JP2009260199A - Plasma cvd device, and plasma cvd method - Google Patents

Plasma cvd device, and plasma cvd method Download PDF

Info

Publication number
JP2009260199A
JP2009260199A JP2008137597A JP2008137597A JP2009260199A JP 2009260199 A JP2009260199 A JP 2009260199A JP 2008137597 A JP2008137597 A JP 2008137597A JP 2008137597 A JP2008137597 A JP 2008137597A JP 2009260199 A JP2009260199 A JP 2009260199A
Authority
JP
Japan
Prior art keywords
source gas
plasma cvd
supply pipe
gas supply
discharge electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008137597A
Other languages
Japanese (ja)
Inventor
Atsushi Ueki
篤 植木
Takao Amioka
孝夫 網岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2008137597A priority Critical patent/JP2009260199A/en
Publication of JP2009260199A publication Critical patent/JP2009260199A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a plasma CVD device capable of manufacturing a semiconductor thin film having excellent film quality by reducing generation of SiH<SB>2</SB>radicals degrading power generation performance in silane plasma, and preventing drop of the temperature of a substrate during film formation. <P>SOLUTION: This plasma CVD device is configured to include: a chamber 1; an exhaust device keeping the inside of the chamber 1 in a depressurized condition; a plurality of discharge electrodes 15a and 15b generating plasma in a material gas by being supplied with power; a power source applying A.C. or high-frequency voltages different in polarity to the respective discharge electrodes 15a and 15b adjacent to each other; material gas supply tubes 17 introducing the material gas between the discharge electrodes 15a and 15b adjacent to each other; and barrier ribs arranged from the exits of the material gas supply tubes 17 to a location which is located on the extension line in the material gas flow direction and at which a film formation object substrate 10 is arranged. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、薄膜形成用プラズマ成膜装置であり、特にアモルファスシリコン薄膜太陽電池、ディスプレイ用薄膜トランジスタ等の半導体薄膜の製造に用いられるプラズマ励起化学気相成長法を用いた装置として好適な薄膜形成用プラズマ成膜装置に関する。   The present invention is a plasma film forming apparatus for forming a thin film, and particularly for forming a thin film suitable as an apparatus using a plasma enhanced chemical vapor deposition method used for manufacturing a semiconductor thin film such as an amorphous silicon thin film solar cell and a display thin film transistor. The present invention relates to a plasma film forming apparatus.

プラズマ励起化学気相成長(Chemical Vapor Deposition:CVD)法(以下、プラズマCVD法という)を用いてアモルファスシリコン薄膜を製造する装置は、従来からいくつか知られている。従来は被成膜基板をのせるステージに対向して放電電極が配置されており、放電電極の表面に設けられた多数の穴から原料ガスを供給して放電される。この技術では、ステージ上の被成膜基板とプラズマとの距離が近くなり、被成膜基板に放電によるダメージが加わり、アモルファスシリコン薄膜の特性を低下させてしまう。さらに、プラズマと被成膜基板の距離が近いため、高品質なアモルファスシリコンの成膜に不必要なSiHラジカルが基板に堆積してしまう。 Several apparatuses for producing an amorphous silicon thin film using a plasma-enhanced chemical vapor deposition (CVD) method (hereinafter referred to as plasma CVD method) have been known. Conventionally, a discharge electrode is disposed opposite to a stage on which a film formation substrate is placed, and discharge is performed by supplying a source gas from a number of holes provided on the surface of the discharge electrode. In this technique, the distance between the deposition target substrate on the stage and the plasma is reduced, and the deposition target substrate is damaged by electric discharge, thereby degrading the characteristics of the amorphous silicon thin film. Further, since the distance between the plasma and the deposition target substrate is short, SiH 2 radicals unnecessary for the deposition of high-quality amorphous silicon are deposited on the substrate.

そこで、被成膜基板から所定の位置にある複数の電極間に原料ガスを供給し、被成膜基板から所定の位置でプラズマを発生させ、高品質なアモルファスシリコンの成膜に必要なラジカルだけを被成膜基板に堆積させる技術が開示されていた(特許文献1)。
特開2001−338885
Therefore, a source gas is supplied between a plurality of electrodes at a predetermined position from the deposition substrate, plasma is generated at a predetermined position from the deposition substrate, and only radicals necessary for film formation of high-quality amorphous silicon are obtained. Has been disclosed (Patent Document 1).
JP 2001-338885 A

しかしながら、特許文献1の技術では、原料ガスが被成膜基板に直接到達してしまい、被成膜基板付近の温度低下を促進し、アモルファスシリコン膜の欠陥密度を増加させるため、高品質なアモルファスシリコンができにくくなる。   However, in the technique of Patent Document 1, since the source gas reaches the deposition target substrate directly, the temperature decrease near the deposition target substrate is promoted, and the defect density of the amorphous silicon film is increased. It becomes difficult to make silicon.

そこで、本発明は、シランプラズマ中の発電性能を低下させるSiHラジカルが基板上に堆積されにくくし、さらに基板温度を制御しやすくして、優れた膜質を有する半導体薄膜を製造できる製造装置を提供することを目的とする。 Therefore, the present invention provides a manufacturing apparatus capable of manufacturing a semiconductor thin film having excellent film quality by making it difficult for SiH 2 radicals, which reduce power generation performance in silane plasma, to be deposited on a substrate and further controlling the substrate temperature. The purpose is to provide.

上記課題を解決するために、本発明のプラズマCVD装置は以下の構成をとるものである。すなわち、
チャンバーと、
該チャンバー内部を減圧下に保つ排気装置と、
電力を供給されることで原料ガスにプラズマを発生させる複数の放電電極と、
隣り合う該放電電極のそれぞれに極性の異なる交流又は高周波電圧を印加する電源と、
隣り合う該放電電極の間に原料ガスを導入する原料ガス供給管と、
該原料ガス供給管の出口から、原料ガス流れ方向の延長線上であって、かつ被成膜基板が置かれる位置までの間に設けられた障壁と、を有するプラズマCVD装置である。
In order to solve the above problems, the plasma CVD apparatus of the present invention has the following configuration. That is,
A chamber;
An exhaust device for keeping the inside of the chamber under reduced pressure;
A plurality of discharge electrodes for generating plasma in the source gas by being supplied with electric power;
A power supply for applying alternating current or high frequency voltage of different polarity to each of the adjacent discharge electrodes;
A source gas supply pipe for introducing a source gas between the adjacent discharge electrodes;
And a barrier provided between an outlet of the source gas supply pipe and an extension line in the source gas flow direction and a position where the deposition target substrate is placed.

また、本発明のプラズマCVD法は以下の手順で行うものである。すなわち、
チャンバー内部を減圧下に保持し、
隣り合う放電電極の間に原料ガス供給管から原料ガスを導入し、
該隣り合う放電電極のそれぞれに極性の異なる交流又は高周波電圧を印加して該原料ガスにプラズマを発生させ、
該原料ガス供給管の出口から、原料ガス流れ方向の延長線上であって、かつ被成膜基板が置かれる位置までの間に障壁を設け、
該原料ガスを該障壁に衝突させた後に被成膜基板に到達させ、被成膜基板に薄膜を形成するプラズマCVD法である。
Further, the plasma CVD method of the present invention is performed by the following procedure. That is,
Hold the inside of the chamber under reduced pressure,
Introducing source gas from the source gas supply pipe between adjacent discharge electrodes,
Applying alternating current or high frequency voltage with different polarity to each of the adjacent discharge electrodes to generate plasma in the source gas,
A barrier is provided between the outlet of the source gas supply pipe and an extension line in the source gas flow direction and a position where the deposition target substrate is placed,
This is a plasma CVD method in which the source gas is made to collide with the barrier and then reach the deposition target substrate to form a thin film on the deposition target substrate.

本発明によれば、シランプラズマ中の発電性能を低下させるSiHラジカルの基板への堆積を減少させ、さらに成膜時の基板温度低下を防止させることで、優れた膜質を有する半導体薄膜を製造できる製造装置を提供することができる。 According to the present invention, a semiconductor thin film having excellent film quality is manufactured by reducing the deposition of SiH 2 radicals on the substrate, which lowers the power generation performance in silane plasma, and further preventing the substrate temperature from dropping during film formation. A manufacturing apparatus that can be provided can be provided.

本発明のプラズマCVD装置を図を用いて説明する。   The plasma CVD apparatus of the present invention will be described with reference to the drawings.

本発明のプラズマCVD装置は、例えば図1や図3や図4に示したような構成の装置である。図1、図3、図4は本発明にかかるプラズマCVD装置を横から見た概観断面図である。この装置は、内部でプラズマを発生させるためのチャンバー1を備える。チャンバー1内部には複数の放電電極15が並んでいる。放電電極15は二種類あり、二種類の放電電極が交互に並んでいる。そして、図1や図3のように放電電極15の間、もしくは図5のように放電電極15自身に原料ガス供給管が備わっている。放電電極15と被成膜基板10をのせる基板ステージ11との距離は一定間隔離れている。このため、複数の電極間の間で横方向の放電が起こりプラズマが発生するが、このプラズマが被成膜基板10に直接当たりにくくなり、プラズマによる被成膜基板10へのダメージを低減することができる。また、被成膜基板10とプラズマとが離れているため、プラズマ中で生成した発電性能を低下させるSiHラジカルの被成膜基板10への堆積を防ぐことができる。 The plasma CVD apparatus of the present invention is an apparatus having a configuration as shown in FIG. 1, FIG. 3, or FIG. 1, 3 and 4 are schematic cross-sectional views of a plasma CVD apparatus according to the present invention as seen from the side. This apparatus includes a chamber 1 for generating plasma therein. A plurality of discharge electrodes 15 are arranged inside the chamber 1. There are two types of discharge electrodes 15, and two types of discharge electrodes are alternately arranged. A source gas supply pipe is provided between the discharge electrodes 15 as shown in FIGS. 1 and 3 or in the discharge electrode 15 itself as shown in FIG. The distance between the discharge electrode 15 and the substrate stage 11 on which the deposition target substrate 10 is placed is a predetermined distance apart. For this reason, a horizontal discharge occurs between a plurality of electrodes and plasma is generated. However, this plasma is less likely to directly hit the deposition target substrate 10, and damage to the deposition target substrate 10 due to plasma is reduced. Can do. In addition, since the deposition target substrate 10 and the plasma are separated from each other, it is possible to prevent deposition of SiH 2 radicals, which reduce power generation performance generated in the plasma, on the deposition target substrate 10.

本発明にかかるプラズマCVD装置は、原料ガス供給管17からの原料ガス流れ方向の延長線上に、図3のように原料ガスを受ける障壁や、図1や図4のように障壁の代わりの放電電極15が存在することが特徴である。このような構成とすることで、被成膜基板10には直接原料ガスが当たらないため、被成膜基板10がチャンバー1内に供給された原料ガスにより冷やされにくくなり、発電性能を低下させる欠陥の発生を抑制することができる。   The plasma CVD apparatus according to the present invention has a barrier for receiving the source gas as shown in FIG. 3 on the extension line of the source gas flow direction from the source gas supply pipe 17 and a discharge instead of the barrier as shown in FIGS. It is characterized by the presence of the electrode 15. With such a configuration, since the source gas does not directly hit the deposition target substrate 10, the deposition target substrate 10 is less likely to be cooled by the source gas supplied into the chamber 1, thereby reducing power generation performance. The occurrence of defects can be suppressed.

以下、本発明にかかるプラズマCVD装置の具体例について図を用いて詳細に説明する。   Hereinafter, specific examples of the plasma CVD apparatus according to the present invention will be described in detail with reference to the drawings.

〔本発明の第1のプラズマCVD装置〕
図1は本発明の第1のプラズマCVD装置を横から見た概観断面図である。このプラズマCVD装置は、チャンバー1と、このチャンバー1内に原料ガスを供給する原料ガス供給管17と、真空排気装置13と、上記チャンバー1内に収容された放電電極15と基板ステージ11、この放電電極に電力を供給する高周波電源14とから構成されている。前記基板ステージ11に被成膜基板10を設置し、この被成膜基板表面に薄膜を形成させる。原料ガス供給管17の出口は放電電極15の間にあり、原料ガス供給管17は正面から見て斜めに傾けてある。原料ガス供給管17を真下ではなく傾けることで、チャンバー内に供給された原料ガスが被成膜基板10ではなく、先ず放電電極15に当たる。つまり、放電電極15が障壁の役割を果たしている。こうすることで供給された原料ガスが直接被成膜基板10に達することがないため、被成膜基板10付近が原料ガスにより冷やされることがなく、発電性能を低下させる欠陥が基板上にできにくくなる。原料ガスは放電電極15に1回当たれば十分であるが、一旦放電電極15ではね返った原料ガスが、対向する放電電極15に再度当たることを繰り返すことも好ましい。原料ガスが放電電極15に2回以上当たることで、電極と電極の間で原料ガスが拡散され、より被成膜基板10に到達しにくくなるからである。図2は、図1のプラズマCVD装置の放電電極を上から見た概観図である。原料ガス供給管17は放電電極15の間にスリット状に存在する。もちろん原料ガス供給管17はスリット状でなくとも、複数の孔が極力間隔を狭めて設けられた構成であってもよい。
[First Plasma CVD Apparatus of the Present Invention]
FIG. 1 is a schematic sectional view of the first plasma CVD apparatus of the present invention as seen from the side. The plasma CVD apparatus includes a chamber 1, a source gas supply pipe 17 that supplies a source gas into the chamber 1, a vacuum exhaust device 13, a discharge electrode 15 and a substrate stage 11 that are accommodated in the chamber 1, The high-frequency power supply 14 supplies power to the discharge electrode. A film formation substrate 10 is set on the substrate stage 11 and a thin film is formed on the surface of the film formation substrate. The outlet of the source gas supply pipe 17 is located between the discharge electrodes 15, and the source gas supply pipe 17 is inclined obliquely when viewed from the front. By tilting the source gas supply pipe 17 not directly below, the source gas supplied into the chamber hits the discharge electrode 15 first, not the deposition target substrate 10. That is, the discharge electrode 15 serves as a barrier. In this way, since the supplied source gas does not directly reach the deposition target substrate 10, the vicinity of the deposition target substrate 10 is not cooled by the source gas, and defects that reduce power generation performance can be formed on the substrate. It becomes difficult. It is sufficient that the source gas hits the discharge electrode 15 once, but it is also preferable to repeat that the source gas once bounced off the discharge electrode 15 hits the opposing discharge electrode 15 again. This is because when the source gas strikes the discharge electrode 15 two or more times, the source gas is diffused between the electrodes, making it difficult to reach the deposition target substrate 10. FIG. 2 is a schematic view of the discharge electrode of the plasma CVD apparatus of FIG. 1 as viewed from above. The source gas supply pipe 17 exists in a slit shape between the discharge electrodes 15. Of course, the source gas supply pipe 17 may not have a slit shape, but may have a configuration in which a plurality of holes are provided with a minimum interval.

〔本発明の第2のプラズマCVD装置〕
図3は本発明の第2のプラズマCVD装置の一つを横から見た概観断面図である。前述の第1のプラズマCVD装置との違いは、原料ガス供給管17からの原料ガス流れ方向の延長線上で、かつ被成膜基板10の上方に障壁18が存在することである。原料ガス供給管17から流入した原料ガスは、被成膜基板に当たることなく、最初に障壁18に当たる。プラズマは障壁18の上方かつ放電電極15の間で発生する。プラズマが被成膜基板10に直接当たらないため、発電性能を低下させるSiHラジカルが被成膜基板10に堆積されにくくなる。また、チャンバー1内に流入した原料ガスは、障壁18に最初に当たるため、被成膜基板10に直接原料ガスが当たらないので、被成膜基板10が原料ガスにより冷やされる確率が減る。
[Second Plasma CVD Apparatus of the Present Invention]
FIG. 3 is a schematic cross-sectional view of one of the second plasma CVD apparatuses of the present invention as seen from the side. The difference from the first plasma CVD apparatus described above is that a barrier 18 exists on the extended line in the direction of flow of the source gas from the source gas supply pipe 17 and above the deposition target substrate 10. The source gas flowing in from the source gas supply pipe 17 first hits the barrier 18 without hitting the deposition target substrate. Plasma is generated above the barrier 18 and between the discharge electrodes 15. Since plasma does not directly hit the deposition target substrate 10, SiH 2 radicals that reduce power generation performance are less likely to be deposited on the deposition target substrate 10. Further, since the source gas flowing into the chamber 1 first hits the barrier 18, the source gas does not directly hit the deposition target substrate 10, so the probability that the deposition target substrate 10 is cooled by the source gas is reduced.

〔本発明の第3のプラズマCVD装置〕
図4は本発明の第3のプラズマCVD装置の一つを横から見た概観断面図である。前述の第1のプラズマCVD装置との違いは、図5のように原料ガス供給管17が放電電極15の中にあり、原料ガス供給管の出口が放電電極の表面に存在することである。原料ガス供給管17を通った原料ガスは放電電極15間のプラズマ生成空間2に供給される。原料ガス供給管17からの原料ガス流れ方向の延長線上には対向する放電電極がある。これにより、プラズマを放電電極15の近傍に閉じ込めることができる。また、供給された原料ガスはまず、他の放電電極15に当たり、被成膜基板10に直接当たらないので、被成膜基板10が供給された原料ガスによって冷やされる確率が減る。
[Third plasma CVD apparatus of the present invention]
FIG. 4 is a schematic cross-sectional view of one of the third plasma CVD apparatuses of the present invention as seen from the side. The difference from the first plasma CVD apparatus described above is that the source gas supply pipe 17 is in the discharge electrode 15 as shown in FIG. 5, and the outlet of the source gas supply pipe exists on the surface of the discharge electrode. The source gas that has passed through the source gas supply pipe 17 is supplied to the plasma generation space 2 between the discharge electrodes 15. There are opposing discharge electrodes on an extension line in the direction of flow of the raw material gas from the raw material gas supply pipe 17. Thereby, the plasma can be confined in the vicinity of the discharge electrode 15. In addition, since the supplied source gas first hits the other discharge electrode 15 and does not directly hit the deposition target substrate 10, the probability that the deposition target substrate 10 is cooled by the supplied source gas is reduced.

なお、図5では向かい合う二つの放電電極15の両方から原料ガスを供給しているが、原料ガスの供給は向かい合う放電電極の内のどちらか一方でもいい。好ましくは一方が良い。両方の電極からガスが供給されると、供給されたガス同士が衝突し、電極近傍の圧力が上昇し、良い品質のアモルファスシリコンが得られない場合がある。また、原料ガス流れ方向の延長線上に対向する放電電極があれば、原料ガスが放電電極の表面に対し斜め方向に放出されてもいいが、図5のように原料ガスが放電電極表面に対し垂直方向に放出されることが好ましい。原料ガスが垂直方向に放出されることで、原料ガスがより確実に対向する放電電極に当たるからである。   In FIG. 5, the raw material gas is supplied from both of the two discharge electrodes 15 facing each other, but the supply of the raw material gas may be one of the discharge electrodes facing each other. Preferably one is good. When gases are supplied from both electrodes, the supplied gases collide with each other, the pressure in the vicinity of the electrodes rises, and good quality amorphous silicon may not be obtained. Further, if there is a discharge electrode facing the extension line in the direction of flow of the raw material gas, the raw material gas may be discharged obliquely with respect to the surface of the discharge electrode. However, as shown in FIG. It is preferred to release in the vertical direction. This is because the source gas is discharged in the vertical direction, so that the source gas more reliably hits the opposing discharge electrodes.

〔本発明のプラズマCVD装置の好ましい放電電極形状1〕
図6は本発明にかかる好ましいプラズマCVD装置の放電電極支持板16と放電電極15を下側から見た概略図である。放電電極15aと15bが電極支持板16上を二重に渦を巻いて設置されていることで、均一に発生したプラズマから発生したラジカルが、被成膜基板10上に均一に輸送されることで、均一な半導体薄膜を得ることができる。
電極表面で縦方向(図6における上下方向)にも横方向(図6における左右方向)にもプラズマが発生するため、より均一にプラズマを面内に分布させることができる。
[Preferred Discharge Electrode Shape 1 of Plasma CVD Apparatus of the Present Invention]
FIG. 6 is a schematic view of the discharge electrode support plate 16 and the discharge electrode 15 of the preferred plasma CVD apparatus according to the present invention as seen from below. Since the discharge electrodes 15a and 15b are installed in a double vortex on the electrode support plate 16, radicals generated from the uniformly generated plasma are uniformly transported onto the deposition target substrate 10. Thus, a uniform semiconductor thin film can be obtained.
Since plasma is generated on the electrode surface both in the vertical direction (vertical direction in FIG. 6) and in the horizontal direction (horizontal direction in FIG. 6), the plasma can be more uniformly distributed in the plane.

〔本発明のプラズマCVD装置の好ましい放電電極形状2〕
図7は本発明にかかる好ましいプラズマCVD装置の放電電極支持板16と放電電極15を下側から見た概略図である。櫛型の放電電極15aと15bが電極支持板16上に交互に設置されていることで、均一に発生したプラズマから発生したラジカルが、被成膜基板10上に均一に輸送されることで、均一な半導体薄膜を得ることができる。
電極表面で縦方向(図7における上下方向)にも横方向(図7における左右方向)にもプラズマが発生するため、より均一にプラズマを面内に分布させることができる。
[Preferred Discharge Electrode Shape 2 of Plasma CVD Apparatus of the Present Invention]
FIG. 7 is a schematic view of the discharge electrode support plate 16 and the discharge electrode 15 of the preferred plasma CVD apparatus according to the present invention as seen from below. Since the comb-shaped discharge electrodes 15a and 15b are alternately arranged on the electrode support plate 16, radicals generated from the uniformly generated plasma are uniformly transported onto the deposition target substrate 10. A uniform semiconductor thin film can be obtained.
Since plasma is generated on the electrode surface both in the vertical direction (vertical direction in FIG. 7) and in the horizontal direction (horizontal direction in FIG. 7), the plasma can be distributed more uniformly in the plane.

以上詳述した本発明によれば、シラン放電プラズマ中の発電性能を低下させるSiHラジカルの被成膜基板への堆積を減少させることができ、原料ガスにより基板が冷やされにくくなるので膜中に欠陥が生成しにくくなるので、優れた半導体薄膜を製造できる。その結果、太陽電池、液晶表示装置の薄膜トランジスタ等に有用なアモルファスシリコン薄膜を提供することができる。 According to the present invention described in detail above, it is possible to reduce the deposition of SiH 2 radicals, which reduce power generation performance in the silane discharge plasma, on the deposition target substrate, and it is difficult for the source gas to cool the substrate. Since defects are less likely to be generated, an excellent semiconductor thin film can be manufactured. As a result, an amorphous silicon thin film useful for a solar cell, a thin film transistor of a liquid crystal display device, or the like can be provided.

本発明の第1のプラズマCVD装置を正面から見た概観断面図。BRIEF DESCRIPTION OF THE DRAWINGS The general | schematic sectional drawing which looked at the 1st plasma CVD apparatus of this invention from the front. 本発明の第1のプラズマCVD装置の放電電極を真下から見た概略図。Schematic which looked at the discharge electrode of the 1st plasma CVD apparatus of this invention from right below. 本発明の第2のプラズマCVD装置を正面から見た概観断面図。The general | schematic sectional drawing which looked at the 2nd plasma CVD apparatus of this invention from the front. 本発明の第3のプラズマCVD装置を正面から見た概観断面図。The general | schematic sectional drawing which looked at the 3rd plasma CVD apparatus of this invention from the front. 本発明の第3のプラズマCVD装置の放電電極を断面から見た概略図。Schematic which looked at the discharge electrode of the 3rd plasma CVD apparatus of this invention from the cross section. 本発明にかかる二重渦巻き形状の放電電極を下側から見た概略図。The schematic which looked at the discharge electrode of the double spiral shape concerning this invention from the lower side. 本発明にかかる櫛型形状の放電電極を下側から見た概略図。Schematic which looked at the comb-shaped discharge electrode concerning this invention from the lower side.

符号の説明Explanation of symbols

1…チャンバー、2…プラズマ生成空間、3…ラジカル輸送空間、4…膜成長面、10…被成膜基板、11…基板ステージ、12…基板ヒーター、13…真空排気装置、14…高周波電源、15…放電電極、16…放電電極支持板、17…原料ガス供給管、18…障壁 DESCRIPTION OF SYMBOLS 1 ... Chamber, 2 ... Plasma production space, 3 ... Radical transport space, 4 ... Film growth surface, 10 ... Substrate to be formed, 11 ... Substrate stage, 12 ... Substrate heater, 13 ... Vacuum exhaust apparatus, 14 ... High frequency power supply, DESCRIPTION OF SYMBOLS 15 ... Discharge electrode, 16 ... Discharge electrode support plate, 17 ... Raw material gas supply pipe, 18 ... Barrier

Claims (8)

チャンバーと、
該チャンバー内部を減圧下に保つ排気装置と、
電力を供給されることで原料ガスにプラズマを発生させる複数の放電電極と、
隣り合う該放電電極のそれぞれに極性の異なる交流又は高周波電圧を印加する電源と、
隣り合う該放電電極の間に原料ガスを導入する原料ガス供給管と、
該原料ガス供給管の出口から、原料ガス流れ方向の延長線上であって、かつ被成膜基板が置かれる位置までの間に設けられた障壁と、を有するプラズマCVD装置。
A chamber;
An exhaust device for keeping the inside of the chamber under reduced pressure;
A plurality of discharge electrodes for generating plasma in the source gas by being supplied with electric power;
A power supply for applying alternating current or high frequency voltage of different polarity to each of the adjacent discharge electrodes;
A source gas supply pipe for introducing a source gas between the adjacent discharge electrodes;
And a barrier provided between the outlet of the source gas supply pipe and an extended line in the source gas flow direction and a position where the deposition target substrate is placed.
前記原料ガス供給管の出口が前記隣り合う放電電極の間にあり、原料ガス流れ方向の延長線上に該隣り合う放電電極の一方の放電電極があるように該原料ガス供給管が向けられており、
前記障壁の代わりに該一方の放電電極自体が障壁を兼ねている請求項1に記載のプラズマCVD装置。
The source gas supply pipe is directed so that an outlet of the source gas supply pipe is between the adjacent discharge electrodes, and one discharge electrode of the adjacent discharge electrode is on an extension line in the source gas flow direction. ,
The plasma CVD apparatus according to claim 1, wherein the one discharge electrode itself also serves as a barrier instead of the barrier.
前記原料ガス供給管の出口が前記隣り合う放電電極の間にあり、原料ガス流れ方向の延長線上に該隣り合う放電電極のいずれもがないように該原料ガス供給管が向けられている請求項1に記載のプラズマCVD装置。   The outlet of the source gas supply pipe is located between the adjacent discharge electrodes, and the source gas supply pipe is directed so that none of the adjacent discharge electrodes is on an extension line in the source gas flow direction. 2. The plasma CVD apparatus according to 1. 前記原料ガス供給管の出口が前記隣り合う放電電極の少なくとも一方の放電電極の表面にあり、原料ガス流れ方向の延長線上に、他方の放電電極があるように該原料ガス供給管が向けられており、
前記障壁の代わりに該他方の放電電極自体が障壁を兼ねている請求項1に記載のプラズマCVD装置。
The source gas supply pipe is directed so that the outlet of the source gas supply pipe is on the surface of at least one discharge electrode of the adjacent discharge electrodes, and the other discharge electrode is on an extension line in the source gas flow direction. And
The plasma CVD apparatus according to claim 1, wherein the other discharge electrode itself serves as a barrier instead of the barrier.
被成膜基板が置かれる位置から前記放電電極を観察した際の放電電極の形状が、二重の渦巻き形状である請求項1〜4のいずれかに記載のプラズマCVD装置。   The plasma CVD apparatus according to any one of claims 1 to 4, wherein a shape of the discharge electrode when the discharge electrode is observed from a position where the deposition target substrate is placed is a double spiral shape. 被成膜基板が置かれる位置から前記放電電極を観察した際の放電電極の形状が、櫛型形状であることを特徴とする請求項1〜4のいずれかに記載のプラズマCVD装置。   The plasma CVD apparatus according to any one of claims 1 to 4, wherein a shape of the discharge electrode when the discharge electrode is observed from a position where the deposition target substrate is placed is a comb shape. チャンバー内部を減圧下に保持し、
隣り合う放電電極の間に原料ガス供給管から原料ガスを導入し、
該隣り合う放電電極のそれぞれに極性の異なる交流又は高周波電圧を印加して該原料ガスにプラズマを発生させ、
該原料ガス供給管の出口から、原料ガス流れ方向の延長線上であって、かつ被成膜基板が置かれる位置までの間に障壁を設け、
該原料ガスを該障壁に衝突させた後に被成膜基板に到達させ、被成膜基板に薄膜を形成するプラズマCVD法。
Hold the inside of the chamber under reduced pressure,
Introducing source gas from the source gas supply pipe between adjacent discharge electrodes,
Applying alternating current or high frequency voltage with different polarity to each of the adjacent discharge electrodes to generate plasma in the source gas,
A barrier is provided between the outlet of the source gas supply pipe and an extension line in the source gas flow direction and a position where the deposition target substrate is placed,
A plasma CVD method in which the source gas is made to collide with the barrier and then reach the deposition target substrate to form a thin film on the deposition target substrate;
請求項7に記載のプラズマCVD法を用いて製造された薄膜付基板。   A substrate with a thin film manufactured using the plasma CVD method according to claim 7.
JP2008137597A 2008-03-28 2008-05-27 Plasma cvd device, and plasma cvd method Pending JP2009260199A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008137597A JP2009260199A (en) 2008-03-28 2008-05-27 Plasma cvd device, and plasma cvd method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008085854 2008-03-28
JP2008137597A JP2009260199A (en) 2008-03-28 2008-05-27 Plasma cvd device, and plasma cvd method

Publications (1)

Publication Number Publication Date
JP2009260199A true JP2009260199A (en) 2009-11-05

Family

ID=41387225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008137597A Pending JP2009260199A (en) 2008-03-28 2008-05-27 Plasma cvd device, and plasma cvd method

Country Status (1)

Country Link
JP (1) JP2009260199A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014509066A (en) * 2011-01-13 2014-04-10 クックジェ エレクトリック コリア カンパニー リミテッド Injection member used for semiconductor manufacturing and plasma processing apparatus having the same
CN112334599A (en) * 2018-06-25 2021-02-05 东芝三菱电机产业系统株式会社 Active gas generating apparatus and film forming apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014509066A (en) * 2011-01-13 2014-04-10 クックジェ エレクトリック コリア カンパニー リミテッド Injection member used for semiconductor manufacturing and plasma processing apparatus having the same
JP2016028425A (en) * 2011-01-13 2016-02-25 クックジェ エレクトリック コリア カンパニー リミテッド Injection member used for manufacturing semiconductor, plasma processing apparatus using the same and method of manufacturing semiconductor device
CN112334599A (en) * 2018-06-25 2021-02-05 东芝三菱电机产业系统株式会社 Active gas generating apparatus and film forming apparatus
CN112334599B (en) * 2018-06-25 2023-09-29 东芝三菱电机产业系统株式会社 Reactive gas generator and film forming apparatus

Similar Documents

Publication Publication Date Title
US7927455B2 (en) Plasma processing apparatus
US20090155488A1 (en) Shower plate electrode for plasma cvd reactor
US8431996B2 (en) Plasma processing apparatus and method of producing amorphous silicon thin film using same
US20050145170A1 (en) Substrate processing apparatus and cleaning method therefor
JP2007214296A (en) Plasma treatment apparatus
JP5377749B2 (en) Plasma generator
WO2016190007A1 (en) Plasma atomic layer growth device
JP2009283235A (en) Plasma treatment device
KR101349266B1 (en) Plasma processing apparatus and method of forming micro crystal silicon layer
JP2009260199A (en) Plasma cvd device, and plasma cvd method
JP5772941B2 (en) Plasma CVD equipment
US20120100311A1 (en) Apparatus for forming deposited film and method for forming deposited film
JP5105898B2 (en) Silicon thin film deposition method
WO2010079753A1 (en) Plasma processing apparatus
JP2011151183A (en) Plasma cvd apparatus and plasma cvd deposition method
JP2006237093A (en) Plasma processing apparatus and method of plasma processing using it
JP5487990B2 (en) Plasma CVD equipment
JP2009289782A (en) Plasma cvd device and method for manufacturing thin amorphous silicon film
JP2010040808A (en) Plasma cvd device and manufacturing method of silicon membrane
JPWO2010079740A1 (en) Plasma processing equipment
TWI834658B (en) Apparatus for processing substrate
JP5691740B2 (en) Plasma processing equipment
JP2009239160A (en) Plasma cvd device and plasma cvd method
JP2011106015A (en) Film deposition system and film deposition method
JP2011179096A (en) Thin film forming device