JP2009262216A - Laser beam machining method for transparent base material, and manufacturing method for electrolyte membrane - Google Patents

Laser beam machining method for transparent base material, and manufacturing method for electrolyte membrane Download PDF

Info

Publication number
JP2009262216A
JP2009262216A JP2008117231A JP2008117231A JP2009262216A JP 2009262216 A JP2009262216 A JP 2009262216A JP 2008117231 A JP2008117231 A JP 2008117231A JP 2008117231 A JP2008117231 A JP 2008117231A JP 2009262216 A JP2009262216 A JP 2009262216A
Authority
JP
Japan
Prior art keywords
transparent
base material
transparent substrate
transparent base
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008117231A
Other languages
Japanese (ja)
Inventor
Hironori Kubo
博紀 久保
Kokichi Doi
孝吉 土井
Yoshiki Nakada
芳樹 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2008117231A priority Critical patent/JP2009262216A/en
Publication of JP2009262216A publication Critical patent/JP2009262216A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)
  • Laser Beam Processing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a laser beam machining method for a transparent base material, in which a super-fine, machined hole of high aspect ratio is efficiently formed with high accuracy, and a manufacturing method for an electrolyte membrane using a porous transparent base material formed by using the method. <P>SOLUTION: One side surface side of a light-transmissive transparent base material W is set in an evacuated atmosphere, and the one side surface side is brought into contact with a light-absorptive opaque liquid F. The interference light L3 of the ultra-short pulsed laser is emitted from the other side surface side of the transparent base material W and allowed to pass through the transparent base material. By concentrating the laser beam energy of the interference light in a vicinity of the interface between the transparent base material W and the opaque liquid F, a super-fine, machined hole P is formed in the transparent base material W. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、たとえば樹脂製の透明基材にレーザ光にて微細な加工孔を形成するためのレーザ加工方法と、このレーザ加工方法によって製造された多孔質透明基材から電解質膜を製造する方法に関するものである。   The present invention relates to, for example, a laser processing method for forming fine processed holes with a laser beam on a transparent substrate made of resin, and a method of manufacturing an electrolyte membrane from a porous transparent substrate manufactured by the laser processing method. It is about.

従来、プラスチックなどの樹脂製で透明な基材に微細孔等を微細加工する方法として、特許文献1,2に開示されるような微細加工装置、加工方法を適用する方法がある。   2. Description of the Related Art Conventionally, as a method for finely processing fine holes or the like in a transparent substrate made of resin such as plastic, there are methods of applying a fine processing apparatus and a processing method as disclosed in Patent Documents 1 and 2.

この方法は、透明材料の裏面にレーザ波長に対して高吸収率の流動性物質を接触させておき、正面からレーザ光を照射して透明材料と流動性物質の界面にレーザ光のエネルギ密度を集中させることで、透明材料の裏面に孔加工を実施するものである。   In this method, a fluid material having a high absorption rate with respect to the laser wavelength is brought into contact with the back surface of the transparent material, and the laser beam is irradiated from the front surface so that the energy density of the laser beam is applied to the interface between the transparent material and the fluid material. By concentrating, the back surface of the transparent material is drilled.

上記加工方法によれば、レーザエネルギを透明材料の加工部位に集中させることによって効率的に孔加工を実施することができる一方で、この加工孔の寸法が微細になるにつれて、流動性物質の表面張力等により、微細孔に該流動性物質が入り込むことが困難となり、加工精度のよい微細孔加工を実施できないという問題が生じている。   According to the above processing method, it is possible to efficiently perform the hole processing by concentrating the laser energy on the processing portion of the transparent material. On the other hand, as the size of the processing hole becomes finer, the surface of the fluid substance Due to the tension or the like, it becomes difficult for the fluid substance to enter the micropores, and there is a problem that micropore processing with high processing accuracy cannot be performed.

さらに、上記装置では、透明材料の表面、すなわち、レーザが照射される側の面に微小な凹凸や傷などが存在することにより、レーザ光がこの凹凸等で散乱してしまい、所要のエネルギ密度を有するレーザを加工部位に照射できないという問題も生じている。   Furthermore, in the above apparatus, since there are minute irregularities and scratches on the surface of the transparent material, that is, the surface on which the laser is irradiated, the laser beam is scattered by the irregularities and the required energy density. There is also a problem that the processing site cannot be irradiated with the laser having the.

特開2004−306134号公報JP 2004-306134 A 特許第3012926号公報Japanese Patent No. 3012926

本発明は、上記する問題に鑑みてなされたものであり、たとえば樹脂製の透明基材にレーザ光にて微細な加工孔を形成するに際し、高品質な微細孔を効率的に製造することのできる透明基材のレーザ加工方法と、このレーザ加工方法によって製造された多孔質透明基材を使用して高品質な電解質膜を製造することのできる電解質膜の製造方法を提供することを目的とする。   The present invention has been made in view of the above-described problems. For example, when forming fine processed holes with a laser beam on a resin-made transparent substrate, high-quality fine holes are efficiently manufactured. An object of the present invention is to provide a laser processing method for a transparent substrate, and a method for producing an electrolyte membrane capable of producing a high-quality electrolyte membrane using a porous transparent substrate produced by the laser processing method. To do.

前記目的を達成すべく、本発明による透明基材のレーザ加工方法は、光透過性の透明基材の一側面側を減圧雰囲気とし、かつ、該一側面を光吸収性の不透明液体に接触させておき、前記透明基材の他側面側から超短パルスレーザ光の干渉光を照射して該透明基材を透過させ、透明基材と不透明液体の界面付近に前記干渉光のレーザエネルギを集中させることで透明基材に微細加工孔を形成することを特徴とするものである。   In order to achieve the above object, a laser processing method for a transparent substrate according to the present invention is such that one side of a light transmissive transparent substrate is brought into a reduced pressure atmosphere, and the one side is brought into contact with a light absorbing opaque liquid. The interference light of the ultrashort pulse laser light is irradiated from the other side of the transparent base material to transmit the transparent base material, and the laser energy of the interference light is concentrated near the interface between the transparent base material and the opaque liquid. By doing so, finely processed holes are formed in the transparent substrate.

本発明のレーザ加工方法は、たとえば燃料電池に使用される細孔フィリング電解質膜用の多孔質な透明基材の製造をその用途とするものであり、該透明基材の素材としては、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(PFA)、ポリエチレンテレフタレート、ポリエチレン、ポリプロピレン、ポリイミドなどを挙げることができる。   The laser processing method of the present invention is intended for use in the production of a porous transparent substrate for a pore filling electrolyte membrane used in, for example, a fuel cell. Examples include fluoroethylene (PTFE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), polyethylene terephthalate, polyethylene, polypropylene, and polyimide.

本レーザ加工方法は超短パルスレーザ光を使用するものであり、このレーザ光を使用することにより、他のレーザ光と同程度のエネルギであってもそのパルス幅が極めて小さく、したがってそのパワーピークの値を大きくすることができる。なお、径が100nm(ナノメートル)程度の超微細貫通孔を透明基材に形成するためには、超短パルスレーザ光の中でも多光子吸収をおこすピコ秒レーザ光やフェムト秒レーザ光を使用するのが望ましい。   This laser processing method uses an ultra-short pulse laser beam. By using this laser beam, even if it has the same energy as other laser beams, its pulse width is extremely small, and therefore its power peak. The value of can be increased. In order to form an ultrafine through-hole having a diameter of about 100 nm (nanometer) on a transparent substrate, picosecond laser light or femtosecond laser light that causes multiphoton absorption is used among ultrashort pulse laser light. Is desirable.

本発明のレーザ加工方法では、透明基材を真空容器等の容器内に収容し、該透明基材の一側面に光吸収性の不透明液体を接触させ、他側面から超短パルスレーザ光の干渉光を照射するものである。この干渉光帯域内では一定周期で連続する光の強い部分と弱い部分が形成されており、光透過性の透明基材と光吸収性の不透明液体の境界付近にレーザ光が最大にオーバーラップする箇所を合わせることにより、透明基材において一度に複数の微細加工孔を形成することができる。ここで、加工孔の加工進度に応じて、透明基材側を移動調整する、もしくは超短パルスレーザ光のレーザ駆動装置を移動調整することにより、リアルタイムに加工孔底部にレーザ光が最大にオーバーラップする箇所を合わせることができる。なお、上記する干渉光は、たとえば、レーザ発振機から照射された超短パルスレーザ光を回折格子を介して複数の光束に回折(分離)させ、2つの集光レンズを通すことによって形成することができる。また、加工進度に応じた上記界面位置の変動はたとえばCCDカメラ等のセンサにてセンシングされ、センシングデータに基づいて、駆動装置にて透明基材もしくはレーザ駆動装置が移動調整されてもよい。   In the laser processing method of the present invention, a transparent base material is accommodated in a container such as a vacuum container, a light-absorbing opaque liquid is brought into contact with one side surface of the transparent base material, and ultrashort pulse laser light is interfered from the other side surface. It irradiates light. Within this interference light band, strong and weak parts of continuous light are formed at a constant period, and the laser light overlaps to the maximum near the boundary between the light-transmitting transparent substrate and the light-absorbing opaque liquid. By combining the locations, a plurality of microfabricated holes can be formed at a time in the transparent substrate. Here, by adjusting the movement of the transparent base material according to the processing progress of the processing hole, or by adjusting the movement of the laser driving device for the ultrashort pulse laser light, the laser beam is maximized at the bottom of the processing hole in real time. The place to wrap can be matched. The interference light described above is formed, for example, by diffracting (separating) ultrashort pulse laser light emitted from a laser oscillator into a plurality of light beams through a diffraction grating and passing through two condenser lenses. Can do. Further, the change in the interface position according to the processing progress may be sensed by a sensor such as a CCD camera, and the transparent substrate or the laser driving device may be moved and adjusted by the driving device based on the sensing data.

ここで、上記する不透明液体としては、有機溶媒や高濃度アルカリ溶液などを使用することができ、この有機溶媒としては、n−メチル−2−ピロリドン、N,N−ジメチルホルムアミドなどを使用でき、高濃度アルカリ溶液としては苛性ソーダなどを使用することができる。さらに、不透明液体はそれ自体単独で使用されることに加えて、より光吸収性を高めるために、染料、顔料などを不透明液体に添加したものを使用してもよい。   Here, as the above-mentioned opaque liquid, an organic solvent, a high-concentration alkaline solution, or the like can be used. As the organic solvent, n-methyl-2-pyrrolidone, N, N-dimethylformamide, or the like can be used. Caustic soda or the like can be used as the high concentration alkaline solution. Further, in addition to the opaque liquid being used alone, a liquid obtained by adding a dye, a pigment or the like to the opaque liquid may be used in order to further increase the light absorption.

上記するように、その径が100nm程度で高いアスペクト比を有する超微細加工孔を形成する場合、表面張力等の影響によって不透明液体が加工孔内に浸透し難くなる。不透明液体が加工孔に十分に浸透せず、したがって該加工孔底面に不透明液体が存在しない状態では、不透明液体と透明基材の接触面(界面)が形成されないことから干渉光による孔加工が実施できなくなる。   As described above, when an ultrafine processed hole having a high aspect ratio with a diameter of about 100 nm is formed, it is difficult for an opaque liquid to penetrate into the processed hole due to the influence of surface tension or the like. When the opaque liquid does not sufficiently permeate the processing hole, and there is no opaque liquid on the bottom of the processing hole, the contact surface (interface) between the opaque liquid and the transparent substrate is not formed, so the hole processing is performed with interference light. become unable.

そこで、本発明のレーザ加工方法では、透明基材のうち、少なくともこれが不透明液体と接触する側を減圧雰囲気とすることにより、微細加工孔の加工の進展に応じて不透明液体を効果的に微細加工孔内に浸透させることを可能とし、もって不透明液体と透明基材の界面を常に形成することができ、加工進度に応じて随時変化する該界面付近にレーザエネルギを集中させることで効果的にレーザ加工を実現ならしめるものである。   Therefore, in the laser processing method of the present invention, the opaque liquid is effectively finely processed according to the progress of the processing of the microfabricated holes by setting at least the side of the transparent substrate that is in contact with the opaque liquid to a reduced pressure atmosphere. It is possible to infiltrate into the hole, so that an interface between the opaque liquid and the transparent substrate can be always formed, and the laser energy can be effectively concentrated by concentrating the laser energy in the vicinity of the interface that changes as the processing progresses. This is what makes processing a reality.

なお、上記する減圧雰囲気に関しては、微細加工孔の孔径や加工孔進度の程度(加工孔の深さ)、不透明液体の蒸気圧等を勘案して減圧の程度が適宜調整されるのがよく、好ましくは、容器内が可及的に真空雰囲気程度に減圧されるのがよい。   Regarding the above-mentioned reduced pressure atmosphere, the degree of pressure reduction should be appropriately adjusted in consideration of the hole diameter of the finely processed hole and the degree of progress of the processed hole (depth of the processed hole), the vapor pressure of the opaque liquid, etc. Preferably, the inside of the container is reduced to a vacuum atmosphere as much as possible.

また、本発明による透明基材のレーザ加工方法の好ましい実施の形態は、ガラス基材の一側面に前記透明基材と略同一の屈折率を備えた透明液体を接触させ、該透明液体を介して該ガラス基材の一側面上に該透明基材の他側面が載置され、該ガラス基材の他側面側から超短パルスレーザ光の干渉光が照射されることを特徴とするものである。   Further, in a preferred embodiment of the laser processing method for a transparent substrate according to the present invention, a transparent liquid having substantially the same refractive index as that of the transparent substrate is brought into contact with one side surface of the glass substrate, and the transparent liquid is interposed therebetween. The other side surface of the transparent substrate is placed on one side surface of the glass substrate, and the interference light of the ultrashort pulse laser beam is irradiated from the other side surface of the glass substrate. is there.

透明基材の表面を微視的に見れば、様々な凹凸や場合によっては傷が存在することがある。これらの凹凸や傷の存在により、透明基材に入射してくる超短パルスレーザ光がこれら凹凸等を介して散乱してしまい、レーザ加工ができなくなる可能性がある。   When the surface of the transparent substrate is viewed microscopically, various irregularities and in some cases scratches may exist. Due to the presence of these irregularities and scratches, the ultrashort pulse laser light incident on the transparent substrate may be scattered through these irregularities and the laser processing may not be possible.

本実施の形態は上記する課題を解消するためのものであり、そのための構成として、ガラス基材の表面に透明基材と略同一の屈折率を備えた透明液体を接触させ、この透明液体を介してガラス基材上に透明基材を載置した姿勢でレーザ加工を実施するものである。ここで、略同一の屈折率とは、同一の屈折率と近似した屈折率の双方を含むものである。   The present embodiment is for solving the above-mentioned problems. As a configuration for this purpose, a transparent liquid having substantially the same refractive index as that of the transparent substrate is brought into contact with the surface of the glass substrate, and this transparent liquid is used. Then, laser processing is performed in a posture in which a transparent substrate is placed on a glass substrate. Here, the substantially same refractive index includes both the same refractive index and an approximate refractive index.

透明液体が透明基材表面の凹凸内に入り込むことで該表面をフラット面とし、さらに、この透明液体が透明基材と同程度の屈折率を有していることにより、透明基材表面の平坦性の程度に関わらず、入射レーザ光の散乱を効果的に抑止することができる。   The transparent liquid enters the irregularities on the surface of the transparent substrate to make the surface a flat surface. Further, the transparent liquid has a refractive index comparable to that of the transparent substrate, so that the surface of the transparent substrate is flat. Regardless of the degree of the property, the scattering of the incident laser light can be effectively suppressed.

さらに、本発明による電解質膜の製造方法は、前記レーザ加工方法によって製造された多孔質の透明基材に対し、各孔に電解質樹脂を充填することにより、燃料電池用の細孔フィリング電解質膜を製造するものである。   Furthermore, in the method for producing an electrolyte membrane according to the present invention, a pore filling electrolyte membrane for a fuel cell is formed by filling each pore with an electrolyte resin in the porous transparent substrate produced by the laser processing method. To manufacture.

本製造方法によって製造される電解質膜は、固体高分子形燃料電池(PEFC)や直接メタノール形燃料電池(DMFC)等の電解質膜をその用途とするものである。   The electrolyte membrane produced by this production method uses an electrolyte membrane such as a polymer electrolyte fuel cell (PEFC) or a direct methanol fuel cell (DMFC).

上記する本発明のレーザ加工方法によって製造された多孔質の透明基材は、超微細径で高アスペクト比の加工孔を多数備えており、本発明の電解質膜の製造方法によってこれらの加工孔に電解質樹脂が充填されることにより、プロトン伝導性は充填樹脂が負担し、膜自体の機械的強度は透明基材が負担することで、高品質な電解質膜を製造することが可能となる。   The porous transparent substrate manufactured by the laser processing method of the present invention described above has a large number of processing holes having an ultrafine diameter and a high aspect ratio, and these processing holes are formed by the manufacturing method of the electrolyte membrane of the present invention. By filling the electrolyte resin, the proton resin bears the proton conductivity, and the mechanical strength of the film itself is borne by the transparent substrate, so that a high-quality electrolyte membrane can be manufactured.

以上の説明から理解できるように、本発明の透明基材のレーザ加工方法によれば、透明基材に対して、超微細で高アスペクト比の加工孔を高精度でかつ効率的に製造することができる。また、本発明の電解質膜の製造方法によれば、このレーザ加工方法によって製造された多孔質透明基材の加工孔に樹脂を充填して電解質膜とすることにより、プロトン伝導性と機械的強度の双方に優れた高品質な燃料電池用電解質膜を製造することができる。   As can be understood from the above description, according to the laser processing method for a transparent substrate of the present invention, an ultrafine and high aspect ratio processed hole can be manufactured with high accuracy and efficiency with respect to the transparent substrate. Can do. Also, according to the method for producing an electrolyte membrane of the present invention, proton conductivity and mechanical strength can be obtained by filling a resin into the processing holes of the porous transparent substrate produced by this laser processing method to form an electrolyte membrane. It is possible to manufacture a high-quality electrolyte membrane for a fuel cell that is excellent in both of the above.

以下、図面を参照して本発明の実施の形態を説明する。図1は本発明のレーザ加工方法を実施するためのレーザ加工装置の構成図であり、図2は真空容器を拡大した図である。図3は図2のIII部の拡大図であって、図3a、bの順に加工進度が進展している状況を説明した図である。図4aは製造された多孔質透明基材を示した斜視図であり、図4bは製造された細孔フィリング電解質膜を示した斜視図である。なお、図示するレーザ加工方法の実施の形態は、燃料電池用の細孔フィリング電解質膜を形成するために透明基材に微細加工孔を形成することをその対象としているが、微細加工孔が形成される多孔質透明基材がかかる用途に限定されるものでないことは勿論のことである。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram of a laser processing apparatus for carrying out the laser processing method of the present invention, and FIG. 2 is an enlarged view of a vacuum vessel. FIG. 3 is an enlarged view of a part III in FIG. 2, and is a diagram illustrating a situation in which the processing progress progresses in the order of FIGS. FIG. 4A is a perspective view showing the manufactured porous transparent substrate, and FIG. 4B is a perspective view showing the manufactured pore filling electrolyte membrane. The embodiment of the laser processing method shown in the drawing is intended to form a microfabricated hole in a transparent substrate in order to form a pore filling electrolyte membrane for a fuel cell, but the microfabricated hole is formed. It goes without saying that the porous transparent substrate to be used is not limited to such applications.

図1は、樹脂製の透明基材に多数の微細加工孔を形成するための装置を示したものであり、図2は真空容器をより拡大した図である。このレーザ加工装置10は、超短パルスレーザ光としてフェムト秒レーザ光を照射するレーザ発振機1と、照射されたフェムト秒レーザ光L1を受光して複数の光束に回折する回折格子2と、回折格子2によって分離された光束L2を相互に干渉させるための集光光学系を構成する凸レンズ3,4と、光束L2が交差干渉してできる干渉光L3が照射されるとともに透明基材Wを収容する真空容器8とから大略構成されている。このレーザ発振機1と回折格子2の間には不図示の増幅機を備えていてもよい。   FIG. 1 shows an apparatus for forming a large number of microfabricated holes in a resin-made transparent substrate, and FIG. 2 is an enlarged view of a vacuum vessel. This laser processing apparatus 10 includes a laser oscillator 1 that emits femtosecond laser light as ultrashort pulse laser light, a diffraction grating 2 that receives the irradiated femtosecond laser light L1 and diffracts it into a plurality of light beams, Convex lenses 3 and 4 constituting a condensing optical system for causing the light beam L2 separated by the grating 2 to interfere with each other, and the interference light L3 formed by the cross interference of the light beam L2 and the transparent substrate W are accommodated. The vacuum vessel 8 is generally configured. An amplifier (not shown) may be provided between the laser oscillator 1 and the diffraction grating 2.

回折格子2は、その種類によって分割される光束数を適宜調整することができ、光束回折角度等を調整することもできる。   The diffraction grating 2 can appropriately adjust the number of light beams divided depending on the type, and can also adjust the light beam diffraction angle and the like.

凸レンズ3,4の配設態様、たとえば、それらの離間長や凸レンズ4からワークである透明基材Wまでの離間長は、干渉光L3の干渉波の周期を決定するものであることから、一度のレーザ照射にて形成するべき微細加工孔の数量等に基づいて適宜調整される。   Since the arrangement of the convex lenses 3 and 4, for example, the separation length thereof and the separation length from the convex lens 4 to the transparent base material W that is a work, determine the period of the interference wave of the interference light L 3. The number is adjusted as appropriate based on the number of fine holes to be formed by laser irradiation.

なお、凸レンズ3にて分割された光束のうち、0次の光束はダンプ9にて遮断されるようになっている。   Of the light beams divided by the convex lens 3, the zero-order light beam is blocked by the dump 9.

レーザ加工装置10は、透明基材Wに形成される微細加工孔の加工進度に応じてこの加工孔の底面のレベルをセンシングするCCDカメラ等からなるセンサ6、さらには、真空容器8を微細加工孔の加工進度に応じて移動制御するためのサーボモータ5とこの回転駆動にて真空容器を直接移動させる送りねじ機構5’をさらに備えており、制御装置7がセンサ6によるセンシング信号を受信し、この受信信号に応じてサーボモータ5を回転駆動することで真空容器8の移動制御が実行される。さらに、レーザ発振機1の駆動制御もこの制御装置7にて実行されるものであり、たとえばレーザの1ショットで列を成す複数の微細加工孔が形成された後に、後続の列に同様にレーザの1ショットが照射されるようになっている。なお、図示する送りねじ機構5’の移動方向をZ軸方向とした場合に、図示するサーボモータ5および送りねじ機構5’のほかにも、真空容器8を該Z軸方向に直交するXY平面内で移動させるためのアクチュエータを備えていてもよい。さらには、これらXYZ方向制御用の各アクチュエータの2以上が同期制御されることにより、真空容器8の3次元的な姿勢制御がおこなわれるものであってもよい。   The laser processing apparatus 10 performs micro processing on the sensor 6 including a CCD camera or the like that senses the level of the bottom surface of the processing hole according to the processing progress of the micro processing hole formed in the transparent substrate W, and further on the vacuum vessel 8 A servo motor 5 for controlling movement according to the processing progress of the hole and a feed screw mechanism 5 ′ for directly moving the vacuum vessel by this rotational drive are further provided, and the control device 7 receives a sensing signal from the sensor 6. The movement of the vacuum vessel 8 is controlled by rotationally driving the servo motor 5 according to the received signal. Further, the drive control of the laser oscillator 1 is also executed by the control device 7. For example, after a plurality of micro-machined holes forming a row by one shot of the laser are formed, the laser is similarly applied to the subsequent rows. Is shot. When the illustrated moving direction of the feed screw mechanism 5 ′ is the Z-axis direction, in addition to the illustrated servo motor 5 and feed screw mechanism 5 ′, the vacuum vessel 8 is placed in an XY plane perpendicular to the Z-axis direction. There may be provided an actuator for moving the inside. Furthermore, three-dimensional attitude control of the vacuum vessel 8 may be performed by synchronously controlling two or more of these actuators for XYZ direction control.

図2で示すように、真空容器8は、外部から内部を視認できる透明な容器81が、ガラス基材83の上にその開口を該ガラス基材83で塞がれるようにして載置される。この容器81には真空吸引口82が設けられており、これを介して容器81の内部を減圧雰囲気、好ましくは不透明液体の蒸気圧を勘案した真空雰囲気とすべく真空引きがおこなわれる(図中の矢印方向)。   As shown in FIG. 2, the vacuum container 8 is placed on a glass base 83 with a transparent container 81 whose inside can be visually recognized from the outside so that the opening is closed by the glass base 83. . The container 81 is provided with a vacuum suction port 82, through which a vacuum is drawn so that the inside of the container 81 has a reduced pressure atmosphere, preferably a vacuum atmosphere taking into account the vapor pressure of the opaque liquid (in the drawing). Arrow direction).

ガラス基材83の容器81側の側面には透明基材Wと同素材で同一の屈折率を有する透明液体Tが塗布もしくは散布されており、この透明液体Tを介して透明基材Wが載置されている。   A transparent liquid T, which is the same material as the transparent base W and has the same refractive index, is applied or dispersed on the side surface of the glass base 83 on the container 81 side, and the transparent base W is placed through the transparent liquid T. Is placed.

この透明基材Wの透明液体Tと接触する側と反対側の側面(図中の上面)には、光吸収性の不透明液体Fが塗布もしくは散布されている。この不透明液体Fとしては、n−メチル−2−ピロリドン、N,N−ジメチルホルムアミドなどの有機溶媒や苛性ソーダなどの高濃度アルカリ溶液にローダミン(Rhodamine)などのレーザ色素や、染料、顔料などを添加してより光吸収性を高めた液体を使用してもよい。   On the side surface (upper surface in the figure) opposite to the side in contact with the transparent liquid T of the transparent substrate W, a light-absorbing opaque liquid F is applied or dispersed. As this opaque liquid F, a laser pigment such as rhodamine, a dye or a pigment is added to an organic solvent such as n-methyl-2-pyrrolidone or N, N-dimethylformamide or a high concentration alkaline solution such as caustic soda. Thus, a liquid having higher light absorption may be used.

図示するように、微細加工孔Pの底面には不透明液体Fが浸透しており、レーザ光がこの底面(不透明液体F)との界面に照射されることで微細加工孔の加工が実行される。ここで、容器81内の真空引きは、不透明液体が沸騰しない条件下で一気に真空雰囲気とすることのほかに、加工孔の加工進度に応じて除々に真空度を増加させるような調整をおこなってもよい。   As shown in the drawing, the opaque liquid F permeates the bottom surface of the microfabricated hole P, and the microfabricated hole is processed by irradiating the interface with the bottom surface (opaque liquid F) with laser light. . Here, the vacuum in the container 81 is adjusted so as to gradually increase the degree of vacuum according to the processing progress of the processing hole, in addition to making the vacuum atmosphere at a stretch under the condition that the opaque liquid does not boil. Also good.

図示するレーザ加工装置10を使用したレーザ加工方法では、容器81内を減圧雰囲気とした姿勢で干渉光L3を透明基材Wに照射することにより、加工孔が超微細径であっても効果的に加工孔内の孔底面まで不透明液体を浸透させることができ、孔加工の全般に亘って不透明液体と透明基材との界面を確実に形成することが可能となる。   In the laser processing method using the laser processing apparatus 10 shown in the drawing, the transparent substrate W is irradiated with the interference light L3 in a posture in which the inside of the container 81 is in a reduced pressure atmosphere, so that it is effective even if the processing hole has an ultrafine diameter. Thus, the opaque liquid can be permeated to the bottom of the hole in the processed hole, and the interface between the opaque liquid and the transparent substrate can be surely formed throughout the hole processing.

さらに、図示のごとく透明基材Wの表面に微細な凹凸Cが存在している場合でも、透明液体Tがこの凹凸C内を満たし、よって、この凹凸Cにて干渉光L3が散乱されることなく目標の上記界面に干渉光を合焦させることができる。   Further, as shown in the figure, even when fine irregularities C exist on the surface of the transparent substrate W, the transparent liquid T fills the irregularities C, and therefore the interference light L3 is scattered by the irregularities C. The interference light can be focused on the target interface.

図3は、微細加工孔Pの底面であってこれに浸透した不透明液体Fと透明基材Wの界面Bに光の強い部分Sが合焦された姿勢でレーザ加工が進展している状況を説明した図である。図3aは微細加工孔Pの加工初期段階を示しており、加工が進展するにつれて、図3bのごとくアスペクト比の高い微細加工孔Pが形成される(同図にて加工進展方向を矢印Zで示している)。さらに、加工が進むと、透明基材Wに微細な貫通孔が形成されることになる。なお、図3b下には、位置(X軸)と光の強さ(I)に関する強度グラフを示している。   FIG. 3 shows a situation in which laser processing is progressing in a posture where a strong light portion S is focused on the interface B between the opaque liquid F and the transparent base material W which penetrates the bottom surface of the fine processing hole P. FIG. FIG. 3A shows an initial stage of processing of the micro-processed hole P. As the process progresses, a micro-processed hole P having a high aspect ratio is formed as shown in FIG. 3B (in FIG. 3B, the process progress direction is indicated by an arrow Z). Shown). Further, when the processing proceeds, fine through holes are formed in the transparent substrate W. Note that an intensity graph relating to the position (X axis) and the light intensity (I) is shown below FIG.

既述するように、図3で示す微細加工孔Pの加工においては、界面Bのレベルがセンサ6にて随時センシングされており、このセンシングデータが制御装置7に送信され、受信データに基づいて制御装置7がサーボモータ5を駆動し、送りねじ機構5’を構成するねじ部材の回転制御およびこれに応じたナットおよび真空容器8の移動制御が実行されるものである。   As described above, in the processing of the microfabricated hole P shown in FIG. 3, the level of the interface B is sensed at any time by the sensor 6, and this sensing data is transmitted to the control device 7 and based on the received data. The control device 7 drives the servo motor 5 to execute rotation control of the screw member constituting the feed screw mechanism 5 'and movement control of the nut and the vacuum vessel 8 according to this.

上記するレーザ加工方法によれば、まず、フェムト秒レーザ光の干渉光を利用することによって、一気に複数の微細加工孔を加工することができる。また、真空容器内に透明基材を収容してレーザ加工を実行することにより、超微細でアスペクト比の高い加工孔を精度よく、効率的に形成することができる。さらに、透明基材表面に凹凸や傷等が存在する場合(これは往々にしてあることである)でも、干渉光をこれら凹凸等で散乱させることなく、精度よく加工部位に合焦させることができる。   According to the laser processing method described above, a plurality of microfabricated holes can be processed at once by using interference light of femtosecond laser light. Moreover, by accommodating a transparent base material in a vacuum vessel and executing laser processing, it is possible to accurately and efficiently form ultrafine and high aspect ratio processed holes. Furthermore, even when there are irregularities or scratches on the surface of the transparent substrate (this is often the case), it is possible to accurately focus the processing site without scattering the interference light by these irregularities or the like. it can.

図4aは、上記するレーザ加工方法によって製造された多孔質透明基材Waを示したものである。この多孔質透明基材Waには、透明基材Wの広幅の両側面間を貫通する多数の微細貫通孔Paが形成されている。   FIG. 4a shows a porous transparent substrate Wa manufactured by the laser processing method described above. In this porous transparent substrate Wa, a large number of fine through holes Pa penetrating between both wide side surfaces of the transparent substrate W are formed.

この多孔質透明基材Waの各微細貫通孔Paに電解質樹脂Rが充填されることにより、図4bで示すような細孔フィリング電解質膜Wbが製造される。   By filling each fine through-hole Pa of the porous transparent substrate Wa with the electrolyte resin R, a pore filling electrolyte membrane Wb as shown in FIG. 4B is manufactured.

この細孔フィリング電解質膜Wbは、固体高分子形燃料電池(PEFC)や直接メタノール形燃料電池(DMFC)等の電解質膜として使用されるものであり、プロトン伝導性と機械的強度の双方に優れた電解質膜となる。   The pore filling electrolyte membrane Wb is used as an electrolyte membrane for a polymer electrolyte fuel cell (PEFC) or a direct methanol fuel cell (DMFC), and is excellent in both proton conductivity and mechanical strength. The resulting electrolyte membrane.

以上、本発明の実施の形態を図面を用いて詳述してきたが、具体的な構成はこの実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲における設計変更等があっても、それらは本発明に含まれるものである。   The embodiment of the present invention has been described in detail with reference to the drawings. However, the specific configuration is not limited to this embodiment, and there are design changes and the like without departing from the gist of the present invention. They are also included in the present invention.

本発明のレーザ加工方法を実施するためのレーザ加工装置の構成図である。It is a block diagram of the laser processing apparatus for enforcing the laser processing method of this invention. 真空容器を拡大した図である。It is the figure which expanded the vacuum vessel. 図2のIII部の拡大図であって、(a)、(b)の順に加工進度が進展している状況を説明した図である。It is the enlarged view of the III section of Drawing 2, and is a figure explaining the situation where processing progress is progressing in order of (a) and (b). (a)は製造された多孔質透明基材を示した斜視図であり、(b)は製造された細孔フィリング電解質膜を示した斜視図である。(A) is the perspective view which showed the manufactured porous transparent base material, (b) is the perspective view which showed the manufactured pore filling electrolyte membrane.

符号の説明Explanation of symbols

1…レーザ発振機、2…回折格子、3,4…凸レンズ、5…サーボモータ、5’…送りねじ機構、6…センサ、7…制御装置、8…真空容器、81…容器、82…真空吸引口、83…ガラス基材、9…ダンプ、10…レーザ加工装置、W…透明基材、Wa…多孔質透明基材、Wb…細孔フィリング電解質膜、F…不透明液体、T…透明液体、P…微細加工孔、Pa…微細貫通孔、R…電解質樹脂、B…界面、S…光の強い部分、C…凹凸   DESCRIPTION OF SYMBOLS 1 ... Laser oscillator, 2 ... Diffraction grating, 3, 4 ... Convex lens, 5 ... Servo motor, 5 '... Feed screw mechanism, 6 ... Sensor, 7 ... Control apparatus, 8 ... Vacuum container, 81 ... Container, 82 ... Vacuum Suction port, 83 ... glass substrate, 9 ... dump, 10 ... laser processing device, W ... transparent substrate, Wa ... porous transparent substrate, Wb ... pore filling electrolyte membrane, F ... opaque liquid, T ... transparent liquid , P ... finely processed hole, Pa ... fine through-hole, R ... electrolyte resin, B ... interface, S ... strong light part, C ... unevenness

Claims (6)

光透過性の透明基材の一側面側を減圧雰囲気とし、かつ、該一側面を光吸収性の不透明液体に接触させておき、
前記透明基材の他側面側から超短パルスレーザ光の干渉光を照射して該透明基材を透過させ、透明基材と不透明液体の界面付近に前記干渉光のレーザエネルギを集中させることで透明基材に微細加工孔を形成することを特徴とする、透明基材のレーザ加工方法。
One side of the light-transmitting transparent substrate is in a reduced pressure atmosphere, and the one side is in contact with a light-absorbing opaque liquid,
By irradiating interference light of ultrashort pulse laser light from the other side surface of the transparent base material, transmitting the transparent base material, and concentrating the laser energy of the interference light near the interface between the transparent base material and the opaque liquid A laser processing method for a transparent substrate, wherein finely processed holes are formed in the transparent substrate.
ガラス基材の一側面に前記透明基材と略同一の屈折率を備えた透明液体を接触させ、該透明液体を介して該ガラス基材の一側面上に該透明基材の他側面が載置され、該ガラス基材の他側面側から超短パルスレーザ光の干渉光が照射されることを特徴とする、請求項1に記載の透明基材のレーザ加工方法。   A transparent liquid having substantially the same refractive index as that of the transparent base is brought into contact with one side of the glass base, and the other side of the transparent base is placed on one side of the glass base through the transparent liquid. 2. The laser processing method for a transparent substrate according to claim 1, wherein interference light of an ultrashort pulse laser beam is irradiated from the other side of the glass substrate. 前記超短パルスレーザ光がフェムト秒レーザ光であることを特徴とする、請求項1または2に記載の透明基材のレーザ加工方法。   The laser processing method for a transparent substrate according to claim 1, wherein the ultrashort pulse laser beam is a femtosecond laser beam. 前記不透明液体が、有機溶媒、高濃度アルカリ溶液のいずれか一種からなる、請求項1〜3のいずれかに記載の透明基材のレーザ加工方法。   The laser processing method of the transparent base material in any one of Claims 1-3 in which the said opaque liquid consists of any one of an organic solvent and a high concentration alkaline solution. 前記不透明液体に染料、顔料のいずれか一種が添加されている、請求項1〜4のいずれかに記載の透明基材のレーザ加工方法。   The laser processing method for a transparent substrate according to any one of claims 1 to 4, wherein any one of a dye and a pigment is added to the opaque liquid. 請求項1〜5のいずれかに記載のレーザ加工方法によって多孔質の透明基材が形成され、次いで各孔に電解質樹脂が充填されることで燃料電池用の細孔フィリング電解質膜が製造される、電解質膜の製造方法。   A porous transparent substrate is formed by the laser processing method according to claim 1, and then a pore filling electrolyte membrane for a fuel cell is manufactured by filling each hole with an electrolyte resin. The manufacturing method of an electrolyte membrane.
JP2008117231A 2008-04-28 2008-04-28 Laser beam machining method for transparent base material, and manufacturing method for electrolyte membrane Withdrawn JP2009262216A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008117231A JP2009262216A (en) 2008-04-28 2008-04-28 Laser beam machining method for transparent base material, and manufacturing method for electrolyte membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008117231A JP2009262216A (en) 2008-04-28 2008-04-28 Laser beam machining method for transparent base material, and manufacturing method for electrolyte membrane

Publications (1)

Publication Number Publication Date
JP2009262216A true JP2009262216A (en) 2009-11-12

Family

ID=41388719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008117231A Withdrawn JP2009262216A (en) 2008-04-28 2008-04-28 Laser beam machining method for transparent base material, and manufacturing method for electrolyte membrane

Country Status (1)

Country Link
JP (1) JP2009262216A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012160659A (en) * 2011-02-02 2012-08-23 Tokyo Seimitsu Co Ltd Apparatus and method for laser dicing and method for processing wafer
JP2012248704A (en) * 2011-05-27 2012-12-13 Tokyo Seimitsu Co Ltd Laser dicing device and method
JP2014007419A (en) * 2010-11-16 2014-01-16 Tokyo Seimitsu Co Ltd Laser dicing method and device
WO2016174871A1 (en) * 2015-04-30 2016-11-03 日東電工株式会社 Polymer resin film, and air permeable film, sound permeable film, acoustic resistor, air permeable film member, sound permeable film member, acoustic resistor member, and acoustic equipment provided with said polymer resin film, and method for manufacturing polymer resin film
CN112792006A (en) * 2020-12-29 2021-05-14 比亚迪股份有限公司 Method and equipment for removing pole piece active substances

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014007419A (en) * 2010-11-16 2014-01-16 Tokyo Seimitsu Co Ltd Laser dicing method and device
JP2012160659A (en) * 2011-02-02 2012-08-23 Tokyo Seimitsu Co Ltd Apparatus and method for laser dicing and method for processing wafer
JP2012248704A (en) * 2011-05-27 2012-12-13 Tokyo Seimitsu Co Ltd Laser dicing device and method
WO2016174871A1 (en) * 2015-04-30 2016-11-03 日東電工株式会社 Polymer resin film, and air permeable film, sound permeable film, acoustic resistor, air permeable film member, sound permeable film member, acoustic resistor member, and acoustic equipment provided with said polymer resin film, and method for manufacturing polymer resin film
TWI682948B (en) * 2015-04-30 2020-01-21 日商日東電工股份有限公司 Polymer resin film, gas-permeable membrane, sound-permeable membrane, acoustic resistor, gas-permeable membrane member, sound-permeable membrane member, acoustic resistor member, acoustic device, and manufacturing method of polymer resin membrane
US10679598B2 (en) 2015-04-30 2020-06-09 Nitto Denko Corporation Polymer resin film, and air-permeable membrane, sound-permeable membrane, acoustic resistor, air-permeable membrane member, sound-permeable membrane member, acoustic resistor member, and audio device that include the polymer resin film, and method for producing the polymer resin film
CN112792006A (en) * 2020-12-29 2021-05-14 比亚迪股份有限公司 Method and equipment for removing pole piece active substances

Similar Documents

Publication Publication Date Title
Ravi‐Kumar et al. Laser ablation of polymers: A review
JP7449995B2 (en) How to divide composite materials
Klank et al. CO 2-laser micromachining and back-end processing for rapid production of PMMA-based microfluidic systems
JP2009262216A (en) Laser beam machining method for transparent base material, and manufacturing method for electrolyte membrane
JP7232840B2 (en) Use of lasers to reduce reflection of transparent solids, coatings and devices using transparent solids
Wang et al. Femtosecond laser-induced modification of surface wettability of PMMA for fluid separation in microchannels
JP2006068762A (en) Method and apparatus of laser beam machining
US20200368846A1 (en) Laser processing method for long film
JP2011110598A (en) Laser machining method and laser machining device
JP4247383B2 (en) Fine ablation processing method of transparent material
CN104203485B (en) Ultrafast laser is used to manufacture equipment and the method for micro-breach at the edge line part place of stitch marker
CN102601522B (en) Method for assisting supercritical fluid in micromachining of high polymer materials through femtosecond laser
JP2007290304A5 (en) Brittle sheet material cutting method and brittle sheet material cutting device
CN111386172B (en) Laser processing method for plastic film and plastic film
CN110587159A (en) System and method for monitoring laser processing performance in real time
JP2005084617A (en) Method and device for multiple photon absorption exposure
JP2009051872A (en) Method for producing porous membrane, method for producing polymer electrolyte, porous membrane, polyelectrolyte membrane, and solid polymer fuel cell
TW200705440A (en) Lens positioning method, cutting method, positioning method, and cutting apparatus
Sen et al. Parametric influences of fiber laser micro-machining for the generation of micro-channels on PMMA
JP4456881B2 (en) Laser processing equipment
Loumena et al. Potentials for lasers in CFRP production
KR102222245B1 (en) Micropatterning method of silicone-based elastomers, micropatterning apparatus, and micropatterning chip
JP2004283871A (en) Method for manufacturing plastic structural body having micropore part and plastic structural body having micropore part made by the same method
CN210649092U (en) Multi-shape deep micropore laser processing system
Zhou et al. Enhanced photonic nanojets for submicron patterning

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110705