JP2009262239A - Grinder for plate form object and plate thickness calculating method - Google Patents

Grinder for plate form object and plate thickness calculating method Download PDF

Info

Publication number
JP2009262239A
JP2009262239A JP2008111134A JP2008111134A JP2009262239A JP 2009262239 A JP2009262239 A JP 2009262239A JP 2008111134 A JP2008111134 A JP 2008111134A JP 2008111134 A JP2008111134 A JP 2008111134A JP 2009262239 A JP2009262239 A JP 2009262239A
Authority
JP
Japan
Prior art keywords
plate
distance
measuring means
distance measuring
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008111134A
Other languages
Japanese (ja)
Other versions
JP5165450B2 (en
Inventor
Makoto Kobayashi
真 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Disco Corp
Original Assignee
Disco Abrasive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Disco Abrasive Systems Ltd filed Critical Disco Abrasive Systems Ltd
Priority to JP2008111134A priority Critical patent/JP5165450B2/en
Publication of JP2009262239A publication Critical patent/JP2009262239A/en
Application granted granted Critical
Publication of JP5165450B2 publication Critical patent/JP5165450B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a grinder that senses, on the grinder, the thickness of a wafer immediately after it is ground. <P>SOLUTION: The grinder is equipped with a chuck table having a holding surface for a plate form object, a grinding means to grind the plate held by the chuck table, and a plate transporting means fitted with a transporting pad to suck fast the work ground on the chuck table and having a suction surface with a smaller diameter than the work, characterized by that the arrangement further includes a first non-contact distance measuring means installed over the pad on the transport path for the pad holding the work and measuring the distance to the plate oversurface, a second non-contact distance measuring means installed under the pad on the transport path for the pad in such a manner as confronting the first measuring means and measuring the distance to the plate undersurface, and a memory means to store the distance to the plate oversurface obtained by the first measuring means and the distance to the plate undersurface obtained by the second measuring means. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、半導体ウエーハ等の板状物を研削する研削装置及び該研削装置を使用した板状物の厚み算出方法に関する。   The present invention relates to a grinding apparatus for grinding a plate-like object such as a semiconductor wafer and a method for calculating the thickness of the plate-like object using the grinding apparatus.

IC,LSI等のデバイスが複数形成された半導体ウエーハやガラス基板、サファイア基板等の板状物は、裏面が研削されて所望の厚みに形成された後、ダイシング装置等の切削装置により個々のデバイスに分割され、パソコン、携帯電話等の各種電子機器に広く利用される。   A plate-like object such as a semiconductor wafer, a glass substrate, or a sapphire substrate on which a plurality of devices such as IC and LSI are formed is ground to the desired thickness and then the individual device is cut by a cutting device such as a dicing device. And is widely used in various electronic devices such as personal computers and mobile phones.

板状物の研削には、板状物をチャックテーブルに吸引吸着して回転させ、チャックテーブルに対峙した研削砥石を回転させながら研削送りして、回転している板状物の被研削面に押し付ける形式の研削装置が用いられている。このような研削装置では、加工中の板状物の厚みを接触式の厚み測定ゲージで常時検出することで板状物を所望の厚みまで研削する。   For grinding a plate-like object, the plate-like object is sucked and adsorbed to the chuck table and rotated, and the grinding wheel facing the chuck table is rotated and fed to the grinding surface of the rotating plate-like object. A grinding apparatus of a pressing type is used. In such a grinding apparatus, the plate-like object is ground to a desired thickness by constantly detecting the thickness of the plate-like object being processed with a contact-type thickness measuring gauge.

一方、研削終了時には、接触式の厚み測定ゲージが研削加工中板状物に当接することで板状物に生じる接触痕や傷等を除去するために、厚み測定ゲージを板状物から退避させた状態で研削砥石の研削送りを停止し、その停止位置で研削砥石の回転を所定時間継続させる、所謂「スパークアウト」を実施する。   On the other hand, at the end of grinding, the thickness gauge is retracted from the plate to remove contact marks and scratches on the plate due to the contact thickness gauge contacting the plate during grinding. In this state, grinding feed of the grinding wheel is stopped, and so-called “spark out” is performed in which the rotation of the grinding wheel is continued for a predetermined time at the stop position.

研削砥石はスパークアウト実施後に板状物から退避させられる。このようなスパークアウトは、板状物を最低一回転させて被研削面を平坦にすると共に、板状物の研削歪を除去するためにも必要とされている。
特開2006−21264号公報
The grinding wheel is retracted from the plate-like object after the spark-out is performed. Such a spark-out is required to flatten the surface to be ground by rotating the plate-like material at least once and to remove grinding distortion of the plate-like material.
JP 2006-21264 A

従来の研削方法では、アプリケーション毎にテスト研削を行い、スパークアウトでどの程度研削されるかを算出した後、スパークアウトでの研削量と仕上げ厚みとを加味して、スパークアウトタイミングを設定しており、スパークアウト後の板状物の正確な厚みを検出しているわけではない。   In the conventional grinding method, test grinding is performed for each application, and how much is ground by spark-out is calculated, and then the spark-out timing is set by taking into account the grinding amount and finish thickness at spark-out. Therefore, the exact thickness of the plate-like object after the spark-out is not detected.

このように、スパークアウト中の研削量は検出されないため、その後の工程で加工後のウエーハ厚みが必要な場合には、別途研削済みのウエーハ厚みを測定する必要があった。   Thus, since the grinding amount during spark-out is not detected, it is necessary to measure the thickness of a separately ground wafer when the wafer thickness after processing is required in the subsequent steps.

特に、半導体ウエーハをシリコンインゴットから切り出し、研削した後、エッチングすることで半導体ウエーハを製造するウエーハ製造工程では、エッチングレートを管理するために、研削後の各ウエーハ厚みを測定する必要がある。   In particular, in a wafer manufacturing process in which a semiconductor wafer is manufactured by cutting a semiconductor wafer from a silicon ingot, grinding and then etching, it is necessary to measure each wafer thickness after grinding in order to manage the etching rate.

本発明はこのような点に鑑みてなされたものであり、その目的とするところは、研削装置上で研削直後の板状物の厚みを検出することのできる研削装置及び該研削装置を使用した板状物厚み測定方法を提供することである。   The present invention has been made in view of such points, and the object of the present invention is to use a grinding apparatus capable of detecting the thickness of a plate-like object immediately after grinding on the grinding apparatus and the grinding apparatus. It is to provide a plate-like thickness measuring method.

請求項1記載の発明によると、板状物を保持する保持面を有するチャックテーブルと、該チャックテーブルに保持された板状物を研削する研削手段と、該チャックテーブル上で研削された被加工物を吸引保持し、被加工物に比べて小径の吸着面を有する搬送パッドを備えた板状物搬送手段とを具備した研削装置において、板状物を保持した該搬送パッドの搬送経路上の該搬送パッド上方側に配設され、板状物上面までの距離を測定する第一非接触式距離測定手段と、該第一非接触式距離測定手段に対峙して該搬送パッドの搬送経路上の該搬送パッド下方側に配設され、板状物下面までの距離を測定する第二非接触式距離測定手段と、該第一非接触式距離測定手段で測定された板状物上面までの距離と、該第二非接触式距離測定手段で測定された板状物下面までの距離を記憶する記憶手段と、を具備したことを特徴とする研削装置が提供される。   According to the first aspect of the present invention, a chuck table having a holding surface for holding a plate-like object, a grinding means for grinding the plate-like object held on the chuck table, and a workpiece ground on the chuck table In a grinding apparatus comprising a plate-like object conveying means having a conveyance pad having a suction pad having a suction surface smaller in diameter than the workpiece, the workpiece is sucked and held on the conveyance path of the conveyance pad holding the plate-like object A first non-contact distance measuring means disposed on the upper side of the transport pad for measuring the distance to the upper surface of the plate-like object, and on the transport path of the transport pad facing the first non-contact distance measuring means; A second non-contact type distance measuring means that is disposed on the lower side of the transport pad and measures the distance to the lower surface of the plate-like object, and the upper surface of the plate-like object measured by the first non-contact type distance measuring means. Measured by the second non-contact distance measuring means. Grinding apparatus is provided which is characterized by comprising storage means for storing the distance to the plate-like workpiece lower surface, the.

請求項2記載の発明によると、請求項1記載の研削装置を使用した板状物の厚み算出方法であって、前記第一非接触式距離測定手段と前記第二非接触式距離測定手段との間の距離を所定距離Lに設定し、前記第一非接触式距離測定手段で板状物上面までの距離Aを測定し、前記第二非接触式距離測定手段で板状物下面までの距離Bを測定し、該所定距離L、該距離A及び該距離Bに基づいて、板状物の厚みhをh=L−(A+B)で算出することを特徴とする板状物の厚み算出方法が提供される。   According to invention of Claim 2, it is the thickness calculation method of the plate-shaped object using the grinding apparatus of Claim 1, Comprising: Said 1st non-contact-type distance measurement means and said 2nd non-contact-type distance measurement means, Is set to a predetermined distance L, the distance A to the upper surface of the plate-like object is measured by the first non-contact distance measuring means, and the lower surface of the plate-like object is measured by the second non-contact type distance measuring means. Thickness calculation of the plate-like object characterized by measuring the distance B and calculating the thickness h of the plate-like substance by h = L− (A + B) based on the predetermined distance L, the distance A and the distance B A method is provided.

請求項3記載の発明によると、前記第一非接触式距離測定手段と前記第二非接触式距離測定手段の少なくとも何れか一方が水平方向に可動である可動非接触式距離測定手段から構成される請求項1記載の研削装置を使用した板状物の厚み算出方法であって、該可動非接触式距離測定手段の水平方向移動距離Zを測定し、該可動非接触式距離測定手段の移動前後で測定された板状物までの距離の差Yを算出し、該可動非接触式距離測定手段の距離測定方向と板状物の厚み方向とが成す角θを算出し、該第一非接触式距離測定手段と該第二非接触式距離測定手段との間の距離を所定距離Lに設定し、該第一非接触式距離測定手段で板状物上面までの距離Aを測定し、該第二非接触式距離測定手段で板状物下面までの距離Bを測定し、前記所定距離L、測定された距離A、B及び角度θに基づいて、板状物の厚みhをh={L−(A+B)}cosθで算出することを特徴とする板状物の厚み算出方法が提供される。   According to a third aspect of the present invention, at least one of the first non-contact type distance measuring means and the second non-contact type distance measuring means is composed of a movable non-contact type distance measuring means that is movable in the horizontal direction. A method for calculating the thickness of a plate-like object using the grinding apparatus according to claim 1, wherein a horizontal movement distance Z of the movable non-contact distance measuring means is measured, and the movement of the movable non-contact distance measuring means is measured. A difference Y in distance to the plate-like object measured before and after is calculated, and an angle θ formed by the distance measuring direction of the movable non-contact distance measuring means and the thickness direction of the plate-like object is calculated, The distance between the contact type distance measuring means and the second non-contact type distance measuring means is set to a predetermined distance L, and the first non-contact type distance measuring means measures the distance A to the upper surface of the plate-like object, The second non-contact type distance measuring means measures the distance B to the lower surface of the plate-like object, and the predetermined distance Based on the measured distances A and B and the angle θ, the thickness h of the plate-like object is calculated as h = {L− (A + B)} cos θ. The

本発明によると、研削済みの板状物の厚みを研削装置上で測定することができるため、後工程で板状物の厚みを測定する必要がなく効率的である。また、搬送中に板状物の厚みを検出するため測定に時間を要することなく、厚み検出のために生産性を落とすことがない。   According to the present invention, since the thickness of a ground plate-like object can be measured on a grinding device, it is not necessary to measure the thickness of the plate-like object in a subsequent process, which is efficient. Further, since the thickness of the plate-like object is detected during conveyance, it takes no time for measurement, and productivity is not reduced for thickness detection.

以下、本発明の実施形態を図面を参照して詳細に説明する。図1は本発明実施形態の研削装置2の斜視図を示している。4は研削装置2のハウジングであり、ハウジングの後方には二つのコラム6a,6bが垂直に立設されている。コラム6aには、上下方向に延びる一対のガイドレール(一本のみ図示)8が固定されている。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a perspective view of a grinding apparatus 2 according to an embodiment of the present invention. Reference numeral 4 denotes a housing of the grinding device 2, and two columns 6a and 6b are provided upright on the rear side of the housing. A pair of guide rails (only one is shown) 8 extending in the vertical direction is fixed to the column 6a.

この一対のガイドレール8に沿って粗研削ユニット10が上下方向に移動可能に装着されている。粗研削ユニット10は、そのハウジング20が一対のガイドレール8に沿って上下方向に移動する移動基台12に取り付けられている。   A rough grinding unit 10 is mounted along the pair of guide rails 8 so as to be movable in the vertical direction. The rough grinding unit 10 is attached to a moving base 12 whose housing 20 moves up and down along a pair of guide rails 8.

粗研削ユニット10は、ハウジング20と、ハウジング20中に回転可能に収容された図示しないスピンドルと、スピンドルを回転駆動するサーボモータ22と、スピンドルの先端に固定された複数の粗研削用の研削砥石26を有する研削ホイール24を含んでいる。   The rough grinding unit 10 includes a housing 20, a spindle (not shown) rotatably accommodated in the housing 20, a servo motor 22 that rotationally drives the spindle, and a plurality of rough grinding grinding wheels fixed to the tip of the spindle. A grinding wheel 24 having 26 is included.

粗研削ユニット10は、粗研削ユニット10を一対の案内レール8に沿って上下方向に移動するボールねじ14とパルスモータ16とから構成される粗研削ユニット移動機構18を備えている。パルスモータ16をパルス駆動すると、ボールねじ14が回転し、移動基台12が上下方向に移動される。   The rough grinding unit 10 includes a rough grinding unit moving mechanism 18 including a ball screw 14 and a pulse motor 16 that move the rough grinding unit 10 up and down along a pair of guide rails 8. When the pulse motor 16 is pulse-driven, the ball screw 14 rotates and the moving base 12 is moved in the vertical direction.

他方のコラム6bにも、上下方向に伸びる一対のガイドレール(一本のみ図示)19が固定されている。この一対のガイドレール19に沿って仕上げ研削ユニット28が上下方向に移動可能に装着されている。   A pair of guide rails 19 (only one is shown) 19 extending in the vertical direction are also fixed to the other column 6b. A finish grinding unit 28 is mounted along the pair of guide rails 19 so as to be movable in the vertical direction.

仕上げ研削ユニット28は、そのハウジング36が一対のガイドレール19に沿って上下方向に移動する図示しない移動基台に取り付けられている。仕上げ研削ユニット28は、ハウジング36と、ハウジング36中に回転可能に収容された図示しないスピンドルと、スピンドルを回転駆動するサーボモータ38と、スピンドルの先端に固定された仕上げ研削用の研削砥石42を有する研削ホイール40を含んでいる。   The finish grinding unit 28 is attached to a moving base (not shown) in which the housing 36 moves in the vertical direction along the pair of guide rails 19. The finish grinding unit 28 includes a housing 36, a spindle (not shown) rotatably accommodated in the housing 36, a servo motor 38 that rotationally drives the spindle, and a grinding wheel 42 for finish grinding fixed to the tip of the spindle. A grinding wheel 40 is included.

仕上げ研削ユニット28は、仕上げ研削ユニット28を一対の案内レール19に沿って上下方向に移動するボールねじ30とパルスモータ32とから構成される仕上げ研削ユニット移動機構34を備えている。パルスモータ32を駆動すると、ボールねじ30が回転し、仕上げ研削ユニット28が上下方向に移動される。   The finish grinding unit 28 includes a finish grinding unit moving mechanism 34 including a ball screw 30 and a pulse motor 32 that move the finish grinding unit 28 in the vertical direction along the pair of guide rails 19. When the pulse motor 32 is driven, the ball screw 30 rotates and the finish grinding unit 28 is moved in the vertical direction.

研削装置2は、コラム6a,6bの前側においてハウジング4の上面と略面一となるように配設されたターンテーブル44を具備している。ターンテーブル44は比較的大径の円盤状に形成されており、図示しない回転駆動機構によって矢印45で示す方向に回転される。   The grinding device 2 includes a turntable 44 disposed so as to be substantially flush with the upper surface of the housing 4 on the front side of the columns 6a and 6b. The turntable 44 is formed in a relatively large-diameter disk shape, and is rotated in a direction indicated by an arrow 45 by a rotation drive mechanism (not shown).

ターンテーブル44には、互いに円周方向に120°離間して3個のチャックテーブル46が水平面内で回転可能に配置されている。チャックテーブル46は、ポーラスセラミック材によって円盤状に形成された吸着チャックを有しており、吸着チャックの保持面上に載置されたウエーハを真空吸引手段を作動することにより吸引保持する。   On the turntable 44, three chuck tables 46 are arranged so as to be rotatable in a horizontal plane, spaced from each other by 120 ° in the circumferential direction. The chuck table 46 has a suction chuck formed in a disk shape by a porous ceramic material, and sucks and holds the wafer placed on the holding surface of the suction chuck by operating a vacuum suction means.

ターンテーブル44に配設された3個のチャックテーブル46は、ターンテーブル44が適宜回転することにより、ウエーハ搬入・搬出領域A、粗研削加工領域B、仕上げ研削加工領域C、及びウエーハ搬入・搬出領域Aに順次移動される。   The three chuck tables 46 arranged on the turntable 44 are rotated in accordance with the turntable 44, so that the wafer loading / unloading area A, rough grinding area B, finish grinding area C, and wafer loading / unloading are performed. The region A is sequentially moved.

ハウジング4の前側部分には、第1のウエーハカセット50と、第2のウエーハカセット52と、ウエーハ搬送ロボット54と、複数の位置決めピン58を有する位置決めテーブル56と、ウエーハ搬入機構(ローディングアーム)60と、ウエーハ搬出機構(アンローディングアーム)62と、スピンナユニット63が配設されている。   The front portion of the housing 4 includes a first wafer cassette 50, a second wafer cassette 52, a wafer transfer robot 54, a positioning table 56 having a plurality of positioning pins 58, and a wafer carry-in mechanism (loading arm) 60. A wafer unloading mechanism (unloading arm) 62 and a spinner unit 63 are disposed.

ウエーハ搬出機構(アンローディングアーム)62は旋回動作可能なアーム62aと、アーム62aの先端に取り付けられた搬送パッド62bとから構成される。ウエーハ搬出機構62の搬送パッド62bの搬送経路64の上方側には、搬送パッド62bで吸着されて搬送される仕上げ研削後のウエーハ上面までの距離を測定する第一非接触式距離測定手段66が設けられている。   The wafer carry-out mechanism (unloading arm) 62 is composed of an arm 62a capable of turning and a transport pad 62b attached to the tip of the arm 62a. A first non-contact type distance measuring means 66 for measuring the distance to the upper surface of the wafer after finish grinding that is attracted and transported by the transport pad 62b is provided above the transport path 64 of the transport pad 62b of the wafer carry-out mechanism 62. Is provided.

また、第一非接触式距離測定手段66に対峙して搬送パッド62bの搬送経路64の下方側には、仕上げ研削後のウエーハ下面までの距離を測定する第二非接触式距離測定手段68が設けられている。   A second non-contact type distance measuring unit 68 for measuring the distance to the lower surface of the wafer after finish grinding is provided below the transfer path 64 of the transfer pad 62b in opposition to the first non-contact type distance measuring unit 66. Is provided.

第一及び第二非接触式距離測定手段66,68とも例えば図2に示すような三角測量法に基づいた距離センサから構成される。図2に示された第一非接触式距離測定手段66は、レーザビーム照射手段72と受光手段74から構成される。   The first and second non-contact type distance measuring means 66 and 68 are each composed of a distance sensor based on, for example, a triangulation method as shown in FIG. The first non-contact distance measuring unit 66 shown in FIG. 2 includes a laser beam irradiation unit 72 and a light receiving unit 74.

照射手段72は、例えば半導体レーザと半導体レーザの出射ビームをウエーハ70上に集光する対物レンズを含んでおり、受光手段74はフォトディテクタを有する光位置検出器と反射光を光位置検出器に集光する受光レンズとを含んでいる。   The irradiating means 72 includes, for example, a semiconductor laser and an objective lens for condensing the emitted beam of the semiconductor laser on the wafer 70, and the light receiving means 74 collects an optical position detector having a photodetector and reflected light at the optical position detector. And a light receiving lens.

レーザビーム照射手段72からウエーハ70に対して略垂直方向にレーザビームを照射すると、レーザビームは色々な方向に拡散して反射される。拡散反射光を受光レンズで集光すると、受光レンズを通過した拡散反射光は光位置検出器の一点に集光される。レーザビーム照射位置から受光レンズまでの距離は予め判明しているため、三角形の相似の関係から照射手段72からウエーハ70までの距離を求めることができる。   When the laser beam is irradiated from the laser beam irradiation means 72 to the wafer 70 in a substantially vertical direction, the laser beam is diffused and reflected in various directions. When the diffuse reflected light is collected by the light receiving lens, the diffuse reflected light that has passed through the light receiving lens is collected at one point of the optical position detector. Since the distance from the laser beam irradiation position to the light receiving lens is known in advance, the distance from the irradiation means 72 to the wafer 70 can be obtained from the similarity of triangles.

このように構成された研削装置2の研削作業について以下に説明する。第1のウエーハカセット50中に収容された半導体ウエーハは、ウエーハ搬送ロボット54の上下動作及び進退動作によって搬送され、ウエーハ位置決めテーブル56に載置される。   The grinding operation of the grinding device 2 configured as described above will be described below. The semiconductor wafer accommodated in the first wafer cassette 50 is transported by the vertical motion and the forward / backward motion of the wafer transport robot 54 and is placed on the wafer positioning table 56.

ウエーハ位置決めテーブル56に載置されたウエーハは、複数の位置決めピン58によって中心合わせが行われた後、ローディングアーム60の旋回動作によって、ウエーハ搬入・搬出領域Aに位置せしめられているチャックテーブル46に載置され、チャックテーブル46によって吸引保持される。   The wafer placed on the wafer positioning table 56 is centered by a plurality of positioning pins 58 and then moved to the chuck table 46 positioned in the wafer loading / unloading area A by the turning operation of the loading arm 60. It is placed and sucked and held by the chuck table 46.

次いで、ターンテーブル44が120°回転されて、ウエーハを保持したチャックテーブル46が粗研削加工領域Bに位置付けられる。このように位置付けられたウエーハに対してチャックテーブル46を例えば300rpmで回転しつつ、研削ホイール24をチャックテーブル46と同一方向に例えば6000rpmで回転させると共に、粗研削ユニット移動機構18を作動して粗研削用の研削砥石26をウエーハの裏面に接触させる。   Next, the turntable 44 is rotated 120 °, and the chuck table 46 holding the wafer is positioned in the rough grinding region B. While rotating the chuck table 46 with respect to the wafer positioned in this manner at, for example, 300 rpm, the grinding wheel 24 is rotated in the same direction as the chuck table 46 at, for example, 6000 rpm, and the rough grinding unit moving mechanism 18 is operated to perform roughing. A grinding wheel 26 for grinding is brought into contact with the back surface of the wafer.

そして、研削ホイール24を所定の研削送り速度で下方に所定量研削送りして、ウエーハの粗研削を実施する。図示しない接触式の厚み測定ゲージによってウエーハの厚みを測定しながらウエーハを所望の厚みに仕上げる。   Then, the grinding wheel 24 is ground and fed by a predetermined amount at a predetermined grinding feed speed to perform rough grinding of the wafer. The wafer is finished to a desired thickness while measuring the thickness of the wafer with a contact-type thickness measurement gauge (not shown).

粗研削が終了したウエーハを保持したチャックテーブル46は、ターンテーブル44を120°回転することにより、仕上げ研削加工領域Cに位置付けられ、仕上げ研削用の研削砥石42を有する仕上げ研削ユニット28による仕上げ研削が実施される。   The chuck table 46 holding the wafer after the rough grinding is positioned in the finish grinding region C by rotating the turntable 44 by 120 °, and finish grinding by the finish grinding unit 28 having the grinding wheel 42 for finish grinding. Is implemented.

仕上げ研削を終了したウエーハを保持したチャックテーブル46は、ターンテーブル46を120°回転することにより、ウエーハ搬入・搬出領域Aに位置付けられる。   The chuck table 46 holding the wafer for which finish grinding has been completed is positioned in the wafer loading / unloading area A by rotating the turntable 46 by 120 °.

チャックテーブル46に保持されているウエーハの吸引保持が解除されてから、ウエーハ搬出機構(アンローディングアーム)62の搬送パッド62bでウエーハが吸着されて、アンローディングアーム62が旋回することによりスピンナユニット63に搬送される。   After the suction and holding of the wafer held on the chuck table 46 is released, the wafer is adsorbed by the transfer pad 62b of the wafer unloading mechanism (unloading arm) 62, and the unloading arm 62 turns to rotate the spinner unit 63. It is conveyed to.

ウエーハ搬出機構62は吸着するウエーハに比べて小径の搬送パッド62bを有している。よって、ウエーハ搬出機構62でウエーハの搬出途中に、ウエーハ70が図3に示すように第一非接触式距離測定手段66と第二非接触式距離測定手段68の間を通過する。   The wafer carry-out mechanism 62 has a conveyance pad 62b having a smaller diameter than the wafer to be adsorbed. Therefore, while the wafer is being carried out by the wafer carry-out mechanism 62, the wafer 70 passes between the first non-contact distance measuring means 66 and the second non-contact distance measuring means 68 as shown in FIG.

第一非接触式距離測定手段66と第二非接触式距離測定手段68との間の距離は予め所定距離Lに設定されているため、第一非接触式距離測定手段66でウエーハ70上面までの距離Aを測定し、第二非接触式距離測定手段68でウエーハ70下面までの距離Bを測定する。ウエーハ70の厚みをhとすると、所定距離L、測定された距離A及びBに基づいて、h=L−(A+B)でウエーハ70の厚みhを算出することができる。   Since the distance between the first non-contact type distance measuring unit 66 and the second non-contact type distance measuring unit 68 is set in advance to a predetermined distance L, the first non-contact type distance measuring unit 66 reaches the upper surface of the wafer 70. The distance A to the lower surface of the wafer 70 is measured by the second non-contact type distance measuring means 68. When the thickness of the wafer 70 is h, the thickness h of the wafer 70 can be calculated by h = L− (A + B) based on the predetermined distance L and the measured distances A and B.

第一非接触式距離測定手段66と第二非接触式距離測定手段68との間の距離Lは温度変化等により変動するため、厚み測定の正確性を追及するためには、予め厚みの判明している校正片を使用して、距離A及びBを測定し、距離Lを算出し、補正することが好ましい。   Since the distance L between the first non-contact type distance measuring means 66 and the second non-contact type distance measuring means 68 fluctuates due to a temperature change or the like, in order to pursue the accuracy of thickness measurement, the thickness is known in advance. It is preferable to measure the distances A and B using the calibration piece, calculate the distance L, and correct it.

アンローディングアーム62によりスピナユニット63に搬送されたウエーハは、ここで洗浄されるとともにスピン乾燥される。次いで、ウエーハ搬送ロボット54により第2のウエーハカセット52の所定位置にウエーハが収納される。   The wafer conveyed to the spinner unit 63 by the unloading arm 62 is cleaned and spin-dried here. Next, the wafer is stored in a predetermined position of the second wafer cassette 52 by the wafer transfer robot 54.

次に、図4を参照して、研削されたウエーハの厚みが薄くて搬送パッド62bで吸着されているウエーハ70Aが撓んでいる場合の、ウエーハ70Aの厚み算出方法について説明する。   Next, with reference to FIG. 4, a method for calculating the thickness of the wafer 70A when the ground wafer is thin and the wafer 70A adsorbed by the transport pad 62b is bent will be described.

この場合には、第一及び第二非接触式距離測定手段66,68のうち少なくとも一方が水平方向に可動である必要がある。図4では、第一非接触式距離測定手段66Aが水平方向に可動であるとして説明する。   In this case, at least one of the first and second non-contact distance measuring means 66 and 68 needs to be movable in the horizontal direction. In FIG. 4, the first non-contact type distance measuring means 66A will be described as being movable in the horizontal direction.

(ステップ1) 第一非接触式距離測定手段66Aで距離Aを測定し、第二非接触式距離測定手段68で距離Bを測定する。距離Lは既知であるから、X=L−(A+B)より、Xを算出する。   (Step 1) The distance A is measured by the first non-contact distance measuring means 66A, and the distance B is measured by the second non-contact distance measuring means 68. Since the distance L is known, X is calculated from X = L− (A + B).

(ステップ2) 第一非接触式距離測定手段66Aを水平方向に距離Z分だけ移動させてウエーハ70A上面までの距離A´を測定すると、距離Yを算出できる。尚、距離Zの移動は、研削装置2の制御手段により正確に検出可能である。   (Step 2) The distance Y can be calculated by moving the first non-contact distance measuring means 66A in the horizontal direction by the distance Z and measuring the distance A ′ to the upper surface of the wafer 70A. The movement of the distance Z can be accurately detected by the control means of the grinding device 2.

(ステップ3) ZとYからtanθ=Y/Zでθが算出できるので、h=Xcosθからウエーハ70Aの厚みhを算出できる。   (Step 3) Since θ can be calculated from Z and Y with tan θ = Y / Z, the thickness h of the wafer 70A can be calculated from h = X cos θ.

上述した本実施形態の研削装置2によると、研削済みウエーハ70の厚みを研削装置2上で測定することができ、後工程でウエーハ厚みを測定する必要がなく効率的である。また、ウエーハ搬出機構(アンローディングアーム)62によるウエーハ搬送中にウエーハの厚みを測定するため測定に時間を要することなく、厚み測定のために生産性を落とすことがない。   According to the grinding apparatus 2 of the present embodiment described above, the thickness of the ground wafer 70 can be measured on the grinding apparatus 2, and it is not necessary to measure the wafer thickness in a subsequent process, which is efficient. Further, since the thickness of the wafer is measured during the wafer conveyance by the wafer unloading mechanism (unloading arm) 62, the measurement does not take time, and the productivity is not reduced for the thickness measurement.

本発明実施形態の研削装置の外観斜視図である。1 is an external perspective view of a grinding apparatus according to an embodiment of the present invention. レーザビームを使用した非接触式距離センサの説明図である。It is explanatory drawing of the non-contact-type distance sensor which uses a laser beam. ウエーハの厚み測定の説明図である。It is explanatory drawing of the thickness measurement of a wafer. ウエーハが撓んでいる場合のウエーハの厚み測定の説明図である。It is explanatory drawing of the thickness measurement of a wafer in case the wafer is bent.

符号の説明Explanation of symbols

2 研削装置
10 粗研削ユニット
28 仕上げ研削ユニット
44 ターンテーブル
46 チャックテーブル
60 ウエーハ搬入機構(ローディングアーム)
62 ウエーハ搬出機構(アンローディングアーム)
62b 搬送パッド
66 第一非接触式距離測定手段
68 第二非接触式距離測定手段
70 ウエーハ
2 Grinding device 10 Rough grinding unit 28 Finish grinding unit 44 Turntable 46 Chuck table 60 Wafer loading mechanism (loading arm)
62 Wafer unloading mechanism (unloading arm)
62b Transport pad 66 First non-contact distance measuring means 68 Second non-contact distance measuring means 70 Wafer

Claims (3)

板状物を保持する保持面を有するチャックテーブルと、該チャックテーブルに保持された板状物を研削する研削手段と、該チャックテーブル上で研削された被加工物を吸引保持し、被加工物に比べて小径の吸着面を有する搬送パッドを備えた板状物搬送手段とを具備した研削装置において、
板状物を保持した該搬送パッドの搬送経路上の該搬送パッド上方側に配設され、板状物上面までの距離を測定する第一非接触式距離測定手段と、
該第一非接触式距離測定手段に対峙して該搬送パッドの搬送経路上の該搬送パッド下方側に配設され、板状物下面までの距離を測定する第二非接触式距離測定手段と、
該第一非接触式距離測定手段で測定された板状物上面までの距離と、該第二非接触式距離測定手段で測定された板状物下面までの距離を記憶する記憶手段と、
を具備したことを特徴とする研削装置。
A chuck table having a holding surface for holding a plate-like object, a grinding means for grinding the plate-like object held on the chuck table, and a workpiece ground on the chuck table by suction and holding, In a grinding apparatus comprising a plate-like object conveying means provided with a conveying pad having a suction surface with a small diameter compared to
A first non-contact distance measuring means that is disposed above the transport pad on the transport path of the transport pad that holds the plate-shaped object and measures the distance to the upper surface of the plate-shaped object;
A second non-contact type distance measuring means which is disposed on the lower side of the transport pad on the transport path of the transport pad and measures the distance to the lower surface of the plate-like object, facing the first non-contact type distance measuring means; ,
Storage means for storing the distance to the upper surface of the plate-like object measured by the first non-contact type distance measuring means, and the distance to the lower surface of the plate-like object measured by the second non-contact type distance measuring means;
A grinding apparatus comprising:
請求項1記載の研削装置を使用した板状物の厚み算出方法であって、
前記第一非接触式距離測定手段と前記第二非接触式距離測定手段との間の距離を所定距離Lに設定し、
前記第一非接触式距離測定手段で板状物上面までの距離Aを測定し、
前記第二非接触式距離測定手段で板状物下面までの距離Bを測定し、
該所定距離L、該距離A及び該距離Bに基づいて、板状物の厚みhをh=L−(A+B)で算出することを特徴とする板状物の厚み算出方法。
A method for calculating the thickness of a plate-like object using the grinding device according to claim 1,
A distance between the first non-contact distance measuring means and the second non-contact distance measuring means is set to a predetermined distance L;
Measure the distance A to the upper surface of the plate-like object with the first non-contact distance measuring means,
Measure the distance B to the lower surface of the plate-like object with the second non-contact distance measuring means,
Based on the predetermined distance L, the distance A, and the distance B, the thickness h of the plate is calculated by h = L− (A + B).
前記第一非接触式距離測定手段と前記第二非接触式距離測定手段の少なくとも何れか一方が水平方向に可動である可動非接触式距離測定手段から構成される請求項1記載の研削装置を使用した板状物の厚み算出方法であって、
該可動非接触式距離測定手段の水平方向移動距離Zを測定し、
該可動非接触式距離測定手段の移動前後で測定された板状物までの距離の差Yを算出し、
該可動非接触式距離測定手段の距離測定方向と板状物の厚み方向とが成す角θを算出し、
該第一非接触式距離測定手段と該第二非接触式距離測定手段との間の距離を所定距離Lに設定し、
該第一非接触式距離測定手段で板状物上面までの距離Aを測定し、
該第二非接触式距離測定手段で板状物下面までの距離Bを測定し、
前記所定距離L、測定された距離A、B及び角度θに基づいて、板状物の厚みhをh={L−(A+B)}cosθで算出することを特徴とする板状物の厚み算出方法。
The grinding apparatus according to claim 1, wherein at least one of the first non-contact type distance measuring unit and the second non-contact type distance measuring unit includes a movable non-contact type distance measuring unit that is movable in a horizontal direction. A method for calculating the thickness of the plate-like material used,
Measure the horizontal movement distance Z of the movable non-contact distance measuring means,
Calculating a difference Y in the distance to the plate-like object measured before and after the movement of the movable non-contact distance measuring means;
Calculating the angle θ formed by the distance measuring direction of the movable non-contact distance measuring means and the thickness direction of the plate-like object;
The distance between the first non-contact distance measuring means and the second non-contact distance measuring means is set to a predetermined distance L;
Measure the distance A to the upper surface of the plate with the first non-contact type distance measuring means,
Measure the distance B to the lower surface of the plate-like object with the second non-contact distance measuring means,
Based on the predetermined distance L, the measured distances A and B, and the angle θ, the thickness h of the plate-like object is calculated by h = {L− (A + B)} cos θ. Method.
JP2008111134A 2008-04-22 2008-04-22 Grinding apparatus and plate thickness calculation method Active JP5165450B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008111134A JP5165450B2 (en) 2008-04-22 2008-04-22 Grinding apparatus and plate thickness calculation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008111134A JP5165450B2 (en) 2008-04-22 2008-04-22 Grinding apparatus and plate thickness calculation method

Publications (2)

Publication Number Publication Date
JP2009262239A true JP2009262239A (en) 2009-11-12
JP5165450B2 JP5165450B2 (en) 2013-03-21

Family

ID=41388736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008111134A Active JP5165450B2 (en) 2008-04-22 2008-04-22 Grinding apparatus and plate thickness calculation method

Country Status (1)

Country Link
JP (1) JP5165450B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108700405A (en) * 2016-12-06 2018-10-23 爱思开矽得荣株式会社 Silicon wafer carrier measurer for thickness
KR20230073478A (en) * 2021-11-19 2023-05-26 한미반도체 주식회사 Method for measuring thickness of strip grinding apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001025961A (en) * 1999-07-12 2001-01-30 Hitachi Cable Ltd Sticking method of semiconductor wafer
JP2001062718A (en) * 1999-08-20 2001-03-13 Super Silicon Kenkyusho:Kk Double head grinding device and grinding wheel position correcting method
JP2002141318A (en) * 1993-09-21 2002-05-17 Toshiba Corp Method and device for polishing
JP2002343756A (en) * 2001-05-21 2002-11-29 Tokyo Seimitsu Co Ltd Water planarizing apparatus
JP2005342851A (en) * 2004-06-03 2005-12-15 Sumitomo Heavy Ind Ltd Double-side machining device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002141318A (en) * 1993-09-21 2002-05-17 Toshiba Corp Method and device for polishing
JP2001025961A (en) * 1999-07-12 2001-01-30 Hitachi Cable Ltd Sticking method of semiconductor wafer
JP2001062718A (en) * 1999-08-20 2001-03-13 Super Silicon Kenkyusho:Kk Double head grinding device and grinding wheel position correcting method
JP2002343756A (en) * 2001-05-21 2002-11-29 Tokyo Seimitsu Co Ltd Water planarizing apparatus
JP2005342851A (en) * 2004-06-03 2005-12-15 Sumitomo Heavy Ind Ltd Double-side machining device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108700405A (en) * 2016-12-06 2018-10-23 爱思开矽得荣株式会社 Silicon wafer carrier measurer for thickness
US11371829B2 (en) 2016-12-06 2022-06-28 Sk Siltron Co., Ltd. Wafer carrier thickness measuring device
KR20230073478A (en) * 2021-11-19 2023-05-26 한미반도체 주식회사 Method for measuring thickness of strip grinding apparatus
KR102646886B1 (en) * 2021-11-19 2024-03-12 한미반도체 주식회사 Method for measuring thickness of strip grinding apparatus

Also Published As

Publication number Publication date
JP5165450B2 (en) 2013-03-21

Similar Documents

Publication Publication Date Title
TWI430860B (en) Cutting machine
JP2006021264A (en) Grinding apparatus
TW200807538A (en) Wafer grinding apparatus
JP6618822B2 (en) Method for detecting wear amount of grinding wheel
JP6377433B2 (en) Grinding method
JP2012135853A (en) Grinding device
TW201911403A (en) Cutting apparatus and wafer processing method
JP5184242B2 (en) Semiconductor wafer processing equipment
JP6385734B2 (en) Grinding method
JP7443461B2 (en) Wafer positioning device and chamfering device using the same
JP5554601B2 (en) Grinding equipment
JP2017056523A (en) Grinding device
JP2014117782A (en) Wafer chamfering processing method and wafer chamfering apparatus
JP2010069549A (en) Grinding method and grinding device
JP5165450B2 (en) Grinding apparatus and plate thickness calculation method
JP2011235388A (en) Method for measuring thickness of ground material to be processed, and grinding device
JP2013202704A (en) Grinding apparatus and grinding method
JP2009099870A (en) Processing method for wafer
JP2009160705A (en) Grinding method and grinding apparatus of wafer
JP2019087674A (en) Grinding device
JP2009302369A (en) Method and apparatus for processing plate-like object
CN110893574B (en) Edge trimming device
JP2015116637A (en) Grinding method
JP6598668B2 (en) Grinding equipment
JP5261125B2 (en) How to detect the chuck table origin height position

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121009

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121219

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5165450

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151228

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250