方向に対向する対向方向に流す(図4)。   In the present embodiment, the relative shape of the holes in the thin plate is changed in the two-dimensional projection plane view (the cross-sectional shape of the flow path is changed and / or the flow paths are branched and merged). The first flow path and the second flow path are arranged adjacent to each other in close proximity to each other, and in the thin plate laminate, the first flow path passes through the first flow path group from two different directions, that is, from one side. The heat transfer medium is caused to flow in one direction, and the second heat transfer medium is caused to flow in the opposite direction opposite to the one direction from the other side facing the heat transfer medium through the second flow path group (FIG. 4).

上述のように本実施形態では、第1の流路群に属する第1の流路と第2の流路群に属する第2の流路とを互いに隣り合わせて配置しているので、第1の流路と第2の流路とが接近し、第1の流路から第2の流路までの相互間距離が短くなる。その結果、熱交換率が向上し、例えば高温領域のほうから第1の流路群に通流させる第1の伝熱媒体と低温領域のほうから第2の流路群に通流させる第2の伝熱媒体との間で高効率な熱移動が生じ、熱交換率の高い熱交換器となる。   As described above, in the present embodiment, the first flow path belonging to the first flow path group and the second flow path belonging to the second flow path group are arranged adjacent to each other. The channel and the second channel approach each other, and the mutual distance from the first channel to the second channel is shortened. As a result, the heat exchange rate is improved. For example, the first heat transfer medium that flows from the high temperature region to the first flow channel group and the second heat flow medium that flows from the low temperature region to the second flow channel group. High-efficiency heat transfer occurs between the heat transfer medium and a heat exchanger having a high heat exchange rate.

(2)上記(1)において、薄板積層体が、銅、アルミニウム、鉄、ステンレス鋼、チタンおよびチタン合金からなる群のうちから選択される1種または2種以上の金属または合金からなることが好ましい。これらの金属または合金は、熱伝導性が良好であるばかりでなく、拡散接合法などを利用して薄板同士をその融点よりかなり低い温度域で接合して一体化した薄板積層体を作製できるという製造上の利点がある。   (2) In the above (1), the thin plate laminate may be composed of one or more metals or alloys selected from the group consisting of copper, aluminum, iron, stainless steel, titanium and titanium alloys. preferable. These metals or alloys not only have good thermal conductivity, but can also be used to produce thin plate laminates that are integrated by joining thin plates in a temperature range considerably lower than their melting point using diffusion bonding or the like. There are manufacturing advantages.

(3)上記(1)または(2)のいずれか1において、第1の流路群に通流されるために高温領域に存在する第1の伝熱媒体が薄板積層体に伝熱しうるように複数の薄板が相互に熱的に接続され、かつ、第2の流路群に通流されるために高温領域よりも温度の低い低温領域に存在する第2の伝熱媒体が薄板積層体に伝熱しうるように複数の薄板が相互に熱的に接続されていることが好ましい。   (3) In any one of the above (1) or (2), the first heat transfer medium existing in the high temperature region can be transferred to the thin plate laminate in order to be passed through the first flow path group. Since the plurality of thin plates are thermally connected to each other and are passed through the second flow path group, the second heat transfer medium existing in the low temperature region lower in temperature than the high temperature region is transmitted to the thin plate laminate. It is preferable that the plurality of thin plates are thermally connected to each other so that they can be heated.

本実施形態によれば、積層した複数の薄板同士を拡散接合法などを利用して隙間無く密着接合させ、液体-固体間の熱伝導ばかりでなく、固体-固体間の熱伝導性を高めているので、全体としての熱交換率が高い熱交換器が得られる。   According to the present embodiment, a plurality of laminated thin plates are closely bonded together using a diffusion bonding method or the like to improve not only the heat conduction between the liquid and the solid but also the heat conductivity between the solid and the solid. Therefore, a heat exchanger having a high heat exchange rate as a whole can be obtained.

(4)上記(3)において、前記高温領域および前記低温領域の少なくとも一部が複数の孔を有する異形の薄板の積層により形成されると共に、前記薄板の複数の孔により形成される前記複数の流路が前記高温領域と前記低温領域の各々の流入側と流出側を空間的に接続することができる。   (4) In the above (3), at least a part of the high temperature region and the low temperature region is formed by laminating a deformed thin plate having a plurality of holes, and the plurality of the plurality of holes formed by the plurality of holes of the thin plate. A flow path can spatially connect the inflow side and the outflow side of each of the high temperature region and the low temperature region.

本実施形態では、高温領域および低温領域の流入側の各々にマニホールドやヘッダ等を介して第1及び第2の伝熱媒体が供給されると、複数の流路を通って高温領域および低温領域の流出側の各々に到達して薄板積層体から出て行く間に、第1及び第2の伝熱媒体間で有効に熱交換がなされる。   In the present embodiment, when the first and second heat transfer media are supplied to the inflow side of each of the high temperature region and the low temperature region via a manifold, a header, or the like, the high temperature region and the low temperature region pass through the plurality of flow paths. The heat exchange is effectively performed between the first and second heat transfer mediums while reaching each of the outflow sides and exiting the thin plate laminate.

本実施形態によれば、温・冷2流体が熱交換領域で隣接するための空間を、入口・出口部分で空けておく必要が無く、入口以前、及び、出口以降の流路に対して、熱交換器の開口率を大きくとることができる。   According to the present embodiment, it is not necessary to leave a space for adjoining the heat / cold two fluids in the heat exchange region at the inlet / outlet portion, and for the flow path before the inlet and after the outlet, The opening ratio of the heat exchanger can be increased.

(5)上記(1)〜(4)のいずれか1において、前記流路を横切る横断面において、前記高温領域と前記低温領域の境界部分の長さの合計が、前記流路の外周長さの1/2以上とすることができる。   (5) In any one of the above (1) to (4), the total length of the boundary portion between the high temperature region and the low temperature region in the cross section crossing the flow channel is the outer peripheral length of the flow channel. It can be set to 1/2 or more.

本実施形態によれば、高温領域と低温領域の境界部分の長さの合計を流路の外周長さの1/2以上とすることで、伝熱媒体から薄板積層体への熱伝達率を増大させ、熱交換率をさらに向上させることができる。   According to the present embodiment, the total length of the boundary portion between the high temperature region and the low temperature region is ½ or more of the outer peripheral length of the flow path, so that the heat transfer rate from the heat transfer medium to the thin plate laminate can be increased. The heat exchange rate can be further improved.

(6)上記(1)〜(5)のいずれか1において、前記流路の断面の平均周囲長をLとし、平均面積をSとした場合に、式D=4*S/Lで与えられる相当直径Dが10mm以下とすることができる。   (6) In any one of the above (1) to (5), when the average perimeter of the cross section of the flow path is L and the average area is S, the formula D = 4 * S / L. The equivalent diameter D can be 10 mm or less.

本実施形態では、流路の相当直径Dが10mm以下の微細な流路(マイクロチャネル)を有するマイクロチャネル型熱交換器を対象とすることを明らかにしている。このような微細な流路を有するマイクロチャネル型熱交換器では、マイクロチャネル内での流路抵抗が大きくなるので、熱交換器の開口率をできるだけ大きくとり、マイクロチャネルの入口部分および出口部分で生じる圧力損失をできるだけ小さく抑えるようにする必要がある。   In the present embodiment, it is clarified that a microchannel heat exchanger having a fine flow path (microchannel) whose flow path equivalent diameter D is 10 mm or less is targeted. In the microchannel heat exchanger having such a fine flow path, the flow resistance in the microchannel increases, so the opening ratio of the heat exchanger is set as large as possible, and the microchannel inlet and outlet portions are It is necessary to minimize the pressure loss that occurs.

(7)本実施形態の熱交換器の製造方法は、(a)複数の孔を有する先頭のセグメント薄板を作製し、(b)前記先頭のセグメント薄板の複数の孔に1対1に対応する複数の孔を有し、これら複数の孔のうちの少なくとも1つが前記先頭のセグメント薄板の孔の位置に対して二次元投影平面視野において漸次変位した複数の後続のセグメント薄板をさらに順次作製し、(c)前記先頭のセグメント薄板から始めて前記後続のセグメント薄板を順次積み重ねていき、これにより複数のセグメント薄板が積層された薄板積層体アッセンブリを形成し、(d)前記薄板積層体において隣接するセグメント薄板同士を接合手段で接合し、これにより前記薄板積層体アッセンブリを一体化して薄板積層体とし、前記薄板積層体において前記複数のセグメント薄板の孔が三次元に連続し、かつ両端で開口する複数の熱交換流路が形成され、(e)前記複数の熱交換流路を第1の伝熱媒体が流れる第1の流路群に属する第1の流路と第2の伝熱媒体が流れる第2の流路群に属する第2の流路とに区分し、前記薄板積層体において少なくとも2つの異なる方向に熱移動を生じるように前記第1の流路群に属する第1の流路と前記第2の流路群に属する第2の流路とを互いに隣り合わせて配置する。   (7) The manufacturing method of the heat exchanger according to the present embodiment includes (a) producing a leading segment thin plate having a plurality of holes, and (b) one-to-one corresponding to the plurality of holes in the leading segment thin plate. Further sequentially producing a plurality of subsequent segment laminae having a plurality of holes, at least one of the plurality of holes being gradually displaced in the two-dimensional projection plane field of view relative to the position of the hole of the leading segment lamina, (C) Starting from the top segment thin plate, the subsequent segment thin plates are sequentially stacked, thereby forming a thin plate laminate assembly in which a plurality of segment thin plates are laminated, and (d) adjacent segments in the thin plate laminate The thin plates are joined together by a joining means, whereby the thin plate laminate assembly is integrated into a thin plate laminate, and the plurality of segments in the thin plate laminate are combined. A plurality of heat exchange channels that are three-dimensionally continuous and open at both ends; and (e) a first channel through which the first heat transfer medium flows through the plurality of heat exchange channels. A first flow path belonging to the group and a second flow path belonging to the second flow path group through which the second heat transfer medium flows, and heat transfer is generated in at least two different directions in the thin plate laminate. Thus, the first flow path belonging to the first flow path group and the second flow path belonging to the second flow path group are arranged adjacent to each other.

本実施形態によれば、複数の第1の流路と複数の第2の流路とを互いに隣り合わせて配置しているので、第1の流路と第2の流路とが接近し、第1の流路から第2の流路までの相互間距離が短くなる。その結果、熱交換率が向上し、例えば高温領域のほうから第1の流路群に通流させる第1の伝熱媒体と低温領域のほうから第2の流路群に通流させる第2の伝熱媒体との間で高効率な熱移動が生じ、熱交換率の高い熱交換器となる。   According to this embodiment, since the plurality of first flow paths and the plurality of second flow paths are arranged next to each other, the first flow path and the second flow path approach each other, and The mutual distance from the first channel to the second channel is shortened. As a result, the heat exchange rate is improved. For example, the first heat transfer medium that flows from the high temperature region to the first flow channel group and the second heat flow medium that flows from the low temperature region to the second flow channel group. High-efficiency heat transfer occurs between the heat transfer medium and a heat exchanger having a high heat exchange rate.

以下、添付の図面を参照して本発明を実施するために好ましい種々の形態を説明する。   Hereinafter, various preferred embodiments for carrying out the present invention will be described with reference to the accompanying drawings.

(第1の実施形態)
図1を参照して第1の実施形態の熱交換器を説明する。
(First embodiment)
The heat exchanger according to the first embodiment will be described with reference to FIG.

本実施形態の熱交換器1は、熱交換を行う第1及び第2の流路4,5が形成された薄板積層体10と、薄板積層体10の両端面にそれぞれ取り付けられた図示しない複数のマニホールドと、第1の流路4に連通する第1のマニホールドに第1の伝熱媒体を供給する図示しない第1の伝熱媒体供給源と、第2の流路5に連通する第2のマニホールドに第2の伝熱媒体を供給する図示しない第2の伝熱媒体供給源と、を有している。   The heat exchanger 1 of this embodiment includes a thin plate laminate 10 in which first and second flow paths 4 and 5 for heat exchange are formed, and a plurality of unillustrated attachments attached to both end faces of the thin plate laminate 10. , A first heat transfer medium supply source (not shown) that supplies the first heat transfer medium to the first manifold that communicates with the first flow path 4, and a second that communicates with the second flow path 5. And a second heat transfer medium supply source (not shown) for supplying the second heat transfer medium to the manifold.

薄板積層体10は、X軸方向に延び出す直方体からなり、内部に複数の流路4,5が形成されている。これらの流路4,5は、薄板積層体10の長手軸(X軸)にほぼ沿って延び出し、薄板積層体の両端面2,3にて開口する貫通孔であり、図示しない入側マニホールドから供給される第1又は第2の伝熱媒体が通流するようになっている。   The thin laminate 10 is a rectangular parallelepiped extending in the X-axis direction, and a plurality of flow paths 4 and 5 are formed therein. These flow paths 4 and 5 are through-holes that extend substantially along the longitudinal axis (X axis) of the thin plate laminate 10 and open at both end surfaces 2 and 3 of the thin plate laminate, and are not shown. The 1st or 2nd heat-transfer medium supplied from is flowing.

薄板積層体は、本実施形態の直方体以外に円柱、半円柱、長円柱、楕円柱、三角柱、六角柱、八角柱など様々な形状とすることができる。また、薄板積層体の熱交換用流路は、円形状、半円形状、矩形状等の様々な断面形状とすることができる。本実施形態では流路4,5の断面形状を円形状にしている。流路の断面形状が円形状の場合、その直径は1μm以上10mm以下にすることが望ましい。流路の直径が1μm未満の場合は、製作が困難になると共に、圧力損失が顕著に増大してしまう。一方、流路の直径が10mmを超えると、伝熱媒体と接する表面積が不足して、熱交換性能が低下する。   In addition to the rectangular parallelepiped of the present embodiment, the thin plate laminate can be formed in various shapes such as a cylinder, a semi-column, a long cylinder, an elliptical column, a triangular column, a hexagonal column, and an octagonal column. Moreover, the heat exchange channel of the thin plate laminate can have various cross-sectional shapes such as a circular shape, a semicircular shape, and a rectangular shape. In this embodiment, the cross-sectional shape of the flow paths 4 and 5 is circular. When the cross-sectional shape of the channel is circular, the diameter is desirably 1 μm or more and 10 mm or less. When the diameter of the flow path is less than 1 μm, it becomes difficult to manufacture and the pressure loss increases remarkably. On the other hand, when the diameter of the flow path exceeds 10 mm, the surface area in contact with the heat transfer medium is insufficient, and the heat exchange performance is deteriorated.

薄板積層体10の一方側の端面2は、入口面21と出口面22との2つの矩形領域に分割されている。入口面21には9つの第1の流路4が開口している。出口面22には9つの第2の流路5が開口している。入口面21には図示しない第1の入側マニホールドを経由して図示しない第1の伝熱媒体供給源から第1の伝熱媒体が所望の圧力で供給されるようになっている。出口面22からは図示しない第2の出側マニホールドに第1の流路4を流れる第1の伝熱媒体と熱交換した後の第2の伝熱媒体が排出されるようになっている。   The end surface 2 on one side of the thin plate laminate 10 is divided into two rectangular regions of an entrance surface 21 and an exit surface 22. Nine first flow paths 4 are open on the entrance surface 21. Nine second flow paths 5 are open on the outlet surface 22. A first heat transfer medium is supplied to the inlet surface 21 at a desired pressure from a first heat transfer medium supply source (not shown) via a first inlet manifold (not shown). The second heat transfer medium after exchanging heat with the first heat transfer medium flowing through the first flow path 4 is discharged from the outlet face 22 to a second outlet manifold (not shown).

薄板積層体10の他方側の端面3は、出口面31と入口面32との2つの矩形領域に分割されている。入口面32には9つの第2の流路5が開口している。出口面31には9つの第1の流路4が開口している。入口面32には図示しない第2の入側マニホールドを経由して図示しない第2の伝熱媒体供給源から第2の伝熱媒体が所望の圧力で供給されるようになっている。出口面31からは図示しない第1の出側マニホールドに第2の流路5を流れる第2の伝熱媒体と熱交換した後の第1の伝熱媒体が排出されるようになっている。   The end surface 3 on the other side of the thin plate laminate 10 is divided into two rectangular regions of an exit surface 31 and an entrance surface 32. Nine second flow paths 5 are opened in the entrance surface 32. Nine first flow paths 4 are open on the outlet surface 31. The inlet surface 32 is supplied with a second heat transfer medium at a desired pressure from a second heat transfer medium supply source (not shown) via a second inlet manifold (not shown). The first heat transfer medium after exchanging heat with the second heat transfer medium flowing through the second flow path 5 is discharged from the outlet surface 31 to a first outlet manifold (not shown).

次に、薄板積層体の製作に用いる材料を説明する。   Next, materials used for manufacturing the thin plate laminate will be described.

薄板積層体を構成するセグメント薄板の材料には、銅、アルミニウム、鉄、ステンレス鋼、チタンおよびチタン合金からなる群のうちから選択される1種または2種以上の金属または合金を用いることが好ましい。とくに高い熱伝導率が要求される熱交換器では、銅、鉄、アルミニウムおよびこれらの合金を用いることが好ましい。また、熱交換器に耐衝撃性や耐腐食性が要求される場合には、ステンレス鋼やチタン及びチタン合金が好ましい。   It is preferable to use one or more metals or alloys selected from the group consisting of copper, aluminum, iron, stainless steel, titanium, and titanium alloys as the material for the segment thin plates that make up the thin plate laminate. . For heat exchangers that require particularly high thermal conductivity, it is preferable to use copper, iron, aluminum, and alloys thereof. In addition, when the heat exchanger is required to have impact resistance and corrosion resistance, stainless steel, titanium, and a titanium alloy are preferable.

次に、図2を参照して薄板積層体の製作方法を説明する。   Next, a manufacturing method of the thin plate laminate will be described with reference to FIG.

先ず銅の薄板を用いて複数の孔を有する先頭のセグメント薄板m1を作製する。この先頭セグメント薄板m1を基準として、複数の孔のうちの少なくとも1つが先頭セグメント薄板m1の孔の位置に対して二次元投影平面視野において漸次変位した複数枚の後続のセグメント薄板m2,m3,m4〜mnを順次作製する。これらの後続のセグメント薄板m2,m3,m4〜mnは、先頭セグメント薄板m1の複数の孔に1対1に対応する複数の孔を有するものである。   First, a leading segment thin plate m1 having a plurality of holes is prepared using a copper thin plate. With reference to the leading segment thin plate m1, a plurality of subsequent segment thin plates m2, m3, m4 in which at least one of the plurality of holes is gradually displaced in the two-dimensional projection plane view with respect to the position of the hole of the leading segment thin plate m1. .About.mn are sequentially produced. These subsequent segment thin plates m2, m3, m4 to mn have a plurality of holes corresponding one-to-one with the plurality of holes of the leading segment thin plate m1.

孔の形成方法として、特許文献3に記載された方法や、エッチングや、エレクトロフォーミングなどの化学処理プロセスや、ドリルによる切削加工や、プレス加工、放電加工、レーザー加工などの機械加工プロセスが用いられる。ここで、孔は、以下に述べる種々の形状のセグメント薄板m1〜mnのほぼ全ての部位に設けられ、セグメント薄板m1〜mnの位置を正確に合わせて積層することにより、熱交換器としての貫通流路が形成される。積層方法は、拡散接合、ろう付け、接着等の公知の手法を用いることができる。   As a hole forming method, a method described in Patent Document 3, a chemical processing process such as etching or electroforming, a cutting process using a drill, a machining process such as press processing, electric discharge processing, or laser processing is used. . Here, the holes are provided in almost all portions of the segment thin plates m1 to mn of various shapes described below, and the holes are penetrated as heat exchangers by accurately aligning the positions of the segment thin plates m1 to mn. A flow path is formed. As the lamination method, known methods such as diffusion bonding, brazing, and adhesion can be used.

図2の(a)に示すように、先頭のセグメント薄板m1から始めて後続のセグメント薄板m2,m3,m4〜mnを順次積み重ねていき、これにより複数のセグメント薄板が積層された薄板積層体アッセンブリを形成する。セグメント薄板m1〜mnの積み重ねにおいて、温・冷の2流体が流れ方向に対して2方向で隣接するよう、前述の区間とは異なる方向に層間の孔の位置を徐々にずらして積層する。次の区間においては、各層間の孔をずらさず、1方向に揃うように積層するが、これが高温流体と低温流体間の熱交換性能が最も高い区間となる。その次には、流れ方向に垂直に1方向のみで隣接するよう、層間の項の位置を徐々にずらして積層する。その次には、温・冷2流体の各流路がそれぞれ集合するよう、層間の孔の位置を徐々にずらして積層する。   As shown in FIG. 2 (a), starting from the first segment thin plate m1, the subsequent segment thin plates m2, m3, m4 to mn are sequentially stacked, whereby a thin plate laminate assembly in which a plurality of segment thin plates are laminated. Form. In the stacking of the segment thin plates m1 to mn, the positions of the holes between the layers are gradually shifted in a direction different from the above-described section so that the two fluids of warm and cold are adjacent to each other in two directions with respect to the flow direction. In the next section, the layers are stacked so that the holes in each layer are aligned in one direction, but this is the section with the highest heat exchange performance between the high temperature fluid and the low temperature fluid. Next, the positions of the terms between the layers are gradually shifted so as to be adjacent in only one direction perpendicular to the flow direction. Next, the positions of the holes between the layers are gradually shifted so that the flow paths of the two hot and cold fluids are gathered.

このようにして積み重ねた薄板積層体アッセンブリを拡散炉内に装入し、真空または不活性ガス雰囲気下で所定温度域に昇温し、セグメント薄板m1〜mnの相互間を拡散接合する。これにより図2の(b)に示すように、薄板積層体アッセンブリが一体化された薄板積層体10が得られる。得られた薄板積層体10において、複数のセグメント薄板の孔が三次元に連続し、両端面にてそれぞれ開口する複数の流路4,5が形成される。これらの流路は、異なる複数の方向に熱移動を生じるように第1の流路群に属する第1の流路4と第2の流路群に属する第2の流路5とが互いに隣り合っている。   The thin plate laminate assemblies stacked in this way are placed in a diffusion furnace, heated to a predetermined temperature range in a vacuum or an inert gas atmosphere, and diffusion bonded between the segment thin plates m1 to mn. As a result, as shown in FIG. 2B, a thin plate laminate 10 in which the thin plate laminate assembly is integrated is obtained. In the obtained thin plate laminate 10, the holes of the plurality of segment thin plates are three-dimensionally continuous, and a plurality of flow paths 4 and 5 that are open at both end surfaces are formed. In these flow paths, the first flow path 4 belonging to the first flow path group and the second flow path 5 belonging to the second flow path group are adjacent to each other so as to cause heat transfer in different directions. Matching.

次に、図1の(a)と(b)〜(k)を参照して第1及び第2の流路の配置とその相対位置の変化について説明する。   Next, the arrangement of the first and second flow paths and the change in their relative positions will be described with reference to FIGS.

薄板積層体10は、面1b〜1kで区分される5つの異なる流路区間A〜Eを有している。すなわち、鉛直方向ずらし区間A、水平方向ずらし区間B、鉛直・水平隣接区間C、水平方向ずらし区間Dおよび鉛直方向ずらし区間Eの5つである。これらの区間A〜Eでは以下に述べるように流路の配置が漸次変更されていることから、端面1b,1kおよび断面1c〜1jの各々において図1の(b)〜(k)に示すように流路の配置が異なっている。   The thin plate laminate 10 has five different flow path sections A to E divided by the surfaces 1b to 1k. That is, there are five sections: vertical shift section A, horizontal shift section B, vertical / horizontal adjacent section C, horizontal shift section D, and vertical shift section E. In these sections A to E, the arrangement of the flow passages is gradually changed as described below, so that the end faces 1b and 1k and the cross sections 1c to 1j are as shown in FIGS. However, the arrangement of the flow paths is different.

面1bから面1dまでに規定される鉛直方向ずらし区間Aにおいて、先ず端面1bでは、図1の(b)に示すように図中にて上半分の矩形領域である入口面21に9つの第1の流路4が縦3列×横3列の配列状態で開口している。また、図中にて下半分の矩形領域である出口面22に9つの第2の流路5が縦3列×横3列の配列状態で開口している。さらに、縦3列×横3列の第1の流路4のグループと縦3列×横3列の第2の流路5のグループとは相対位置がほぼ半ピッチ分だけY軸方向にシフトしている。   In the vertical direction shifting section A defined from the surface 1b to the surface 1d, first, in the end surface 1b, as shown in FIG. One flow path 4 is opened in an arrangement state of 3 rows × 3 rows. In the drawing, nine second flow paths 5 are opened in an outlet state 22 which is a rectangular area in the lower half in an arrangement state of 3 rows × 3 rows. Furthermore, the relative position of the group of the first flow path 4 of 3 columns × 3 rows and the group of the second flow path 5 of 3 rows × 3 rows is shifted in the Y-axis direction by approximately half a pitch. doing.

断面1cでは、図1の(c)に示すように図中にて上半分の矩形領域(投影領域)にあった第1の流路4のうちの3つが下半分の矩形領域(投影領域)に配置される一方で、図中にて下半分の矩形領域(投影領域)にあった第2の流路5のうちの3つが上半分の矩形領域(投影領域)に配置されている。さらに、9つの第1の流路4のグループが図中にて左半分の領域に偏在する一方で、9つの第2の流路5のグループが図中にて右半分の領域に偏在している。   In the cross section 1c, as shown in FIG. 1C, three of the first flow paths 4 in the upper half rectangular area (projection area) in the figure are the lower half rectangular area (projection area). On the other hand, three of the second flow paths 5 in the lower half rectangular area (projection area) in the drawing are arranged in the upper half rectangular area (projection area). Furthermore, nine groups of the first flow paths 4 are unevenly distributed in the left half area in the figure, while nine groups of the second flow paths 5 are unevenly distributed in the right half area in the figure. Yes.

断面1dでは、図1の(d)に示すように図中にて中央から上下対称に9つの第1の流路4のグループが配置される一方で、図中にて中央から上下対称に9つの第2の流路5のグループが配置される。9つの第1の流路4のグループと9つの第2の流路5のグループとは水平方向(Y方向)のみ隣接して配置される。但し、第1及び第2の流路4,5を合わせたグループ全体としては縦6列×横3列の配置となっている。   In the cross section 1d, as shown in FIG. 1 (d), nine groups of the first flow paths 4 are arranged symmetrically from the center in the figure, while 9 groups vertically symmetrical from the center in the figure. A group of two second flow paths 5 is arranged. The group of nine first flow paths 4 and the group of nine second flow paths 5 are arranged adjacent to each other only in the horizontal direction (Y direction). However, the entire group including the first and second flow paths 4 and 5 is arranged in 6 rows × 3 rows.

面1dから面1fまでに規定される水平方向ずらし区間Bにおいて、図1の(d)(e)(f)に示すように、縦6列×横3列の流路4,5のうちの上段列と下段列とを水平方向(−Y方向)に、中段列を逆の水平方向(+Y方向)にそれぞれ位置ずれさせている。   In the horizontal direction shifting section B defined from the surface 1d to the surface 1f, as shown in (d), (e), and (f) of FIG. The upper row and the lower row are displaced in the horizontal direction (−Y direction), and the middle row is displaced in the opposite horizontal direction (+ Y direction).

面1fから面1gまでに規定される鉛直・水平隣接区間Cにおいて、図1の(g)に示すように、9つの第1の流路4のグループと9つの第2の流路5のグループとは鉛直方向(Z方向)で隣接して配置されるとともに、水平方向(Y方向)でも隣接して配置されている。   In the vertical / horizontal adjacent section C defined from the surface 1f to the surface 1g, as shown in FIG. 1 (g), a group of nine first flow paths 4 and a group of nine second flow paths 5 Are arranged adjacent to each other in the vertical direction (Z direction) and also arranged adjacent to each other in the horizontal direction (Y direction).

面1gから面1iまでに規定される水平方向ずらし区間Dにおいて、図1の(g)(h)に示すように、縦6列×横3列の流路4,5のうちの上段列と下段列とを水平方向(−Y方向)に、中段列を逆の水平方向(+Y方向)にそれぞれ位置ずれさせている。これにより、図1の(i)に示すように、水平方向(Y軸方向)に位置ずれなく、第1及び第2の流路4,5を合わせたグループ全体としては縦6列×横3列に整列された配置となっている。   In the horizontal direction shifting section D defined from the surface 1g to the surface 1i, as shown in (g) and (h) of FIG. The lower row is displaced in the horizontal direction (−Y direction), and the middle row is displaced in the opposite horizontal direction (+ Y direction). As a result, as shown in FIG. 1 (i), the entire group including the first and second flow paths 4 and 5 without any positional deviation in the horizontal direction (Y-axis direction) is 6 rows × 3 horizontal. Arranged in rows.

面1iから面1kまでに規定される鉛直方向ずらし区間Eにおいて、図1の(j)に示すように全体として上述した図1の(c)と同じ配置になり、この配置を経て端面3では図1の(k)に示すように全体として上述した図1の(b)と同じ配置に戻る。   In the vertical direction shifting section E defined from the surface 1i to the surface 1k, as shown in FIG. 1 (j), the overall arrangement is the same as in FIG. 1 (c) described above. As shown in FIG. 1 (k), the arrangement returns to the same arrangement as that of FIG. 1 (b) described above.

上述のように、熱交換器の入口部分で分割されている温・冷2つの流体の複数の流路4,5は、任意方向の貫通流路を介して流れと垂直方向に2方向以上で隣接する。両流体の流通方向は、自由に選択することが可能であるが、熱交換性能を上げるためには、一般的には図のような向流型が望ましい。なお、温・冷各流体の径や流路数は異なっていてもよい。   As described above, the flow paths 4 and 5 of the two hot and cold fluids divided at the inlet portion of the heat exchanger have two or more directions perpendicular to the flow through the through flow paths in arbitrary directions. Adjacent. The flow direction of both fluids can be freely selected, but in order to improve the heat exchange performance, a counterflow type as shown in the figure is generally desirable. Note that the diameter and the number of flow paths of the hot and cold fluids may be different.

本実施形態の作用と効果を説明する。   The operation and effect of this embodiment will be described.

本実施形態においては、二次元投影平面視野において薄板の孔の相対的な位置を変えて(孔を位置ずれさせて)薄板を積層し、第1の流路と第2の流路とを互いに隣り合わせて近接配置し、薄板積層体において2つの異なる方向に、すなわち一方側からは第1の流路群を通って第1の伝熱媒体を一方向に流し、これに対向する他方側からは第2の流路群を通って第2の伝熱媒体を一方向に対向する対向方向に流す。   In this embodiment, in the two-dimensional projection plane field of view, the relative positions of the holes of the thin plate are changed (the holes are displaced), and the thin plates are stacked, and the first flow path and the second flow path are mutually connected. Adjacent to each other, the first heat transfer medium flows in one direction through the first flow path group from two sides in the thin plate laminate, that is, from one side, and from the other side opposite to the first heat transfer medium. The second heat transfer medium is passed through the second flow path group in a facing direction opposite to the one direction.

本実施形態では、第1の流路群に属する第1の流路と第2の流路群に属する第2の流路とを互いに隣り合わせて配置しているので、第1の流路と第2の流路とが接近し、第1の流路から第2の流路までの相互間距離が短くなる。このため、熱交換率が向上し、例えば高温領域のほうから第1の流路群に通流させる第1の伝熱媒体と低温領域のほうから第2の流路群に通流させる第2の伝熱媒体との間で高効率な熱移動が生じ、熱交換率が向上する。   In the present embodiment, since the first flow path belonging to the first flow path group and the second flow path belonging to the second flow path group are arranged adjacent to each other, the first flow path and the first flow path The two flow paths approach each other, and the mutual distance from the first flow path to the second flow path becomes shorter. For this reason, the heat exchange rate is improved, for example, the first heat transfer medium that flows from the high temperature region to the first flow channel group and the second heat flow that flows from the low temperature region to the second flow channel group. High-efficiency heat transfer occurs between the heat transfer medium and the heat exchange rate.

本実施形態によれば、1方向のみに温・冷流体が接する場合と比べて、流体・固体間の熱伝達率が高く、固体の熱抵抗が大きく、流れ方向に垂直な流路断面の大きさと比較して流路間の距離が短い場合に熱交換性能の向上が見込まれる。例えば、2方向で高温・低温流体が隣接する場合には、1方向のみの場合と比較して、伝熱面積が最大2倍になるため、熱交換量も最大2倍になる。   According to this embodiment, the heat transfer coefficient between the fluid and the solid is high, the thermal resistance of the solid is large, and the size of the channel cross section perpendicular to the flow direction is larger than when the hot / cold fluid contacts only in one direction. If the distance between the flow paths is shorter than that, the heat exchange performance is expected to be improved. For example, when high-temperature and low-temperature fluids are adjacent to each other in two directions, the heat transfer area is doubled at a maximum as compared with the case of only one direction, so the heat exchange amount is also doubled at maximum.

(第2の実施形態)
次に図3を参照して第2の実施形態の熱交換器を説明する。なお、本実施形態が上記の実施形態と重複する部分の説明は省略する。
(Second Embodiment)
Next, the heat exchanger of 2nd Embodiment is demonstrated with reference to FIG. In addition, description of the part which this embodiment overlaps with said embodiment is abbreviate | omitted.

本実施形態の熱交換器1Aでは、薄板積層体10Aにおける第1及び第2の流路4,5の断面形状を矩形にしている。   In 1 A of heat exchangers of this embodiment, the cross-sectional shape of the 1st and 2nd flow paths 4 and 5 in the thin-plate laminated body 10A is made into the rectangle.

本実施形態によれば、流路4,5の断面形状を矩形にすることにより、上記実施形態の断面形状が円形の流路よりも伝熱媒体との接触面積が増加するので、さらに熱交換効率が向上する。   According to this embodiment, since the cross-sectional shape of the flow paths 4 and 5 is rectangular, the contact area with the heat transfer medium is increased as compared with the flow path having a circular cross-sectional shape in the above-described embodiment. Efficiency is improved.

また、本実施形態では、薄板積層体10Aの材質をチタンにしている。   In the present embodiment, the material of the thin plate laminate 10A is titanium.

本実施形態によれば、薄板積層体をチタンで作製することにより、上記実施形態の銅で作製した薄板積層体と比べて耐食性が向上し、メンテナンスコストが抑えられ、熱交換器の寿命が延長されることが期待できる。   According to the present embodiment, by producing the thin plate laminate with titanium, the corrosion resistance is improved as compared with the thin plate laminate produced with copper of the above embodiment, the maintenance cost is suppressed, and the life of the heat exchanger is extended. Can be expected.

(第3の実施形態)
次に図4を参照して第3の実施形態の熱交換器を説明する。なお、本実施形態が上記の実施形態と重複する部分の説明は省略する。
(Third embodiment)
Next, a heat exchanger according to a third embodiment will be described with reference to FIG. In addition, description of the part which this embodiment overlaps with said embodiment is abbreviate | omitted.

本実施形態の熱交換器1Bでは、薄板積層体10Bにおける第1及び第2の流路4,5の断面形状を一部の区間で変えている。図4の(a)と(b)〜(m)を参照して第1及び第2の流路4,5の配置とその断面形状の変化について説明する。   In the heat exchanger 1B of the present embodiment, the cross-sectional shapes of the first and second flow paths 4 and 5 in the thin plate laminate 10B are changed in some sections. The arrangement of the first and second flow paths 4 and 5 and the change in the cross-sectional shape thereof will be described with reference to FIGS.

薄板積層体10Bは、面1b〜1mで区分される5つの異なる流路区間A〜Eを有している。すなわち、流路断面変形区間A、水平方向ずらし区間B、鉛直・水平隣接区間C、水平方向ずらし区間Dおよび流路断面変形区間Eの5つである。これらの区間A〜Eでは以下に述べるように流路の断面形状が漸次変更されていることから、端面1b,1mおよび断面1c〜1lの各々において図4の(b)〜(k)に示すように流路の配置が異なっている。   The thin plate laminate 10B has five different flow path sections A to E divided by the surfaces 1b to 1m. That is, there are five sections: a flow path cross section deformation section A, a horizontal shift section B, a vertical / horizontal adjacent section C, a horizontal shift section D, and a flow path cross section deformation section E. In these sections A to E, since the cross-sectional shape of the flow path is gradually changed as described below, the end faces 1b and 1m and the cross sections 1c to 1l are respectively shown in FIGS. 4B to 4K. Thus, the arrangement of the flow paths is different.

面1bから面1eまで規定される流路断面変形区間Aにおいて、図4の(b),(c)に示すように流路の断面形状が矩形状から細長い三角形状に、図4の(c),(d)に示すように細長い三角形状から幅狭の長方形状に、図4の(d),(e)に示すように幅狭の長方形状から小正方形状にそれぞれ流路の断面形状が変わっている。   In the flow passage cross section deformation section A defined from the surface 1b to the surface 1e, the cross sectional shape of the flow passage is changed from a rectangular shape to an elongated triangular shape as shown in FIGS. 4B and 4C. ) And (d), the cross-sectional shape of the flow path from a long and narrow triangular shape to a narrow rectangular shape, and from a narrow rectangular shape to a small square shape as shown in FIGS. 4 (d) and (e), respectively. Has changed.

区間Aの最初の区間1b〜1cでは、図4の(b),(c)に示すように上段3つの矩形状流路4と下段3つの矩形状流路5との2段×3列の配置と形状から、3つの細長の逆三角形状流路4と3つの細長の三角形状流路5とが互い違いに横並びに並ぶ配置と形状に変わっている。より詳しくは、逆三角形状流路4の頂部が2つの三角形状流路5の間に入り込むとともに、三角形状流路5の頂部が2つの逆三角形状流路4の間に入り込み、全体として三角形状の流路が横並びとなる配置と形状に変わっている。   In the first sections 1b to 1c of section A, as shown in FIGS. 4B and 4C, two stages × 3 rows of three upper rectangular channels 4 and three lower rectangular channels 5 are arranged. From the arrangement and shape, the three elongated inverted triangular channels 4 and the three elongated triangular channels 5 are alternately arranged and arranged side by side. More specifically, the top of the inverted triangular channel 4 enters between the two triangular channels 5, and the top of the triangular channel 5 enters between the two inverted triangular channels 4, so that the triangle as a whole. The shape of the flow path is changed to a side-by-side arrangement and shape.

区間Aの次の区間1c〜1dでは、図4の(c),(d)に示すように6つの三角形状流路が横並びとなる配置と形状から、6つの幅狭の長方形状流路が横並びとなる配置と形状に変わっている。より詳しくは、3つの幅狭の長方形状流路4と3つの幅狭の長方形状流路5とが交互に横並びに配置されている。   In the next sections 1c to 1d of section A, as shown in FIGS. 4 (c) and 4 (d), six triangular channels are arranged from the side-by-side arrangement and shape. The layout and shape are changed side by side. More specifically, three narrow rectangular channels 4 and three narrow rectangular channels 5 are alternately arranged side by side.

区間Aのさらに次の区間1d〜1eでは、図4の(d),(e)に示すように幅狭の長方形状流路4,5の横6列の配置と形状から、小正方形状流路4,5の縦横6列ずつの配置と形状に変わっている。   In the sections 1d to 1e following the section A, the small square flow is obtained from the arrangement and shape of the six horizontal rows of the narrow rectangular channels 4 and 5 as shown in FIGS. 4 (d) and 4 (e). The arrangement and shape of the roads 4 and 5 are changed to 6 rows and 6 rows.

面1eから面1gまで規定される水平方向ずらし区間Bにおいて、図4の(e),(f),(g)に示すように縦横6列ずつの小正方形状流路4,5のうちの1段目、3段目、5段目がそれぞれ図中にて水平方向の左側に、2段目、4段目、6段目がそれぞれ図中にて水平方向の右側に位置がずれている(Y方向のシフト)。   In the horizontal direction shifting section B defined from the surface 1e to the surface 1g, as shown in FIGS. 4E, 4F, and 4G, the small square-shaped flow paths 4 and 5 are arranged in 6 columns vertically and horizontally, respectively. The first, third, and fifth stages are shifted to the left in the horizontal direction in the figure, and the second, fourth, and sixth stages are shifted to the right in the horizontal direction in the figure. (Shift in Y direction).

面1gから面1hまで規定される鉛直・水平隣接区間Cにおいて、図4の(h)に示すように、縦横6列ずつの小正方形状の流路4と流路5とが隣接して配置されている。   In the vertical / horizontal adjacent section C defined from the surface 1g to the surface 1h, as shown in FIG. 4 (h), the small square channel 4 and the channel 5 are arranged adjacent to each other in six columns in length and width. Has been.

面1gから面1iまでに規定される水平方向ずらし区間Dにおいて、上記区間Bと同様に、縦横6列ずつの小正方形状流路4,5のうちの1段目、3段目、5段目がそれぞれ図中にて水平方向の右側に、2段目、4段目、6段目がそれぞれ図中にて水平方向の左側に位置がずれている(Y方向のシフト)。   In the horizontal direction shifting section D defined from the surface 1g to the surface 1i, like the section B, the first stage, the third stage, the fifth stage of the small square-shaped channels 4 and 5 each having six columns in the vertical and horizontal directions. The positions of the eyes are shifted to the right in the horizontal direction in the drawing, and the positions of the second, fourth, and sixth steps are shifted to the left in the horizontal direction in the drawing (shift in the Y direction).

面1jから面1mまで規定される流路断面変形区間Eにおいて、上記区間Aと同様に、図4の(j),(k),(l),(m)に示すように小正方形状→長方形状→三角形状→矩形状に形状が変わるとともに、縦横6列ずつ→横6列→上段3列下段3列のように配置も変わる。   In the channel cross section deformation section E defined from the surface 1j to the surface 1m, as in the section A, the small square shape as shown in (j), (k), (l), and (m) in FIG. The shape changes from a rectangular shape to a triangular shape to a rectangular shape, and the arrangement changes in the order of 6 rows in the vertical direction, 6 rows in the horizontal direction, 3 rows in the upper row, and 3 rows in the lower row.

本実施形態の作用と効果を説明する。   The operation and effect of this embodiment will be described.

本実施形態においては、二次元投影平面視野において薄板の孔の相対的な形状を変えて(流路の断面形状を変更し、及び/又は流路を分岐させた後に合流させて)薄板を積層し、第1の流路と第2の流路とを互いに隣り合わせて近接配置し、薄板積層体において2つの異なる方向に、すなわち一方側からは第1の流路群を通って第1の伝熱媒体を一方向に流し、これに対向する他方側からは第2の流路群を通って第2の伝熱媒体を前記一方向に対向する対向方向に流す。   In the present embodiment, the thin plate is laminated by changing the relative shape of the holes of the thin plate in the two-dimensional projection plane field of view (changing the cross-sectional shape of the flow path and / or merging after branching the flow path). The first flow path and the second flow path are arranged adjacent to each other and adjacent to each other, and in the thin plate laminate, the first transmission path passes through the first flow path group from two different directions, that is, from one side. The heat medium is caused to flow in one direction, and the second heat transfer medium is caused to flow in the opposite direction opposite to the one direction through the second flow path group from the other side opposite to the heat medium.

本実施形態では、異種の流体が混合領域で隣接するための空間を、入口・出口部分で空けておく必要が無く、入口以前、及び、出口以降の流路に対して、熱交換器の開口率を大きくとることができ、入口・出口部分での圧力損失の増加を防ぐと同時に、装置全体を小型化することができる。また、高温流体と低温流体が混合部分手前でそれぞれ互いに2方向以上で隣り合う構造を有することにより、混合に至るまでの距離を短くすることができる。   In this embodiment, it is not necessary to leave a space for adjoining different kinds of fluids in the mixing region at the inlet / outlet portions, and the opening of the heat exchanger is open to the flow path before the inlet and after the outlet. The rate can be increased, and an increase in pressure loss at the inlet / outlet portions can be prevented, and at the same time, the entire apparatus can be miniaturized. In addition, since the high-temperature fluid and the low-temperature fluid have structures that are adjacent to each other in two or more directions before the mixing portion, the distance until mixing can be shortened.

(第4の実施形態)
次に図5を参照して第4の実施形態の熱交換器を説明する。なお、本実施形態が上記の実施形態と重複する部分の説明は省略する。
(Fourth embodiment)
Next, a heat exchanger according to a fourth embodiment will be described with reference to FIG. In addition, description of the part which this embodiment overlaps with said embodiment is abbreviate | omitted.

本実施形態の熱交換器1Cでは、薄板積層体の流路4,5の適所に矩形開口7を持つリブ6を取り付けて、流路4,5の径D1を部分的に小径D2に狭くしている。なお、径D1とD2との比率は、圧力損失などのプロセス条件に応じて決めることができる。   In the heat exchanger 1C of the present embodiment, a rib 6 having a rectangular opening 7 is attached to an appropriate position of the flow paths 4 and 5 of the thin plate laminate, and the diameter D1 of the flow paths 4 and 5 is partially narrowed to a small diameter D2. ing. The ratio between the diameters D1 and D2 can be determined according to process conditions such as pressure loss.

本実施形態によれば、隣り合う積層間で孔の径や形状を変更することで任意のリブ付き流路を容易に形成させることが可能である。特に、図5に示す2次元的な凹凸であれば、積層する薄型部材の孔の径を突起部の部分のみ縮小させるだけで作製することが可能である。   According to this embodiment, it is possible to easily form an arbitrary ribbed flow path by changing the diameter and shape of the holes between the adjacent stacked layers. In particular, the two-dimensional unevenness shown in FIG. 5 can be produced by reducing the diameter of the hole of the thin member to be laminated only at the protruding portion.

ちなみに、流れ方向に垂直に流路を積層する方法では、リブ6を形成する場合に各層に三次元的な加工を施す必要があるが、本実施形態では隣り合うセグメント薄板間で孔の径や形状を変更することでリブ付き流路を容易に作製することができる。   Incidentally, in the method of laminating the channels perpendicular to the flow direction, it is necessary to perform three-dimensional processing on each layer when the rib 6 is formed. In this embodiment, the diameter of the hole between adjacent segment thin plates By changing the shape, it is possible to easily produce a flow path with ribs.

(第5の実施形態)
次に図6を参照して第5の実施形態の熱交換器を説明する。なお、本実施形態が上記の実施形態と重複する部分の説明は省略する。
(Fifth embodiment)
Next, the heat exchanger of 5th Embodiment is demonstrated with reference to FIG. In addition, description of the part which this embodiment overlaps with said embodiment is abbreviate | omitted.

本実施形態の熱交換器1dでは、流路の適所に口径調整リブ6a,6b,6cを取り付け、開口率分布を調整している。口径調整リブ6a,6b,6cの取り付け位置として、例えば伝熱媒体の入口側において薄板積層体の端面2(又は3)が適している。   In the heat exchanger 1d of the present embodiment, the aperture adjustment ribs 6a, 6b, 6c are attached at appropriate positions in the flow path to adjust the aperture ratio distribution. For example, the end face 2 (or 3) of the thin plate laminate is suitable as the attachment position of the diameter adjusting ribs 6a, 6b, 6c on the inlet side of the heat transfer medium.

本実施形態の作用を説明する。   The operation of this embodiment will be described.

図6の(b)に示すように、流速・温度分布曲線P1において、熱交換器の中央部の流速ベクトル8が周縁部の流速ベクトル9よりも大きくなる。このため、中央部の温度が周縁部よりも高くなりやすく、熱が中央部に蓄積されやすい。熱交換器入口部分の流速・温度に分布がある場合、熱交換器内部の各流路の流量・温度が不均一となり、圧力損失の増加、熱交換性能の低下が引き起こされる。   As shown in FIG. 6B, in the flow velocity / temperature distribution curve P1, the flow velocity vector 8 at the center of the heat exchanger is larger than the flow velocity vector 9 at the peripheral portion. For this reason, the temperature of the central portion is likely to be higher than that of the peripheral portion, and heat is likely to be accumulated in the central portion. When the flow velocity and temperature at the inlet portion of the heat exchanger are distributed, the flow rate and temperature of each flow path inside the heat exchanger are not uniform, causing an increase in pressure loss and a decrease in heat exchange performance.

しかし、本実施形態では、口径調整リブ6a,6b,6cの取り付けにより、リブ6a,6b,6cにより狭められた流路(縮径流路)7,7a,7b,7cから入口部分で想定される流速・温度分布に対応して入口付近の層の孔径に分布を付けることで、各流路を流れる流量・温度のバラツキを抑えることができる。   However, in this embodiment, it is assumed at the entrance portion from the flow paths (reduced diameter flow paths) 7, 7 a, 7 b, 7 c narrowed by the ribs 6 a, 6 b, 6 c by attaching the diameter adjustment ribs 6 a, 6 b, 6 c. By distributing the pore diameter of the layer in the vicinity of the inlet corresponding to the flow velocity / temperature distribution, variations in the flow rate / temperature flowing through each flow path can be suppressed.

(第6の実施形態)
次に図7を参照して第6の実施形態の熱交換器を説明する。なお、本実施形態が上記の実施形態と重複する部分の説明は省略する。
(Sixth embodiment)
Next, a heat exchanger according to a sixth embodiment will be described with reference to FIG. In addition, description of the part which this embodiment overlaps with said embodiment is abbreviate | omitted.

微細な流路を有するマイクロチャネル型熱交換器では、マイクロチャネル内での流路抵抗が大きくなるので、熱交換器の開口率をできるだけ大きくとり、マイクロチャネルの入口部分および出口部分で生じる圧力損失をできるだけ小さく抑えるようにする必要がある。   In a microchannel heat exchanger having a fine flow path, the flow resistance in the microchannel increases, so the opening ratio of the heat exchanger is set as large as possible, and pressure loss occurs at the inlet and outlet portions of the microchannel. Must be kept as small as possible.

本実施形態の熱交換器1Eでは、流路の適所に流路長調整リブ61,62を取り付け、一部の流路の長さを延長するようにしている。すなわち、端面2,3に第1の流路長調整リブ61をそれぞれ取り付け、ほぼ中央に位置する流路71の長さを周辺の他の流路4,5よりも長くしている。さらに、端面2,3に第2の流路長調整リブ62をそれぞれ取り付け、中央に位置する流路72の長さを周辺の他の流路71よりもさらに長くしている。   In the heat exchanger 1E of the present embodiment, the flow path length adjusting ribs 61 and 62 are attached to appropriate positions of the flow path so as to extend the length of some of the flow paths. That is, the first flow path length adjusting ribs 61 are attached to the end faces 2 and 3, respectively, so that the length of the flow path 71 located substantially in the center is longer than the other peripheral flow paths 4 and 5. Further, the second flow path length adjusting ribs 62 are respectively attached to the end faces 2 and 3 so that the length of the flow path 72 located in the center is longer than the other flow paths 71 in the vicinity.

本実施形態の作用を説明する。   The operation of this embodiment will be described.

図7の(b)に示すように、流速・温度分布曲線P2において、熱交換バンドル中央部の流速ベクトル8が周縁部の流速ベクトル9よりも大きくなる。このため、中央部の温度が周縁部よりも高くなりやすく、熱が中央部に蓄積されやすい。熱交換器入口部分の流速・温度に分布がある場合、熱交換器内部の各流路の流量・温度が不均一となり、圧力損失の増加、熱交換性能の低下が引き起こされる。   As shown in FIG. 7B, in the flow velocity / temperature distribution curve P2, the flow velocity vector 8 at the center of the heat exchange bundle is larger than the flow velocity vector 9 at the peripheral portion. For this reason, the temperature of the central portion is likely to be higher than that of the peripheral portion, and heat is likely to be accumulated in the central portion. When the flow velocity and temperature at the inlet portion of the heat exchanger are distributed, the flow rate and temperature of each flow path inside the heat exchanger are not uniform, causing an increase in pressure loss and a decrease in heat exchange performance.

しかし、本実施形態では、端面2,3に第1の流路長調整リブ61をそれぞれ取り付け、ほぼ中央に位置する流路71の長さを周辺の他の流路4,5よりも長くし、さらに、端面2,3に第2の流路長調整リブ62をそれぞれ取り付け、中央に位置する流路72の長さを周辺の他の流路71よりもさらに長くしているので、各流路を流れる流量・温度のバラツキを抑えることができる。   However, in the present embodiment, the first flow path length adjusting ribs 61 are respectively attached to the end faces 2 and 3 so that the length of the flow path 71 located substantially in the center is longer than the other flow paths 4 and 5 in the vicinity. Further, the second flow path length adjusting ribs 62 are respectively attached to the end faces 2 and 3, and the length of the flow path 72 located in the center is made longer than the other flow paths 71 in the vicinity. Variations in flow rate and temperature flowing through the road can be suppressed.

本発明の熱交換器は、動作中に発熱して昇温する各種の機器や装置を冷却するための冷却器に用いることができる。とくに小型・薄型の電子機器類を冷却するためのマイクロチャネルを備えた冷却器として本発明の熱交換器を様々な分野で幅広く利用できる可能性がある。   The heat exchanger of the present invention can be used as a cooler for cooling various devices and apparatuses that generate heat during operation and raise the temperature. In particular, the heat exchanger of the present invention may be widely used in various fields as a cooler having microchannels for cooling small and thin electronic devices.

また、本発明の熱交換器は、各種の機器や装置から排出される排熱を有効利用することが可能であり、排熱利用の効率化を図ることができる。   Moreover, the heat exchanger of the present invention can effectively use exhaust heat exhausted from various devices and apparatuses, and can improve the efficiency of exhaust heat utilization.

さらに、本発明の熱交換器は、バイオマスなどの新エネルギー利用技術の高性能化に利用することも可能である。   Furthermore, the heat exchanger of the present invention can also be used for improving the performance of new energy utilization technologies such as biomass.

1,1A,1B,1C,1D,1E…熱交換器、
1b,1c,1d,1e,1f,1g,1h,1i,1j,1k,1l,1m…面、
A,B,C,D,E…区間、
10,10A,10B…薄板積層体、
2,3…端面、21,32…入口面、22,31…出口面、
4…第1の流路、5…第2の流路、
6,6a,6b,6c…口径調整リブ、
7,7a,7b,7c…リブで狭められた縮径流路、
61,62…流路長調整リブ、
71,72…リブで延長された延長流路、
P1,P2…流速・温度分布曲線、
m1,m2〜mm〜mn…セグメント薄板。
1, 1A, 1B, 1C, 1D, 1E ... heat exchanger,
1b, 1c, 1d, 1e, 1f, 1g, 1h, 1i, 1j, 1k, 1l, 1m ... surface,
A, B, C, D, E ... section,
10, 10A, 10B ... thin plate laminate,
2, 3 ... end face, 21, 32 ... inlet face, 22, 31 ... outlet face,
4 ... 1st flow path, 5 ... 2nd flow path,
6, 6a, 6b, 6c ... caliber rib,
7, 7 a, 7 b, 7 c...
61, 62 ... flow path length adjusting ribs,
71, 72 ... an extended flow path extended by ribs,
P1, P2 ... Flow velocity / temperature distribution curve,
m1, m2-mm-mn ... Segment thin plate.

Claims (9)

複数の孔を有する熱伝導性の薄板を隣接する薄板の孔と孔とが互いに連通するように順次積層していくことにより、積層方向の両端で開口し、積層方向に貫通する複数の流路が形成された薄板積層体を有する熱交換器であって、
前記複数の流路は、第1の伝熱媒体が流れる複数の第1の流路からなる第1の流路群と、第2の伝熱媒体が流れる第2の流路からなる第2の流路群とを含み、
二次元投影平面視野において前記薄板の孔の相対的な位置および形状の少なくとも一方を、漸次変えて薄板を積層させる構造を含み、前記薄板積層体において少なくとも2つの異なる方向熱移動を生じるように前記第1の流路群に属する第1の流路と前記第2の流路群に属する第2の流路とが少なくとも2つの異なる方向で互いに隣り合って配置され、
前記第1の流路群に通流されるために高温領域に存在する前記第1の伝熱媒体が前記薄板積層体に伝熱しうるように前記複数の薄板が相互に熱的に接続され、かつ、前記第2の流通群に通流されるために前記高温領域よりも温度の低い低温領域に存在する前記第2の伝熱媒体が前記薄板積層体に伝熱しうるように前記複数の薄板が相互に熱的に接続されている、ことを特徴とする熱交換器。
A plurality of flow paths that open at both ends in the laminating direction and penetrate in the laminating direction by sequentially laminating heat conductive thin plates having a plurality of holes so that the holes and holes of adjacent thin plates communicate with each other A heat exchanger having a thin plate laminate in which is formed,
The plurality of flow paths include a first flow path group including a plurality of first flow paths through which the first heat transfer medium flows, and a second flow path including a second flow path through which the second heat transfer medium flows. Including a channel group,
The at least one of relative position and shape of the holes of the sheet in a two-dimensional projection plane field includes structure for stacking thin varied gradually so as to produce a heat transfer at least two different directions in the sheet stack the a first first belonging to the flow channel groups of the channel and the second channel belonging to the second flow path groups are arranged next to one another in at least two different directions,
The plurality of thin plates are thermally connected to each other such that the first heat transfer medium existing in a high temperature region to be passed through the first flow path group can transfer heat to the thin plate laminate; and The plurality of thin plates are mutually connected so that the second heat transfer medium existing in a low temperature region lower in temperature than the high temperature region can be transferred to the thin plate laminate in order to flow through the second distribution group. A heat exchanger characterized in that it is thermally connected to .
前記薄板積層体は、直方体、円柱、半円柱、長円柱、楕円柱、三角柱、八角柱等の任意の多角形状を有することを特徴とする請求項1記載の熱交換器。 The thin laminate, rectangular, cylindrical, semi-cylindrical, long cylinder, elliptic cylinder, a triangular prism, and having any polygonal shape such as octagonal prism, the heat exchanger according to claim 1. 前記薄板積層体の流路の断面形状は、矩形、三角形、円形、半円等の任意の多角形状を有することを特徴とする請求項1に記載の熱交換器。 The cross-sectional shape of the flow path of the sheet stack, characterized in that it has a rectangular, triangular, circular, any polygonal shape such as a semicircle, the heat exchanger according to claim 1. 前記薄板積層体は、二次元投影平面視野において、前記薄板の孔の相対的な位置を漸次ずらす区間1と、前記薄板の孔の相対的な位置を前記区間1と垂直方向に漸次ずらす区間2と、前記第1の流路と前記第2の流路とが少なくとも2つの異なる方向で隣接する区間3と、を有することを特徴とする請求項1に記載の熱交換器。 In the two-dimensional projection plane field of view, the thin plate laminate has a section 1 in which the relative positions of the holes in the thin plate are gradually shifted, and a section 2 in which the relative positions of the holes in the thin plate are gradually shifted in the vertical direction from the section 1. When the heat exchanger according to claim 1, wherein the first flow path and the second flow path and having a section 3 which is adjacent in at least two different directions, the. 前記薄板積層体は、二次元投影平面視野において、前記薄板の孔の相対的な位置を漸次ずらす区間1と、前記薄板の孔の相対的な位置を前記区間1と垂直方向に漸次ずらす区間2と、前記第1の流路と前記第2の流路とが少なくとも2つの異なる方向で隣接する区間3と、前記薄板の孔の相対的な位置を漸次ずらす区間4と、前記薄板の孔の相対的な位置を前記区間4と垂直方向に漸次ずらす区間5と、を有することを特徴とする請求項1に記載の熱交換器。 In the two-dimensional projection plane field of view, the thin plate laminate has a section 1 in which the relative positions of the holes in the thin plate are gradually shifted, and a section 2 in which the relative positions of the holes in the thin plate are gradually shifted in the vertical direction from the section 1. A section 3 in which the first flow path and the second flow path are adjacent in at least two different directions, a section 4 for gradually shifting the relative positions of the holes of the thin plate, and a hole of the thin plate the heat exchanger according to claim 1, characterized in that it comprises a section 5 for shifting gradually the relative position in the vertical direction and the section 4, the. 前記薄板積層体は、二次元投影平面視野において、前記薄板の孔の形状を漸次変形する区間1と、
前記第1の流路と前記第2の流路とが少なくとも2つの異なる方向で隣接する区間2と、を有することを特徴とする請求項1に記載の熱交換器。
In the two-dimensional projection plane field of view, the thin plate laminate is a section 1 that gradually deforms the shape of the holes of the thin plate,
2. The heat exchanger according to claim 1, wherein the first flow path and the second flow path have a section 2 adjacent in at least two different directions .
前記薄板積層体は、二次元投影平面視野において、前記薄板の孔の形状を漸次変形する区間1と、前記第1の流路と前記第2の流路とが少なくとも2つの異なる方向で隣接する区間2と、前記薄板の孔の形状を漸次変形する区間3と、を有することを特徴とする請求項1に記載の熱交換器 In the thin plate laminate, in the two-dimensional projection plane view, the section 1 that gradually deforms the shape of the hole of the thin plate, and the first flow path and the second flow path are adjacent to each other in at least two different directions. The heat exchanger according to claim 1 , comprising a section 2 and a section 3 that gradually deforms the shape of the hole of the thin plate . 前記流路の端部に口径調整リブを取り付け、開口率分布を調整していることを特徴とする、請求項1に記載の熱交換器。The heat exchanger according to claim 1, wherein an aperture adjustment rib is attached to an end of the flow path to adjust an aperture ratio distribution. 前記流路の端部に流路長調整リブを取り付け、流路長分布を調整していることを特徴とする、請求項1に記載の熱交換器。The heat exchanger according to claim 1, wherein a flow path length adjusting rib is attached to an end of the flow path to adjust a flow path length distribution.
JP2016026280A 2016-02-15 2016-02-15 Heat exchanger Expired - Fee Related JP6162836B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016026280A JP6162836B2 (en) 2016-02-15 2016-02-15 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016026280A JP6162836B2 (en) 2016-02-15 2016-02-15 Heat exchanger

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2011057129A Division JP5944104B2 (en) 2011-03-15 2011-03-15 Heat exchanger

Publications (2)

Publication Number Publication Date
JP2016085033A JP2016085033A (en) 2016-05-19
JP6162836B2 true JP6162836B2 (en) 2017-07-12

Family

ID=55972009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016026280A Expired - Fee Related JP6162836B2 (en) 2016-02-15 2016-02-15 Heat exchanger

Country Status (1)

Country Link
JP (1) JP6162836B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7093800B2 (en) * 2020-02-10 2022-06-30 ダイキン工業株式会社 Heat exchanger and heat pump system with it
JP7391804B2 (en) 2020-09-15 2023-12-05 株式会社東芝 Fluid controller and fluid mixer

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL80122C (en) * 1948-07-24
FR2455721A1 (en) * 1979-05-02 1980-11-28 Inst Francais Du Petrole COMPACT HEAT EXCHANGER
JPS5790592A (en) * 1980-11-21 1982-06-05 Mitsubishi Alum Co Ltd Laminating type heat exchanger element and laminated body thereof
FR2500610B1 (en) * 1981-02-25 1986-05-02 Inst Francais Du Petrole PERFORATED PLATE HEAT EXCHANGER
JPS6099990A (en) * 1983-11-07 1985-06-03 Toshiba Corp Layered type heat exchanger
JP3764703B2 (en) * 2002-06-21 2006-04-12 三菱重工業株式会社 Heat exchanger
JP4909725B2 (en) * 2006-12-06 2012-04-04 株式会社東芝 Heat exchanger
JP5079586B2 (en) * 2008-04-25 2012-11-21 古河スカイ株式会社 Metal porous body having independent flow path
DE102008029096B4 (en) * 2008-06-20 2010-04-15 Voith Patent Gmbh Evaporator for a waste heat recovery system

Also Published As

Publication number Publication date
JP2016085033A (en) 2016-05-19

Similar Documents

Publication Publication Date Title
JP5944104B2 (en) Heat exchanger
TWI803460B (en) Converging split-flow microchannel evaporator and method of evaporatively cooling surface
US8474516B2 (en) Heat exchanger having winding micro-channels
US20110226448A1 (en) Heat exchanger having winding channels
KR100991113B1 (en) Micro-channel heat exchanger
WO2017195254A1 (en) Loop heat pipe, manufacturing method for same, and electronic equipment
JP2017180856A (en) Heat exchanger
US20220282931A1 (en) Heat exchanger device
WO2013032664A2 (en) Laminated heat sinks
GB2552956A (en) Heat exchanger device
TWI835709B (en) Laminated microchannel heat exchangers
JP7568304B2 (en) Heat transport device and method for manufacturing same
US20080190594A1 (en) Heat Exchanger Device for Rapid Heating or Cooling of Fluids
US20180045469A1 (en) Heat exchanger device
JPWO2019043802A1 (en) Heat exchanger
JP6162836B2 (en) Heat exchanger
JP4681528B2 (en) Heat exchanger header structure
JP5079586B2 (en) Metal porous body having independent flow path
JP2005282951A (en) Heat exchanger having integrated laminate structure
KR20120044793A (en) Micro heat exchanger using clad metal bonding and manufacturing method thereof
JP2010117126A (en) Heat exchanger having integrated stacking structure
JP2003279283A (en) Heat exchanger and method of manufacture
RU2584081C1 (en) Micro channel heat exchanger
JP2005326068A (en) Plate for heat exchanger and heat exchanger
KR102330582B1 (en) Micro-channel Printed Heat Exchanger and manufacturing there of

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160315

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170615

R151 Written notification of patent or utility model registration

Ref document number: 6162836

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees