JP2001274155A - Method of forming insulating film - Google Patents

Method of forming insulating film

Info

Publication number
JP2001274155A
JP2001274155A JP2000087478A JP2000087478A JP2001274155A JP 2001274155 A JP2001274155 A JP 2001274155A JP 2000087478 A JP2000087478 A JP 2000087478A JP 2000087478 A JP2000087478 A JP 2000087478A JP 2001274155 A JP2001274155 A JP 2001274155A
Authority
JP
Japan
Prior art keywords
gas
film
insulating film
organic material
teos
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000087478A
Other languages
Japanese (ja)
Inventor
Hiroshi Kurosawa
宏 黒澤
Atsushi Yokoya
篤至 横谷
Junichi Miyano
淳一 宮野
Riichi Motoyama
理一 本山
Kiyohiko Saikawa
清彦 歳川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Miyazaki Oki Electric Co Ltd
Kiyomoto Iron and Machinery Works Co Ltd
Miyazaki Canon Inc
Original Assignee
Oki Electric Industry Co Ltd
Miyazaki Oki Electric Co Ltd
Miyazaki Daishin Canon Inc
Kiyomoto Iron and Machinery Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd, Miyazaki Oki Electric Co Ltd, Miyazaki Daishin Canon Inc, Kiyomoto Iron and Machinery Works Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP2000087478A priority Critical patent/JP2001274155A/en
Publication of JP2001274155A publication Critical patent/JP2001274155A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To impart flat and good embedding characteristics to an oxide film formed through a vacuum ultraviolet light CVD process. SOLUTION: At the formation of the oxide film on a substrate by a vacuum ultraviolet light CVD process, an organic material gas and an additive gas of dinitrogen monoxide and/or oxygen gas (gases) are present together therewith. TEOS or the like is used as the organic material gas. By suitably increasing or decreasing the amount of active oxygen or ozone generated in a vapor phase, step coverage can be controlled. Thus, an SiO2 film can be obtained which has desired planarity and embedding characteristics. The method can be applied suitably to the formation of an interlayer insulating film or protective film in a semiconductor element, such as ULSI which demands high integration density and multilayer structure.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、エキシマ光を用い
て被処理物上に絶縁膜を形成する方法に関するものであ
る。
[0001] 1. Field of the Invention [0002] The present invention relates to a method for forming an insulating film on an object using excimer light.

【0002】[0002]

【従来の技術】DRAM、LOGIC等の層間絶縁膜
は、プラズマ酸化膜、熱酸化膜、オゾン(O)−テト
ラエチルオルソシリケイト(Si(CO)
(以下「TEOS」という)酸化膜等により形成されて
いる。しかしながら、これらの酸化膜形成にあたって
は、熱酸化で700℃以上、プラズマ酸化及びオゾン−
TEOS酸化でも350℃以上の高温熱処理を要する。
加えてプラズマ酸化ではプラズマ放電が生じる。これら
の高温熱処理あるいはプラズマ放電は、絶縁膜を形成す
る被処理物に損傷を与える。特に半導体素子の場合、今
後一層の微細化、多層配線化が進むことは必定で、これ
らの熱あるいはプラズマによるダメージは、半導体素子
の品質維持上無視できない。
2. Description of the Related Art Interlayer insulating films for DRAMs and LOGICs are plasma oxide films, thermal oxide films, ozone (O 3 ) -tetraethyl orthosilicate (Si (C 2 H 5 O) 4 ).
(Hereinafter, referred to as “TEOS”). However, when forming these oxide films, thermal oxidation is performed at 700 ° C. or more, and plasma oxidation and ozone-
High temperature heat treatment of 350 ° C. or more is required even in TEOS oxidation.
In addition, plasma discharge occurs in plasma oxidation. These high-temperature heat treatments or plasma discharges cause damage to an object on which an insulating film is formed. In particular, in the case of a semiconductor device, it is inevitable that further miniaturization and multilayer wiring will progress in the future, and the damage due to heat or plasma cannot be ignored in maintaining the quality of the semiconductor device.

【0003】近年、前記のごとき課題の解決手段とし
て、有機系材料ガス、例えばTEOSを、キセノンエキ
シマランプやアルゴンエキシマランプ等によるエキシマ
光で照射して、常温で分解し、半導体素子上に酸化膜を
形成する真空紫外光CVD法が提案されている(佐々木
亘等「真空紫外エキシマランプを用いたシリカ薄膜生
成」第46回応用物理学会−予稿集、28a−M−5
(1999、春季))(U.Kogelschatz
“Appln. Surf. Sci. 54,146
3(1992))。真空紫外光CVD法によれば、エキ
シマ光のフォトンエネルギーは7.2eV以上であるの
に対して、大部分の有機系材料ガス、例えばTEOSの
C−H、C−C等の結合エネルギーは6eV以下である
ため、常温のような低温でも容易に分解され、熱やプラ
ズマダメージのない酸化膜(SiO)を半導体素子上
に形成することできる。
In recent years, as a means for solving the above problem, an organic material gas, for example, TEOS is irradiated with excimer light from a xenon excimer lamp, an argon excimer lamp or the like, decomposed at room temperature, and an oxide film is formed on the semiconductor element. UV light CVD method for forming GaN has been proposed (Wataru Sasaki et al., "Silica Thin Film Formation Using Vacuum Ultraviolet Excimer Lamp", 46th Annual Meeting of the Japan Society of Applied Physics, 28a-M-5)
(1999, Spring)) (U. Kogelschatz)
"Appln. Surf. Sci. 54 , 146
3 (1992)). According to the vacuum ultraviolet light CVD method, the photon energy of excimer light is 7.2 eV or more, whereas the binding energy of most organic material gases, for example, CH, CC of TEOS, is 6 eV. Therefore, an oxide film (SiO 2 ) which is easily decomposed even at a low temperature such as a normal temperature and has no heat or plasma damage can be formed on a semiconductor element.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、TEO
Sのような有機系材料ガスのみを用いて、真空紫外光C
VDにより、例えば半導体素子の層間絶縁膜としてSi
膜を形成すると、図2に示すように、オーバーハ
ング形状に成膜される。これは、TEOSのみでは、光
エネルギーにより気相で分解され、雪が降り積もるよう
にウエハ上に堆積する結果と思われる。オーバーハング
形状の成膜は、ステツプカバレツジ(段差被覆性)が悪
く、配線間隔が0.5μm以下になると、ボイドが発生
して信頼性が低下する。
SUMMARY OF THE INVENTION However, TEO
Vacuum ultraviolet light C using only organic material gas such as S
By VD, for example, Si is used as an interlayer insulating film of a semiconductor element.
When the O 2 film is formed, as shown in FIG. 2, the O 2 film is formed in an overhang shape. This is probably because TEOS alone decomposes in the gas phase due to light energy and deposits on the wafer as if snow falls. Overhang-shaped film formation has poor step coverage (step coverage), and when the wiring interval is 0.5 μm or less, voids are generated and reliability is reduced.

【0005】本発明は、ボイドの少ない平坦な特性を有
する絶縁膜を形成する方法を提供することを目的として
いる。
An object of the present invention is to provide a method for forming an insulating film having a flat characteristic with few voids.

【0006】[0006]

【課題を解決するための手段】前記目的を達成した本発
明の絶縁膜の形成方法は、エキシマ光により被処理物に
有機系材料ガス由来の絶縁膜を形成するに際し、有機系
材料ガスと酸素を含むガスの共存下でエキシマ光を照射
し、ボイドの少ない平坦な特性を有する酸化膜を形成す
ることを特徴としている。
According to a method of forming an insulating film of the present invention, which achieves the above object, an organic material gas and an oxygen-containing gas are formed when an insulating film derived from an organic material gas is formed on an object to be processed by excimer light. The method is characterized by irradiating excimer light in the coexistence of a gas containing, and forming an oxide film having few voids and flat characteristics.

【0007】本発明における有機系材料ガスとしては、
TEOSの他にテトラメトキシオルソシリケート(TM
OS)、テトラメチルシリケート(TMS)等を挙げる
ことができる。
The organic material gas in the present invention includes:
In addition to TEOS, tetramethoxy orthosilicate (TM
OS), tetramethyl silicate (TMS) and the like.

【0008】本発明における酸素を含むガスは、特に制
限されないが、酸素ガス(O)及び一酸化二窒素ガス
(NO)の単独、またはそれらの混合物が望ましい。
The gas containing oxygen in the present invention is not particularly limited, but is preferably an oxygen gas (O 2 ) and a nitrous oxide gas (N 2 O) alone or a mixture thereof.

【0009】本発明の用途としては、半導体素子の層間
絶縁膜などが最適であるが、例えば高温処理に適さない
プラスチックや金属類にも広く応用できる。
The application of the present invention is most suitable for an interlayer insulating film of a semiconductor element, but can be widely applied to, for example, plastics and metals which are not suitable for high-temperature treatment.

【0010】本発明において、ボイドの少ない平坦特性
に優れた絶縁膜が形成される理由は、必ずしも明らかで
はないが、酸素ガスがエキシマ光により分解されて活性
酸素となり、この活性酸素が有機系材料ガスと反応し
て、流動性を与えるためと考えられる。
In the present invention, the reason why an insulating film having few voids and excellent in flatness characteristics is formed is not necessarily clear, but oxygen gas is decomposed by excimer light to become active oxygen, and this active oxygen is made of an organic material. It is considered to react with the gas to give fluidity.

【0011】[0011]

【発明の実施の形態】次に、図面にしたがって本発明の
実施の形態を詳述する。図1は、本発明の絶縁膜形成方
法に用いる装置の一例を模式的に示す。図1において、
半導体素子酸化膜形成用の処理室1は、真空にすること
ができる気密構造からなり、パイプ2を介して排気用の
真空ポンプ3に連結されている。処理室1にはガス供給
管4、4aが設けられており、このガス供給管4から有
機系材料ガスを、ガス供給管4aから酸素を含む添加ガ
スを供給する。処理室1の上部にはエキシマランプ5を
設ける。エキシマランプ5には、エキシマ光生成希ガス
を充填する。希ガスには、アルゴン(126nm)、ク
リプトン(146nm)、キセノン(172nm)の単
独、あるいはそれらの混合ガス、例えばアルゴン/クリ
プトン混合ガス(135nm)、クリプトン/キセノン
混合ガス(165nm)等を、これらのフォトンエネル
ギーと使用する有機系材料ガスの結合エネルギーに応じ
て適宜選択する。6は、ランプ5のエキシマ光取出窓で
ある。窓部材には、石英、マグネシウムフロライド、カ
ルシウムフロライド、バリウムフロライド、あるいはサ
ファイア等を用いることができる。これらの窓部材に
は、各々透過可能なエキシマ光の最短波長があるので、
使用する希ガスとの関係で適宜選択すればよいが、短波
長の光が吸収されないマグネシウムフロライド、合成石
英等が好適である。処理室1内には支持棒7で支持され
たサセプタ8を設ける。被処理物、例えば半導体素子ウ
エハ9は、このサセプタ8上に載置する。10はウエハ
9上に形成された酸化膜を示す。
Next, an embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 schematically shows an example of an apparatus used for the method of forming an insulating film according to the present invention. In FIG.
The processing chamber 1 for forming a semiconductor element oxide film has an airtight structure that can be evacuated, and is connected to a vacuum pump 3 for exhaust through a pipe 2. The processing chamber 1 is provided with gas supply pipes 4 and 4a, and supplies an organic material gas from the gas supply pipe 4 and an additional gas containing oxygen from the gas supply pipe 4a. An excimer lamp 5 is provided above the processing chamber 1. The excimer lamp 5 is filled with an excimer light generating rare gas. Examples of the rare gas include argon (126 nm), krypton (146 nm), and xenon (172 nm) alone or a mixed gas thereof, such as an argon / krypton mixed gas (135 nm) and a krypton / xenon mixed gas (165 nm). Is appropriately selected according to the photon energy of the above and the binding energy of the organic material gas used. Reference numeral 6 denotes an excimer light extraction window of the lamp 5. Quartz, magnesium fluoride, calcium fluoride, barium fluoride, sapphire, or the like can be used for the window member. Since each of these window members has the shortest wavelength of excimer light that can be transmitted,
It may be appropriately selected depending on the relationship with the rare gas used, but magnesium fluoride, synthetic quartz, or the like, which does not absorb short-wavelength light, is preferable. A susceptor 8 supported by a support rod 7 is provided in the processing chamber 1. An object to be processed, for example, a semiconductor element wafer 9 is placed on the susceptor 8. Reference numeral 10 denotes an oxide film formed on the wafer 9.

【0012】前記のごとき絶縁膜形成装置を用いて、本
発明では絶縁膜を次のごとく形成する。先ず、図1に示
す装置の処理室1内のサセプタ8上に半導体素子ウエハ
9を載置する。処理室1は、真空ポンプ3によりパイプ
2を介して、1E−5Tor程度まで真空引きを行い、
残留ガスを少なくする。次いで、ガス供給管4から液体
TEOSをベイパーライザーで気化して、約1〜100
0ml程度処理室1内に導入する。同時に添加ガスとし
て酸素ガス、一酸化二窒素ガス等の単独または混合ガス
を約1〜1000ml程度添加する。処理室1の内圧
は、数m〜1000mTorr望ましくは、1E−1〜
100Torrに維持する。この状態で、例えばキセノ
ンエキシマランプ5を照射し、TEOSガスを分解し
て、サセプタ8上のウエハ9に酸化膜10を堆積させ
る。エキシマランプ5とサセプタ8の距離は、1〜20
0mm程度とする。TEOSの流量、添加ガス流量、照
射時間、処理室内圧、ランプとサセプタ間の距離等は、
所望する膜質、膜厚等に応じて適宜選択する。
According to the present invention, an insulating film is formed as follows using the above-described insulating film forming apparatus. First, the semiconductor element wafer 9 is placed on the susceptor 8 in the processing chamber 1 of the apparatus shown in FIG. The processing chamber 1 is evacuated to about 1E-5 Torr by the vacuum pump 3 through the pipe 2,
Reduce residual gas. Next, the liquid TEOS is vaporized by the vaporizer from the gas supply pipe 4 to about 1 to 100.
About 0 ml is introduced into the processing chamber 1. At the same time, about 1 to 1000 ml of a single gas or a mixed gas such as an oxygen gas and a nitrous oxide gas is added as an additional gas. The internal pressure of the processing chamber 1 is several m to 1000 mTorr, preferably 1E-1 to 1E-1.
Maintain at 100 Torr. In this state, for example, a xenon excimer lamp 5 is irradiated to decompose the TEOS gas and deposit an oxide film 10 on the wafer 9 on the susceptor 8. The distance between the excimer lamp 5 and the susceptor 8 is 1 to 20
It is about 0 mm. TEOS flow rate, additive gas flow rate, irradiation time, processing chamber pressure, distance between lamp and susceptor, etc.
It is appropriately selected according to the desired film quality, film thickness and the like.

【0013】本発明では、気相中に発生した酸素ラジカ
ル(活性酸素)またはオゾン量を適宜増減させることによ
り、ステツプカバレツジをコントロールでき、ボイドの
少ない良質の酸化膜が得られる。
In the present invention, by appropriately increasing or decreasing the amount of oxygen radicals (active oxygen) or ozone generated in the gas phase, the step coverage can be controlled, and a high-quality oxide film with few voids can be obtained.

【0014】[0014]

【実施例1】図1の装置を用いて、処理室1内のサセプ
タ8上に半導体素子に用いるタングステン配線パターン
を有するシリコンウエハ9を載置した。配線パターンの
配線幅300nm、配線間隔300nm、段差500n
mであった。処理室1内に導入する有機系材料としては
TEOSを用いた。TEOSの分圧は300mTor
r、流量は500ml/分であった。添加ガスとしては
Oを用いた。混合ガスの分圧及び流量はTEOS
のそれと同一とした。エキシマ光取出窓6には、厚さ2
0mmの合成石英を用いた。エキシマ光取出窓6とウエ
ハ9の距離は15mmであった。エキシマランプ5の照
度は、取出窓6の直下で12mW/cm であった。放
射照度の測定には、ウシオ電機株式会社製照度計(UI
T−150)を使用した。真空紫外光の照射時間は、膜
厚が3000Åになるように調整した。
[Embodiment 1] A susceptor in a processing chamber 1 was manufactured using the apparatus shown in FIG.
Wiring pattern used for semiconductor device on
Was placed on the silicon wafer 9. Wiring pattern
Wiring width 300nm, wiring interval 300nm, step 500n
m. Organic materials to be introduced into the processing chamber 1 include
TEOS was used. TEOS partial pressure is 300mTorr
r, the flow rate was 500 ml / min. As additional gas
N2O was used. The partial pressure and flow rate of the mixed gas are TEOS
It was the same as that of The excimer light extraction window 6 has a thickness of 2
0 mm synthetic quartz was used. Excimer light extraction window 6 and wafer
The distance of c was 15 mm. Illumination of excimer lamp 5
The degree is 12 mW / cm just below the extraction window 62 Met. Release
The irradiance was measured using an illuminometer (UI
T-150) was used. The irradiation time of vacuum ultraviolet light depends on the film
The thickness was adjusted to 3000 mm.

【0015】[0015]

【実施例2】添加ガスとして、NOに代えてO
用いて実施した以外は、実施例3と同一条件であった。
Example 2 The conditions were the same as in Example 3, except that O 2 was used instead of N 2 O as the additional gas.

【0016】[0016]

【比較例1】添加ガスを用いず、TEOSのみで実施し
た以外は、実施例1と同一条件であった。
Comparative Example 1 The conditions were the same as in Example 1 except that the test was performed using only TEOS without using any additional gas.

【0017】[0017]

【試験例1】実施例1、2及び比較例2により、SiO
2 膜を生成した状態を断面SEM写真で示す。比較例1
(TEOSのみ)の場合、図2(イ)に示すごとくSi
系CVDのSiO膜のようなオーバーハング形状
に成膜されて、配線パターンの間にボイドが認められ
る。これに対して、実施例1(NO)の場合は、図
2(ロ)に示すようにコンフォーマルに成膜されてい
る。また、実施例2(O ) の場合は、図2(ハ)に
示すように、O ・TEOSのCVDSiO膜のよ
うに自己平坦性をもつ膜になり、ボイドは埋め込まれて
いて認められない。
Test Example 1 According to Examples 1 and 2 and Comparative Example 2, SiO
Two The state in which the film is formed is shown by a cross-sectional SEM photograph. Comparative Example 1
(TEOS only), as shown in FIG.
H4System CVD SiO2Overhang shape like membrane
And voids are observed between wiring patterns.
You. On the other hand, in Example 1 (N2In case of O),
As shown in 2 (b), the film is formed conformally.
You. Also, in Example 2 (O2 In the case of), FIG.
As shown, O3 ・ CVD SiO of TEOS2Like a membrane
The film becomes self-flat and the voids are buried.
Is not allowed.

【0018】[0018]

【発明の効果】本発明の半導体素子絶縁膜の形成方法に
よれば、平坦性・埋め込み特性の良好な酸化膜(SiO
)が得られる。酸化膜表面に凹凸があると、パター
ン形成時に光が散乱してパターンが細る問題が生じる
が、本発明の平坦特性に優れた酸化膜では、そのような
おそれはない。このため、高密度、多層化が要求される
ULSI等の半導体素子の層間絶縁膜や保護膜に好適で
ある。また半導体素子に使用されるゲート絶縁膜、低誘
電率絶縁膜等に広く利用できる。半導体素子以外でも、
高温処理できないプラスチック等への良質な絶縁膜コー
ティング、金属保護膜としての良質な絶縁膜コーティン
グ等への応用も可能である。
According to the method for forming a semiconductor device insulating film of the present invention, an oxide film (SiO 2) having good flatness and burying characteristics can be obtained.
2 ) is obtained. If the surface of the oxide film has irregularities, light is scattered at the time of pattern formation, causing a problem that the pattern is narrowed. Therefore, it is suitable for an interlayer insulating film or a protective film of a semiconductor element such as ULSI which requires high density and multilayer. Further, it can be widely used for a gate insulating film, a low dielectric constant insulating film, and the like used for a semiconductor element. In addition to semiconductor devices,
It can also be applied to high-quality insulating film coating on plastics and the like that cannot be processed at high temperatures, and high-quality insulating film coating as a metal protective film.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に用いる酸化膜形成装置の一例を示す模
式図である。
FIG. 1 is a schematic view showing an example of an oxide film forming apparatus used in the present invention.

【図2】実施例1,2及び比較例1による酸化膜の断面
を示すSME写真である。
FIG. 2 is an SME photograph showing a cross section of an oxide film according to Examples 1 and 2 and Comparative Example 1.

【符号の説明】[Explanation of symbols]

1……処理室 2……ハイプ 3……真空ポンプ 4、4a……ガス供給管 5……エキシマランプ 6……取出窓 7……支持棒 8……サセプタ 9……ウエハ 10……酸化膜 DESCRIPTION OF SYMBOLS 1 ... Processing chamber 2 ... Hyp 3 ... Vacuum pump 4, 4a ... Gas supply pipe 5 ... Excimer lamp 6 ... Extraction window 7 ... Support rod 8 ... Susceptor 9 ... Wafer 10 ... Oxide film

───────────────────────────────────────────────────── フロントページの続き (71)出願人 390008855 宮崎沖電気株式会社 宮崎県宮崎郡清武町大字木原727番地 (71)出願人 592075884 清本鐵工株式会社 宮崎県延岡市土々呂町6丁目1633番地 (71)出願人 598049746 宮崎ダイシンキャノン株式会社 宮崎県児湯郡木城町大字高城4308−1 (71)出願人 000000295 沖電気工業株式会社 東京都港区虎ノ門1丁目7番12号 (72)発明者 黒澤 宏 愛知県岡崎市明大寺町字西郷中38番地 岡 崎国立共同研究機構分子科学研究所内 (72)発明者 横谷 篤至 宮崎県宮崎市学園木花台西1丁目1番地 宮崎大学工学部光応用工学研究室内 (72)発明者 宮野 淳一 宮崎県宮崎郡清武町大字木原727番地 宮 崎沖電気株式会社内 (72)発明者 本山 理一 宮崎県宮崎郡清武町大字木原727番地 宮 崎沖電気株式会社内 (72)発明者 歳川 清彦 宮崎県宮崎郡清武町大字木原727番地 宮 崎沖電気株式会社内 Fターム(参考) 4K030 AA11 AA14 CA04 CA12 FA08 5F033 HH19 RR04 SS02 SS03 SS04 SS14 XX01 XX02 5F058 BA09 BC02 BF05 BF07 BF25 BF29 BF37 BJ01 BJ02  ──────────────────────────────────────────────────続 き Continuation of the front page (71) Applicant 390008855 Miyazaki Oki Electric Co., Ltd. 727 Kihara, Oaza, Kiyotake-cho, Miyazaki-gun, Miyazaki (71) Applicant 592075884 Kiyomoto Tekko Co., Ltd. (71) Applicant 598049746 Miyazaki Daishin Cannon Co., Ltd. 4308-1 Takajo, Kijocho, Koyu-gun, Miyazaki Prefecture (71) Applicant 000000295 Oki Electric Industry Co., Ltd. 1-7-12 Toranomon, Minato-ku, Tokyo (72) Inventor Kurosawa Hiroshi 38, Saigo, Nishigo, Myoudaiji, Okazaki City, Aichi Prefecture Okazaki National Collaborative Research Organization Molecular Science Research Institute (72) Inventor Atsushi Yokoya 1-1-1, Gakuen Kihanadai Nishi, Miyazaki City, Miyazaki Prefecture Miyazaki University Faculty of Engineering, Miyazaki University Indoor (72) Inventor Junichi Miyano 727 Kihara, Oaza, Kiyotake-cho, Miyazaki-gun, Miyazaki Prefecture Inside Miyazaki Oki Electric Co., Ltd. (72) Inventor Motoyama Riichi 727 Kihara, Kiyotake-cho, Miyazaki-gun, Miyazaki Prefecture Miyazaki Oki Electric Co., Ltd. (72) Inventor Kiyohiko Toshikawa 727 Kihara, Kiyotake-cho, Miyazaki-gun, Miyazaki Miyazaki Oki Electric Co., Ltd. F-term (reference) 4K030 AA11 AA14 CA04 CA12 FA08 5F033 HH19 RR04 SS02 SS03 SS04 SS14 XX01 XX02 5F058 BA09 BC02 BF05 BF07 BF25 BF29 BF37 BJ01 BJ02

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 エキシマ光により被処理物上に有機系材
料ガス由来の絶縁膜を形成するに際し、有機系材料ガス
と酸素を含むガスの共存下でエキシマ光を照射し、ボイ
ドの少ない平坦な特性を有する酸化膜を形成することを
特徴とする絶縁膜の形成方法。
When an insulating film derived from an organic material gas is formed on an object to be processed by excimer light, the film is irradiated with excimer light in the coexistence of an organic material gas and a gas containing oxygen. A method for forming an insulating film, comprising forming an oxide film having characteristics.
【請求項2】 酸素を含むガスが、酸素ガス(O)及
び一酸化二窒素ガス(NO)からなる群から選ばれた
少なくともひとつであることを特徴とする請求項1記載
の絶縁膜の形成方法。
2. The insulation according to claim 1, wherein the gas containing oxygen is at least one selected from the group consisting of oxygen gas (O 2 ) and nitrous oxide gas (N 2 O). Method of forming a film.
【請求項3】 被処理物が半導体素子を担持したシリコ
ンウエハであることを特徴とする請求項1記載の方法。
3. The method according to claim 1, wherein the object to be processed is a silicon wafer carrying semiconductor elements.
JP2000087478A 2000-03-27 2000-03-27 Method of forming insulating film Pending JP2001274155A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000087478A JP2001274155A (en) 2000-03-27 2000-03-27 Method of forming insulating film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000087478A JP2001274155A (en) 2000-03-27 2000-03-27 Method of forming insulating film

Publications (1)

Publication Number Publication Date
JP2001274155A true JP2001274155A (en) 2001-10-05

Family

ID=18603483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000087478A Pending JP2001274155A (en) 2000-03-27 2000-03-27 Method of forming insulating film

Country Status (1)

Country Link
JP (1) JP2001274155A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6624094B2 (en) 2000-08-30 2003-09-23 Oki Electric Industry, Co., Ltd. Method of manufacturing an interlayer dielectric film using vacuum ultraviolet CVD with Xe2 excimer lamp and silicon atoms
JP2005063850A (en) * 2003-08-14 2005-03-10 Ran Technical Service Kk Organic el display panel and its manufacturing method
US8163659B2 (en) 2006-08-25 2012-04-24 Meidensha Corporation Method for oxide film formation and apparatus for the method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6624094B2 (en) 2000-08-30 2003-09-23 Oki Electric Industry, Co., Ltd. Method of manufacturing an interlayer dielectric film using vacuum ultraviolet CVD with Xe2 excimer lamp and silicon atoms
JP2005063850A (en) * 2003-08-14 2005-03-10 Ran Technical Service Kk Organic el display panel and its manufacturing method
US8163659B2 (en) 2006-08-25 2012-04-24 Meidensha Corporation Method for oxide film formation and apparatus for the method

Similar Documents

Publication Publication Date Title
US7488693B2 (en) Method for producing silicon oxide film
US8877659B2 (en) Low-k dielectric damage repair by vapor-phase chemical exposure
JP2002502108A (en) Surface modification of semiconductors using electromagnetic radiation
KR100627098B1 (en) Method of forming low dielectric constant insulating film
JPH08107090A (en) Ultraviolet ray-reinforced dry stripping of nitridation silicone film
JPH0774245A (en) Semiconductor device and fabrication thereof
JP2005210130A (en) Method of cleaning equipment surfaces in semiconductor material processing chamber
KR100778947B1 (en) Method and apparatus for forming film
KR101836417B1 (en) Low temperature cure modulus enhancement
TW201110231A (en) Substrate processing method and substrate processing apparatus
KR102109482B1 (en) Method to reduce dielectric constant of a porous low-k film
US10113234B2 (en) UV assisted silylation for porous low-k film sealing
US20150162189A1 (en) Uv-assisted photochemical vapor deposition for damaged low k films pore sealing
JP2884968B2 (en) Method for manufacturing silicon oxide film
TW567589B (en) Manufacturing method of semiconductor device
JP2001274155A (en) Method of forming insulating film
US8003549B1 (en) Methods of forming moisture barrier for low K film integration with anti-reflective layers
JP3455171B2 (en) Method for manufacturing interlayer insulating film by vacuum ultraviolet light CVD
JP2004162133A (en) Method for manufacturing super water-repellent film
JP3463195B2 (en) Method of forming insulating film
JPH01194980A (en) Formation of silica coating film and formed coating film
JP2009260333A (en) Oxide film modification method and apparatus therefor, and processing apparatus
TWI762761B (en) Use of silicon structure former with organic substituted hardening additive compounds for dense osg films
JP3090751B2 (en) Method for manufacturing semiconductor device
JP2002075980A (en) Method for depositing low dielectric film by vacuum ultraviolet cvd