JP2009256737A - Method for controlling furnace-top gas temperature in blast furnace - Google Patents
Method for controlling furnace-top gas temperature in blast furnace Download PDFInfo
- Publication number
- JP2009256737A JP2009256737A JP2008108215A JP2008108215A JP2009256737A JP 2009256737 A JP2009256737 A JP 2009256737A JP 2008108215 A JP2008108215 A JP 2008108215A JP 2008108215 A JP2008108215 A JP 2008108215A JP 2009256737 A JP2009256737 A JP 2009256737A
- Authority
- JP
- Japan
- Prior art keywords
- furnace
- yard
- pellet
- raw material
- gas temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Manufacture Of Iron (AREA)
Abstract
Description
この発明は、高炉の炉内に装入するペレット原料の水分量や配合率を調節することにより、炉頂ガス温度を低下させる高炉炉頂ガス温度の制御方法に関する。 The present invention relates to a method for controlling the blast furnace top gas temperature that lowers the furnace top gas temperature by adjusting the moisture content and blending ratio of the pellet raw material charged into the furnace of the blast furnace.
近年、高炉操業においては、溶銑コスト低減のため、安価な補助燃料として微粉炭を使用する微粉炭吹き込み操業が行なわれている。微粉炭吹込み操業を行なう場合には、燃料比(=コークス比+微粉炭(補助燃料)比)を維持するために、炉頂から装入するコークス量を減少させる必要があり、それに伴って、炉頂からの固体の装入量が減少することから、熱流比[=(固体の熱容量)/(気体の熱容量)]が低下し、炉頂ガス温度が上昇する。この炉頂ガス温度の上昇は、原料装入装置などの炉頂設備を損傷する原因の一つとなっている。通常、炉頂ガス温度を低下させるために、炉頂部に設置されたノズルから高炉内への散水が行なわれる。しかし、この散水により炉頂ガス温度を低下させる方法は、炉頂ガスの集塵装置として乾式集塵機を用いる場合には、集塵機内に結露等の弊害をもたらすため、好ましくない。 In recent years, in blast furnace operation, pulverized coal blowing operation using pulverized coal as an inexpensive auxiliary fuel has been performed in order to reduce hot metal costs. When performing pulverized coal injection operation, it is necessary to reduce the amount of coke charged from the top of the furnace in order to maintain the fuel ratio (= coke ratio + pulverized coal (auxiliary fuel) ratio). Since the charging amount of the solid from the top of the furnace decreases, the heat flow ratio [= (heat capacity of solid) / (heat capacity of gas)] decreases, and the gas temperature at the top of the furnace rises. This rise in the furnace top gas temperature is one of the causes of damage to furnace top equipment such as raw material charging equipment. Usually, in order to lower the furnace top gas temperature, water is sprayed from a nozzle installed at the top of the furnace into the blast furnace. However, this method of lowering the furnace top gas temperature by sprinkling water is not preferable when a dry dust collector is used as a dust collector for the furnace top gas, because it causes harmful effects such as condensation in the dust collector.
このような弊害を伴わずに、炉頂ガス温度を低下させるために、例えば、特許文献1では、乾式集塵装置を備えた高炉に乾コークスと湿コークスとを装入しつつ操業するに際して、湿コークスの炉半径方向の装入位置や装入割合を調整することにより、炉頂ガス温度が予め設定した温度範囲内になるようにする湿コークスの装入方法が開示されている。また、特許文献2では、熱流比が0.80以下の高炉の操業方法において、結晶水含有量が3.5wt%以上の高結晶水の塊鉱石を、主原料の一部として、炉内で結晶水が分離されるときに鉱石が崩壊しても通気性を阻害しない粒径構成と配合割合を選定して、炉内へ直接装入することにより、炉頂ガスの平均温度を下げるようにした高炉の操業方法が開示されている。
しかし、特許文献1に開示された湿コークスの装入方法では、湿コークスによる持ち込み粉が高炉内の通気性を悪化させる可能性があり、高炉を安定かつ経済的に操業できなくなる虞がある。また、特許文献2に開示された高炉の操業方法では、鉄鉱石原料の調達が制約されており、高結晶水塊鉱石の配合割合の自由度が小さいため、炉頂ガス温度の制御範囲が狭いという問題がある。
However, in the wet coke charging method disclosed in Patent Document 1, there is a possibility that the powder brought in by wet coke may deteriorate the air permeability in the blast furnace, and the blast furnace cannot be operated stably and economically. Further, in the blast furnace operating method disclosed in
そこで、この発明の課題は、高炉の安定操業を阻害せず、炉頂ガス温度をより広い範囲で制御できる、簡便かつ経済的な高炉炉頂ガス温度の制御方法を提供することである。 Accordingly, an object of the present invention is to provide a simple and economical method for controlling the blast furnace top gas temperature that can control the furnace top gas temperature in a wider range without impeding stable operation of the blast furnace.
前記の課題を解決するために、この発明では以下の構成を採用したのである。 In order to solve the above problems, the present invention employs the following configuration.
請求項1に係る高炉炉頂ガス温度の制御方法は、高炉の炉頂から排出されるガスの温度を、装入鉄原料として水分を含有するペレットを配合することにより適正温度範囲に制御する高炉炉頂ガスの温度制御方法であって、前記ペレットが、造粒・焼成後に原料ヤードに貯蔵され、散水処理されたヤードペレットであり、このヤードペレットを、その含水率に応じて、装入鉄原料として少なくとも10%以上配合することを特徴とする。 The blast furnace top gas temperature control method according to claim 1 is a blast furnace in which the temperature of gas discharged from the blast furnace top is controlled to an appropriate temperature range by blending pellets containing moisture as a charged iron raw material. A method for controlling the temperature of a furnace top gas, wherein the pellets are stored in a raw material yard after granulation and firing, and are sprinkled yard pellets. The yard pellets are charged iron according to the moisture content. It is characterized by blending at least 10% or more as a raw material.
造粒・焼成後に原料ヤードに貯蔵されたペレット(ヤードペレット)は、煤塵防止の環境面から、例えば、2時間に1回程度の頻度で散水処理がなされる。高炉への装入鉄原料として、原料鉄鉱石を粉砕した微粉鉱石にバインダなどの副原料を加えて造粒・焼成されたペレットには、気孔率で25%程度の気孔が存在しているため、前記散水処理により含水し、通常の原料ヤード貯蔵で、含水率は数%に達し、造粒・焼成後、原料ヤードに貯蔵されずに高炉へ装入される直送ペレットや焼結鉱などの、含水率が2%未満の他の装入鉄原料よりも多量の水分を含有している。また、ヤードペレットは、直送ペレットに比べて顕熱が少ない。さらに、ヤードペレットを一定の割合以上に配合した鉄原料の安息角は、後述するように、ペレットの含水率が高くなるにつれて大きくなる。したがって、水分を含むと、転がりやすいというペレット形状の弱点が緩和される。このため、高炉内に装入された、前記ヤードペレットを一定割合以上配合された前記鉄原料は、炉内の周辺部すなわち内壁側に堆積しやすく、それによって炉中心部の鉄原料の装入密度が低くなるため、炉中心部の通気性が阻害されず、高炉の安定かつ経済的な操業に寄与できる。これらのことから、ヤードペレットを一定の割合以上、すなわち少なくとも10%以上配合した鉄原料を炉内に装入すると、ペレットの含有水分の気化熱が多く、ヤードペレット自体の顕熱は少なく、炉内の通気性が阻害されないため、炉頂ガスの温度を、操業上の弊害を伴わずに、簡便かつ効果的に低下させることができる。なお、炉頂ガス温度の適正温度範囲として、120℃〜200℃の範囲を設定することができる。炉頂ガス温度が200℃を超えると、前述のように、原料装入装置などの炉頂設備を損傷する原因の一つとなり、また、120℃未満では、乾式集塵機内の結露等の弊害を伴ない、いずれも好ましくないためである。また、前記ヤードペレットは、原料ヤードでの散水処理のほかに、高炉装入に備えての貯鉱槽への入槽前にも、ペレット外表面の粉成分を除去するために散水処理される。このため、ヤードペレットの含水率は、原料ヤードに貯蔵されていた間の天候の影響を受けず、主にペレットの気孔率および気孔径によって決まる。したがって、安定した工程能力で製造されたヤードペレットの含水率は、後述するように、例えば、5〜7%と狭い範囲に収まる。但し、この含水率の大きさそのものは、ペレットの製造工程によって異なる。 The pellets (yard pellets) stored in the raw material yard after granulation and firing are sprinkled with a frequency of about once every two hours, for example, from the viewpoint of dust prevention. As a raw material charged to the blast furnace, pellets granulated and fired by adding auxiliary materials such as a binder to fine ore obtained by pulverizing raw iron ore contain pores of about 25% in porosity. In the normal raw material yard storage, the water content reaches several percent, and after granulation and firing, the direct feed pellets and sintered ore that are not stored in the raw material yard and charged into the blast furnace are used. In addition, it contains a larger amount of moisture than other charged iron raw materials having a moisture content of less than 2%. Yard pellets have less sensible heat than direct pellets. Furthermore, the angle of repose of the iron raw material in which yard pellets are blended at a certain ratio or more increases as the moisture content of the pellets increases, as will be described later. Therefore, the weak point of the pellet shape that it is easy to roll when water is included is alleviated. For this reason, the iron raw material charged in the blast furnace and blended with a certain proportion or more of the yard pellet is likely to be deposited on the periphery of the furnace, that is, on the inner wall side, thereby charging the iron raw material in the furnace center. Since the density is low, the air permeability in the center of the furnace is not hindered and can contribute to stable and economical operation of the blast furnace. From these facts, when iron raw materials containing yard pellets at a certain ratio or more, that is, at least 10% or more, are charged into the furnace, the heat of vaporization of the moisture contained in the pellets is large, the sensible heat of the yard pellets is small, and the furnace Since the inside air permeability is not hindered, the temperature of the furnace top gas can be easily and effectively lowered without causing any adverse effects on operation. In addition, the range of 120 degreeC-200 degreeC can be set as an appropriate temperature range of furnace top gas temperature. If the furnace top gas temperature exceeds 200 ° C, as mentioned above, it will be one of the causes of damage to the furnace top equipment such as raw material charging equipment, and if it is less than 120 ° C, it will cause harmful effects such as condensation in the dry dust collector. This is because neither is preferable. In addition to the watering treatment in the raw material yard, the yard pellets are also watered to remove the powder component on the outer surface of the pellets before entering the storage tank for blast furnace charging. . For this reason, the moisture content of the yard pellet is not affected by the weather while being stored in the raw material yard, and is mainly determined by the porosity and the pore diameter of the pellet. Therefore, the moisture content of the yard pellets manufactured with a stable process capability falls within a narrow range of 5 to 7%, for example, as will be described later. However, the magnitude of the water content itself varies depending on the manufacturing process of the pellet.
図1は、出銑比約2.2t/dayで操業中の実機高炉において測定した、装入鉄原料におけるヤードペレットの配合率Pdと炉頂ガス温度との関係を示したものである。すなわち、平均粒径10〜13mmに造粒・焼成後に原料ヤードに貯蔵され、2時間に1回程度の頻度で、流量密度が約0.02m3/h/m2で1回あたり約1分の散水処理を受けた含水率が5〜7%のヤードペレットを各一定割合配合した鉄原料、およびコークス、微粉炭等の所要の副原料を装入し、羽口から熱風を吹き込んで操業しているときに、炉頂に設置した温度計により、炉頂ガス温度Tgを実測した結果を、ヤードペレットの配合率Pdに対してプロットしたものである。炉頂ガス温度Tgは、ヤードペレットの配合率Pdの増加とともに低下する傾向が認められ、配合率が10%以上になると、炉頂ガス温度が上限値200℃以下に抑制できることがわかる。また、図中に示した回帰式を用いると、炉頂ガス温度を下限値120℃以上とするためのヤードペレット配合率の上限は約70%と算出することができる。一方、図2は、装入鉄原料として、ヤ−ドペレットを37mass%配合した場合において、ヤードペレットの水分すなわち含水率Pwを変化させた場合の安息角θrを測定した結果を示したものである。含水率Pwが大きくなるほど、安息角θrも大きくなることが明瞭に認められる。このことは、前述したように、ペレットは形状としては転がりやすい鉄原料であるが、含水率Pwが高くなるにつれて、その弱点が緩和されることを示している。 FIG. 1 shows the relationship between the blending ratio Pd of yard pellets in the charged iron raw material and the furnace top gas temperature, measured in an actual blast furnace operating at a tapping ratio of about 2.2 t / day. That is, it is stored in the raw material yard after granulation and firing to an average particle size of 10 to 13 mm, and the flow density is about 0.02 m 3 / h / m 2 at a frequency of about once every 2 hours and about 1 minute per time. The raw material containing 5% to 7% of yard pellets with a water content of 5% to 7% and the required auxiliary materials such as coke and pulverized coal were charged, and hot air was blown from the tuyere for operation. The results obtained by actually measuring the furnace top gas temperature Tg with a thermometer installed at the top of the furnace are plotted against the blending ratio Pd of yard pellets. The furnace top gas temperature Tg tends to decrease with an increase in the blending ratio Pd of the yard pellets, and it can be seen that when the blending ratio is 10% or more, the furnace top gas temperature can be suppressed to an upper limit value of 200 ° C. or less. Moreover, if the regression equation shown in the figure is used, the upper limit of the yard pellet mixing ratio for setting the furnace top gas temperature to the lower limit of 120 ° C. or higher can be calculated to be about 70%. On the other hand, FIG. 2 shows the result of measuring the angle of repose θr when the moisture content of the yard pellet, that is, the moisture content Pw was changed, when 37 mass% of the diamond pellet was blended as the charged iron raw material. . It is clearly recognized that the angle of repose θr increases as the water content Pw increases. This indicates that, as described above, the pellet is an iron raw material that is easy to roll in shape, but its weakness is reduced as the moisture content Pw increases.
請求項2に係る高炉炉頂ガス温度の制御方法は、前記ヤードペレットの平均粒径が10mm〜15mmの範囲にあり、かつその含水率が2%〜7%の範囲にあることを特徴とする。
The blast furnace top gas temperature control method according to
一般に、ペレット粒径は、15mmを超えると、比表面積(単位重量あたりの表面積)が小さくなってきて還元反応の効率が低下し、また、10mm未満では、通気性が低下し、いずれも好ましくない。ヤードペレットは、ヤード焼結鉱に比べて、ハンドリングによる粒径低下を生じにくく、平均粒径を10mm以上に形成(造粒・焼成)しておけば、炉内の通気性を阻害することはない。また、含水率が7%を超えて多くなると、ヤードペレットの配合率の変化によって炉頂ガス温度が変動しやすくなり、含水率が2%未満では炉頂ガス温度の低下に及ぼす影響が小さくなって、いずれも好ましくない。含水率の推奨範囲は5〜7%である。なお、含水率がこの推奨範囲よりも少ないヤードペレットを配合する場合には、炉頂ガス温度の実測値に基づいて、ヤードペレットの配合率を増加させることにより、炉頂ガス温度を適正範囲に制御することが可能である。 In general, when the pellet particle diameter exceeds 15 mm, the specific surface area (surface area per unit weight) decreases, and the efficiency of the reduction reaction decreases. When the pellet particle diameter is less than 10 mm, the air permeability decreases. . Yard pellets are less susceptible to particle size reduction due to handling than yard sintered ore, and if the average particle size is formed (granulated and fired) to 10 mm or more, the air permeability in the furnace will be hindered. Absent. In addition, if the moisture content exceeds 7%, the furnace top gas temperature tends to fluctuate due to the change in the blending ratio of the yard pellet, and if the moisture content is less than 2%, the effect on the decrease in the furnace top gas temperature becomes small. Neither is preferred. The recommended range of moisture content is 5-7%. When blending yard pellets with a moisture content lower than the recommended range, increase the blending ratio of yard pellets based on the measured value of the furnace top gas temperature to bring the furnace top gas temperature within the appropriate range. It is possible to control.
この発明では、高炉の炉頂から排出されるガスの温度を、装入鉄原料として含水率が高くかつ顕熱が少なく、安息角が大きいヤードペレットを一定の割合以上配合するようにしたので、炉内に装入されたときに、ヤードペレットの含有水分の気化熱が多く、また炉内の通気性が阻害されないため、炉頂ガスの温度を、製鉄のトータル消費エネルギの上昇を伴わずに簡便かつ効果的に低下させることができる。それによって、炉頂設備の損傷や乾式集塵機内の結露等の操業上の弊害を確実に防止することができる。 In this invention, since the temperature of the gas discharged from the top of the blast furnace is blended with yard pellets having a high moisture content and low sensible heat as a charged iron raw material and a large angle of repose, a certain ratio or more, When charged in the furnace, the heat of vaporization of the moisture contained in the yard pellets is large, and the air permeability in the furnace is not hindered, so the temperature of the furnace top gas can be adjusted without increasing the total energy consumption of steelmaking. It can be simply and effectively reduced. As a result, it is possible to reliably prevent adverse effects on the operation such as damage to the furnace top equipment and condensation in the dry dust collector.
以下に、この発明の実施形態を、実施例を交えて説明する。 Embodiments of the present invention will be described below with examples.
本発明で使用するヤードペレット、すなわち原料ヤードに一旦貯蔵され、散水処理された後、鉄原料として高炉に装入されるペレットは、一般的な製造工程である、生ペレットの造粒工程、乾燥・予熱工程、焼成工程および冷却工程により製造することができる。一例を挙げると、生ペレットの造粒工程では、原料鉄鉱石の選鉱および粉砕により、平均粒径が50μm程度にした微粉鉄鉱石と、この微粉鉄鉱石と同等以下に微粉砕した石灰石やドロマイトなどの副原料、造粒効率を上げるためにベントナイトや消石灰などのバインダを添加して混合した後、必要に応じて造粒水を加えて、ディスク型ペレタイザなどの造粒機で、粒径が10〜15mm程度の球状の生ペレットを製造する。次に、この生ペレットを、エンドレスに移動するトラベリンググレート上に所要の厚さで層状に積載し、この移動するペレット層に、180〜250℃程度のガスを流通させて生ペレットから造粒水分を除去した後、250〜400℃のガスを流通させて鉱石中の結晶水を離水させ、最後に予熱工程で1000〜1100℃程度の高温ガスを流通させて予熱して、ペレット強度を所定のレベルにまで高める。そして、焼成工程では、この予熱ペレットをロータリーキルンなどの焼成設備に装入し、1250〜1350℃の温度域に加熱して圧潰強度を高める。次いで、風冷などの冷却設備に装入して冷却し、高炉への装入鉄原料としての焼成ペレットが得られる。なお、本発明に使用するヤードペレットは、必ずしも上記の製造方法に限定されるものではない。 Yard pellets used in the present invention, that is, pellets once stored in a raw material yard and sprinkled, and then charged into a blast furnace as an iron raw material are general manufacturing processes, raw pellet granulation process, drying -It can manufacture by a preheating process, a baking process, and a cooling process. For example, in the granulation process of raw pellets, fine iron ore with an average particle size of about 50 μm by beneficiation and pulverization of raw iron ore, and limestone and dolomite finely pulverized to be equal to or less than this fine iron ore, etc. In order to increase the granulation efficiency, a binder such as bentonite or slaked lime is added and mixed, and then granulated water is added as necessary, and the particle size is 10 with a granulator such as a disk type pelletizer. A spherical raw pellet of about 15 mm is produced. Next, the raw pellets are stacked in layers at a required thickness on a traveling grating that moves endlessly, and a gas of about 180 to 250 ° C. is circulated through the moving pellet layer to granulate moisture from the raw pellets. Then, 250 to 400 ° C. gas is circulated to separate crystal water in the ore, and finally preheating is performed by circulating high-temperature gas of about 1000 to 1100 ° C. in the preheating step, so that the pellet strength is predetermined. Increase to level. And in a baking process, this preheating pellet is inserted into baking facilities, such as a rotary kiln, and it heats to the temperature range of 1250-1350 degreeC, and raises crushing strength. Subsequently, it cools by charging in cooling facilities, such as an air cooling, and the baking pellet as an iron raw material charged into a blast furnace is obtained. In addition, the yard pellet used for this invention is not necessarily limited to said manufacturing method.
焼成後に高炉へ直接搬送される直送ペレットを除いて、前記焼成ペレットは、高炉への装入スケジュールに応じて、原料ヤードに、通常、錐体状に山積みして貯蔵される。この貯蔵期間中に、煤塵防止などの環境対策のために、通常、1回/2時間程度の頻度で、例えば、0.02m3/h/m2程度の流量密度の散水処理が、山積みされたペレットすなわちヤードペレットに施される。このヤードペレットには、一定割合(通常、気孔率25%程度)の気孔が存在するため、前記散水処理により、ヤードペレット中の含水率は、直送ペレットに比べて増加する。例えば、気孔率が25%程度の場合、含水率は2%以上、特にグレートキルン方式で製造されたペレットは表面が緻密なため保水性が高く、5〜7%程度にまで増加する。また、ヤードペレットは、前記散水処理により冷却されるため、直送ペレットに比べて、顕熱は少ない。さらに、図2に示したように、含水率Pwの増加に伴い、安息角θrは大きくなるため、ヤードペレットを一定割合以上配合した鉄原料を炉頂部から高炉内に装入すると、炉内の周辺部すなわち内壁側に堆積しやすく、炉中心部の鉄原料の装入密度が低くなるため、炉中心部の通気性が阻害されない。このような特性を有するヤードペレットを装入鉄原料として一定の割合以上に配合することにより、前述のように、炉頂ガスの温度を、製鉄のトータル消費エネルギの上昇を伴わずに、簡便かつ効果的に低下させることができる。 Except for the direct feed pellets that are directly conveyed to the blast furnace after firing, the fired pellets are usually stacked in a cone shape and stored in the raw material yard according to the charging schedule to the blast furnace. During this storage period, for the environmental measures such as dust prevention, water spraying treatment with a flow density of about 0.02 m 3 / h / m 2 is usually piled up at a frequency of about once every 2 hours. Applied to the dried or yard pellet. Since the yard pellet has pores of a certain ratio (usually about 25% porosity), the water content in the yard pellet is increased by the watering treatment as compared with the direct feed pellet. For example, when the porosity is about 25%, the moisture content is 2% or more. Particularly, the pellets produced by the great kiln method have a high water retention due to the dense surface, and increase to about 5-7%. Further, since the yard pellet is cooled by the watering treatment, the sensible heat is less than that of the direct feed pellet. Furthermore, as shown in FIG. 2, the angle of repose θr increases with an increase in the moisture content Pw. Therefore, when an iron raw material containing a certain percentage or more of yard pellets is charged into the blast furnace from the top of the furnace, Since it is easy to deposit on the peripheral part, that is, on the inner wall side, and the charging density of the iron raw material in the furnace center part becomes low, the air permeability of the furnace center part is not hindered. By blending the yard pellets having such characteristics as a raw material for charging with a certain ratio or more, as described above, the temperature of the furnace top gas can be simply and without increasing the total energy consumption of iron making. It can be effectively reduced.
表1に、高炉操業(出銑比2.17t/day〜2.34t/day)における実施例(No.1,No.2,No.4.No.5,No.6)よび比較例(No.3)の操業データ(諸元)を示す。実施例No.1,No.2および比較例No.3ともに、装入鉄原料中のペレット比率は約30%であるが、ヤードペレット(平均粒径:10〜13mm、含水率:5〜7%)の配合率は、実施例No.1では23.2%(直送ペレット6.8%)、実施例No.2では全部がヤードペレットの30%(直送ペレット0%)であり、比較例No.3では、5%(直送ペレット25%)である。まず、比較例No.3のヤードペレット配合率5%で操業データ(炉頂ガス温度および炉内圧力)を採取し、次いで、この比較例No.3の配合率25%の直送ペレットを順次ヤードペレットに振り替えて、ヤードペレット配合率23.2%で実施例No.1の操業データを採取し、さらにヤードペレットへの振り替え量を増加させて、配合率30%(全量振り替え)で実施例No.2の操業データを採取した。この直送ペレットのヤードペレットへの振り替えの過程で、炉頂ガス温度が低下し始め、表1に示したように、炉頂ガス温度は、実施例No.1の配合率23.2%まで振り替えた時点で、配合率5%の比較例No.3の201℃から、192℃まで低下し、さらに、実施例No.2の配合率30%(全量)まで振り替えた時点で、181℃まで低下している。このように、ヤードペレットの配合率を高めることが、炉頂ガス温度の低下に有効であることを確認した。一方、炉内圧損についても、比較例No.3の2.00kg/cm2から、実施例No.1では1.99kg/cm2、実施例No。2では1.98kg/cm2と改善される傾向が認められ、ヤードペレットの配合率を高めることは、炉内の通気性を阻害しないことを確認した。なお、1kg/cm2=980665Paである。 Table 1 shows examples (No.1, No.2, No.4.No.5, No.6) and comparative examples (No.1, No.1, No.2, No.5, No.6) in blast furnace operation (output ratio 2.17t / day to 2.34t / day). The operational data (specifications) of 3) is shown. In each of Examples No. 1, No. 2 and Comparative Example No. 3, the pellet ratio in the charged iron raw material is about 30%, but yard pellets (average particle size: 10 to 13 mm, moisture content: 5 to 7) %) Was 23.2% in Example No. 1 (6.8% direct feed pellets), and in Example No. 2, all were 30% of yard pellets (0% direct feed pellets). In No. 3, it is 5% (direct feed pellet 25%). First, operation data (furnace top gas temperature and pressure in the furnace) was collected at a yard pellet mixing ratio of 5% in Comparative Example No. 3, and then direct feed pellets in the mixing ratio of 25% in Comparative Example No. 3 were sequentially yarded. Transfer to pellets, collect the operation data of Example No. 1 at a yard pellet mixing rate of 23.2%, increase the transfer amount to yard pellets, and increase the transfer rate to 30% (total amount transfer) of Example No. .2 operational data was collected. In the process of transferring the direct pellets to yard pellets, the furnace top gas temperature began to drop, and as shown in Table 1, the furnace top gas temperature was changed to a blending ratio of Example No. 1 of 23.2%. At that time, it dropped from 201 ° C. in Comparative Example No. 3 with a blending rate of 5% to 192 ° C., and further down to 181 ° C. when the blending rate was changed to 30% (total amount) in Example No. 2. is doing. Thus, it was confirmed that increasing the blending ratio of the yard pellets is effective for lowering the furnace top gas temperature. On the other hand, for the furnace pressure loss, from 2.00 kg / cm 2 of Comparative Example No.3, Example No.1 In 1.99kg / cm 2, Example No. No. 2 showed a tendency to be improved to 1.98 kg / cm 2, and it was confirmed that increasing the blending ratio of the yard pellets does not hinder the air permeability in the furnace. Note that 1 kg / cm 2 = 980665 Pa.
また、実施例No.4、No.5およびNo.6では、装入鉄原料中のペレット配合率はいずれも31%であるが、ヤードペレットの配合率は、実施例No.4では24.0%(直送ペレット7%)、実施例5では全部がヤードペレットの31%(直送ペレット0%)であり、実施例No.6では、16.5%(直送ペレット14.5%)である。操業データ(炉頂ガス温度および炉内圧力)は、まず、実施例No.6のヤードペレット配合率14.5%で採取し、次いで、この実施例No.6の配合率14.5%の直送ペレットを順次ヤードペレットに振り替えて、配合率24.0%で実施例3の操業データを採取し、さらにヤードペレットへの振り替え量を増加させて、配合率31%(全量振り替え)で実施例No.5の操業データを採取した。この直送ペレットのヤードペレットへの振り替えの過程で、炉頂ガス温度が低下し始め、表1に示したように、炉頂ガス温度は、実施例No.4の配合率24.0%まで振り替えた時点で、配合率16.5%の実施例No.6の200℃から、180℃まで低下し、さらに、31%(全量)まで振り替えた時点で、169℃まで低下し、出銑比の異なる操業においても、ヤードペレットの配合率を高めることが、炉頂ガス温度の低下に有効であることを確認した。一方、炉内圧損についても、比較例2の1.88kg/cm2から、実施例No.4では1.83kg/cm2、実施例No.5では1.79kg/cm2と改善される傾向が認められ、実施例No.4、No.5および実施例No.6の場合も、ヤードペレットの配合率を高めることは、炉内の通気性を阻害しないことを確認した。なお、炉内圧損は、送風圧力(高炉に入る前の圧力)−炉頂部のガス圧力で算出した値である。
Further, in Examples No. 4, No. 5, and No. 6, the pellet content in the charged iron raw material was 31%, but the yard pellet content in Example No. 4 was 24. 0% (direct feed pellets 7%), all in Example 5 are 31% of yard pellets (
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008108215A JP5203789B2 (en) | 2008-04-17 | 2008-04-17 | Blast furnace top gas temperature control method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008108215A JP5203789B2 (en) | 2008-04-17 | 2008-04-17 | Blast furnace top gas temperature control method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009256737A true JP2009256737A (en) | 2009-11-05 |
JP5203789B2 JP5203789B2 (en) | 2013-06-05 |
Family
ID=41384517
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008108215A Active JP5203789B2 (en) | 2008-04-17 | 2008-04-17 | Blast furnace top gas temperature control method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5203789B2 (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6082605A (en) * | 1983-10-11 | 1985-05-10 | Sumitomo Metal Ind Ltd | Method for operating blast furnace |
JPS62124235A (en) * | 1985-11-21 | 1987-06-05 | Kobe Steel Ltd | Method and equipment for producing pellets of different diameters |
JPH04103703A (en) * | 1990-08-23 | 1992-04-06 | Nippon Steel Corp | Method and device for controlling heat of blast furnace |
JPH05214415A (en) * | 1992-02-03 | 1993-08-24 | Sumitomo Metal Ind Ltd | Method for operating blast furnace |
JPH07224330A (en) * | 1994-02-15 | 1995-08-22 | Nkk Corp | Production of non-burning agglomerate |
JP2005525467A (en) * | 2002-05-10 | 2005-08-25 | ルオッサバーラ−キールナバーラ エービー | Method for increasing iron production rate in blast furnace |
-
2008
- 2008-04-17 JP JP2008108215A patent/JP5203789B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6082605A (en) * | 1983-10-11 | 1985-05-10 | Sumitomo Metal Ind Ltd | Method for operating blast furnace |
JPS62124235A (en) * | 1985-11-21 | 1987-06-05 | Kobe Steel Ltd | Method and equipment for producing pellets of different diameters |
JPH04103703A (en) * | 1990-08-23 | 1992-04-06 | Nippon Steel Corp | Method and device for controlling heat of blast furnace |
JPH05214415A (en) * | 1992-02-03 | 1993-08-24 | Sumitomo Metal Ind Ltd | Method for operating blast furnace |
JPH07224330A (en) * | 1994-02-15 | 1995-08-22 | Nkk Corp | Production of non-burning agglomerate |
JP2005525467A (en) * | 2002-05-10 | 2005-08-25 | ルオッサバーラ−キールナバーラ エービー | Method for increasing iron production rate in blast furnace |
Also Published As
Publication number | Publication date |
---|---|
JP5203789B2 (en) | 2013-06-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7815710B2 (en) | Metal oxide-containing green pellet for reducing furnace, method for production thereof, method of reduction thereof, and reduction facilities | |
JP6959590B2 (en) | Sintered ore manufacturing method | |
JPH024658B2 (en) | ||
JPH0127133B2 (en) | ||
WO2019167888A1 (en) | Method for manufacturing granular sintered raw material | |
JP3635253B2 (en) | Method for producing pellet for reducing furnace, and method for reducing metal oxide | |
JP5368522B2 (en) | Operation method of rotary hearth reduction furnace | |
CN104232884A (en) | Agglomeration method of iron ore powder | |
JP5203789B2 (en) | Blast furnace top gas temperature control method | |
JP6683155B2 (en) | Method for producing granules containing carbon material | |
JP6185435B2 (en) | Rotary hearth furnace | |
JP7374870B2 (en) | iron ore pellets | |
CN102046819B (en) | Process for producing cement-bonded ore agglomerates | |
CN104762468B (en) | A kind of sintering method of hearth layer for sintering | |
JP6805672B2 (en) | Manufacturing method of carbonaceous interior granulated particles and manufacturing method of carbonaceous interior agglomerate | |
JP5167641B2 (en) | Method for producing sintered ore | |
TWI849853B (en) | Granulation device, method for producing granulated sintered raw material, and method for producing sintered ore | |
JP6809446B2 (en) | Manufacturing method of carbon material interior particles and manufacturing method of carbon material interior sintered ore | |
JP3642027B2 (en) | Blast furnace operation method | |
JP2002206119A (en) | Method and equipment for reducing oxidized metal | |
JP2001140007A (en) | Operating method of blast furnace using polycrystallized water-containing iron raw material | |
JP6885386B2 (en) | Manufacturing method of carbon material interior particles and manufacturing method of carbon material interior sintered ore | |
JP5434340B2 (en) | Method for producing sintered ore | |
JP2003027150A (en) | Method for manufacturing nonfired agglomerated ore with excellent degradation resistance, and nonfired agglomerated ore | |
JPS6383205A (en) | Operation of blast furnace |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110204 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20110412 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20110412 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20121022 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121030 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20121214 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130205 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130214 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5203789 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160222 Year of fee payment: 3 |