JP2009259536A - Planiform alkaline primary battery - Google Patents

Planiform alkaline primary battery Download PDF

Info

Publication number
JP2009259536A
JP2009259536A JP2008105957A JP2008105957A JP2009259536A JP 2009259536 A JP2009259536 A JP 2009259536A JP 2008105957 A JP2008105957 A JP 2008105957A JP 2008105957 A JP2008105957 A JP 2008105957A JP 2009259536 A JP2009259536 A JP 2009259536A
Authority
JP
Japan
Prior art keywords
positive electrode
electrode mixture
primary battery
mass
silver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008105957A
Other languages
Japanese (ja)
Inventor
Norishige Yamaguchi
典重 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2008105957A priority Critical patent/JP2009259536A/en
Publication of JP2009259536A publication Critical patent/JP2009259536A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • Y02E60/12

Landscapes

  • Primary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a planiform alkaline primary battery of low cost, high battery voltage, standing long-time use, and with high reliability. <P>SOLUTION: In the planiform alkaline primary battery 1, an anode can 3 is insertion-coupled to a circular opening of a cathode can 2 from an opening side where a gasket 4 is mounted, and, by caulking and sealing the opening of the cathode can 2 toward the gasket 4, an airtight space is formed between the cathode can 2 and the anode can 3 through the gasket 4. A cathode mixture 5, a separator 6 and an anode mixture 7 are housed in the airtight space, the cathode mixture 5 arranged at a cathode can 2 side and the anode mixture 7 at an anode can 3 side, with the separator 6 in between. Alkali electrolyte solution is filled in the airtight space. Zinc or zinc alloy powder is to be an anode active material, and nickel oxyhydroxide is to be a cathode active material, and silver-nickel complex oxide is contained as a conductive agent of the cathode mixture, fluorine resin powder as a dry lubricant. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、扁平形アルカリ一次電池に関する。   The present invention relates to a flat alkaline primary battery.

電子腕時計、携帯用電子計算機等の小型電子機器に使用されるコイン形或いはボタン形等の扁平形アルカリ一次電池は、正極缶内に二酸化マンガンを正極活物質とする正極合剤が収容されて、負極缶内には、亜鉛又は亜鉛合金粉末を負極活物質とする負極合剤が配置されている。   A flat alkaline primary battery such as a coin type or a button type used in a small electronic device such as an electronic wristwatch or a portable electronic computer has a positive electrode mixture containing manganese dioxide as a positive electrode active material contained in a positive electrode can. A negative electrode mixture containing zinc or zinc alloy powder as a negative electrode active material is disposed in the negative electrode can.

正極合剤と負極合剤は、セパレータを介して対向しており、電池の内部にはアルカリ電解質が注入されている。正極合剤は、二酸化マンガンに、導電剤としてグラファイト粉末、正極合剤の結着性が低い場合は結着剤としてポリテトラフルオロエチレン(PTFE)等の樹脂粉末若しくはエマルジョンを混合した後、ペレット状に打錠して正極とする。   The positive electrode mixture and the negative electrode mixture face each other via a separator, and an alkaline electrolyte is injected into the battery. The positive electrode mixture is mixed with manganese dioxide, graphite powder as a conductive agent, and, if the binding property of the positive electrode mixture is low, resin powder or emulsion such as polytetrafluoroethylene (PTFE) as a binder, and then pelletized To make a positive electrode.

また、扁平形アルカリ一次電池の正極活物質として酸化銀を用いたいわゆる酸化銀電池も、広く一般市場に出回っている。酸化銀は、二酸化マンガンと比較し、体積エネルギー密度が高く、かつ、負極活物質を亜鉛とした電池電圧が、1.56ボルト付近で平坦なため、主に、終止電圧が1.2ボルト以上の電子腕時計、携帯用電子計算機等の小型電子機器用の電源として用いられている。   In addition, so-called silver oxide batteries using silver oxide as a positive electrode active material for flat alkaline primary batteries are also widely available in the general market. Silver oxide has a higher volumetric energy density than manganese dioxide, and the battery voltage with zinc as the negative electrode active material is flat in the vicinity of 1.56 volts. Therefore, the final voltage is mainly 1.2 volts or more. It is used as a power source for small electronic devices such as electronic wristwatches and portable electronic computers.

しかしながら、酸化銀は、性能的に良好であるももの貴金属である銀が主成分でるため高価であり、銀相場により価格が変動し、製造原価の低減や安定を図る上で使用し難い物質であった。そこで、酸化銀に対し体積エネルギー密度が低く、放電に伴う電圧降下が大きいものの、質量当たりの価格が200分の1程度と圧倒的に安価な二酸化マンガンを正極活物質としたいわゆるアルカリマンガン電池が酸化銀電池同様、一般市場に数多く出回っている。   However, silver oxide is expensive because its main component is silver, which is a precious metal with good performance, and the price fluctuates depending on the silver market price, and it is difficult to use for reducing production cost and stability. there were. Therefore, a so-called alkaline manganese battery using manganese dioxide as a positive electrode active material, which has a volume energy density lower than that of silver oxide and a large voltage drop due to discharge, but is overwhelmingly low at a price per mass of about 1/200. Like silver oxide batteries, it is on the general market.

このため、二酸化マンガン等の安価な活物質に種々の添加剤を加えることが検討されている(例えば、特許文献1、2、3参照)。
特開2003−234107号 公報(第2頁〜第3頁、第1図) 特開2004−6092号 公報(第2頁〜第3頁、第1図) 特開2005−19349号 公報(第2頁〜第4頁、第1図)
For this reason, adding various additives to cheap active materials, such as manganese dioxide, is examined (for example, refer patent documents 1, 2, and 3).
JP 2003-234107 A (2nd to 3rd pages, FIG. 1) JP 2004-6092 A (2nd to 3rd pages, Fig. 1) JP 2005-19349 A (2nd page to 4th page, FIG. 1)

ところで、二酸化マンガン等の材料を正極活物質として用いた扁平形アルカリ一次電池では、放電に伴い電圧が大幅に降下する問題点を有していた。電子腕時計など終止電圧が酸化銀電池の電池電圧に合わせて高めに設定されている機器においては、二酸化マンガンの放電に伴う電圧降下から、機器の使用時間が極端に短くなってしまうという課題があった。電圧降下の防止について、種々の検討が行われているが、十分なものではなかった。   By the way, a flat alkaline primary battery using a material such as manganese dioxide as a positive electrode active material has a problem in that the voltage drops significantly with discharge. In devices such as electronic wristwatches where the end voltage is set higher than the battery voltage of silver oxide batteries, there is a problem that the usage time of the device becomes extremely short due to the voltage drop caused by the discharge of manganese dioxide. It was. Various studies have been made on the prevention of voltage drop, but it has not been sufficient.

その解決策として、正極活物質にオキシ水酸化ニッケルを用いる電池が提案されている。しかしながら、正極活物質にオキシ水酸化ニッケルを用いた電池の場合、電池電圧としては酸化銀電池より高いものの、オキシ水酸化ニッケルの単位質量当りの理論電気容量が292mAh/gと二酸化マンガン308mAh/g(マンガン1価当り)よりも小さい。そのため、オキシ水酸化ニッケルを正極活物質とした正極の電池は、二酸化マンガンを正極活物質とした正極の電池より容量を向上させることは困難であった。   As a solution, a battery using nickel oxyhydroxide as a positive electrode active material has been proposed. However, in the case of a battery using nickel oxyhydroxide as the positive electrode active material, although the battery voltage is higher than that of the silver oxide battery, the theoretical electric capacity per unit mass of nickel oxyhydroxide is 292 mAh / g and manganese dioxide 308 mAh / g. Less than (per manganese value). Therefore, it has been difficult to improve the capacity of a positive electrode battery using nickel oxyhydroxide as a positive electrode active material than a positive electrode battery using manganese dioxide as a positive electrode active material.

また、オキシ水酸化ニッケルは、オキシ水酸化ニッケル自身導電性がなく、かつ、電解液吸収および放電に伴う体積膨潤が大きい。そのため、正極合剤中の導電剤の比率が低いと電解液吸収および放電に伴う体積膨張により電子伝導性が下がり、著しく容量および容量保存性が低下するという問題が発生することが分かった。   In addition, nickel oxyhydroxide has no electrical conductivity and has a large volume swelling associated with electrolyte absorption and discharge. Therefore, it has been found that when the ratio of the conductive agent in the positive electrode mixture is low, there is a problem that the electronic conductivity is lowered due to the volume expansion associated with the electrolyte absorption and discharge, and the capacity and capacity preservation are markedly lowered.

本発明は、上記問題点を解決するためになされたものであって、その目的は、安価で電池容量および容量保存性に優れた扁平形アルカリ一次電池を提供するにある。   The present invention has been made to solve the above problems, and an object of the present invention is to provide a flat alkaline primary battery that is inexpensive and excellent in battery capacity and capacity storage.

本発明の扁平形アルカリ一次電池は、正極缶の開口部に負極缶の開口部を嵌合し、正極缶と負極缶とをガスケットを介して密封した密封空間に、セパレータを配置するとともに、そのセパレータを挟んで、正極側には正極活物質を主成分とした正極合剤を配置し、負極側には負極活物質を主成分とした負極合剤を配置し、さらに、その正極合剤、セパレータ及び負極合剤を配置した密封空間にアルカリ電解液を充填した扁平形アルカリ一次電池であって、亜鉛又は亜鉛合金粉末を前記負極活物質とし、オキシ水酸化ニッケルを前記正極活物質とし、前記正極合剤の導電剤として銀・ニッケル複合酸化物と、前記正極合剤の乾性潤滑剤としてフッ素樹脂粉末を含む。   In the flat alkaline primary battery of the present invention, the opening of the negative electrode can is fitted into the opening of the positive electrode can, and the separator is disposed in a sealed space in which the positive electrode can and the negative electrode can are sealed with a gasket. A positive electrode mixture mainly composed of a positive electrode active material is arranged on the positive electrode side with a separator interposed therebetween, and a negative electrode mixture mainly composed of a negative electrode active material is arranged on the negative electrode side. A flat alkaline primary battery in which an alkaline electrolyte is filled in a sealed space in which a separator and a negative electrode mixture are disposed, wherein zinc or a zinc alloy powder is used as the negative electrode active material, nickel oxyhydroxide is used as the positive electrode active material, A silver / nickel composite oxide is included as a conductive agent of the positive electrode mixture, and a fluororesin powder is included as a dry lubricant of the positive electrode mixture.

本発明の扁平形アルカリ一次電池によれば、正極合剤の導電剤として銀・ニッケル複合酸化物と乾性潤滑剤としてフッ素樹脂粉末を使用したことから、銀・ニッケル複合酸化物の高い導電性と結着力で電解液吸収及び放電に伴う体積膨張を抑制し、正極の体積膨張による電子伝導の低下を防止でき、容量及び容量保存性に優れた電池を得ることができる。   According to the flat alkaline primary battery of the present invention, the silver / nickel composite oxide is used as the conductive agent of the positive electrode mixture and the fluororesin powder is used as the dry lubricant. The binding force suppresses volume expansion associated with electrolyte absorption and discharge, prevents a decrease in electronic conduction due to volume expansion of the positive electrode, and provides a battery with excellent capacity and capacity storage.

また、乾性潤滑剤としてフッ素樹脂粉末を使用したことから、フッ素樹脂粉末の潤滑性で正極合剤の秤量性を向上し、ハンドリング性に優れた正極合剤を得ることができる。
この扁平形アルカリ一次電池において、前記銀・ニッケル複合酸化物の平均粒径が、1〜20μmであってもよい。
In addition, since the fluororesin powder is used as the dry lubricant, the positive electrode mixture excellent in handling property can be obtained by improving the weighing property of the positive electrode mixture by the lubricity of the fluororesin powder.
In this flat alkaline primary battery, the silver / nickel composite oxide may have an average particle size of 1 to 20 μm.

これによれば、銀・ニッケル複合酸化物の高い導電性と結着力を効率よく活用できることから、正極合剤に配合する比率を高めることなく、正極合剤のハンドリング性に優れ、かつ、容量および容量保存性に優れた電池を得ることができる。   According to this, since the high conductivity and binding force of the silver / nickel composite oxide can be efficiently utilized, the handling ability of the positive electrode mixture is excellent without increasing the ratio to be mixed with the positive electrode mixture, and the capacity and A battery having excellent capacity storage can be obtained.

この扁平形アルカリ一次電池において、前記銀・ニッケル複合酸化物の正極合剤における配合比が、5mass%以上、30mass%以下としてもよい。
これによれば、この銀・ニッケル複合酸化物は、高い導電性と結着力だけでなく、それ自身高い電気容量を有する活物質でもあるため、正極合剤に適量配合することにより、導電剤として嵩密度の低いグラファイト等を高比率で加える必要がなく、その分、活物質充填量が確保され、容量に優れた電池を得ることができる。
In this flat alkaline primary battery, the blending ratio of the silver / nickel composite oxide in the positive electrode mixture may be 5 mass% or more and 30 mass% or less.
According to this, since this silver / nickel composite oxide is not only high conductivity and binding power but also an active material having high electric capacity by itself, by adding an appropriate amount to the positive electrode mixture, There is no need to add graphite or the like having a low bulk density at a high ratio, and accordingly, the active material filling amount is ensured and a battery having an excellent capacity can be obtained.

この扁平形アルカリ一次電池において、前記フッ素樹脂粉末の平均粒径が、0.1〜10μmであってもよい。
これによれば、フッ素樹脂粉末の優れた潤滑性を効率よく活用できるため、正極合剤へ低配合でも、正極合剤の秤量性を向上させ、ハンドリング性に優れた正極合剤を得ることができる。
In this flat alkaline primary battery, the fluororesin powder may have an average particle size of 0.1 to 10 μm.
According to this, since the excellent lubricity of the fluororesin powder can be utilized efficiently, the positive electrode mixture with excellent handling properties can be obtained by improving the weighability of the positive electrode mixture even in a low blending with the positive electrode mixture. it can.

この 扁平形アルカリ一次電池において、前記フッ素樹脂粉末の正極合剤における配合比が、0.05mass%以上、5mass%以下としてもよい。
これによれば、フッ素樹脂粉末は少量で高い潤滑性を有するため、正極合剤へ低配合でも、正極合剤の秤量性を向上させ、ハンドリング性に優れた正極合剤を得ることができる。その上、フッ素樹脂粉末は撥水性を有するため電解液吸収による膨潤がなく、正極合剤中の導電剤配合比を少なく出来る効果も有する。その結果、容量に優れた電池を得ることができる。
In this flat alkaline primary battery, the blending ratio of the fluororesin powder in the positive electrode mixture may be 0.05 mass% or more and 5 mass% or less.
According to this, since the fluororesin powder has high lubricity even in a small amount, it is possible to improve the weighability of the positive electrode mixture and obtain a positive electrode mixture excellent in handling property even if it is blended in a low amount in the positive electrode mixture. In addition, since the fluororesin powder has water repellency, the fluororesin powder does not swell due to absorption of the electrolyte, and has an effect of reducing the blending ratio of the conductive agent in the positive electrode mixture. As a result, a battery having an excellent capacity can be obtained.

以下、本発明を具体化した一実施形態を、図面に従って説明する。
図1は、ボタン形(扁平形)のアルカリ一次電池の概略断面図を示す。図1において、アルカリ一次電池1はボタン形の一次電池であって、有底円筒状の正極缶2及び有蓋円筒状の負極缶3を有している。正極缶2は、ステンレススチール(SUS)にニッケルメッキを施した構成であって、正極端子を兼ねている。一方、負極缶3は、ニッケルよりなる外表面層S1と、ステンレススチール(SUS)よりなる金属層S2と、銅よりなる集電体層S3との3層クラッド材がカップ状にプレス加工されて構成されている。又、負極缶3は、その円形の開口部が折り返し形成され、その折り返し形成された開口部には、例えば、ナイロン製のリング状のガスケット4が装着されている。
Hereinafter, an embodiment embodying the present invention will be described with reference to the drawings.
FIG. 1 is a schematic cross-sectional view of a button-shaped (flat) alkaline primary battery. In FIG. 1, an alkaline primary battery 1 is a button-type primary battery, and includes a bottomed cylindrical positive electrode can 2 and a covered cylindrical negative electrode can 3. The positive electrode can 2 has a structure in which nickel plating is applied to stainless steel (SUS), and also serves as a positive electrode terminal. On the other hand, the negative electrode can 3 is formed by pressing a three-layer clad material of an outer surface layer S1 made of nickel, a metal layer S2 made of stainless steel (SUS), and a current collector layer S3 made of copper into a cup shape. It is configured. Further, the negative electrode can 3 has a circular opening formed in a folded shape, and a ring-shaped gasket 4 made of, for example, nylon is attached to the folded-opened opening.

そして、正極缶2の円形の開口部に、負極缶3を、ガスケット4を装着した開口部側から嵌合させ、該正極缶2の開口部を該ガスケット4に向かってかしめて封口することによって、正極缶2と負極缶3は、互いに連結固定されている。正極缶2と負極缶3を連結固定することによって、ガスケット4を介して正極缶2と負極缶3の間には、密閉空間が形成される。   Then, the negative electrode can 3 is fitted into the circular opening of the positive electrode can 2 from the opening side where the gasket 4 is mounted, and the opening of the positive electrode can 2 is crimped toward the gasket 4 and sealed. The positive electrode can 2 and the negative electrode can 3 are connected and fixed to each other. By connecting and fixing the positive electrode can 2 and the negative electrode can 3, a sealed space is formed between the positive electrode can 2 and the negative electrode can 3 via the gasket 4.

この密閉空間には、正極合剤5、セパレータ6、負極合剤7が収容され、セパレータ6を挟んで正極缶2側に正極合剤5、負極缶3側に負極合剤7が収容配置されている。
詳述すると、正極合剤5は、正極缶2の底面2bに配設されている。正極合剤5は、正極活物質としてオキシ水酸化ニッケル粉末、導電剤、乾性潤滑剤、結着剤、電解液としてアルカリ電解液を混合後、打錠機等でプレス成型した円柱状のペレット構造である。
In this sealed space, the positive electrode mixture 5, the separator 6, and the negative electrode mixture 7 are accommodated, and the positive electrode mixture 5 is accommodated and disposed on the negative electrode can 3 side, and the negative electrode mixture 7 is accommodated on the negative electrode can 3 side with the separator 6 interposed therebetween. ing.
More specifically, the positive electrode mixture 5 is disposed on the bottom surface 2 b of the positive electrode can 2. The positive electrode mixture 5 is a cylindrical pellet structure in which nickel oxyhydroxide powder, a conductive agent, a dry lubricant, a binder, and an alkaline electrolyte as an electrolytic solution are mixed as a positive electrode active material and then press-molded with a tableting machine or the like. It is.

また、前記密閉空間にはアルカリ電解液を充填し、少なくとも前記正極合剤5の導電剤としては銀・ニッケル複合酸化物、乾性潤滑剤としてはフッ素樹脂粉末を含むことが好ましい。   The sealed space is preferably filled with an alkaline electrolyte, and at least the conductive material of the positive electrode mixture 5 contains silver / nickel composite oxide, and the dry lubricant preferably contains fluororesin powder.

これは、正極合剤5の導電剤として少なくとも銀・ニッケル複合酸化物を使用することにより、電池を高温保存しても銀・ニッケル複合酸化物の高い導電性と結着力で電解液吸収および放電に伴う体積膨張を抑制し、正極の体積膨張による電子伝導の低下を防止できるので、容量保存性に優れた電池を得ることができるためである。   This is because, by using at least silver / nickel composite oxide as the conductive agent of the positive electrode mixture 5, even when the battery is stored at a high temperature, the silver / nickel composite oxide absorbs and discharges with high conductivity and binding power. This is because it is possible to suppress the volume expansion accompanying the above and prevent a decrease in electron conduction due to the volume expansion of the positive electrode, and thus it is possible to obtain a battery with excellent capacity storage stability.

また、乾性潤滑剤として少なくともフッ素樹脂粉末を使用することにより、フッ素樹脂粉末の高い潤滑性で正極合剤の秤量性を向上し、ハンドリング性に優れた正極合剤を得ることができるためである。その上、フッ素樹脂粉末は撥水性を有するため電解液吸収による膨潤がなく正極合剤中の導電剤配合比を少なく出来るので、容量に優れた電池を得ることができるためである。   In addition, by using at least the fluororesin powder as the dry lubricant, it is possible to improve the weighability of the positive electrode mixture with the high lubricity of the fluororesin powder and to obtain a positive electrode mixture with excellent handling properties. . In addition, since the fluororesin powder has water repellency, it does not swell due to absorption of the electrolyte solution, and the blending ratio of the conductive agent in the positive electrode mixture can be reduced, so that a battery with excellent capacity can be obtained.

また、正極合剤5の導電剤として銀・ニッケル複合酸化物の平均粒径を1μm以上、20μm以下とすることが好ましい。
これは、銀・ニッケル複合酸化物の平均粒径が1μmを下回ると、銀・ニッケル複合酸化物の圧縮性が低下し、正極合剤5をペレット状に加工する際の圧力を高くしなければならず、成型治具の変形を来たす虞があるためである。また、平均粒径が20μmを上回ると銀・ニッケル複合酸化物の比表面積が小さくなることで単位質量当りの導電性が低下し、正極合剤への配合比を高くしなければならなくなり、その分コストアップになってしまうためである。
Further, the average particle diameter of the silver / nickel composite oxide as the conductive agent of the positive electrode mixture 5 is preferably 1 μm or more and 20 μm or less.
This is because when the average particle diameter of the silver / nickel composite oxide is less than 1 μm, the compressibility of the silver / nickel composite oxide is reduced, and the pressure when the positive electrode mixture 5 is processed into a pellet shape must be increased. This is because the molding jig may be deformed. In addition, when the average particle size exceeds 20 μm, the specific surface area of the silver / nickel composite oxide is reduced, so that the conductivity per unit mass is reduced, and the compounding ratio to the positive electrode mixture must be increased. This is because the cost is increased.

また、正極合剤5の導電剤として銀・ニッケル複合酸化物の配合比を5%以上、30%以下とすることが好ましい。
これは、銀・ニッケル複合酸化物の配合比が5%を下回ると、正極合剤の結着力が低く電解液吸収および放電に伴う体積膨張が大きくなって電子伝導が下がり、著しく容量および容量保存性が低下するという問題が発生するためである。また、配合比が30%を上回ると正極合剤の導電性向上と電解液吸収および放電に伴う体積膨張抑制で電池特性上殆どメリットがないにも拘らずコスト高になるため好ましくない。
Moreover, it is preferable that the compounding ratio of the silver / nickel composite oxide as the conductive agent of the positive electrode mixture 5 is 5% or more and 30% or less.
This is because when the compounding ratio of the silver / nickel composite oxide is less than 5%, the binding force of the positive electrode mixture is low, the volume expansion associated with the absorption and discharge of the electrolyte is increased, the electron conduction is lowered, and the capacity and capacity are significantly preserved. This is because a problem that the performance is lowered occurs. On the other hand, if the blending ratio exceeds 30%, it is not preferable since the cost increases despite the fact that there is almost no merit in battery characteristics due to the improvement in conductivity of the positive electrode mixture and the suppression of volume expansion associated with the absorption and discharge of the electrolyte.

また、正極合剤5の乾性潤滑剤としてフッ素樹脂粉末の平均粒径を0.1μm以上、10μm以下とすることが好ましい。
これは、フッ素樹脂粉末の平均粒径が0.1μmを下回るよう工業的に製造することは現在の技術では困難なことによる。また、平均粒径が10μmを上回ると、フッ素樹脂粉末の単位質量当りの潤滑性が低下し、正極合剤5への配合比を高くしなければならなくなり、その分、充填できる活物質等を減らさなければならず好ましくない。
Moreover, it is preferable that the average particle diameter of a fluororesin powder is 0.1 micrometer or more and 10 micrometers or less as a dry lubricant of the positive mix 5.
This is because it is difficult to manufacture industrially such that the average particle size of the fluororesin powder is less than 0.1 μm with the current technology. Further, if the average particle diameter exceeds 10 μm, the lubricity per unit mass of the fluororesin powder is lowered, and the blending ratio to the positive electrode mixture 5 has to be increased. It must be reduced, which is not preferable.

また、正極合剤5の乾性潤滑剤としてフッ素樹脂粉末の配合比を0.05%以上、5%以下とすることが好ましい。これは、乾性潤滑剤の配合比が0.05%を下回ると、正極合剤粉体の潤滑性が低くなって均一な秤量が出来なくなり、正極合剤5のハンドリング性が著しく低下するためである。また、フッ素樹脂粉末の配合比が5%を上回ると、その分、充填できる活物質等を減らさなければならず好ましくない。   Further, the blending ratio of the fluororesin powder as the dry lubricant of the positive electrode mixture 5 is preferably 0.05% or more and 5% or less. This is because when the blending ratio of the dry lubricant is less than 0.05%, the positive electrode mixture powder has low lubricity and cannot be uniformly weighed, and the handling property of the positive electrode mixture 5 is significantly reduced. is there. On the other hand, if the blending ratio of the fluororesin powder exceeds 5%, the amount of active material that can be filled has to be reduced accordingly, which is not preferable.

次に、前述した正極合剤における導電剤と乾性潤滑剤の種類と配合比を変更した実施例を行い当該発明の効果を検証した。
(実施例1)
図1で示す電池構造で、負極缶3は、ニッケル外表面層S1と、ステンレススチール(SUS)による金属層S2と、銅による集電体層S3の3層による厚さ0.15mmクラッド材をプレス加工によって成型した。
Next, the effect of the present invention was verified by conducting an example in which the conductive agent and the dry lubricant in the positive electrode mixture described above were changed in type and mixing ratio.
(Example 1)
In the battery structure shown in FIG. 1, the negative electrode can 3 is made of a 0.15 mm thick clad material composed of a nickel outer surface layer S1, a metal layer S2 made of stainless steel (SUS), and a current collector layer S3 made of copper. Molded by press working.

正極合剤5は、導電剤としての銀・ニッケル複合酸化物20mass%、乾性潤滑剤としてのフッ素樹脂粉末1mass%、正極活物質としてのオキシ水酸化ニッケルを74.5mass%、結着剤としての樹脂粉末0.5mass%、電解液として濃度37%の水酸化カリウム水溶液2mass%、オキシ水酸化ニッケルの熱分解抑制剤として、水酸化アルミニウム粉末1mass%と水酸化カルシウム粉末1mass%をブレンダーで混合した後、打錠機にてペレット状に成型した。   The positive electrode mixture 5 is composed of 20 mass% of silver / nickel composite oxide as a conductive agent, 1 mass% of fluorine resin powder as a dry lubricant, 74.5 mass% of nickel oxyhydroxide as a positive electrode active material, and as a binder. Resin powder 0.5 mass%, potassium hydroxide aqueous solution 2 mass% with a concentration of 37% as electrolyte, and aluminum hydroxide powder 1 mass% and calcium hydroxide powder 1 mass% as a thermal decomposition inhibitor of nickel oxyhydroxide were mixed in a blender. Then, it shape | molded in the pellet form with the tableting machine.

次に、正極合剤5を正極缶2内に挿入し、水酸化カリウムを含むアルカリ電解液注入して正極合剤5にアルカリ電解液を吸収させる。
この正極合剤5上に、微多孔膜と不織布の2層構造の円形状に打ち抜いたセパレータ6を装填する。この装填したセパレータ6に、37%水酸化カリウム水溶液を含むアルカリ電解液を滴下して含浸させる。
Next, the positive electrode mixture 5 is inserted into the positive electrode can 2 and an alkaline electrolyte containing potassium hydroxide is injected to cause the positive electrode mixture 5 to absorb the alkaline electrolyte.
On this positive electrode mixture 5, a separator 6 punched into a circular shape having a two-layer structure of a microporous membrane and a nonwoven fabric is loaded. The loaded separator 6 is impregnated with an alkaline electrolyte containing 37% aqueous potassium hydroxide solution.

このセパレータ6上に、亜鉛合金粉61mss%、酸化亜鉛2.68mass%、活物質安定剤として高架橋型ポリアクリル酸ソーダ1.43mass%、非架橋型ポリアクリル酸ソーダ0.05mass%、及び、カルボキシメチルセルロース1.47mass%、電解液として45%水酸化カリウム水溶液33.37mass%からなるジェル状の負極合剤7を載置する。そして、負極缶3と正極缶2とを、かしめることで密封されて扁平形アルカリ一次電池1を作製した。このとき、正極缶2と負極缶3の間には、ガスケット4が挟持され密封性を高めている。
(実施例2)
実施例2は、実施例1と同様な構成にするものの、正極合剤5に導電剤として配合する銀・ニッケル複合酸化物の平均粒径を10μmから1μmにした。
(実施例3)
実施例3は、実施例1と同様な構成にするものの、正極合剤5に導電剤として配合する銀・ニッケル複合酸化物の平均粒径を10μmから20μmにした。
(実施例4)
実施例4は、実施例1と同様な構成にするものの、正極合剤5に導電剤として配合する銀・ニッケル複合酸化物の配合比を20mass%から5mass%にし、正極活物質としてのオキシ水酸化ニッケルを74.5mass%から89.5mass%にした。
(実施例5)
実施例5は、実施例1と同様な構成にするものの、正極合剤5に導電剤として配合する銀・ニッケル複合酸化物の配合比を20mass%から30mass%にし、正極活物質としてのオキシ水酸化ニッケルを74.5mass%から64.5mass%にした。
(実施例6)
実施例6は、実施例1と同様な構成にするものの、正極合剤5に潤滑剤として配合するフッ素樹脂の平均粒径を0.3μmから0.1μmにした。
(実施例7)
実施例7は、実施例1と同様な構成にするものの、正極合剤5に潤滑剤として配合するフッ素樹脂の平均粒径を0.3μmから10μmとした。
(実施例8)
実施例8は、実施例1と同様な構成にするものの、正極合剤5に潤滑剤として配合するフッ素樹脂の配合比を1.0mass%から0.1mass%にし、正極活物質としてのオキシ水酸化ニッケルを74.5mass%から75.4mass%にした。
(実施例9)
実施例9は、実施例1と同様な構成にするものの、正極合剤5に潤滑剤として配合するフッ素樹脂の配合比を1.0mass%から3.0mass%にし、正極活物質としてのオキシ水酸化ニッケルを74.5mass%から72.5mass%にとした。
(比較例1)
比較例1は、実施例1と同様な構成にするものの、正極合剤5に配合する導電剤を平均粒径10μmのグラファイトとした。
(比較例2)
比較例2は、実施例1と同様な構成にするものの、正極合剤5に導電剤として配合する銀・ニッケル複合酸化物の平均粒径を10μmから0.5μmにした。
(比較例3)
比較例3は、実施例1と同様な構成にするものの、正極合剤5に導電剤として配合する銀・ニッケル複合酸化物の平均粒径を10μmから30μmにした。
(比較例4)
比較例4は、実施例1と同様な構成にするものの、正極合剤5に導電剤として配合する銀・ニッケル複合酸化物の配合比を20mass%から3mass%にし、正極活物質としてのオキシ水酸化ニッケルを74.5mass%から91.5mass%にとした。
(比較例5)
比較例5は、実施例1と同様な構成にするものの、正極合剤5に配合する潤滑剤を平均粒径1μmの二硫化モリブデンにした。
(比較例6)
比較例6は、実施例1と同様な構成にするものの、正極合剤5に配合する潤滑剤として配合するフッ素樹脂の平均粒径を0.3μmから15μmにした。
(比較例7)
比較例7は、実施例1と同様な構成にするものの、正極合剤5に潤滑剤として配合するフッ素樹脂の配合比を1.0mass%から0.05mass%にし、正極活物質としてのオキシ水酸化ニッケルを74.5mass%から95.45mass%にした。
(比較例8)
比較例8は、実施例1と同様な構成にするものの、正極合剤5に潤滑剤として配合するフッ素樹脂の配合比を1.0mass%から5.0mass%にし、正極活物質としてのオキシ水酸化ニッケルを74.5mass%から90.45mass%にとした。
On this separator 6, zinc alloy powder 61 mass%, zinc oxide 2.68 mass%, highly-crosslinked polysodium acrylate 1.43 mass% as active material stabilizer, non-crosslinked polysodium acrylate 0.05 mass%, and carboxy A gel-like negative electrode mixture 7 consisting of 1.47 mass% of methylcellulose and 33.37 mass% of 45% aqueous potassium hydroxide solution as an electrolytic solution is placed. And the negative electrode can 3 and the positive electrode can 2 were sealed by crimping, and the flat alkaline primary battery 1 was produced. At this time, a gasket 4 is sandwiched between the positive electrode can 2 and the negative electrode can 3 to improve the sealing performance.
(Example 2)
In Example 2, the same configuration as in Example 1 was used, but the average particle size of the silver / nickel composite oxide blended in the positive electrode mixture 5 as a conductive agent was changed from 10 μm to 1 μm.
(Example 3)
In Example 3, the same configuration as in Example 1 was used, but the average particle diameter of the silver / nickel composite oxide blended in the positive electrode mixture 5 as a conductive agent was changed from 10 μm to 20 μm.
Example 4
Example 4 has the same configuration as that of Example 1, but the mixing ratio of the silver / nickel composite oxide added to the positive electrode mixture 5 as a conductive agent is changed from 20 mass% to 5 mass%, and oxywater as a positive electrode active material Nickel oxide was changed from 74.5 mass% to 89.5 mass%.
(Example 5)
Example 5 has the same configuration as that of Example 1, but the mixing ratio of the silver / nickel composite oxide compounded as the conductive agent in the positive electrode mixture 5 is changed from 20 mass% to 30 mass%, and oxywater as the positive electrode active material Nickel oxide was changed from 74.5 mass% to 64.5 mass%.
(Example 6)
In Example 6, the same configuration as in Example 1 was used, but the average particle size of the fluororesin blended in the positive electrode mixture 5 as a lubricant was changed from 0.3 μm to 0.1 μm.
(Example 7)
In Example 7, the same configuration as in Example 1 was used, but the average particle diameter of the fluororesin blended in the positive electrode mixture 5 as a lubricant was 0.3 μm to 10 μm.
(Example 8)
Example 8 is configured in the same manner as in Example 1, but the blending ratio of the fluororesin blended in the positive electrode mixture 5 as a lubricant is changed from 1.0 mass% to 0.1 mass%, and oxywater as a positive electrode active material Nickel oxide was changed from 74.5 mass% to 75.4 mass%.
Example 9
Example 9 has the same configuration as that of Example 1, but the mixing ratio of the fluororesin compounded as a lubricant in the positive electrode mixture 5 is changed from 1.0 mass% to 3.0 mass%, and oxywater as a positive electrode active material Nickel oxide was changed from 74.5 mass% to 72.5 mass%.
(Comparative Example 1)
In Comparative Example 1, the same configuration as in Example 1 was used, but the conductive agent blended in the positive electrode mixture 5 was graphite having an average particle diameter of 10 μm.
(Comparative Example 2)
In Comparative Example 2, the same configuration as in Example 1 was used, but the average particle size of the silver / nickel composite oxide blended in the positive electrode mixture 5 as a conductive agent was changed from 10 μm to 0.5 μm.
(Comparative Example 3)
In Comparative Example 3, the same structure as in Example 1 was used, but the average particle size of the silver / nickel composite oxide blended in the positive electrode mixture 5 as a conductive agent was changed from 10 μm to 30 μm.
(Comparative Example 4)
Comparative Example 4 has the same configuration as that of Example 1, but the mixing ratio of the silver / nickel composite oxide compounded as the conductive agent in the positive electrode mixture 5 is changed from 20 mass% to 3 mass%, and oxywater as the positive electrode active material. Nickel oxide was changed from 74.5 mass% to 91.5 mass%.
(Comparative Example 5)
In Comparative Example 5, the same configuration as in Example 1 was used, but the lubricant compounded in the positive electrode mixture 5 was molybdenum disulfide having an average particle diameter of 1 μm.
(Comparative Example 6)
Comparative Example 6 has the same configuration as that of Example 1, but the average particle size of the fluororesin blended as the lubricant blended with the positive electrode mixture 5 was changed from 0.3 μm to 15 μm.
(Comparative Example 7)
Comparative Example 7 has the same configuration as that of Example 1, but the blending ratio of the fluororesin blended in the positive electrode mixture 5 as a lubricant was changed from 1.0 mass% to 0.05 mass%, and oxywater as a positive electrode active material Nickel oxide was changed from 74.5 mass% to 95.45 mass%.
(Comparative Example 8)
Comparative Example 8 has the same configuration as that of Example 1, but the blending ratio of the fluororesin blended in the positive electrode mixture 5 as a lubricant was changed from 1.0 mass% to 5.0 mass%, and oxywater as the positive electrode active material. Nickel oxide was changed from 74.5 mass% to 90.45 mass%.

そして、上記した実施例1〜9、比較例1〜8のアルカリ電池をそれぞれ40個作製し、以下の検証を行った。
具体的には、これら20個ずつの電池を30kΩで定抵抗放電させ、1.2Vの終止電圧とした時の放電容量〔mAh〕を表1に示す。
Then, 40 alkaline batteries of Examples 1 to 9 and Comparative Examples 1 to 8 described above were produced, respectively, and the following verification was performed.
Specifically, Table 1 shows the discharge capacity [mAh] when each of these 20 batteries is subjected to a constant resistance discharge at 30 kΩ to a final voltage of 1.2V.

次に、これら20個ずつの電池を温度60℃、湿度ドライの環境下で100日保存後、30kΩで定抵抗放電させ、1.2Vの終止電圧とした時の放電容量〔mAh〕を表1に示す。   Next, the discharge capacity [mAh] when these 20 batteries were stored at a temperature of 60 ° C. in a humidity dry environment for 100 days and then subjected to a constant resistance discharge at 30 kΩ to a final voltage of 1.2 V is shown in Table 1. Shown in

最後に、前記の電池それぞれ40個ずつ作製する前、それぞれの正極合剤のハンドリング性を評価した結果を表1に示す。   Finally, Table 1 shows the results of evaluating the handling properties of each positive electrode mixture before producing 40 batteries.

Figure 2009259536

(1)はじめに、この表1より、実施例1〜9と比較例1及び5とを比較するに、正極合剤5の導電剤として銀・ニッケル複合酸化物、乾性潤滑剤としてフッ素樹脂粉末を用いることにより、正極合剤5のハンドリング性に優れ、容量および容量保存性に優れた電池を得ることができる。
Figure 2009259536

(1) First, from Table 1, in order to compare Examples 1 to 9 and Comparative Examples 1 and 5, silver / nickel composite oxide as the conductive agent of the positive electrode mixture 5, and fluororesin powder as the dry lubricant. By using it, a battery excellent in handling property of the positive electrode mixture 5 and excellent in capacity and capacity storage can be obtained.

これは、銀・ニッケル複合酸化物が優れた導電性を有し、かつ、酸化銀を上回る質量エネルギー密度を有する活物質でもあり、その上、結着性を有する物質でもあるため、正極合剤5への添加により、オキシ水酸化ニッケルの電解液吸収および放電に伴う体積膨張により電子伝導性が下がり、著しく容量および容量保存性が低下するという問題が発生することを防止できるためである。   This is because the silver / nickel composite oxide has an excellent conductivity and is an active material having a mass energy density higher than that of silver oxide, and also has a binding property. This is because the addition to 5 can prevent the problem that the electronic conductivity is lowered due to the electrolytic solution absorption of nickel oxyhydroxide and the volume expansion associated with the discharge, and the capacity and capacity preservation are significantly lowered.

また、フッ素樹脂粉末は、正極合剤5がオキシ水酸化ニッケルと銀・ニッケル複合酸化物だけでは粉体としての潤滑性が悪くぺレット状に加工する際の秤量性が著しく低下することを、優れた潤滑性にて防止することができるためである。   In addition, the fluororesin powder is such that when the positive electrode mixture 5 is nickel oxyhydroxide and silver / nickel composite oxide alone, the lubricity as a powder is poor and the weighing property when processing into a pellet shape is significantly reduced. This is because it can be prevented with excellent lubricity.

(2)次に、この表1により、実施例2及び3と比較例2及び3とを比較するに、正極合剤5の導電剤を銀・ニッケル複合酸化物とし、その平均粒径を1μm以上、20μm以下とすることにより、正極合剤5のハンドリング性に優れ、かつ、容量保存性に優れた電池を得ることができる。   (2) Next, according to Table 1, in order to compare Examples 2 and 3 with Comparative Examples 2 and 3, the conductive agent of the positive electrode mixture 5 is a silver / nickel composite oxide, and the average particle diameter is 1 μm. As described above, by setting the thickness to 20 μm or less, it is possible to obtain a battery excellent in handling property of the positive electrode mixture 5 and excellent in capacity storage.

これは、正極合剤5の導電剤を銀・ニッケル複合酸化物とし、その平均粒径を1μm以上とすることで、銀・ニッケル複合酸化物の高い導電性と結着力を効率よく活用できるため、正極合剤5としての電子伝導性を向上し、かつ、オキシ水酸化ニッケルの電解液吸収および放電に伴う体積膨張を抑制することができるためである。   This is because the conductive agent of the positive electrode mixture 5 is made of silver / nickel composite oxide, and the average particle diameter is 1 μm or more, so that the high conductivity and binding force of the silver / nickel composite oxide can be efficiently utilized. This is because the electron conductivity as the positive electrode mixture 5 can be improved and the volume expansion associated with the absorption and discharge of the nickel oxyhydroxide electrolyte can be suppressed.

なお、銀・ニッケル複合酸化物の平均粒径が1μmを下回るとオキシ水酸化ニッケル自身の圧縮性の悪化により結着性が低下し好ましくない。一方、銀・ニッケル複合酸化物の平均粒径が20μmを上回るとオキシ水酸化ニッケルの導電効率が低下してしまうため好ましくない。   In addition, when the average particle diameter of the silver / nickel composite oxide is less than 1 μm, the binding property is lowered due to deterioration of the compressibility of nickel oxyhydroxide itself, which is not preferable. On the other hand, when the average particle diameter of the silver / nickel composite oxide exceeds 20 μm, the conductivity of nickel oxyhydroxide is lowered, which is not preferable.

(3)次に、この表1により、実施例4及び5と比較例4とを比較するに、正極合剤5の導電剤を銀・ニッケル複合酸化物とし、その配合比を5mass%以上、30mass%以下とすることにより、正極合剤5のハンドリング性に優れ、かつ、容量および容量保存性に優れた電池を得ることができる。   (3) Next, according to Table 1, in order to compare Examples 4 and 5 and Comparative Example 4, the conductive agent of the positive electrode mixture 5 is a silver / nickel composite oxide, and the blending ratio is 5 mass% or more, By setting it to 30 mass% or less, it is possible to obtain a battery excellent in handling property of the positive electrode mixture 5 and in capacity and capacity storage.

これは、正極合剤5への銀・ニッケル複合酸化物の配合比を5mass%以上、30mas%以下とすることで、銀・ニッケル複合酸化物の高い導電性と結着力にて正極合剤5としての電子伝導性を向上させ、かつ、オキシ水酸化ニッケルの電解液吸収および放電に伴う体積膨張を抑制させることができるためである。   This is because the mixing ratio of the silver / nickel composite oxide to the positive electrode mixture 5 is 5 mass% or more and 30 mass% or less, so that the positive electrode mixture 5 has high conductivity and binding power of the silver / nickel composite oxide. This is because it is possible to improve the electron conductivity as well as to suppress the volume expansion associated with the absorption and discharge of the nickel oxyhydroxide electrolyte.

なお、正極合剤5への銀・ニッケル複合酸化物の配合比が5mass%を下回ると、正極合剤5としての十分な導電性と電解液吸収および放電に伴う体積膨張を抑制することが出来なくなり好ましくない。   In addition, when the compounding ratio of the silver / nickel composite oxide to the positive electrode mixture 5 is less than 5 mass%, sufficient conductivity as the positive electrode mixture 5 and volume expansion associated with electrolyte absorption and discharge can be suppressed. It is not preferable because it disappears.

一方、配合比が30mass%を上回ると正極合剤5の導電性向上と電解液吸収および放電に伴う体積膨張抑制で電池特性上殆どメリットがないにも拘らずコスト高になるため好ましくない。   On the other hand, if the blending ratio exceeds 30 mass%, the increase in conductivity of the positive electrode mixture 5 and the suppression of volume expansion associated with the absorption and discharge of the electrolytic solution increase the cost despite the fact that there is almost no merit in battery characteristics.

(4)次に、この表1により、実施例1と比較例5とを比較するに、正極合剤5の導電剤として銀・ニッケル複合酸化物、乾性潤滑剤としてフッ素樹脂粉末を用いることにより、正極合剤5のハンドリング性に優れ、かつ、容量および容量保存性に優れた電池を得ることができる。   (4) Next, according to Table 1, when Example 1 and Comparative Example 5 are compared, silver / nickel composite oxide is used as the conductive agent of the positive electrode mixture 5, and fluororesin powder is used as the dry lubricant. In addition, it is possible to obtain a battery excellent in handling property of the positive electrode mixture 5 and excellent in capacity and capacity storage.

これも、銀・ニッケル複合酸化物が優れた導電性を有し、かつ、酸化銀を上回る質量エネルギー密度を有する活物質でもあり、その上、結着性を有する物質でもあるため、正極合剤への添加により、オキシ水酸化ニッケルの電解液吸収および放電に伴う体積膨張により電子伝導性が下がり、著しく容量および容量保存性が低下するという問題が発生することを防止できるためである。   This is also a positive electrode mixture because the silver / nickel composite oxide has an excellent conductivity and is an active material having a mass energy density higher than that of silver oxide, and also has a binding property. This is because, by adding to the electrolyte, it is possible to prevent the problem that the electronic conductivity is lowered due to the electrolyte expansion of the nickel oxyhydroxide and the volume expansion associated with the discharge, and the capacity and capacity preservation are significantly reduced.

また、フッ素樹脂粉末は、正極合剤がオキシ水酸化ニッケルと銀・ニッケル複合酸化物だけでは粉体としての潤滑性が悪くぺレット状に加工する際の秤量性が著しく低下することを、優れた潤滑性にて防止することができるためである。   In addition, the fluororesin powder is excellent in that the positive electrode mixture is nickel oxyhydroxide and silver / nickel composite oxide alone, and the lubricity as a powder is poor and the weighability when processing into a pellet shape is significantly reduced. This is because it can be prevented by the lubricity.

なお、正極合剤5の乾性潤滑剤として二硫化モリブデンを用いた場合、著しく容量および容量保存性が低下したのは、モリブデンの存在により負極の亜鉛の腐食が加速されたためと推察される。   In addition, when molybdenum disulfide is used as the dry lubricant of the positive electrode mixture 5, it is surmised that the capacity and capacity storage were significantly reduced because corrosion of zinc in the negative electrode was accelerated by the presence of molybdenum.

(5)次に、この表1により、実施例6及び7と比較例6とを比較するに、正極合剤5の乾性潤滑剤としてフッ素樹脂粉末の平均粒径を0.1μm以上、10μm以下とすることにより、ハンドリング性に優れた正極合剤を得ることができる。   (5) Next, according to Table 1, when comparing Examples 6 and 7 with Comparative Example 6, the average particle size of the fluororesin powder as a dry lubricant of the positive electrode mixture 5 is 0.1 μm or more and 10 μm or less. By doing so, a positive electrode mixture excellent in handling properties can be obtained.

これは、フッ素樹脂粉末の平均粒径を0.1μm以上、10μm以下とすることで、フッ素樹脂粉末の優れた潤滑性を効率よく活用できるため、正極合剤5へ低配合でも正極合剤5の秤量性を向上させることが出来るためである。   This is because when the average particle size of the fluororesin powder is 0.1 μm or more and 10 μm or less, the excellent lubricity of the fluororesin powder can be efficiently utilized. This is because the weighing property can be improved.

なお、フッ素樹脂粉末の平均粒径が0.1μmを下回るよう工業的に製造することは現在の技術では困難である。また、平均粒径が10μmを上回ると、フッ素樹脂粉末の単位質量当りの潤滑性が低下し、正極合剤への配合比を高くしなければならなくなり、その分、充填できる活物質等を減らさなければならず好ましくない。   In addition, it is difficult to manufacture industrially such that the average particle size of the fluororesin powder is less than 0.1 μm with the current technology. Also, if the average particle size exceeds 10 μm, the lubricity per unit mass of the fluororesin powder will be reduced, and the blending ratio to the positive electrode mixture will have to be increased, and the amount of active material that can be filled is reduced accordingly. Must be unfavorable.

(6)次に、この表1により、実施例8及び9と比較例7及び8とを比較するに、正極合剤5の乾性潤滑剤としてフッ素樹脂粉末の配合比を0.05mass%以上、5mass%以下とすることにより、正極合剤5のハンドリング性に優れ、かつ、容量に優れた電池を得ることができる。   (6) Next, according to Table 1, in order to compare Examples 8 and 9 and Comparative Examples 7 and 8, the compounding ratio of the fluororesin powder as a dry lubricant of the positive electrode mixture 5 is 0.05 mass% or more, By setting it to 5 mass% or less, it is possible to obtain a battery excellent in handling property of the positive electrode mixture 5 and excellent in capacity.

これは、フッ素樹脂粉末が優れた潤滑性を有するため、正極合剤5へ低配合でも、正極合剤5の秤量性を向上させ、ハンドリング性に優れた正極合剤5を得ることができるためである。その上、フッ素樹脂粉末は撥水性を有するため電解液吸収による膨潤がなく、正極合剤5中の導電剤配合比を少なく出来る効果も有する。その結果、容量に優れた電池を得ることができる。   This is because, since the fluororesin powder has excellent lubricity, the positive electrode mixture 5 can be obtained with improved handling properties by improving the weighability of the positive electrode mixture 5 even in a low amount of the positive electrode mixture 5. It is. In addition, since the fluororesin powder has water repellency, the fluororesin powder does not swell due to absorption of the electrolytic solution, and has an effect of reducing the conductive agent blending ratio in the positive electrode mixture 5. As a result, a battery having an excellent capacity can be obtained.

なお、フッ素樹脂粉末の配合比が0.05mass%を下回ると、正極合剤粉体の潤滑性が低くなって均一な秤量が出来なくなり、正極合剤のハンドリング性が著しく低下するため好ましくない。一方、フッ素樹脂粉末の配合比が5mass%を上回ると、その分、充填できる活物質等を減らさなければならず好ましくない。   If the blending ratio of the fluororesin powder is less than 0.05 mass%, the lubricity of the positive electrode mixture powder is lowered and uniform weighing cannot be performed, and the handling property of the positive electrode mixture is remarkably lowered. On the other hand, if the blending ratio of the fluororesin powder exceeds 5 mass%, the amount of active material that can be filled has to be reduced accordingly, which is not preferable.

次に、上記のように構成した本実施形態の効果を以下に記載する。
(1)本実施形態によれば、扁平形アルカリ一次電池1は、負極活物質として亜鉛又は亜鉛合金粉末を使用し、正極活物質として、二酸化マンガンや酸化銀に対して電位が貴であるオキシ水酸化ニッケルを使用したので、アルカリマンガン電池や酸化銀電池より、高い電池電圧を得ることができた。
Next, effects of the present embodiment configured as described above will be described below.
(1) According to this embodiment, the flat alkaline primary battery 1 uses zinc or a zinc alloy powder as a negative electrode active material, and has a noble potential relative to manganese dioxide or silver oxide as a positive electrode active material. Since nickel hydroxide was used, a higher battery voltage could be obtained than alkaline manganese batteries and silver oxide batteries.

しかも、正極合剤の導電剤として銀・ニッケル複合酸化物と乾性潤滑剤としてフッ素樹脂粉末を使用したので、銀・ニッケル複合酸化物の高い導電性と結着力で電解液吸収及び放電に伴う体積膨張を抑制し、正極の体積膨張による電子伝導の低下を防止でき、容量及び容量保存性に優れた電池を得ることができる。   In addition, since silver / nickel composite oxide was used as the conductive agent for the positive electrode mixture and fluororesin powder was used as the dry lubricant, the volume associated with electrolyte absorption and discharge due to the high conductivity and binding power of the silver / nickel composite oxide. Expansion of the battery can be suppressed, a decrease in electronic conduction due to volume expansion of the positive electrode can be prevented, and a battery excellent in capacity and capacity storage can be obtained.

また、乾性潤滑剤としてのフッ素樹脂粉末の潤滑性で正極合剤5の秤量性を向上し、ハンドリング性に優れた正極合剤5を得ることができる。従って、扁平形アルカリ一次電池1は、終止電圧が酸化銀電池の電池電圧に合わせて高めに設定されている電子腕時計などの機器での使用に、長時間耐え得ることができる。   Moreover, the positive electrode mixture 5 excellent in handling property can be obtained by improving the weighability of the positive electrode mixture 5 by the lubricity of the fluororesin powder as a dry lubricant. Therefore, the flat alkaline primary battery 1 can withstand use for a long time in a device such as an electronic wristwatch whose end voltage is set higher in accordance with the battery voltage of the silver oxide battery.

しかも、本実施形態の扁平形アルカリ一次電池1は、酸化銀一次電池のように高価な材料(銀)を低配合で使用するため、貴金属市場に大きく左右されず安価に製造することができる。   Moreover, since the flat alkaline primary battery 1 of the present embodiment uses an expensive material (silver) in a low blending like the silver oxide primary battery, it can be manufactured at a low cost without being greatly influenced by the precious metal market.

(2)本実施形態によれば、扁平形アルカリ一次電池1は、正極合剤5の導電剤を銀・ニッケル複合酸化物とし、その平均粒径を1μm以上、20μm以下としたので、正極合剤5のハンドリング性に優れ、かつ、容量及び容量保存性に優れた電池を得ることができる。   (2) According to the present embodiment, the flat alkaline primary battery 1 has the conductive agent of the positive electrode mixture 5 made of silver / nickel composite oxide and the average particle size of 1 μm or more and 20 μm or less. A battery excellent in handling property of the agent 5 and excellent in capacity and capacity storage can be obtained.

(3)本実施形態によれば、扁平形アルカリ一次電池1は、正極合剤5の導電剤を銀・ニッケル複合酸化物とし、その配合比を5mass%以上、30mass%以下としたので、正極合剤5のハンドリング性に優れ、かつ、容量及び容量保存性に優れた電池を得ることができる。   (3) According to the present embodiment, the flat alkaline primary battery 1 is composed of a silver / nickel composite oxide as the conductive agent of the positive electrode mixture 5, and the blending ratio thereof is 5 mass% or more and 30 mass% or less. A battery excellent in the handling property of the mixture 5 and excellent in capacity and capacity storage can be obtained.

(4)本実施形態によれば、扁平形アルカリ一次電池1は、正極合剤5の乾性潤滑剤としてフッ素樹脂粉末の平均粒径を0.1μm以上、10μm以下としたので、ハンドリング性に優れた正極合剤5を得ることができる。   (4) According to the present embodiment, the flat alkaline primary battery 1 has excellent handling properties because the average particle size of the fluororesin powder is 0.1 μm or more and 10 μm or less as the dry lubricant of the positive electrode mixture 5. The positive electrode mixture 5 can be obtained.

(5)本実施形態によれば、扁平形アルカリ一次電池1は、正極合剤5の乾性潤滑剤としてフッ素樹脂粉末の配合比を0.05mass%以上、5mass%以下とすることにより、正極合剤5のハンドリング性に優れ、かつ、容量に優れた電池を得ることができる。   (5) According to the present embodiment, the flat alkaline primary battery 1 has a positive electrode composition by adjusting the blending ratio of the fluororesin powder as a dry lubricant of the positive electrode mixture 5 to 0.05 mass% or more and 5 mass% or less. A battery having excellent handling properties of the agent 5 and excellent capacity can be obtained.

本実施形態のアルカリ電池の概略断面図。The schematic sectional drawing of the alkaline battery of this embodiment.

符号の説明Explanation of symbols

1…アルカリ電池、2…正極缶、3…負極缶、4…ガスケット、5…正極合剤、6…セパレータ、7…負極合剤。   DESCRIPTION OF SYMBOLS 1 ... Alkaline battery, 2 ... Positive electrode can, 3 ... Negative electrode can, 4 ... Gasket, 5 ... Positive electrode mixture, 6 ... Separator, 7 ... Negative electrode mixture.

Claims (5)

正極缶の開口部に負極缶の開口部を嵌合し、正極缶と負極缶とをガスケットを介して密封した密封空間に、セパレータを配置するとともに、そのセパレータを挟んで、正極側には正極活物質を主成分とした正極合剤を配置し、負極側には負極活物質を主成分とした負極合剤を配置し、さらに、その正極合剤、セパレータ及び負極合剤を配置した密封空間にアルカリ電解液を充填した扁平形アルカリ一次電池であって、
亜鉛又は亜鉛合金粉末を前記負極活物質とし、オキシ水酸化ニッケルを前記正極活物質とし、前記正極合剤の導電剤として銀・ニッケル複合酸化物と、前記正極合剤の乾性潤滑剤としてフッ素樹脂粉末を含むことを特徴とする扁平形アルカリ一次電池。
The opening of the negative electrode can is fitted into the opening of the positive electrode can, and the separator is placed in a sealed space in which the positive electrode can and the negative electrode can are sealed with a gasket. A positive electrode mixture mainly composed of an active material is arranged, a negative electrode mixture mainly composed of a negative electrode active material is arranged on the negative electrode side, and the positive electrode mixture, separator and negative electrode mixture are further arranged in a sealed space. A flat alkaline primary battery filled with an alkaline electrolyte,
Zinc or zinc alloy powder is used as the negative electrode active material, nickel oxyhydroxide is used as the positive electrode active material, a silver / nickel composite oxide is used as a conductive agent for the positive electrode mixture, and a fluorine resin is used as a dry lubricant for the positive electrode mixture. A flat alkaline primary battery comprising a powder.
請求項1に記載の扁平形アルカリ一次電池において、
前記銀・ニッケル複合酸化物の平均粒径が、1〜20μmであることを特徴とする扁平形アルカリ一次電池。
The flat alkaline primary battery according to claim 1,
The flat alkaline primary battery, wherein the silver / nickel composite oxide has an average particle diameter of 1 to 20 μm.
請求項1又は2に記載の扁平形アルカリ一次電池において、
前記銀・ニッケル複合酸化物の正極合剤における配合比が、5mass%以上、30%以下としたことを特徴とする扁平形アルカリ一次電池。
The flat alkaline primary battery according to claim 1 or 2,
A flat alkaline primary battery, wherein a compounding ratio of the silver / nickel composite oxide in the positive electrode mixture is 5 mass% or more and 30% or less.
請求項1〜3のいずれか1に記載の扁平形アルカリ一次電池において、
前記フッ素樹脂粉末の平均粒径が、0.1〜10μmであることを特徴とする扁平形アルカリ一次電池。
The flat alkaline primary battery according to any one of claims 1 to 3,
The flat alkaline primary battery, wherein the fluororesin powder has an average particle size of 0.1 to 10 μm.
請求項1〜4のいずれか1に記載の扁平形アルカリ一次電池において、
前記フッ素樹脂粉末の正極合剤における配合比が、0.05mass%以上、5mass%以下としたことを特徴とする扁平形アルカリ一次電池。
In the flat alkaline primary battery according to any one of claims 1 to 4,
A flat alkaline primary battery, wherein a blending ratio of the fluororesin powder in the positive electrode mixture is 0.05 mass% or more and 5 mass% or less.
JP2008105957A 2008-04-15 2008-04-15 Planiform alkaline primary battery Pending JP2009259536A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008105957A JP2009259536A (en) 2008-04-15 2008-04-15 Planiform alkaline primary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008105957A JP2009259536A (en) 2008-04-15 2008-04-15 Planiform alkaline primary battery

Publications (1)

Publication Number Publication Date
JP2009259536A true JP2009259536A (en) 2009-11-05

Family

ID=41386715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008105957A Pending JP2009259536A (en) 2008-04-15 2008-04-15 Planiform alkaline primary battery

Country Status (1)

Country Link
JP (1) JP2009259536A (en)

Similar Documents

Publication Publication Date Title
JP5999968B2 (en) Flat primary battery, negative electrode mixture for flat primary battery, and method for producing the same
JP5602313B2 (en) Alkaline battery
JP2008210720A (en) Flat alkaline primary battery
JP2006302597A (en) Button type alkaline battery
JP2010044906A (en) Flat-type primary battery, negative electrode mixture, and manufacturing method of flat-type primary battery
JP2009259536A (en) Planiform alkaline primary battery
JP6883441B2 (en) Flat alkaline primary battery
JP5447772B2 (en) Flat alkaline primary battery and positive electrode mixture thereof
JP6434826B2 (en) Flat alkaline primary battery and method for manufacturing the same
JP2005276698A (en) Alkaline battery
JP2010040334A (en) Alkaline primary battery and method for manufacturing alkaline primary battery
JP5135579B2 (en) Flat alkaline battery
JP5464651B2 (en) Flat alkaline primary battery and positive electrode mixture thereof
JP2009283252A (en) Flat alkaline primary cell
JP2002117859A (en) Alkaline battery
JP2010044907A (en) Flat-type alkaline primary battery and manufacturing method of flat-type alkaline primary battery
JP2008210719A (en) Flat alkaline primary battery
JP2009211841A (en) Flat alkaline primary battery
JP2010040291A (en) Alkaline primary battery and method for manufacturing alkaline primary battery
JP3505824B2 (en) Flat alkaline battery
JP2009193706A (en) Flat alkaline primary battery, and manufacturing method of flat alkaline primary battery
JP2010033962A (en) Flat alkaline primary cell, and method for manufacturing flat alkaline primary cell
JP6130012B2 (en) Flat primary battery, negative electrode mixture for flat primary battery, and method for producing the same
JP2009054535A (en) Flat alkaline primary battery
JP2008288162A (en) Flat alkaline primary battery