JP2011179096A - Thin film forming device - Google Patents

Thin film forming device Download PDF

Info

Publication number
JP2011179096A
JP2011179096A JP2010046854A JP2010046854A JP2011179096A JP 2011179096 A JP2011179096 A JP 2011179096A JP 2010046854 A JP2010046854 A JP 2010046854A JP 2010046854 A JP2010046854 A JP 2010046854A JP 2011179096 A JP2011179096 A JP 2011179096A
Authority
JP
Japan
Prior art keywords
thin film
electrode plate
main surface
plasma
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010046854A
Other languages
Japanese (ja)
Inventor
Kazuki Takizawa
一樹 滝澤
Naomasa Miyatake
直正 宮武
Kazutoshi Murata
和俊 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP2010046854A priority Critical patent/JP2011179096A/en
Publication of JP2011179096A publication Critical patent/JP2011179096A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thin film forming device formable of a thin film in a short time by enhancing plasma generation density when forming the thin film on a substrate by using plasma. <P>SOLUTION: The thin film forming device for forming the thin film on the substrate comprises: a film deposition container provided with a deposition space for forming the thin film on the substrate in an evacuated state; a starting gas introduction part for introducing a starting gas for thin film into the deposition space in the film deposition container; and a plasma electrode part for generating plasma by using the starting gas for thin film in the deposition space. The plasma electrode part is made of a sheet member in which an electric current flows from one side edge surface to the other side edge surface, wherein a first principal plane of the sheet member faces the deposition space and, on the first principal surface, an electrode plate provided with a plurality of groove-like recessed parts extended along the direction in which the electric current flows is disposed as an electrode for plasma generation. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、プラズマを用いて基板に薄膜を形成する薄膜形成装置に関する。   The present invention relates to a thin film forming apparatus for forming a thin film on a substrate using plasma.

従来より、基板に薄膜を形成するためにCVD(Chemical Vapor Deposition)装置が用いられる。特に、CVD装置を用いて薄膜太陽電池に用いるアモルファスSi薄膜をガラス基板に形成するプロセスが注目されている。アモルファスSi薄膜の形成では、例えば、モノシラン(SiH4)をプラズマ化して、ガラス基板上にアモルファスSi薄膜を形成する。近年、薄膜太陽電池用パネルは大型化しており、大型のパネルに均一なアモルファスSi薄膜を形成することが望まれている。このために、プラズマCVD装置では、高密度なプラズマが均一に形成されること必要である。 Conventionally, a CVD (Chemical Vapor Deposition) apparatus is used to form a thin film on a substrate. In particular, a process of forming an amorphous Si thin film used for a thin film solar cell on a glass substrate by using a CVD apparatus has attracted attention. In the formation of the amorphous Si thin film, for example, monosilane (SiH 4 ) is turned into plasma to form the amorphous Si thin film on the glass substrate. In recent years, thin-film solar cell panels have become larger, and it is desired to form a uniform amorphous Si thin film on a large panel. For this reason, in a plasma CVD apparatus, it is necessary to form a high-density plasma uniformly.

例えば、プラズマCVD装置の一例として、プラズマ生成室内に複数本の高周波アンテナを設置し、該高周波アンテナにて該プラズマ生成室内ガスに高周波電力を印加して誘導結合型プラズマを発生させるプラズマ生成方法およびプラズマ生成装置が知られている(特許文献1)。
当該プラズマ生成方法およびプラズマ生成装置は、複数本の高周波アンテナのうち少なくとも一部の複数本の高周波アンテナについては、順次隣り合わせて、且つ、各隣り合うもの同士が互いに向かい合った並列配置となるように設置する。さらに、この複数本の高周波アンテナは、該順次隣り合わせて、且つ、各隣り合うもの同士が互いに向かい合った並列配置となるように設置する。この高周波アンテナのそれぞれに印加する高周波電圧の位相を制御することで誘導結合プラズマにおける電子温度を制御する。
For example, as an example of a plasma CVD apparatus, a plasma generation method in which a plurality of high-frequency antennas are installed in a plasma generation chamber, and inductively coupled plasma is generated by applying high-frequency power to the plasma generation chamber gas with the high-frequency antenna; A plasma generator is known (Patent Document 1).
In the plasma generation method and the plasma generation apparatus, at least some of the plurality of high-frequency antennas are sequentially arranged adjacent to each other, and the adjacent ones are arranged in parallel with each other facing each other. Install. Further, the plurality of high-frequency antennas are installed adjacent to each other in such a manner that the adjacent antennas are arranged in parallel with each other facing each other. The electron temperature in the inductively coupled plasma is controlled by controlling the phase of the high frequency voltage applied to each of the high frequency antennas.

また、真空容器と、前記真空容器の壁面に設けられた開口部と、前記開口部を気密に覆うように取り付けられる板状の高周波アンテナ導体と、を備えるプラズマ生成装置が知られている(特許文献2)。
当該プラズマ生成装置は、プラズマ生成装置の開口部に高周波アンテナ導体が取り付けられた構造のため、広い範囲に亘って均一性が高いプラズマを生成することができる。
There is also known a plasma generation device including a vacuum vessel, an opening provided on a wall surface of the vacuum vessel, and a plate-like high-frequency antenna conductor attached so as to cover the opening in an airtight manner (patent) Reference 2).
Since the plasma generation apparatus has a structure in which a high-frequency antenna conductor is attached to the opening of the plasma generation apparatus, it is possible to generate plasma with high uniformity over a wide range.

特開2007−149639号公報JP 2007-149639 A WO2009/142016A1WO2009 / 142016A1

図5(a)は、板状の高周波アンテナ導体を用いたプラズマ成膜装置の一例の構成を簡略化して説明する図である。図5(a)に示すプラズマ成膜装置100は、電極板102が成膜容器104の成膜室外に、隔壁106を隔てて設けられ、隔壁106の、成膜空間に面する側の面には、誘電体108が設けられる。誘電体108の対向する位置には、薄膜を形成するためのガラス基板Gが配置される。ガラス基板Gは、ヒータ110上に設けられたサセプタ112に載置される。   FIG. 5A is a diagram illustrating a simplified configuration of an example of a plasma film forming apparatus using a plate-shaped high-frequency antenna conductor. In the plasma film forming apparatus 100 shown in FIG. 5A, an electrode plate 102 is provided outside the film forming chamber of the film forming container 104 with a partition wall 106 therebetween, and on the surface of the partition wall 106 facing the film forming space. Is provided with a dielectric 108. A glass substrate G for forming a thin film is disposed at a position facing the dielectric 108. The glass substrate G is placed on a susceptor 112 provided on the heater 110.

図5(b)は、成膜空間に磁場を生成する電極板102の概略斜視図である。電極板102は、図5(b)に示すように、板状の電極である。電極板102の一方の端面は、数10MHzの高周波電源に接続され、電極板102の他方の端面は接地されている。電極板102では、電流がX方向に流れる。この電極板102を用いてプラズマを生成する方式では、上述の互いに隣り合わせた複数の高周波アンテナにより生成された高電圧を用いてプラズマを生成する装置と異なり、生成された磁場を用いてプラズマが生成される。
しかし、この電極板102により生成されるプラズマの密度は、アモルファスSi薄膜を形成するには十分でなく、成膜速度が遅いといった問題がある。また、複数本の高周波アンテナに高周波電力を給電することにより誘導結合型プラズマを発生させる上述の公知のプラズマ生成方法およびプラズマ生成装置についても十分なプラズマ密度を均一に生成することができないといった問題がある。
FIG. 5B is a schematic perspective view of the electrode plate 102 that generates a magnetic field in the film formation space. The electrode plate 102 is a plate-like electrode as shown in FIG. One end face of the electrode plate 102 is connected to a high frequency power supply of several tens of MHz, and the other end face of the electrode plate 102 is grounded. In the electrode plate 102, current flows in the X direction. In the method of generating plasma using the electrode plate 102, the plasma is generated using the generated magnetic field, unlike the above-described apparatus that generates plasma using high voltage generated by a plurality of adjacent high frequency antennas. Is done.
However, the density of the plasma generated by the electrode plate 102 is not sufficient for forming an amorphous Si thin film, and there is a problem that the film forming speed is slow. In addition, the above-described known plasma generation method and plasma generation apparatus that generate inductively coupled plasma by supplying high-frequency power to a plurality of high-frequency antennas have a problem that a sufficient plasma density cannot be generated uniformly. is there.

そこで、本発明は、上記問題点を解決するために、プラズマを用いて基板に薄膜を形成するとき、プラズマ密度を向上させて薄膜の形成を効率よく行うことのできる薄膜形成装置を提供することを目的とする。   Therefore, in order to solve the above problems, the present invention provides a thin film forming apparatus capable of efficiently forming a thin film by improving the plasma density when forming a thin film on a substrate using plasma. With the goal.

本発明の一態様は、基板に薄膜を形成する薄膜形成装置であって、
減圧状態で基板に薄膜を形成する成膜空間を備える成膜容器と、
前記成膜容器の前記成膜空間内に、薄膜用原料ガスを導入する原料ガス導入部と、
前記成膜空間において、前記薄膜用原料ガスを用いてプラズマを生成させるプラズマ電極部と、を有し、
前記プラズマ電極部は、電流が一方の端面から他方の端面に流れる板部材であって、前記板部材の第1の主面が前記成膜空間に向くように配置され、前記第1の主面に、電流方向に沿って延びる溝状の凹部が複数設けられている電極板をプラズマ生成用電極として備える。
One aspect of the present invention is a thin film forming apparatus for forming a thin film on a substrate,
A film formation container having a film formation space for forming a thin film on a substrate in a reduced pressure state;
A raw material gas introduction section for introducing a raw material gas for a thin film into the film formation space of the film formation container;
A plasma electrode unit for generating plasma using the thin film source gas in the film formation space;
The plasma electrode portion is a plate member in which an electric current flows from one end surface to the other end surface, and is arranged so that a first main surface of the plate member faces the film formation space, and the first main surface In addition, an electrode plate provided with a plurality of groove-like recesses extending along the current direction is provided as an electrode for plasma generation.

その際、前記電極板の前記第1の主面と対向する第2の主面の表面積は、前記第1の主面の表面積よりも小さい、ことが好ましい。   In that case, it is preferable that the surface area of the 2nd main surface facing the said 1st main surface of the said electrode plate is smaller than the surface area of the said 1st main surface.

また、前記第1の主面と対向する第2の主面には、前記電流方向と直交する方向に沿って伸びる凹凸を備える、ことが好ましい。   Moreover, it is preferable that the 2nd main surface facing the said 1st main surface is equipped with the unevenness | corrugation extended along the direction orthogonal to the said electric current direction.

前記電極板を、第1の電極板というとき、
前記プラズマ電極部は、電流が一方の端面から他方の端面に流れる板部材であって、前記板部材の第3の主面が前記成膜空間に向くように配置され、前記第3の主面に、電流方向に沿って延びる溝状の凹部が複数設けられている第2の電極板を、前記第1の電極板に離間して備え、
前記第2の電極板は、前記第1の電極板に並行するように配置され、
前記第1の電極板および前記第2の電極板のそれぞれにおいて、前記第1の電極板及び前記第2の電極板同士が隣り合う側の端に位置する凹部の深さが、他の凹部の深さに比べて深い、ことが好ましい。
When the electrode plate is referred to as a first electrode plate,
The plasma electrode portion is a plate member in which an electric current flows from one end surface to the other end surface, and is arranged such that a third main surface of the plate member faces the film formation space, and the third main surface A second electrode plate provided with a plurality of groove-shaped recesses extending along the current direction, spaced apart from the first electrode plate,
The second electrode plate is arranged in parallel with the first electrode plate,
In each of the first electrode plate and the second electrode plate, the depth of the recess located at the end on the side where the first electrode plate and the second electrode plate are adjacent to each other is the depth of the other recess. It is preferably deeper than the depth.

前記電極板の前記凹部の最も深い場所と前記第2の主面との距離が0.2mmより長い、ことが好ましい。   It is preferable that a distance between the deepest portion of the concave portion of the electrode plate and the second main surface is longer than 0.2 mm.

上述の薄膜形成装置では、生成されるプラズマ密度を高くし、薄膜の形成を効率よく行うことができる。   In the above-described thin film forming apparatus, the generated plasma density can be increased and the thin film can be formed efficiently.

本発明の一実施形態である薄膜形成装置の構成を表す概略図である。It is the schematic showing the structure of the thin film forming apparatus which is one Embodiment of this invention. 図1に示す薄膜形成装置に用いる電極板の一例を示す斜視図である。It is a perspective view which shows an example of the electrode plate used for the thin film forming apparatus shown in FIG. 図1に示す薄膜形成装置に用いる電極板の他の例を示す斜視図である。It is a perspective view which shows the other example of the electrode plate used for the thin film forming apparatus shown in FIG. 図1に示す薄膜形成装置に用いる電極板の他の例を示す図である。It is a figure which shows the other example of the electrode plate used for the thin film forming apparatus shown in FIG. (a),(b)は、従来の薄膜形成装置に用いる電極板の例を説明する図である。(A), (b) is a figure explaining the example of the electrode plate used for the conventional thin film formation apparatus.

以下、本発明の薄膜形成装置について詳細に説明する。
図1は、本発明の一実施形態である薄膜形成装置10の構成を示す概略図である。
Hereinafter, the thin film forming apparatus of the present invention will be described in detail.
FIG. 1 is a schematic diagram showing a configuration of a thin film forming apparatus 10 according to an embodiment of the present invention.

図1に示す薄膜形成装置10は、生成されるプラズマを用いて、基板に薄膜を形成するCVD装置である。薄膜形成装置10は、電極板を流れる電流によって生成される磁界により、プラズマを生成する方式である。この方式は、モノポールアンテナ等のアンテナ素子の共振により発生する高電圧によりプラズマを生成する方式と異なる。   A thin film forming apparatus 10 shown in FIG. 1 is a CVD apparatus that forms a thin film on a substrate using generated plasma. The thin film forming apparatus 10 is a system that generates plasma by a magnetic field generated by a current flowing through an electrode plate. This method is different from a method in which plasma is generated by a high voltage generated by resonance of an antenna element such as a monopole antenna.

(薄膜形成装置)
以下、薄膜としてアモルファスSi薄膜を形成する例を用いて、薄膜形成装置10について説明する。
薄膜形成装置10は、給電ユニット12と、成膜容器14と、ガス供給部16と、ガス排気部18と、を有する。
(Thin film forming equipment)
Hereinafter, the thin film forming apparatus 10 will be described using an example of forming an amorphous Si thin film as a thin film.
The thin film forming apparatus 10 includes a power supply unit 12, a film forming container 14, a gas supply unit 16, and a gas exhaust unit 18.

給電ユニット12は、高周波電源22と、高周波ケーブル24と、マッチングボックス26と、伝送線28,29と、電極板30と、を有する。
高周波電源22は、例えば、100〜3000Wで数10MHzの高周波電力を電極板30に給電する。マッチングボックス26は、高周波ケーブル24を通して提供される電力が電極板30に効率よく供給されるように、インピーダンスを整合する。マッチングボックス26は、キャパシタおよびインダクタ等の素子を設けた公知の整合回路を備える。
マッチングボックス26から延びる伝送線28は、例えば、一定の幅を備える銅板状の伝送線路であり、電極板30へ、例えば数アンペアの電流を流すことができる。
伝送線29は、電極板30から延び接地されている。
The power supply unit 12 includes a high frequency power supply 22, a high frequency cable 24, a matching box 26, transmission lines 28 and 29, and an electrode plate 30.
The high frequency power supply 22 supplies, for example, high frequency power of several tens of MHz to the electrode plate 30 at 100 to 3000 W. The matching box 26 matches impedance so that power supplied through the high-frequency cable 24 is efficiently supplied to the electrode plate 30. The matching box 26 includes a known matching circuit provided with elements such as a capacitor and an inductor.
The transmission line 28 extending from the matching box 26 is, for example, a copper plate-shaped transmission line having a certain width, and can pass a current of, for example, several amperes to the electrode plate 30.
The transmission line 29 extends from the electrode plate 30 and is grounded.

電極板30は、後述する隔壁32上に固定された一方向に長い板部材であって、この板部材の第1の主面が成膜容器14内の成膜空間に向いて隔壁32に対して並行に配置されている。電極板30は、伝送線28が接続されている端面と伝送線29が接続されている端面との間の、板部材の長手方向に沿って電流を流す。電極板30は、第1の主面に、電流の流れる方向に沿って延びる凹部が複数設けられている。この点は、後述する。   The electrode plate 30 is a plate member long in one direction fixed on a partition wall 32 to be described later, and the first main surface of the plate member faces the film formation space in the film formation container 14 with respect to the partition wall 32. Are arranged in parallel. The electrode plate 30 allows current to flow along the longitudinal direction of the plate member between the end face to which the transmission line 28 is connected and the end face to which the transmission line 29 is connected. The electrode plate 30 is provided with a plurality of recesses extending along the direction of current flow on the first main surface. This point will be described later.

成膜容器14は、内部空間38を容器内に有し、内部空間38は、隔壁32により上部空間と下部の成膜空間40に区分けされている。成膜容器14は、例えば、アルミニウム等の材質で形成されて内部空間38を1〜100Paの減圧状態にできるように、密閉されている。成膜容器14の上部空間には、マッチングボックス26と、伝送線28,29と、電極板30と、を有する。隔壁32の上部空間に面する側には、電極板30が固定されている。電極板30の周囲には、周囲の隔壁32と絶縁するための絶縁部材34が設けられている。一方、隔壁32の成膜空間40に面する側には、誘電体36が設けられている。誘電体36には、例えば石英板が用いられる。誘電体36を設けるのは、プラズマによる電極板30の腐食を防ぎ、かつ効率よくプラズマへ電力を伝播させるためである。   The film formation container 14 has an internal space 38 in the container, and the internal space 38 is divided into an upper space and a lower film formation space 40 by a partition wall 32. The film formation container 14 is formed of a material such as aluminum, for example, and is sealed so that the internal space 38 can be in a reduced pressure state of 1 to 100 Pa. A matching box 26, transmission lines 28 and 29, and an electrode plate 30 are provided in the upper space of the film forming container 14. An electrode plate 30 is fixed to the side of the partition wall 32 facing the upper space. An insulating member 34 is provided around the electrode plate 30 to insulate the surrounding partition wall 32. On the other hand, a dielectric 36 is provided on the side of the partition wall 32 facing the film formation space 40. For the dielectric 36, for example, a quartz plate is used. The reason why the dielectric 36 is provided is to prevent the electrode plate 30 from being corroded by plasma and efficiently propagate power to the plasma.

成膜容器14の成膜空間40には、ヒータ42と、サセプタ44と、昇降機構46と、が設けられている。
ヒータ42は、サセプタ44に載置するガラス基板20を所定の温度、例えば250℃程度に加熱する。
サセプタ44は、ガラス基板20を載置する。
昇降機構46は、ガラス基板20を載置したサセプタ44をヒータ42ともに、成膜空間40内を自在に昇降する。成膜プロセス段階では、電極板30に近接するように、ガラス基板20を所定の位置にセットする。
In the film formation space 40 of the film formation container 14, a heater 42, a susceptor 44, and an elevating mechanism 46 are provided.
The heater 42 heats the glass substrate 20 placed on the susceptor 44 to a predetermined temperature, for example, about 250 ° C.
The susceptor 44 places the glass substrate 20 thereon.
The elevating mechanism 46 moves the susceptor 44 on which the glass substrate 20 is placed together with the heater 42 freely in the film forming space 40. In the film forming process stage, the glass substrate 20 is set at a predetermined position so as to be close to the electrode plate 30.

ガス供給部16は、ガスタンク48と、マスフローコントローラ50と、を有する。
ガスタンク48は、薄膜用原料ガスであるモノシランガス(SiH4)を貯蔵する。
マスフローコントローラ50は、モノシランガスの流量を調整する部分である。例えば
形成される膜の膜厚や膜質等の結果に応じてモノシランガスの流量を調整することができる。モノシランガスは、成膜容器14の成膜空間40の側壁から成膜空間40内に供給される。
The gas supply unit 16 includes a gas tank 48 and a mass flow controller 50.
The gas tank 48 stores monosilane gas (SiH 4 ), which is a raw material gas for a thin film.
The mass flow controller 50 is a part that adjusts the flow rate of the monosilane gas. For example, the flow rate of the monosilane gas can be adjusted according to the results of the film thickness and film quality of the formed film. The monosilane gas is supplied into the film formation space 40 from the side wall of the film formation space 40 of the film formation container 14.

ガス排気部18は、成膜空間40内の側壁から延びる排気管と、ターボ分子ポンプ52と、ドライポンプ54と、を有する。ドライポンプ54は、成膜空間40内を粗引きし、ターボ分子ポンプ52は、成膜空間40内の圧力を1×10-4Pa以下に高精度に減圧を維持する。ターボ分子ポンプ52とドライポンプ54とは、排気管で接続されている。 The gas exhaust unit 18 includes an exhaust pipe extending from a side wall in the film formation space 40, a turbo molecular pump 52, and a dry pump 54. The dry pump 54 roughens the inside of the film formation space 40, and the turbo molecular pump 52 maintains the pressure in the film formation space 40 with a high accuracy to 1 × 10 −4 Pa or less. The turbo molecular pump 52 and the dry pump 54 are connected by an exhaust pipe.

(電極板)
図2は、給電ユニット12に用いられる電極板30の一例の斜視図である。
電極板30は、電極板30の第1の主面30aが内部空間40に向くように、隔壁32に固定されている。第1の主面30aには、電流方向(図中、X方向)に沿って延びる溝状の凹部30cが複数設けられている。電極板30は、例えば、銅、アルミニウム等が用いられる。
(Electrode plate)
FIG. 2 is a perspective view of an example of the electrode plate 30 used in the power supply unit 12.
The electrode plate 30 is fixed to the partition wall 32 so that the first main surface 30 a of the electrode plate 30 faces the internal space 40. The first main surface 30a is provided with a plurality of groove-shaped recesses 30c extending along the current direction (X direction in the figure). For example, copper, aluminum, or the like is used for the electrode plate 30.

図2に示す例では、凹部30cとして、直線的に傾斜した傾斜面で凹部が形成されたX方向に延びる溝が4本設けられている。このため、電極板30は、第1の主面30aの表面積が第1の主面30aと反対側の第2の主面30bの表面積に対して大きい。電極板30を流れる高周波の電流は表面効果により、第1の主面30a,第2の主面30bの表層に集まる。しかし、第1の主面は、第2の主面30bに比べて表面積が大きいので、第1の主面30aの表層を流れる電流は、第2の主面30bに比べて大きい。このため、第1の主面30aの表層を流れる電流により、成膜空間40内に形成される磁場は、凹部30cが設けられていない電極板(図5(b)参照)に比べて大きくなる。このため、従来に比べて磁場により生成されるプラズマは高密度化される。しかも、電極板30を用いて磁場を生成するので、薄膜形成装置10は広範囲に均一な磁場を生成することができ、その結果、広範囲に高密度のプラズマを生成することができる。   In the example illustrated in FIG. 2, four grooves extending in the X direction in which the concave portions are formed on the inclined surfaces that are linearly inclined are provided as the concave portions 30 c. For this reason, in the electrode plate 30, the surface area of the first main surface 30a is larger than the surface area of the second main surface 30b opposite to the first main surface 30a. The high-frequency current flowing through the electrode plate 30 gathers on the surface layers of the first main surface 30a and the second main surface 30b due to surface effects. However, since the first main surface has a larger surface area than the second main surface 30b, the current flowing through the surface layer of the first main surface 30a is larger than that of the second main surface 30b. For this reason, the magnetic field formed in the film-forming space 40 due to the current flowing through the surface layer of the first main surface 30a becomes larger than that of the electrode plate (see FIG. 5B) not provided with the recess 30c. . For this reason, the plasma generated by the magnetic field is densified as compared with the conventional case. Moreover, since the magnetic field is generated using the electrode plate 30, the thin film forming apparatus 10 can generate a uniform magnetic field over a wide range, and as a result, can generate high-density plasma over a wide range.

なお、電極板30を流れる電流の表層は、電極板30の電気抵抗率、電流の周波数、および、電極板30の透磁率に依存して定まるが、銅あるいはアルミニウムを電極板30の材質とし、電流の周波数を数10MHzとする場合、表層の深さはおよそ0.1mm程度である。したがって、第1の主面30aと第2の主面30bの表層に流れる電流を考慮して、電極板20の厚さは、0.2mmより厚いことが好ましい。すなわち、電極板30の凹部30cの最も深い場所と第2の主面30bとの距離が0.2mmより長いことが好ましい。   The surface layer of the current flowing through the electrode plate 30 is determined depending on the electrical resistivity of the electrode plate 30, the frequency of the current, and the magnetic permeability of the electrode plate 30, but copper or aluminum is used as the material of the electrode plate 30, When the current frequency is set to several tens of MHz, the depth of the surface layer is about 0.1 mm. Therefore, the thickness of the electrode plate 20 is preferably thicker than 0.2 mm in consideration of the current flowing through the surface layers of the first main surface 30a and the second main surface 30b. That is, it is preferable that the distance between the deepest portion of the recess 30c of the electrode plate 30 and the second main surface 30b is longer than 0.2 mm.

図2に示す電極板30の凹部30cは、いずれも同じ深さの凹部であるが、凹部30cの深さは一定である必要はなく、分布を持たせることもできる。例えば、電極板30の幅方向(X方向と直交する方向)の中央部で凹部30cの深さを深くしてもよいし、電極板30の幅方向(X方向と直交する方向)の両側で凹部30cの深さを深くしてもよい。電極板30は、凹部の深さの代わりに、凸部の高さを変えてもよい。少なくとも、第1の主面30aの表面積が第2の主表面30bの表面積に対して大きければよい。
第1の主面30aに設ける凹部30cの数も限定されない。
The recesses 30c of the electrode plate 30 shown in FIG. 2 are all recesses having the same depth, but the depth of the recesses 30c does not have to be constant and can be distributed. For example, the depth of the recess 30c may be increased at the center in the width direction (direction orthogonal to the X direction) of the electrode plate 30, or on both sides of the width direction (direction orthogonal to the X direction) of the electrode plate 30. The depth of the recess 30c may be increased. The electrode plate 30 may change the height of the convex portion instead of the depth of the concave portion. It is sufficient that at least the surface area of the first main surface 30a is larger than the surface area of the second main surface 30b.
The number of recesses 30c provided on the first main surface 30a is not limited.

また、電極板30の凹部30cの深さあるいは凸部の高さを、図2中のX方向(長手方向)に沿って徐々に変化させることもできる。例えば、電流の上流側の部分が下流側の部分に対してプラズマ密度が低い場合、上流側の表面積の差(第1の主面側の表面積と第2の主面側の表面積との差)を大きくし、下流側では表面積の差を小さくするとよい。
また、複数設けられる凹部30cの間隔も一定である必要はなく、間隔を幅方向(X方向と直交する方向)に変化させてもよい。
In addition, the depth of the concave portion 30c or the height of the convex portion of the electrode plate 30 can be gradually changed along the X direction (longitudinal direction) in FIG. For example, when the plasma density of the upstream portion of the current is lower than that of the downstream portion, the difference in the surface area on the upstream side (the difference between the surface area on the first principal surface side and the surface area on the second principal surface side). And increase the surface area difference on the downstream side.
Further, the intervals between the plurality of recessed portions 30c need not be constant, and the intervals may be changed in the width direction (direction orthogonal to the X direction).

(第1変形例)
図3は、電極板30とは異なる電極板60の斜視図である。
電極板60の第1の主面60aは、電極板30の第1の主面30aに設けられる凹部30cと同様の凹部を備える。一方、第2の主面60bには、電流が流れるX方向に対して直交する方向に延びるフィン状の薄板部材60cが複数設けられている。第2の主面60bの側に薄板部材60cを設けるのは、電流の流れる方向の断面積を第2の主面60bの側で大きく変化させることにより、抵抗を大きくするためである。このため、第2の主表面69bに比べて抵抗が小さい第1の主面60aに電流が流れ易くなる。したがって、第1の主面60aに流れる電流を大きくし、第1の主面30aに流れる電流により、成膜空間40内に形成される磁場を、従来に比べて大きくすることができる。
また、薄板部材60cは、電極板60を電流が流れることにより発生する熱を放熱する点でも、有効である。なお、電極板60の第2の主面60bには、薄板部材60cが設けられることに限定されず、電流の流れる方向と直交する方向に沿って伸びる凹凸を備えればよい。電極板60には、少なくとも、第2の主面60bの表層を流れる電流の抵抗を大きくするような凹凸が設けられるとよい。
(First modification)
FIG. 3 is a perspective view of an electrode plate 60 different from the electrode plate 30.
The first main surface 60 a of the electrode plate 60 includes a recess similar to the recess 30 c provided on the first main surface 30 a of the electrode plate 30. On the other hand, the second main surface 60b is provided with a plurality of fin-like thin plate members 60c extending in a direction orthogonal to the X direction in which current flows. The reason why the thin plate member 60c is provided on the second main surface 60b side is to increase the resistance by largely changing the cross-sectional area in the direction of current flow on the second main surface 60b side. For this reason, it becomes easy to flow an electric current through the 1st main surface 60a whose resistance is small compared with the 2nd main surface 69b. Therefore, the current flowing through the first main surface 60a can be increased, and the magnetic field formed in the film formation space 40 can be increased by the current flowing through the first main surface 30a as compared with the conventional case.
The thin plate member 60c is also effective in that it dissipates heat generated by current flowing through the electrode plate 60. The second main surface 60b of the electrode plate 60 is not limited to being provided with the thin plate member 60c, but may be provided with unevenness extending along a direction orthogonal to the direction of current flow. The electrode plate 60 is preferably provided with at least irregularities that increase the resistance of the current flowing through the surface layer of the second main surface 60b.

(第2変形例)
図4は、大面積のプラズマを生成するために、電極板62,64を設ける場合の例を説明する図である。
電極板62,64は、図1に示す隔壁32に固定される。このとき、電極板62,64は電流の流れる方向に並列するように配置される。電極板62,64は、電極板30の凹部30cと同様に、成膜空間40の側に向く第1の主面62a,64aの側に、凹部62c1,62c2,凹部64c1,64c2がX方向に沿って設けられている。凹部62c2は、電極板62,64が隣接する側の端に位置する凹部であり、凹部64c2は、電極板62,64が隣接する側の端に位置する凹部である。凹部62c2,凹部64c2の深さは、凹部62c1,凹部64c1の深さに比べて深くなっている。このように、電極板62,64が隣り合う側に位置する凹部の深さを深くするのは、第1の主面62a,64aにおける表面積を電極板62,64が隣り合う側で大きくして表面積を大きくすることで、電流を増大させるためである。図2に示す電極板30を2つ並列して配置した場合、2つの電極板が隣り合う部分では電流が流れ難い。このため、この部分の電流により生成される磁場も大きくならず、その結果、2つの電極板が隣り合う部分でのプラズマ密度は低い。そのため、均一なプラズマが生成されにくい。
しかし、深さの深い凹部62c2,凹部64c2を設けた電極板62,64を用いることで、2つの電極板が隣り合う部分の電流の低下を抑制でき、均一に電流を流すことができる。その結果、均一な磁場を形成することができ、均一かつ高密度なプラズマを生成することができる。
(Second modification)
FIG. 4 is a diagram for explaining an example in which electrode plates 62 and 64 are provided in order to generate a large-area plasma.
The electrode plates 62 and 64 are fixed to the partition wall 32 shown in FIG. At this time, the electrode plates 62 and 64 are arranged in parallel in the direction in which the current flows. Similarly to the recess 30c of the electrode plate 30, the electrode plates 62 and 64 have recesses 62c 1 and 62c 2 and recesses 64c 1 and 64c 2 on the first main surfaces 62a and 64a facing the film formation space 40. Are provided along the X direction. The recess 62c 2 is a recess positioned at the end on the side where the electrode plates 62 and 64 are adjacent, and the recess 64c 2 is a recess positioned at the end on the side where the electrode plates 62 and 64 are adjacent. The depths of the recesses 62c 2 and 64c 2 are deeper than the depths of the recesses 62c 1 and 64c 1 . As described above, the depth of the recess located on the side where the electrode plates 62 and 64 are adjacent is increased by increasing the surface area of the first main surfaces 62a and 64a on the side where the electrode plates 62 and 64 are adjacent. This is because the current is increased by increasing the surface area. When two electrode plates 30 shown in FIG. 2 are arranged in parallel, it is difficult for current to flow in a portion where the two electrode plates are adjacent to each other. For this reason, the magnetic field generated by the current in this portion does not increase, and as a result, the plasma density in the portion where the two electrode plates are adjacent is low. Therefore, uniform plasma is difficult to be generated.
However, by using the electrode plates 62 and 64 provided with the deep concave portions 62c 2 and the concave portions 64c 2 , it is possible to suppress a decrease in the current in the portion where the two electrode plates are adjacent to each other and to allow the current to flow uniformly. . As a result, a uniform magnetic field can be formed, and uniform and high-density plasma can be generated.

以上のように、プラズマを生成するために用いる電極板では、電流が一方の端面から他方の端面に流れる。この電極板の第1の主面が成膜空間に向き、この第1の主面に、電流方向に沿って延びる凹部が複数設けられている。このため、第1の主面に流れる電流を増大することができ、従来に比べて成膜空間内の磁場を高くすることができる。したがって、プラズマを高密度に生成することができる。   As described above, in the electrode plate used for generating plasma, current flows from one end face to the other end face. The first main surface of the electrode plate faces the film formation space, and a plurality of recesses extending along the current direction are provided on the first main surface. For this reason, the electric current which flows into a 1st main surface can be increased, and the magnetic field in film-forming space can be made high compared with the past. Therefore, plasma can be generated with high density.

以上、本発明の薄膜形成装置について詳細に説明したが、本発明の薄膜形成装置は上記実施形態に限定されず、本発明の主旨を逸脱しない範囲において、種々の改良や変更をしてもよいのはもちろんである。   The thin film forming apparatus of the present invention has been described in detail above. However, the thin film forming apparatus of the present invention is not limited to the above embodiment, and various improvements and modifications may be made without departing from the gist of the present invention. Of course.

10 薄膜形成装置
12 給電ユニット
14,104 成膜容器
16 ガス供給部
18 ガス排気部
20 ガラス基板
22 高周波電源
24 高周波ケーブル
26 マッチングボックス
28,29 伝送線
30,60,62,64,102 電極板
30a,60a,62a,64a 第1の主面
30b,60b 第2の主面
30c,62c1,62c2,64c1,64c2 溝部
32,106 隔壁
34 絶縁部材
36,108 誘電体
38 内部空間
40 成膜空間
42,110 ヒータ
44,112 サセプタ
46 昇降機構
48 ガスタンク
50 マスフローコントローラ
52 ターボ分子ポンプ
54 ドライポンプ
60c 薄板部材
100 プラズマ成膜装置
DESCRIPTION OF SYMBOLS 10 Thin film forming apparatus 12 Power supply unit 14,104 Film formation container 16 Gas supply part 18 Gas exhaust part 20 Glass substrate 22 High frequency power supply 24 High frequency cable 26 Matching box 28, 29 Transmission line 30, 60, 62, 64, 102 Electrode plate 30a , 60a, 62a, 64a first main surface 30b, 60b second main surface 30c, 62c 1, 62c 2, 64c 1, 64c 2 grooves 32,106 septum 34 insulating member 36,108 dielectric 38 the inner space 40 formed Membrane space 42, 110 Heater 44, 112 Susceptor 46 Elevating mechanism 48 Gas tank 50 Mass flow controller 52 Turbo molecular pump 54 Dry pump 60c Thin plate member 100 Plasma film forming apparatus

Claims (5)

基板に薄膜を形成する薄膜形成装置であって、
減圧状態で基板に薄膜を形成する成膜空間を備える成膜容器と、
前記成膜容器の前記成膜空間内に、薄膜用原料ガスを導入する原料ガス導入部と、
前記成膜空間において、前記薄膜用原料ガスを用いてプラズマを生成させるプラズマ電極部と、を有し、
前記プラズマ電極部は、電流が一方の端面から他方の端面に流れる板部材であって、前記板部材の第1の主面が前記成膜空間に向くように配置され、前記第1の主面に、電流方向に沿って延びる溝状の凹部が複数設けられている電極板をプラズマ生成用電極として備える、ことを特徴とする薄膜形成装置。
A thin film forming apparatus for forming a thin film on a substrate,
A film formation container having a film formation space for forming a thin film on a substrate in a reduced pressure state;
A raw material gas introduction section for introducing a raw material gas for a thin film into the film formation space of the film formation container;
A plasma electrode unit for generating plasma using the thin film source gas in the film formation space;
The plasma electrode portion is a plate member in which an electric current flows from one end surface to the other end surface, and is arranged so that a first main surface of the plate member faces the film formation space, and the first main surface A thin film forming apparatus comprising: an electrode plate provided with a plurality of groove-like recesses extending along a current direction as a plasma generating electrode.
前記第2の主面は、電流方向に沿って平坦形状を成し、
前記電極板の前記第1の主面と対向する第2の主面の表面積は、前記第1の主面の表面積よりも小さい、請求項1に記載の薄膜形成装置。
The second main surface has a flat shape along the current direction,
2. The thin film forming apparatus according to claim 1, wherein a surface area of a second main surface facing the first main surface of the electrode plate is smaller than a surface area of the first main surface.
前記第1の主面と対向する第2の主面には、前記電流方向と直交する方向に沿って伸びる凹凸を備える、請求項1に記載の薄膜形成装置。   2. The thin film forming apparatus according to claim 1, wherein the second main surface facing the first main surface includes unevenness extending along a direction orthogonal to the current direction. 前記電極板を、第1の電極板というとき、
前記プラズマ電極部は、電流が一方の端面から他方の端面に流れる板部材であって、前記板部材の第3の主面が前記成膜空間に向くように配置され、前記第3の主面に、電流方向に沿って延びる溝状の凹部が複数設けられている第2の電極板を、前記第1の電極板に離間して備え、
前記第2の電極板は、前記第1の電極板に並行するように配置され、
前記第1の電極板および前記第2の電極板のそれぞれにおいて、前記第1の電極板及び前記第2の電極板同士が隣り合う側の端における凹部の深さが、他の位置における凹部の深さに比べて深い、請求項1〜3のいずれか1項に記載の薄膜形成装置。
When the electrode plate is referred to as a first electrode plate,
The plasma electrode portion is a plate member in which an electric current flows from one end surface to the other end surface, and is arranged such that a third main surface of the plate member faces the film formation space, and the third main surface A second electrode plate provided with a plurality of groove-shaped recesses extending along the current direction, spaced apart from the first electrode plate,
The second electrode plate is arranged in parallel with the first electrode plate,
In each of the first electrode plate and the second electrode plate, the depth of the recess at the end on the side where the first electrode plate and the second electrode plate are adjacent to each other is the depth of the recess at another position. The thin film forming apparatus according to claim 1, wherein the thin film forming apparatus is deeper than a depth.
前記電極板の前記凹部の最も深い場所と前記第2の主面との距離が0.2mmより長い、請求項1〜4のいずれか1項に記載の薄膜形成装置。
The thin film forming apparatus according to any one of claims 1 to 4, wherein a distance between a deepest place of the concave portion of the electrode plate and the second main surface is longer than 0.2 mm.
JP2010046854A 2010-03-03 2010-03-03 Thin film forming device Pending JP2011179096A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010046854A JP2011179096A (en) 2010-03-03 2010-03-03 Thin film forming device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010046854A JP2011179096A (en) 2010-03-03 2010-03-03 Thin film forming device

Publications (1)

Publication Number Publication Date
JP2011179096A true JP2011179096A (en) 2011-09-15

Family

ID=44690913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010046854A Pending JP2011179096A (en) 2010-03-03 2010-03-03 Thin film forming device

Country Status (1)

Country Link
JP (1) JP2011179096A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130104803A1 (en) * 2010-03-03 2013-05-02 Mitsui Engineering & Shipbuilding Co., Ltd. Thin film forming apparatus

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01226148A (en) * 1988-03-07 1989-09-08 Mitsui Toatsu Chem Inc Film forming apparatus
JPH01227426A (en) * 1988-03-08 1989-09-11 Mitsui Toatsu Chem Inc Film forming apparatus
JPH03247769A (en) * 1990-02-23 1991-11-05 Ulvac Japan Ltd Electrode device for plasma cvd system
JPH04341570A (en) * 1991-05-16 1992-11-27 Seikosha Co Ltd Discharge electrode and reactor
JPH09232612A (en) * 1996-02-26 1997-09-05 Canon Inc Forming device and method of non-single crystal semiconductor thin film
WO2009142016A1 (en) * 2008-05-22 2009-11-26 株式会社イー・エム・ディー Plasma generating apparatus and plasma processing apparatus
JP2011054950A (en) * 2009-08-07 2011-03-17 Semiconductor Energy Lab Co Ltd Method for manufacturing microcrystalline semiconductor film and thin film transistor
WO2011058608A1 (en) * 2009-11-13 2011-05-19 日新電機株式会社 Plasma processing apparatus

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01226148A (en) * 1988-03-07 1989-09-08 Mitsui Toatsu Chem Inc Film forming apparatus
JPH01227426A (en) * 1988-03-08 1989-09-11 Mitsui Toatsu Chem Inc Film forming apparatus
JPH03247769A (en) * 1990-02-23 1991-11-05 Ulvac Japan Ltd Electrode device for plasma cvd system
JPH04341570A (en) * 1991-05-16 1992-11-27 Seikosha Co Ltd Discharge electrode and reactor
JPH09232612A (en) * 1996-02-26 1997-09-05 Canon Inc Forming device and method of non-single crystal semiconductor thin film
WO2009142016A1 (en) * 2008-05-22 2009-11-26 株式会社イー・エム・ディー Plasma generating apparatus and plasma processing apparatus
JP2011054950A (en) * 2009-08-07 2011-03-17 Semiconductor Energy Lab Co Ltd Method for manufacturing microcrystalline semiconductor film and thin film transistor
WO2011058608A1 (en) * 2009-11-13 2011-05-19 日新電機株式会社 Plasma processing apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130104803A1 (en) * 2010-03-03 2013-05-02 Mitsui Engineering & Shipbuilding Co., Ltd. Thin film forming apparatus

Similar Documents

Publication Publication Date Title
EP1889946B1 (en) Surface Processing Apparatus
KR101529578B1 (en) Apparatus and method for treating substrate using plasma
US7880392B2 (en) Plasma producing method and apparatus as well as plasma processing apparatus
JP4671361B2 (en) Plasma generator
KR20140018861A (en) Thin film deposition using microwave plasma
US20110008550A1 (en) Atomic layer growing apparatus and thin film forming method
JP2021502688A (en) Radiofrequency plasma ion source of linearized energy
JP5377749B2 (en) Plasma generator
JP4818483B2 (en) Thin film forming equipment
JP5551635B2 (en) Thin film forming equipment
KR20130081369A (en) Thin film deposition apparatus, plasma generation apparatus, and thin film deposition method
TWI770144B (en) Plasma processing device
JP2011181832A (en) Thin film forming device
JP2011179096A (en) Thin film forming device
JP2006286705A (en) Plasma deposition method and deposition structure
JP4554694B2 (en) Plasma processing equipment
JP5563502B2 (en) Thin film forming equipment
JP2012177174A (en) Thin film deposition apparatus
JP2012188684A (en) Thin film deposition apparatus, and thin film deposition method
JP5038769B2 (en) Plasma processing equipment
JP2008248281A (en) Plasma generator and thin film deposition apparatus using the same
KR101514080B1 (en) Plasma enhanced chemical vapor deposition apparatus
JP5512728B2 (en) Plasma processing equipment
JP4554712B2 (en) Plasma processing equipment
KR20090104941A (en) Manufacturing device for solarcell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130723

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130724

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131119