JP2009260333A - Oxide film modification method and apparatus therefor, and processing apparatus - Google Patents

Oxide film modification method and apparatus therefor, and processing apparatus Download PDF

Info

Publication number
JP2009260333A
JP2009260333A JP2009076899A JP2009076899A JP2009260333A JP 2009260333 A JP2009260333 A JP 2009260333A JP 2009076899 A JP2009076899 A JP 2009076899A JP 2009076899 A JP2009076899 A JP 2009076899A JP 2009260333 A JP2009260333 A JP 2009260333A
Authority
JP
Japan
Prior art keywords
oxide film
substrate
ozone
film
cvd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009076899A
Other languages
Japanese (ja)
Inventor
Shigeru Saito
茂 斉藤
Tetsuya Nishiguchi
哲也 西口
Naoto Kameda
直人 亀田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2009076899A priority Critical patent/JP2009260333A/en
Publication of JP2009260333A publication Critical patent/JP2009260333A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Formation Of Insulating Films (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve film quality of an oxide film deposited by chemical vapor deposition. <P>SOLUTION: An oxide film modification apparatus 1 is provided with: a treatment furnace 3 which stores a substrate 2 with the oxide film (for example, silicon oxide film) deposited thereon by the chemical vapor deposition, and which is supplied with ozone-containing gas; and a light source 4 which irradiates the oxide film on the substrate 2 in the treatment furnace 3 with light having ultraviolet light. The light source 4 performs irradiation with the light concurrently with supply of the ozone-containing gas. Pressure of atmosphere of the ozone-containing gas is controlled, for example, to 0.1-30 Pa. Ozone concentration of the ozone-containing gas is, for example, 0.1-100 vol.%. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は化学蒸着法によって形成された基板上の酸化膜の膜質を向上させるための技術に関する。   The present invention relates to a technique for improving the quality of an oxide film on a substrate formed by chemical vapor deposition.

ガラスやプラスチック基板上に薄膜トランジスタ形成する場合、プロセス温度や膜厚の制約から一般的に化学蒸着法(CVD)によって形成されたシリコン酸化膜(以下、CVD‐SiO2膜)が用いられている。 When a thin film transistor is formed on a glass or plastic substrate, a silicon oxide film (hereinafter referred to as a CVD-SiO 2 film) formed by a chemical vapor deposition method (CVD) is generally used because of limitations on process temperature and film thickness.

前記化学蒸着法としては、HTO−CVD(High Temperature Oxide Chamical Vaper Deposision),TEOS−CVD(Tetra Ethyl Ortho Silicate Chamical Vaper Deposision)等が挙げられる。   Examples of the chemical vapor deposition method include HTO-CVD (High Temperature Oxide Chemical Vapor Deposition), TEOS-CVD (Tetra Ethyl Ortho Silica Chemical Vapor Deposition), and the like.

しかし、一般的にCVD-SiO2膜は熱酸化膜やラジカル酸化膜よりも絶縁特性が劣るため、膜質の改善が求められている。近年、ポストオゾン処理によってCVD-SiO2膜の密度が向上することが報告されている(非特許文献1等参照)。 However, the CVD-SiO 2 film is generally inferior to the thermal oxide film and the radical oxide film in insulating properties, and therefore, improvement in film quality is required. In recent years, it has been reported that the density of the CVD-SiO 2 film is improved by the post-ozone treatment (see Non-Patent Document 1, etc.).

また、紫外光の基板上面から照射し、有機ソース原料ガスとオゾン含有ガスを交互に基板に供給して、400℃以下の低温で絶縁特性が高い高品質のCVD膜を製膜する技術が報告されている(特許文献1等参照)。   Also reported is a technology to irradiate UV light from the upper surface of the substrate, and alternately supply organic source material gas and ozone-containing gas to the substrate to form a high quality CVD film with high insulation characteristics at a low temperature of 400 ° C or lower. (See Patent Document 1 etc.).

特開2006−80474号公報JP 2006-80474 A

河瀬和雅他,第68回応用物理学会学術講演会予稿集,2007年9月,No.2,8a‐ZM‐7Kazumasa Kawase et al., Proceedings of the 68th Japan Society of Applied Physics, September 2007, No. 2,8a-ZM-7

半導体プロセスのゲート酸化膜には絶縁特性の高い熱酸化膜やラジカル酸化膜が用いられている。しかしながら、熱酸化膜やラジカル酸化膜はSi基板上にしか形成できないなどの制約を受け、熱酸化膜は700℃以上の高温を必要とし、ラジカル酸化は厚膜酸化が困難である。   A thermal oxide film or a radical oxide film having high insulation characteristics is used as a gate oxide film in a semiconductor process. However, the thermal oxide film and the radical oxide film are limited only to be formed on the Si substrate, and the thermal oxide film requires a high temperature of 700 ° C. or higher, and the radical oxidation is difficult to oxidize thick.

また、低温poly‐SiTFT等のデバイスにおいては、絶縁特性の高い熱酸化膜やラジカル酸化はデバイス構造やプロセス温度の制約を受けるので不適切である。低温Poly‐SiTFTなどの絶縁膜は一般的にCVD‐SiO2膜が主流となっている。しかしながら、CVD‐SiO2膜は酸素欠損が多く、熱酸化膜やラジカル酸化膜よりも絶縁特性が劣る。 In addition, in a device such as a low-temperature poly-Si TFT, a thermal oxide film or radical oxidation having high insulating characteristics is inappropriate because it is restricted by the device structure and process temperature. Insulating films such as low-temperature poly-Si TFTs are generally CVD-SiO 2 films. However, the CVD-SiO 2 film has many oxygen vacancies and is inferior in insulating properties to the thermal oxide film and radical oxide film.

そこで、2層構造ゲート酸化膜の第1層の絶縁膜を形成し、界面準位密度のばらつきを抑制する方法が採られる。しかしながら、上記2層構造ゲート酸化膜の形成は、いくつかの工程を経てできるものであり、スループットの面においては不適切である。   Therefore, a method of forming a first insulating film of a two-layer structure gate oxide film and suppressing variation in interface state density is adopted. However, the formation of the two-layer structure gate oxide film can be performed through several steps, and is inappropriate in terms of throughput.

前記課題を解決するための酸化膜改質方法は、化学蒸着法によって形成された基板上の酸化膜に対してオゾン含有ガスを供給すると共に紫外光を有する光を照射する。   In the oxide film modification method for solving the above problems, an ozone-containing gas is supplied to an oxide film on a substrate formed by chemical vapor deposition, and light having ultraviolet light is irradiated.

また、前記課題を解決するための酸化膜改質装置は、化学蒸着法によって酸化膜が形成された基板を格納すると共にオゾン含有ガスが供給される処理炉と、この処理炉内の基板上の酸化膜に紫外光を有する光を照射する光源とを備える。   In addition, an oxide film reforming apparatus for solving the above problems includes a processing furnace in which a substrate on which an oxide film is formed by chemical vapor deposition is stored and an ozone-containing gas is supplied, and a substrate on the substrate in the processing furnace. And a light source for irradiating the oxide film with light having ultraviolet light.

さらに、前記課題を解決するためのプロセス装置は、化学蒸着法によって基板上に酸化膜を形成させる炉と、この炉から供給された基板上の酸化膜を改質させる酸化膜改質装置を備え、前記酸化膜改質装置は、前記酸化膜が形成された基板を格納すると共にオゾン含有ガスが供給される処理炉と、この処理炉内の基板上の酸化膜に紫外光を有する光を照射する光源を備える。   Furthermore, a process apparatus for solving the above-described problems includes a furnace for forming an oxide film on a substrate by a chemical vapor deposition method, and an oxide film reforming apparatus for modifying the oxide film on the substrate supplied from the furnace. The oxide film reforming apparatus stores a substrate on which the oxide film is formed and supplies an ozone-containing gas, and irradiates the oxide film on the substrate in the processing furnace with light having ultraviolet light. A light source is provided.

以上の酸化膜改質方法とその装置及びプロセス装置によれば、オゾン含有ガスと紫外光を有する光との反応によって生じた励起状酸素原子の作用により電気特性低下の原因となる酸化膜の主成分元素と水酸基との結合が減少するので、絶縁特性、エッチング耐性、さらには電気膜厚、比誘電率が高まると共に固定電荷が低減する。特に、前記プロセス装置によれば、前記のようなよう良質な膜質の酸化膜を有する基板のスループットが向上する。   According to the above oxide film modification method, apparatus, and process apparatus, the main characteristic of the oxide film that causes a decrease in electrical characteristics due to the action of excited oxygen atoms generated by the reaction between ozone-containing gas and light having ultraviolet light. Since the bond between the component element and the hydroxyl group is reduced, the insulating property, etching resistance, electric thickness, and relative dielectric constant are increased, and the fixed charge is reduced. In particular, according to the process apparatus, the throughput of the substrate having the high-quality oxide film as described above is improved.

前記プロセス方法及びその装置において、前記光の照射はオゾン含有ガスの供給と同時に行うとよい。酸化膜のエッチング耐性と絶縁特性が向上に寄与する励起状態酸素原子を効率的に生成させることができる。尚、前記プロセス方法及びその装置において、オゾン含有ガスの雰囲気の圧力は例えば0.1〜30Paに制御される。また、オゾン含有ガスのオゾン濃度は例えば0.1〜100vol%に制御される。   In the process method and the apparatus thereof, the light irradiation may be performed simultaneously with the supply of the ozone-containing gas. It is possible to efficiently generate excited-state oxygen atoms that contribute to the improvement of the etching resistance and insulating properties of the oxide film. In the process method and apparatus therefor, the pressure of the ozone-containing gas atmosphere is controlled to 0.1 to 30 Pa, for example. Further, the ozone concentration of the ozone-containing gas is controlled to, for example, 0.1 to 100 vol%.

前記化学蒸着法としては、HTO−CVD,TEOS−CVD等が挙げられる。また、前記酸化膜は化学蒸着法によって形成された基板上のシリコン酸化膜が挙げられる。シリコン酸化膜が形成された基板がプロセス方法及び装置に供されると、オゾン含有ガスと紫外光を有する光との反応によって生じた励起状酸素原子の作用により前記酸化膜のSi−O−Si結合が増大し電気特性低下の原因となるSi−OH結合が減少する。これによりシリコン酸化膜の絶縁特性、エッチング耐性さらには電気膜厚、比誘電率が高まると共に固定電荷が低減する。   Examples of the chemical vapor deposition method include HTO-CVD and TEOS-CVD. The oxide film may be a silicon oxide film on a substrate formed by chemical vapor deposition. When a substrate on which a silicon oxide film is formed is used in a process method and apparatus, Si—O—Si of the oxide film is generated by the action of excited oxygen atoms generated by the reaction between an ozone-containing gas and light having ultraviolet light. Bonds increase and Si—OH bonds that cause a decrease in electrical properties decrease. As a result, the insulating characteristics, etching resistance, electric film thickness, and dielectric constant of the silicon oxide film are increased, and the fixed charge is reduced.

以上の発明によれば化学蒸着法によって形成された酸化膜の絶縁特性、エッチング耐性、電気膜厚、比誘電率が高まると共に固定電荷が低減するので前記酸化膜の膜質が向上する。   According to the above invention, the insulating properties, etching resistance, electric film thickness and relative dielectric constant of the oxide film formed by the chemical vapor deposition method are increased and the fixed charge is reduced, so that the film quality of the oxide film is improved.

発明の実施形態に係る酸化膜形成装置の構成を示した概略断面図。1 is a schematic sectional view showing the configuration of an oxide film forming apparatus according to an embodiment of the invention. 発明の実施形態に係るオゾン含有ガスの供給と紫外光の照射のタイムチャート。The time chart of supply of ozone-containing gas and irradiation of ultraviolet light concerning an embodiment of the invention. 膜厚8.5nmのTEOS‐CVD膜基板を発明の実施例に係るプロセスで処理する前と処理した後のTEOS‐CVD膜基板のSiO2膜のウェットエッチング耐性。The wet etching resistance of the SiO 2 film of the TEOS-CVD film substrate before and after the 8.5 nm thick TEOS-CVD film substrate is processed by the process according to the embodiment of the invention. 膜厚8.5nmのTEOS‐CVD膜基板(3つの同一試料)を発明の実施例に係るプロセスで処理する前と処理した後のTEOS‐CVD膜基板のSiO2膜の電気特性図(I‐V特性図)。Electrical characteristic diagrams of the SiO 2 film of the TEOS-CVD film substrate before and after the 8.5 nm-thickness TEOS-CVD film substrate (three identical samples) is processed by the process according to the embodiment of the invention (I- V characteristic diagram). 膜厚8.5nmのTEOS‐CVD膜基板を発明の実施例に係るプロセスで処理する前と処理した後のTEOS‐CVD膜基板のSiO2膜の電気特性図(C‐V特性図)。Electrical characteristics of the SiO 2 film of TEOS-CVD film substrate after processing prior to treatment with the process according to TEOS-CVD film substrate having a thickness of 8.5nm to an embodiment of the invention Figure (C-V characteristic diagram). 膜厚8.5nmのTEOS‐CVD膜基板を発明の実施例に係るプロセスで処理する前と処理した後の差異を示したスペクトル図。The spectrum figure which showed the difference after processing the TEOS-CVD film | membrane board | substrate with a film thickness of 8.5 nm before processing by the process which concerns on the Example of invention. 膜厚8.5nmのTEOS‐CVD膜基板を発明の実施例に係るプロセスで処理する前と処理した後のTEOS‐CVD膜基板のSiO2膜の比誘電率。The dielectric constant of the SiO 2 film of the TEOS-CVD film substrate before and after the 8.5 nm thick TEOS-CVD film substrate is processed by the process according to the embodiment of the invention. 膜厚50nmのTEOS‐CVD膜基板を発明の実施例に係るプロセスで処理する前と処理した後のTEOS‐CVD膜基板のSiO2膜の電気特性図(I‐V特性図)。Electrical characteristics of the SiO 2 film of TEOS-CVD film substrate after processing prior to treatment with the process according to TEOS-CVD film substrate having a thickness of 50nm to an embodiment of the invention Figure (I-V characteristic diagram). 膜厚9.0nmのHTO‐CVD膜基板を発明の実施例に係るプロセスで処理する前と処理した後のHTO‐CVD膜基板のSiO2膜のウェットエッチング耐性。Wet etching resistance of the SiO 2 film of the HTO-CVD film substrate before and after the 9.0 nm-thickness HTO-CVD film substrate is processed by the process according to the embodiment of the invention. 膜厚9.0nmのHTO‐CVD膜基板を発明の実施例に係るプロセスで処理した後のHTO‐CVD膜基板のSiO2膜の電気特性図(C‐V特性図)。Electrical characteristics of the HTO-CVD film substrate SiO 2 film after treatment in the process according to HTO-CVD film substrate having a thickness of 9.0nm to an embodiment of the invention Figure (C-V characteristic diagram). 膜厚9.0nmのHTO‐CVD膜基板を発明の実施例に係るプロセスで処理する前と処理した後のHTO‐CVD膜基板のSiO2膜の電気特性図(I‐V特性図)。Electrical characteristics of the SiO 2 film of the HTO-CVD film substrate after processing prior to treatment with the process according to HTO-CVD film substrate having a thickness of 9.0nm to an embodiment of the invention Figure (I-V characteristic diagram).

図1は発明の実施形態に係る酸化膜改質装置1の構成を示した概略断面図である。   FIG. 1 is a schematic sectional view showing the configuration of an oxide film reforming apparatus 1 according to an embodiment of the invention.

酸化膜改質装置1は基板2に形成されたCVD膜の清浄化を含むCVD‐SiO2膜の絶縁特性の向上を達成させるためのものである。 The oxide film reforming apparatus 1 is for achieving the improvement of the insulating characteristics of the CVD-SiO 2 film including the cleaning of the CVD film formed on the substrate 2.

CVD‐SiO2膜はSi−C結合またはSi−O結合を有する有機物等からなる原料ガスを用いたCVDによって基板2上に形成された酸化膜を意味する。前記原料ガスとしてはTEOS(Tetra ethyl ortho silicate)、HMDS(Hexamethyldisilazane)、SiH2Cl2(Dichlorosilane)ガスとN2Oガスの混合ガス等が例示される。 The CVD-SiO 2 film means an oxide film formed on the substrate 2 by CVD using a source gas made of an organic material having Si—C bonds or Si—O bonds. Examples of the source gas include TEOS (Tetra ethyl orthosilicate), HMDS (Hexamethyldisilazane), a mixed gas of SiH 2 Cl 2 (Dichlorosilane) gas and N 2 O gas, and the like.

具体的には酸化膜改質装置1は基板2に形成されたCVD‐SiO2膜に対して光損傷ダメージを誘発しない少なくとも210nmより長い波長の輝線を有する(少なくとも紫外光を有する)光をオゾン含有ガス雰囲気で照射することにより、CVD‐SiO2膜の絶縁特性を高めている。 Specifically, the oxide film reformer 1 emits light having an emission line having a wavelength longer than 210 nm (having at least ultraviolet light) that does not induce photodamage damage to the CVD-SiO 2 film formed on the substrate 2. Irradiation in a contained gas atmosphere enhances the insulating properties of the CVD-SiO 2 film.

酸化膜改質装置1は、図1に示されたように、オゾン含有ガスが供給されると共に基板2が格納される反応炉3と、この反応炉3内の基板2に対して少なくとも紫外光の領域を含む光を照射するための光源4とを備える。反応炉3には配管5,6が接続されている。配管5はオゾン含有ガスを導入するための配管である。配管6は反応炉3内のガスを排出するための配管である。   As shown in FIG. 1, the oxide film reforming apparatus 1 includes a reaction furnace 3 in which an ozone-containing gas is supplied and a substrate 2 is stored, and at least ultraviolet light with respect to the substrate 2 in the reaction furnace 3. And a light source 4 for irradiating light including the region. Pipes 5 and 6 are connected to the reaction furnace 3. The pipe 5 is a pipe for introducing an ozone-containing gas. The pipe 6 is a pipe for discharging the gas in the reaction furnace 3.

反応炉3としては基板2のみを加熱することができるコールドウォール方式のCVD減圧炉を適用させるとよい。例えば、減圧コールド方式の枚葉式が挙げられる。   As the reaction furnace 3, a cold wall type CVD decompression furnace capable of heating only the substrate 2 may be applied. For example, a decompression cold type single wafer type can be mentioned.

反応炉3内のガスの排気は従来のCVD減圧炉で用いるシステムをそのまま用いるとよい。このとき、配管6には、パーティクルトラップ等の除害装置と到達真空度が1Pa程度以下のドライポンプ、例えばメカニカルブースターポンプ(例えば排気速度1000L/min)が接続される。反応炉3の材質はオゾンに対し反応性がない材料を採用するとよい。例えば、石英、ステンレス、アルミニウム、チタン等が挙げられる。また、反応炉3の天井部には光源4から照射された光(紫外光またはこれと可視光を有する光)を導入するための照射窓7が設けられている。照射窓7は合成石英やMgF2などの結晶材に例示されるような光透過性の材料から成る。 For exhausting the gas in the reaction furnace 3, a system used in a conventional CVD decompression furnace may be used as it is. At this time, a detoxifying device such as a particle trap and a dry pump having a degree of ultimate vacuum of about 1 Pa or less, for example, a mechanical booster pump (for example, exhaust speed 1000 L / min) are connected to the pipe 6. The material of the reaction furnace 3 may be a material that is not reactive with ozone. For example, quartz, stainless steel, aluminum, titanium, etc. are mentioned. In addition, an irradiation window 7 for introducing light (ultraviolet light or light having visible light and this) irradiated from the light source 4 is provided on the ceiling portion of the reaction furnace 3. The irradiation window 7 is made of a light transmissive material as exemplified by a crystal material such as synthetic quartz or MgF 2 .

反応炉3における基板2の設置形態は既知の縦型、横型のいずれの方式を採用してもよい。基板2はセラミックからなるサセプター8に装着させる。サセプター8は反応炉3内で移動可能となるようにステージ9によって支持されている。また、サセプター8は基板2の温度を感知する熱電対からなる温度センサー10を備えている。温度センサー10によって検出された基板2の温度は光源4の照度制御に供される。基板2の温度は予備的なハロゲンランプやヒーターなどの熱源を使用しないで室温のままでよい。   The installation form of the substrate 2 in the reaction furnace 3 may adopt any known vertical type or horizontal type. The substrate 2 is attached to a susceptor 8 made of ceramic. The susceptor 8 is supported by a stage 9 so as to be movable in the reaction furnace 3. The susceptor 8 includes a temperature sensor 10 formed of a thermocouple that senses the temperature of the substrate 2. The temperature of the substrate 2 detected by the temperature sensor 10 is used for illuminance control of the light source 4. The temperature of the substrate 2 may remain at room temperature without using a heat source such as a preliminary halogen lamp or heater.

光源4は少なくとも紫外光領域すなわち210〜300nmの波長帯の光を照射する。前記光は300nmより長波長の光(可視光)を含んでいてもよい。光源4の照度は基板2の表面付近もしくは表面に照射するように調節される。光源4の光は基板2表面に照射されるように設定されるのであれば、光源4の照射方式は特に限定されない。光源4としては例えば高圧水銀ランプが挙げられる。高圧水銀ランプは紫外光領域の光の他に加熱源として利用できる可視光領域(例えば410〜600nm)の光を照射できる。すなわち、可視光領域の光はオゾンガスに吸収されないので、基板2表面の加熱効果を有する。したがって、基板2に予備的な加熱部品が不必要になり、酸化膜改質装置1の構成が簡素化する。   The light source 4 irradiates at least ultraviolet light, that is, light having a wavelength band of 210 to 300 nm. The light may include light having a wavelength longer than 300 nm (visible light). The illuminance of the light source 4 is adjusted so as to irradiate near or on the surface of the substrate 2. The irradiation method of the light source 4 is not particularly limited as long as the light of the light source 4 is set to be irradiated on the surface of the substrate 2. An example of the light source 4 is a high-pressure mercury lamp. The high-pressure mercury lamp can emit light in the visible light region (for example, 410 to 600 nm) that can be used as a heating source in addition to light in the ultraviolet light region. That is, light in the visible light region is not absorbed by the ozone gas, and thus has a heating effect on the surface of the substrate 2. Therefore, preliminary heating parts are not required for the substrate 2, and the configuration of the oxide film reforming apparatus 1 is simplified.

酸化膜改質装置1は図示省略された半導体製造のプロセス装置に係る化学蒸着法によって基板上に酸化膜を形成させる炉(例えば減圧CVDチャンバー)の後段に配置されると、単一のプロセス(1つのチャンバ)でCVD−SiO2膜の改質と界面酸化膜の形成が行うことができる。しがたって、エッチング耐性及び絶縁特性が向上させた酸化膜を有する基板2の処理時間が短縮し、スループットが向上する。 When the oxide film reforming apparatus 1 is disposed at the rear stage of a furnace (for example, a low pressure CVD chamber) for forming an oxide film on a substrate by a chemical vapor deposition method related to a semiconductor manufacturing process apparatus (not shown), a single process ( In one chamber, the CVD-SiO 2 film can be modified and the interface oxide film can be formed. Therefore, the processing time of the substrate 2 having an oxide film with improved etching resistance and insulation characteristics is shortened, and the throughput is improved.

図2は発明の実施形態に係るオゾン含有ガス供給と光照射のタイムチャートである。   FIG. 2 is a time chart of ozone-containing gas supply and light irradiation according to an embodiment of the invention.

図1及び図2を参照しながら酸化膜改質装置1の動作例について説明する。図2のタイムチャートで示したように反応炉3へのオゾン含有ガスの導入と同時に反応炉3内の基板2に対して光源4から紫外光を有する光が照射される。光源4から照射される光の波長は210nmより長い波長に限定される。基板2内の紫外光照射分布は±10%を実現できればよい。   An operation example of the oxide film reforming apparatus 1 will be described with reference to FIGS. 1 and 2. As shown in the time chart of FIG. 2, simultaneously with the introduction of the ozone-containing gas into the reaction furnace 3, the substrate 2 in the reaction furnace 3 is irradiated with light having ultraviolet light from the light source 4. The wavelength of light emitted from the light source 4 is limited to a wavelength longer than 210 nm. It is only necessary that the ultraviolet light irradiation distribution in the substrate 2 can be ± 10%.

前記オゾン含有ガスとしてはオゾン濃度が0.1〜100vol%のガスが挙げられる。100%濃度オゾンガスは例えば特公平5−17164号公報に開示されたオゾンビーム発生装置に基づく明電舎製の高純度オゾンガス発生装置(MPOG‐HM1A1またはMPO‐104A1)によって供給できる。反応炉3の内圧は配管6に接続された図示省略のポンプの動作制御により例えば0.1〜30Paに制御される。そして、オゾン含有ガスの供給停止と共に前記光の照射が停止する。   Examples of the ozone-containing gas include gases having an ozone concentration of 0.1 to 100 vol%. The 100% concentration ozone gas can be supplied by, for example, a high purity ozone gas generator (MPOG-HM1A1 or MPO-104A1) manufactured by Meidensha based on an ozone beam generator disclosed in Japanese Patent Publication No. 5-17164. The internal pressure of the reaction furnace 3 is controlled to, for example, 0.1 to 30 Pa by operation control of a pump (not shown) connected to the pipe 6. And the irradiation of the light stops together with the supply stop of the ozone-containing gas.

以下の実施例を参照しながらオゾン含有ガスと紫外光を有する光とを用いた発明に係る紫外光励起オゾン処理プロセスによるCVD‐SiO2膜の絶縁特性について説明する。 The insulating characteristics of the CVD-SiO 2 film by the ultraviolet light excited ozone treatment process according to the invention using an ozone-containing gas and light having ultraviolet light will be described with reference to the following examples.

(実施例1)
図3は発明の実施例に係るプロセスで処理する前と処理した後のTEOS‐CVD膜基板のSiO2膜のウェットエッチング耐性を示す。ここでのウェットエッチング耐性は半導体製造プロセスにおけるウェットエッチングや洗浄工程で使用されている高純度バファードフッ酸(フッ化水素酸とフッ化アンモニウムを混合することで緩衝効果により中性から酸性域に調製された薬液)に対する耐性を意味する。
(Example 1)
FIG. 3 shows wet etching resistance of the SiO 2 film of the TEOS-CVD film substrate before and after being processed in the process according to the embodiment of the invention. The wet etching resistance here is a high-purity buffered hydrofluoric acid used in wet etching and cleaning processes in the semiconductor manufacturing process (mixed with hydrofluoric acid and ammonium fluoride from the neutral to the acidic range due to the buffer effect. It means resistance to chemicals.

この特性図に係る実験に試供したTEOS‐CVD膜基板は8インチ径のSi(100)を格納した減圧CVDチャンバーにTEOS(Tetraethylorthsilicate)ガスと酸素ガスを供給して処理温度620℃で製膜したものである。このTEOS‐CVD膜の膜厚は8.5nmであった。   The TEOS-CVD film substrate used in the experiment related to this characteristic diagram was formed at a processing temperature of 620 ° C. by supplying TEOS (Tetrahethylsilicate) gas and oxygen gas to a low-pressure CVD chamber storing Si (100) having an 8-inch diameter. Is. The thickness of this TEOS-CVD film was 8.5 nm.

TEOS‐CVD膜基板は酸化膜形成装置1の処理炉3のサセプター8上に置かれた。オゾン含有ガスは明電舎製の高純度オゾン発生装置(型式MPO‐104A1)から供給されたオゾン濃度90%以上濃度のガスを用いた。光源4には高圧水銀ランプ(ウシオ電機製,型式UVX−02528S1APA02)が用いられた。前記TEOS‐CVD膜基板は反応炉3内の気相距離(照射窓7の下面とTEOS‐CVD膜基板2の上面との距離)が5mmとなるように配置された。前記オゾン含有ガスは室温に制御した配管5を介して100sccmの流量で処理炉3に供給された。光源4の光は前記オゾン含有ガスの供給と同時に合成石英からなる照射窓7を介して処理炉3内のTEOS‐CVD膜基板に照射された。光源4の紫外光照度はTEOS‐CVD膜基板上で220mW/cm2(210〜300nm、以下の範囲で定義する)であった。処理時間は15分とした。処理炉3の内圧は5Pa以下となるようにドライポンプによる排気により制御された。 The TEOS-CVD film substrate was placed on the susceptor 8 of the processing furnace 3 of the oxide film forming apparatus 1. As the ozone-containing gas, a gas having an ozone concentration of 90% or more supplied from a high-purity ozone generator (model MPO-104A1) manufactured by Meidensha was used. As the light source 4, a high-pressure mercury lamp (manufactured by USHIO INC., Model UVX-02528S1APA02) was used. The TEOS-CVD film substrate was arranged so that the gas phase distance in the reaction furnace 3 (distance between the lower surface of the irradiation window 7 and the upper surface of the TEOS-CVD film substrate 2) was 5 mm. The ozone-containing gas was supplied to the processing furnace 3 at a flow rate of 100 sccm through a pipe 5 controlled to room temperature. The light from the light source 4 was applied to the TEOS-CVD film substrate in the processing furnace 3 through the irradiation window 7 made of synthetic quartz simultaneously with the supply of the ozone-containing gas. The ultraviolet illuminance of the light source 4 was 220 mW / cm 2 (210 to 300 nm, defined in the following range) on the TEOS-CVD film substrate. The processing time was 15 minutes. The internal pressure of the processing furnace 3 was controlled by exhaust with a dry pump so as to be 5 Pa or less.

図3の特性図から明らかなようにTEOS‐CVD膜基板が発明に係るプロセスに供されることで膜質が緻密となりウェットエッチング耐性が向上することが確認された。具体的には実施例に係る改質方法によってTEOS‐CVD膜基板の表面から深さ方向に8.5nm以上にわたり、ウェットエッチング耐性が向上し、特に表面から1〜2nmは大きく向上することが確認された。   As is clear from the characteristic diagram of FIG. 3, it was confirmed that the TEOS-CVD film substrate was subjected to the process according to the invention, so that the film quality became dense and wet etching resistance was improved. Specifically, it has been confirmed that the wet etching resistance is improved by 8.5 nm or more in the depth direction from the surface of the TEOS-CVD film substrate by the modification method according to the embodiment, and particularly 1-2 nm from the surface is greatly improved. It was done.

図4はTEOS‐CVD膜基板(3つの同一試料)を前記実施例に係るプロセスで処理する前と処理した後のTEOS‐CVD膜基板のSiO2膜の電気特性図(I‐V特性図)である。この特性図から明らかなようにTEOS‐CVD膜基板が発明に係るプロセスに供されることでこの基板の漏れ電流が減少することが確認された。具体的にはリーク電流(電界強度6[MV/cm]印加時)が10-7[A/cm2]から10-8[A/cm2]に減少し、理想的なF−N曲線に近づいている。このように絶縁特性が向上することが確認された。尚、図4では3つの同一試料(TEOS‐CVD膜基板)の電気特性が開示されており、本実施例に係るプロセスの電気特性向上の再現性も実証された。 FIG. 4 is an electrical characteristic diagram (IV characteristic diagram) of the SiO 2 film of the TEOS-CVD film substrate before and after the TEOS-CVD film substrate (three identical samples) is processed by the process according to the embodiment. It is. As is apparent from this characteristic diagram, it was confirmed that the leakage current of the substrate decreased when the TEOS-CVD film substrate was subjected to the process according to the invention. Specifically, the leakage current (when an electric field strength of 6 [MV / cm] is applied) is reduced from 10 −7 [A / cm 2 ] to 10 −8 [A / cm 2 ], and an ideal FN curve is obtained. It is approaching. In this way, it was confirmed that the insulation characteristics were improved. In FIG. 4, the electrical characteristics of three identical samples (TEOS-CVD film substrate) are disclosed, and the reproducibility of improving the electrical characteristics of the process according to this example was also demonstrated.

図5は膜厚8.5nmのTEOS‐CVD膜基板を前記実施例に係るプロセスで処理する前と処理した後のTEOS‐CVD膜基板のSiO2膜の電気特性図(C‐V特性図)である。この特性図から明らかなように発明の実施例に係るプロセスで処理した場合のC−Vの特性曲線は処理前と比べて理想的なC−V特性に近づくことが確認された。尚、SiO2膜の固定電荷は発明の実施例に係るプロセスで処理する前は2.31×1012[cm-2]であったが、処理後は1.31×1012[cm-2]まで低減した。 FIG. 5 is an electrical characteristic diagram (CV characteristic diagram) of the SiO 2 film of the TEOS-CVD film substrate before and after the 8.5 nm-thickness TEOS-CVD film substrate is processed by the process according to the above embodiment. It is. As is apparent from this characteristic diagram, it has been confirmed that the CV characteristic curve when the process according to the embodiment of the invention is processed is closer to the ideal CV characteristic than before the process. The fixed charge of the SiO 2 film was 2.31 × 10 12 [cm −2 ] before being processed by the process according to the embodiment of the invention, but 1.31 × 10 12 [cm −2 ] after the processing. ].

図6は前記TEOS‐CVD膜基板を本実施例に係るプロセスで処理する前と処理した後の差異を示したスペクトル図である。このスペクトル図から明らかなようにSi−O−Siのピークが高く、Si−OHのピークが低くなっている。すなわち、本実施例に係るプロセスによってSi−OH結合が脱水し、紫外光を有する光とオゾン含有ガスとによって生じた励起状態酸素原子によってSi−O−Si結合が形成されたことが確認できる。   FIG. 6 is a spectrum diagram showing the difference between the TEOS-CVD film substrate before and after being processed by the process according to this example. As is clear from this spectrum diagram, the Si—O—Si peak is high and the Si—OH peak is low. That is, it can be confirmed that the Si—OH bond was dehydrated by the process according to this example, and the Si—O—Si bond was formed by the excited state oxygen atoms generated by the light having ultraviolet light and the ozone-containing gas.

図7は膜厚8.5nmのTEOS‐CVD膜基板を上述実施例に係るプロセスで処理する前と処理した後のTEOS‐CVD膜基板のSiO2膜の比誘電率である。発明に係る実施例で処理する前の基板の酸化膜の比誘電率が2.83である場合、処理後は3.85となり、発明に係る酸化膜の改質方法によれば比誘電率が熱酸化膜に匹敵する値(3.90)まで向上することが確認された。 FIG. 7 shows the relative dielectric constant of the SiO 2 film of the TEOS-CVD film substrate before and after the 8.5 nm-thickness TEOS-CVD film substrate is processed by the process according to the above-described embodiment. When the relative dielectric constant of the oxide film of the substrate before processing in the embodiment according to the invention is 2.83, it becomes 3.85 after the processing, and according to the oxide film modification method according to the invention, the relative dielectric constant is It was confirmed that the value was improved to a value (3.90) comparable to the thermal oxide film.

また、基板の電気膜厚の変化についても検証すると、発明に係る上述の実施例で処理する前の基板の電気膜厚が6.2nmである場合、処理後は8.1nmとなり、発明に係る酸化膜の改質方法によれば電気膜厚が増大することが確認された。   Further, when the change of the electric film thickness of the substrate is also verified, when the electric film thickness of the substrate before processing in the above-described embodiment according to the invention is 6.2 nm, it becomes 8.1 nm after the processing, It has been confirmed that the electrical film thickness increases according to the oxide film modification method.

以上の図3〜図7の結果はオゾン含有ガスと高圧水銀ランプから供給された光とから得られる励起状態酸素原子に起因するものと考えられ、CVD基板のSi酸化膜は発明に係るプロセス処理に供されることで絶縁特性の良い膜質に変化することが示された。   The results of FIGS. 3 to 7 are considered to be caused by excited state oxygen atoms obtained from the ozone-containing gas and the light supplied from the high-pressure mercury lamp, and the Si oxide film on the CVD substrate is processed according to the invention. It has been shown that the film quality changes with good insulation characteristics.

また、図8は膜厚50nmのTEOS‐CVD膜基板を上述の実施例に係る酸化膜形成装置と同様のプロセスで処理する前と処理した後のTEOS‐CVD膜基板のSiO2膜の電気特性図(I‐V特性図)である。膜厚50nmのTEOS‐CVD膜基板は8インチ径のSi(100)を格納させた減圧CVDチャンバーにTEOSガスと酸素ガスを供給して処理温度620℃のもとで製膜された。この特性図から明らかなように膜厚50nmのTEOS‐CVD膜基板が発明に係るプロセスに供されてもこの基板の電気特性が向上することが確認された。CVDの膜厚に左右されることなく絶縁特性が向上することが示された。 FIG. 8 shows electrical characteristics of the SiO 2 film of the TEOS-CVD film substrate before and after the 50 nm-thick TEOS-CVD film substrate is processed in the same process as the oxide film forming apparatus according to the above-described embodiment. It is a figure (IV characteristic diagram). A TEOS-CVD film substrate having a thickness of 50 nm was formed at a processing temperature of 620 ° C. by supplying TEOS gas and oxygen gas into a low-pressure CVD chamber in which 8 inch diameter Si (100) was stored. As is clear from this characteristic diagram, it was confirmed that even when a TEOS-CVD film substrate having a thickness of 50 nm was subjected to the process according to the invention, the electrical characteristics of this substrate were improved. It has been shown that the insulation characteristics are improved without being influenced by the CVD film thickness.

(実施例2)
図9は発明の実施例に係るプロセスで処理する前と処理した後のHTO‐CVD膜基板のSiO2膜のウェットエッチング耐性を示す。ここでのウェットエッチング耐性は半導体製造プロセスにおけるウェットエッチングや洗浄工程で使用されている高純度バファードフッ酸(フッ化水素酸とフッ化アンモニウムを混合することで緩衝効果により中性から酸性域に調製された薬液)に対する耐性を意味する。
(Example 2)
FIG. 9 shows wet etching resistance of the SiO 2 film of the HTO-CVD film substrate before and after being processed in the process according to the embodiment of the invention. The wet etching resistance here is a high-purity buffered hydrofluoric acid used in wet etching and cleaning processes in the semiconductor manufacturing process (mixed with hydrofluoric acid and ammonium fluoride from the neutral to the acidic range due to the buffer effect. It means resistance to chemicals.

この特性図に係る実験に試供したHTO‐CVD膜基板は8インチ径のSi(100)を格納した減圧CVDチャンバーにSiH2Cl2(Dichlorosilane)ガスとN2Oガスの混合ガスを供給して処理温度750℃で製膜したものである。このHTO‐CVD膜の膜厚は9nmであった。 The HTO-CVD film substrate used for the experiment related to this characteristic diagram is obtained by supplying a mixed gas of SiH 2 Cl 2 (Dichlorosilane) gas and N 2 O gas to a low-pressure CVD chamber storing Si (100) having an 8-inch diameter. The film was formed at a processing temperature of 750 ° C. The thickness of this HTO-CVD film was 9 nm.

HTO‐CVD膜基板は酸化膜形成装置1の処理炉3のサセプター8上に置かれた。オゾン含有ガスは明電舎製の高純度オゾン発生装置(型式MPO‐104A1)から供給されたオゾン濃度90%以上濃度のガスを用いた。光源4には高圧水銀ランプ(ウシオ電機製,型式UVX−02528S1APA02)が用いられた。前記HTO‐CVD膜基板は反応炉3内の気相距離(照射窓7の下面とHTO‐CVD膜基板2の上面との距離)が5mmとなるように配置された。前記オゾン含有ガスは室温に制御した配管5を介して100sccmの流量で処理炉3に供給された。光源4の光は前記オゾン含有ガスの供給と同時に合成石英からなる照射窓7を介して処理炉3内のHTO‐CVD膜基板に照射された。光源4の紫外光照度はHTO‐CVD膜基板上で220mW/cm2(210〜300nm、以下の範囲で定義する)であった。処理時間は30分とした。処理炉3の内圧は5Pa以下となるようにドライポンプによる排気により制御された。 The HTO-CVD film substrate was placed on the susceptor 8 of the processing furnace 3 of the oxide film forming apparatus 1. As the ozone-containing gas, a gas having an ozone concentration of 90% or more supplied from a high-purity ozone generator (model MPO-104A1) manufactured by Meidensha was used. As the light source 4, a high-pressure mercury lamp (manufactured by USHIO INC., Model UVX-02528S1APA02) was used. The HTO-CVD film substrate was disposed such that the gas phase distance in the reaction furnace 3 (distance between the lower surface of the irradiation window 7 and the upper surface of the HTO-CVD film substrate 2) was 5 mm. The ozone-containing gas was supplied to the processing furnace 3 at a flow rate of 100 sccm through a pipe 5 controlled to room temperature. The light from the light source 4 was irradiated onto the HTO-CVD film substrate in the processing furnace 3 through the irradiation window 7 made of synthetic quartz simultaneously with the supply of the ozone-containing gas. The ultraviolet illuminance of the light source 4 was 220 mW / cm 2 (210 to 300 nm, defined in the following range) on the HTO-CVD film substrate. The processing time was 30 minutes. The internal pressure of the processing furnace 3 was controlled by exhaust with a dry pump so as to be 5 Pa or less.

図9の特性図から明らかなようにHTO‐CVD膜基板が発明に係るプロセスに供されることで膜質が緻密となりウェットエッチング耐性が向上することが確認された。具体的には実施例に係る改質方法によってHTO‐CVD膜基板の表面から深さ方向に9nm以上にわたり、ウェットエッチング耐性が向上し、特に表面から1〜2nmは大きく向上することが確認された。   As is clear from the characteristic diagram of FIG. 9, it was confirmed that the HTO-CVD film substrate was subjected to the process according to the invention, so that the film quality became dense and wet etching resistance was improved. Specifically, it has been confirmed that the wet etching resistance is improved over 9 nm in the depth direction from the surface of the HTO-CVD film substrate by the modification method according to the embodiment, and in particular, 1-2 nm from the surface is greatly improved. .

図10は膜厚9nmのHTO‐CVD膜基板を前記実施例に係るプロセスで処理した後のHTO‐CVD膜基板のSiO2膜の電気特性図(C‐V特性図)である。この特性図から明らかなように発明の実施例に係るプロセスで処理した場合のC−Vの特性曲線は処理前と比べて理想的なC−V特性に近づくことが確認された。 FIG. 10 is an electrical characteristic diagram (CV characteristic diagram) of the SiO 2 film of the HTO-CVD film substrate after the 9-nm thick HTO-CVD film substrate is processed by the process according to the example. As is apparent from this characteristic diagram, it has been confirmed that the CV characteristic curve when the process according to the embodiment of the invention is processed is closer to the ideal CV characteristic than before the process.

図11はHTO‐CVD膜基板を前記実施例に係るプロセスで処理する前と処理した後のHTO‐CVD膜基板のSiO2膜の電気特性図(I‐V特性図)である。この特性図から明らかなようにHTO‐CVD膜基板が発明に係るプロセスに供されることでこの基板の漏れ電流が減少することが確認された。さらに、未処理のHTO−CVD膜では、14[MV/cm]付近で絶縁破壊を生じるが、処理したHTO−CVD膜では生じなかった。このように絶縁特性が向上することが確認された。 FIG. 11 is an electrical characteristic diagram (IV characteristic diagram) of the SiO 2 film of the HTO-CVD film substrate before and after the HTO-CVD film substrate is processed by the process according to the above embodiment. As is apparent from this characteristic diagram, it was confirmed that the leakage current of the substrate decreased when the HTO-CVD film substrate was subjected to the process according to the invention. Furthermore, in the untreated HTO-CVD film, dielectric breakdown occurred near 14 [MV / cm], but not in the treated HTO-CVD film. In this way, it was confirmed that the insulation characteristics were improved.

以上説明したように、HTO−CVD膜にオゾン存在下で高圧水銀ランプの光を照射することにより、HTO−CVD法により形成された酸化膜の膜質が緻密になり、絶縁特性の良くなる。さらに、非常に界面状態が良い高品質なSiO2膜が界面に形成される。 As described above, when the HTO-CVD film is irradiated with light from a high-pressure mercury lamp in the presence of ozone, the film quality of the oxide film formed by the HTO-CVD method becomes dense and the insulating characteristics are improved. Further, a high quality SiO 2 film having a very good interface state is formed at the interface.

尚、以上述べた実施例1、2では210〜300nm領域の光の照射のもとオゾン濃度90%以上及び5Pa以下のオゾン含有ガスの雰囲気でプロセスが実施されているが、オゾン含有ガスの雰囲気の圧力範囲が0.1〜30Pa、オゾン含有ガスのオゾン濃度範囲が0.1〜100vol%であっても、前記実施例と同等の効果が得られる。   In Examples 1 and 2 described above, the process is performed in an ozone-containing gas atmosphere having an ozone concentration of 90% or more and 5 Pa or less under irradiation of light in the 210 to 300 nm region. Even if the pressure range is 0.1 to 30 Pa and the ozone concentration range of the ozone-containing gas is 0.1 to 100 vol%, the same effect as in the above embodiment can be obtained.

1…酸化膜改質装置
2…基板
3…反応炉
4…光源
7…照射窓
DESCRIPTION OF SYMBOLS 1 ... Oxide film reformer 2 ... Substrate 3 ... Reactor 4 ... Light source 7 ... Irradiation window

Claims (10)

化学蒸着法によって形成された基板上の酸化膜に対してオゾン含有ガスを供給すると共に紫外光を有する光を照射する
ことを特徴とする酸化膜改質方法。
An oxide film reforming method comprising supplying an ozone-containing gas to an oxide film on a substrate formed by a chemical vapor deposition method and irradiating light having ultraviolet light.
前記光の照射は前記オゾン含有ガスの供給と同時に行う
ことを特徴とする請求項1に記載の酸化膜改質方法。
2. The oxide film reforming method according to claim 1, wherein the light irradiation is performed simultaneously with the supply of the ozone-containing gas.
前記オゾン含有ガスの雰囲気の圧力は0.1〜30Paである
ことを特徴とする請求項1または2に記載の酸化膜改質方法。
The method for reforming an oxide film according to claim 1 or 2, wherein the pressure of the atmosphere of the ozone-containing gas is 0.1 to 30 Pa.
前記オゾン含有ガスのオゾン濃度は0.1〜100vol%である
ことを特徴とする請求項1から3のいずれか1項に記載の酸化膜改質方法。
The method for reforming an oxide film according to any one of claims 1 to 3, wherein the ozone concentration of the ozone-containing gas is 0.1 to 100 vol%.
前記酸化膜はシリコン酸化膜である
ことを特徴とする請求項1から4のいずれか1項に記載の酸化膜改質方法。
5. The oxide film modification method according to claim 1, wherein the oxide film is a silicon oxide film.
前記化学蒸着法は、TEOS−CVDである
ことを特徴とする請求項1から5のいずれか1項に記載の酸化膜改質方法。
The oxide film reforming method according to claim 1, wherein the chemical vapor deposition method is TEOS-CVD.
前記化学蒸着法は、HTO−CVDである
ことを特徴とする請求項1から5にいずれか1項に記載の酸化膜改質方法。
6. The oxide film modification method according to claim 1, wherein the chemical vapor deposition method is HTO-CVD.
化学蒸着法によって酸化膜が形成された基板を格納すると共にオゾン含有ガスが供給される処理炉と、
この処理炉内の基板上の酸化膜に紫外光を有する光を照射する光源と
を備えたことを特徴とする酸化膜改質装置。
A processing furnace in which a substrate on which an oxide film is formed by chemical vapor deposition is stored and an ozone-containing gas is supplied;
An oxide film reforming apparatus comprising: a light source for irradiating light having ultraviolet light to an oxide film on a substrate in the processing furnace.
前記光源は前記オゾン含有ガスの供給と同時に前記光を照射する
ことを特徴とする請求項8に記載の酸化膜改質装置。
The oxide film reforming apparatus according to claim 8, wherein the light source irradiates the light simultaneously with the supply of the ozone-containing gas.
化学蒸着法によって基板上に酸化膜を形成させる炉と、
この炉から供給された基板上の酸化膜を改質させる酸化膜改質装置と
を備え、
前記酸化膜改質装置は、
前記酸化膜が形成された基板を格納すると共にオゾン含有ガスが供給される処理炉と、
この処理炉内の基板上の酸化膜に紫外光を有する光を照射する光源と
を備えたことを特徴とするプロセス装置。
A furnace for forming an oxide film on the substrate by chemical vapor deposition;
An oxide film reformer for modifying the oxide film on the substrate supplied from the furnace,
The oxide film reformer is
A processing furnace for storing the substrate on which the oxide film is formed and being supplied with an ozone-containing gas;
A process apparatus comprising: a light source for irradiating light having ultraviolet light to an oxide film on a substrate in the processing furnace.
JP2009076899A 2008-03-26 2009-03-26 Oxide film modification method and apparatus therefor, and processing apparatus Pending JP2009260333A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009076899A JP2009260333A (en) 2008-03-26 2009-03-26 Oxide film modification method and apparatus therefor, and processing apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008081725 2008-03-26
JP2009076899A JP2009260333A (en) 2008-03-26 2009-03-26 Oxide film modification method and apparatus therefor, and processing apparatus

Publications (1)

Publication Number Publication Date
JP2009260333A true JP2009260333A (en) 2009-11-05

Family

ID=41387279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009076899A Pending JP2009260333A (en) 2008-03-26 2009-03-26 Oxide film modification method and apparatus therefor, and processing apparatus

Country Status (1)

Country Link
JP (1) JP2009260333A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012054338A (en) * 2010-08-31 2012-03-15 Meidensha Corp Method and device of reforming oxide film
CN102456566A (en) * 2011-10-12 2012-05-16 上海华力微电子有限公司 Treatment method for low-temperature silicon dioxide

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03286531A (en) * 1990-04-02 1991-12-17 Kawasaki Steel Corp Formation of silicon oxide film
JPH04180226A (en) * 1990-11-15 1992-06-26 Handotai Process Kenkyusho:Kk Semiconductor manufacturing apparatus and manufacture of semiconductor device
JPH06124889A (en) * 1992-08-27 1994-05-06 Semiconductor Energy Lab Co Ltd Method for fabricating film-like semiconductor device
JPH09162185A (en) * 1995-12-05 1997-06-20 Mitsubishi Electric Corp Fabrication of semiconductor device
JPH1079380A (en) * 1996-07-12 1998-03-24 Tokyo Electron Ltd Modification method and device thereof
JPH11111713A (en) * 1997-10-01 1999-04-23 Japan Storage Battery Co Ltd Improvement of insulating film and manufacture of semi conductor device
JP2001148377A (en) * 1999-09-16 2001-05-29 Samsung Electronics Co Ltd Thin film forming device and method for forming capacitor for semiconductor element using the same
JP2005019980A (en) * 2003-05-29 2005-01-20 Air Products & Chemicals Inc Method of fabricating low-dielectric-constant organic silicate glass film

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03286531A (en) * 1990-04-02 1991-12-17 Kawasaki Steel Corp Formation of silicon oxide film
JPH04180226A (en) * 1990-11-15 1992-06-26 Handotai Process Kenkyusho:Kk Semiconductor manufacturing apparatus and manufacture of semiconductor device
JPH06124889A (en) * 1992-08-27 1994-05-06 Semiconductor Energy Lab Co Ltd Method for fabricating film-like semiconductor device
JPH09162185A (en) * 1995-12-05 1997-06-20 Mitsubishi Electric Corp Fabrication of semiconductor device
JPH1079380A (en) * 1996-07-12 1998-03-24 Tokyo Electron Ltd Modification method and device thereof
JPH11111713A (en) * 1997-10-01 1999-04-23 Japan Storage Battery Co Ltd Improvement of insulating film and manufacture of semi conductor device
JP2001148377A (en) * 1999-09-16 2001-05-29 Samsung Electronics Co Ltd Thin film forming device and method for forming capacitor for semiconductor element using the same
JP2005019980A (en) * 2003-05-29 2005-01-20 Air Products & Chemicals Inc Method of fabricating low-dielectric-constant organic silicate glass film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012054338A (en) * 2010-08-31 2012-03-15 Meidensha Corp Method and device of reforming oxide film
CN102456566A (en) * 2011-10-12 2012-05-16 上海华力微电子有限公司 Treatment method for low-temperature silicon dioxide

Similar Documents

Publication Publication Date Title
JP6422536B2 (en) Damage repair of low-k dielectrics by gas-phase chemical exposure
KR100859115B1 (en) Method and equipment for forming oxide film
EP1717848A1 (en) Method for producing silicon oxide film
US9508531B2 (en) Method of manufacturing semiconductor device by alternatively increasing and decreasing pressure of process chamber
US9850574B2 (en) Forming a low-k dielectric layer with reduced dielectric constant and strengthened mechanical properties
TW201110231A (en) Substrate processing method and substrate processing apparatus
KR102109482B1 (en) Method to reduce dielectric constant of a porous low-k film
KR102085547B1 (en) Uv-assisted photochemical vapor deposition for damaged low k films pore sealing
JP2006269621A (en) Method and apparatus for thin film formation using ald
WO2010038885A1 (en) Silicon nitride film and process for production thereof, computer-readable storage medium, and plasma cvd device
JP2012227336A (en) Method for manufacturing insulator film
JP2009260333A (en) Oxide film modification method and apparatus therefor, and processing apparatus
JP2004162133A (en) Method for manufacturing super water-repellent film
JP4032889B2 (en) Insulating film formation method
JP5193488B2 (en) Method and apparatus for forming oxide film
JP2012204694A (en) Manufacturing method of semiconductor device and substrate processing device
JP2004343087A (en) Method and apparatus for modifying surface of interlayer dielectric film
Kameda et al. Advantage of highly concentrated (≥ 90%) ozone for chemical vapor deposition SiO2 grown under 200° c using hexamethyldisilazane and ultraviolet light excited ozone
JP2001274155A (en) Method of forming insulating film
CN116607122A (en) Curing method of silicon-nitrogen polymer
JP2010118402A (en) Method of forming semiconductor gate insulating film
JP2010118516A (en) Method of forming thin film and thin film formation apparatus
JP2012204693A (en) Substrate processing device and method of manufacturing semiconductor device
JP2011054894A (en) Method for forming oxide film
JP2012109456A (en) Semiconductor manufacturing method and substrate processing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120626

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120824

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120824

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121106