JP2009256639A - Method for producing monodisperse polymer particles - Google Patents

Method for producing monodisperse polymer particles Download PDF

Info

Publication number
JP2009256639A
JP2009256639A JP2009068299A JP2009068299A JP2009256639A JP 2009256639 A JP2009256639 A JP 2009256639A JP 2009068299 A JP2009068299 A JP 2009068299A JP 2009068299 A JP2009068299 A JP 2009068299A JP 2009256639 A JP2009256639 A JP 2009256639A
Authority
JP
Japan
Prior art keywords
particles
polymer particles
monomer
seed
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009068299A
Other languages
Japanese (ja)
Other versions
JP5281938B2 (en
Inventor
Yohei Yamaguchi
陽平 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Kasei Co Ltd
Original Assignee
Sekisui Plastics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Plastics Co Ltd filed Critical Sekisui Plastics Co Ltd
Priority to JP2009068299A priority Critical patent/JP5281938B2/en
Publication of JP2009256639A publication Critical patent/JP2009256639A/en
Application granted granted Critical
Publication of JP5281938B2 publication Critical patent/JP5281938B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Polymerisation Methods In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polymerization method, whereby polymer particles with a uniform grain size distribution can be prepared through the seed polymerization of hydrophobic monomer molecules. <P>SOLUTION: The method for producing mono dispersion polymer particles by seed polymerization comprises causing seed particles to absorb monomer molecules in an aqueous medium and then polymerizing the monomer molecules. Problems are solved by the method for producing mono dispersion polymer particles, wherein the monomers contain 5 wt.% or more of a hydrophobic vinylic monomer and 80 pts.wt or more of the monomers are absorbed by 1 pt.wt of the seed particles, and the aqueous medium contains a surfactant in an amount 9 to 24 times greater than critical micelle concentration. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、単分散重合体粒子の製造方法に関する。更に詳しくは、本発明は、シード重合法による単分散重合体粒子の製造方法に関する。   The present invention relates to a method for producing monodisperse polymer particles. More specifically, the present invention relates to a method for producing monodisperse polymer particles by a seed polymerization method.

単分散重合体粒子の製造方法としてシード重合法が知られている。シード重合法は、水性媒体中であらかじめ作製した重合体からなる種粒子に単量体の乳化液を吸収させ、重合させる方法である。例えば、シード重合法として、特開平8−169907号公報(特許文献1)に記載された方法がある。この方法では、水性媒体中の界面活性剤の濃度を臨界ミセル濃度の1〜6倍に調整し、水性媒体を撹拌して種粒子に単量体を吸収させ、単量体に溶解する重合開始剤の存在下に、単量体を種粒子内で重合させることで、単分散重合体粒子を得ている。   A seed polymerization method is known as a method for producing monodisperse polymer particles. The seed polymerization method is a method in which a monomer emulsion prepared in advance in an aqueous medium is absorbed with a monomer emulsion and polymerized. For example, as a seed polymerization method, there is a method described in JP-A-8-169907 (Patent Document 1). In this method, the concentration of the surfactant in the aqueous medium is adjusted to 1 to 6 times the critical micelle concentration, the aqueous medium is stirred, the seed particles absorb the monomer, and the polymerization starts to dissolve in the monomer. Monodisperse polymer particles are obtained by polymerizing the monomer in the seed particles in the presence of the agent.

特開平8−169907号公報JP-A-8-169907

しかしながら、上記公報に記載の臨界ミセル濃度の範囲内では、疎水性のビニル系単量体の水性媒体への溶出が不十分であり、その結果として種粒子へ吸収されず残存したビニル系単量体小滴がそのまま重合し、小粒子及び粗大粒子として製品中に混入するといった問題が発生する。特に、大きな粒子を生産性よく得るために膨潤倍率を高くした場合には、上記問題は顕著であった。従って、疎水性のビニル系単量体をシード重合法に使用した場合でも、より単分散性の高い重合体粒子を生産性よく与え得る製造方法の提供が望まれていた。   However, within the critical micelle concentration range described in the above publication, elution of the hydrophobic vinyl monomer into the aqueous medium is insufficient, and as a result, the residual vinyl monomer that is not absorbed into the seed particles There arises a problem that the body droplets are polymerized as they are and are mixed into the product as small particles and coarse particles. In particular, when the swelling ratio is increased in order to obtain large particles with good productivity, the above problem is remarkable. Therefore, even when a hydrophobic vinyl monomer is used in the seed polymerization method, it has been desired to provide a production method capable of giving polymer particles having higher monodispersibility with high productivity.

水性媒体中で種粒子に単量体を吸収させた後、前記単量体を重合させるシード重合法による単分散重合体粒子の製造方法であって、
前記単量体が、疎水性のビニル系単量体を5重量%以上含み、かつ前記種粒子1重量部に対して80重量部以上前記種粒子に吸収され、
前記水性媒体が、臨界ミセル濃度の9〜24倍量の界面活性剤を含むことを特徴とする単分散重合体粒子の製造方法。
A method for producing monodisperse polymer particles by a seed polymerization method in which a monomer is absorbed in seed particles in an aqueous medium and then the monomer is polymerized,
The monomer contains 5% by weight or more of a hydrophobic vinyl monomer and is absorbed by the seed particles by 80 parts by weight or more with respect to 1 part by weight of the seed particles;
The method for producing monodisperse polymer particles, wherein the aqueous medium contains a surfactant in an amount of 9 to 24 times the critical micelle concentration.

本発明の製造方法によれば、生産性よく粒子径が揃った(単分散性の高い)重合体粒子を得ることができる。
更に、本発明の製造方法によれば、種粒子の粒子径を1とした場合に、4.5以上の粒子径を有するより大きな単分散重合体粒子を得ることができる。
更に、界面活性剤としてアニオン系界面活性剤を使用することで、単量体の種粒子の吸収をより促進できるので、単分散性の高い重合体粒子を得ることができる。
また、本発明の製造方法によれば、体積換算で2.2%以下、又は個数換算で25%以下の小粒子(単分散重合体粒子の平均粒子径の80%以下の粒子径を有する粒子をいう)を含む、単分散性の高い重合体粒子を得ることができる。
According to the production method of the present invention, polymer particles having a uniform particle diameter with high productivity (high monodispersibility) can be obtained.
Furthermore, according to the production method of the present invention, when the particle diameter of the seed particles is 1, larger monodisperse polymer particles having a particle diameter of 4.5 or more can be obtained.
Furthermore, by using an anionic surfactant as the surfactant, the absorption of the monomer seed particles can be further promoted, so that polymer particles with high monodispersibility can be obtained.
Further, according to the production method of the present invention, small particles having a particle size of 2.2% or less in terms of volume or 25% or less in terms of number (particles having a particle size of 80% or less of the average particle size of monodisperse polymer particles) And high monodisperse polymer particles can be obtained.

実施例1及び比較例1で得られた重合体粒子の個数%で表した粒度分布の図である。FIG. 4 is a particle size distribution diagram expressed in number% of the polymer particles obtained in Example 1 and Comparative Example 1. 実施例1及び比較例1で得られた重合体粒子の電子顕微鏡写真である。2 is an electron micrograph of polymer particles obtained in Example 1 and Comparative Example 1. FIG.

本発明は、水性媒体中で種粒子に単量体を吸収させた後、単量体を重合させるシード重合法による単分散重合体粒子の製造方法に関する。
単量体には、疎水性のビニル系単量体が5重量%以上含まれる。本発明の方法によれば、疎水性のビニル系単量体が5重量%以上含まれていても、小粒子及び粗大粒子の発生が抑制され、単分散性の高い重合体粒子を生産性よく得ることができる。また、疎水性のビニル系単量体の含量が、20重量%以上であっても、更には40重量%以上であっても、また更には60重量%以上であっても、単分散性の高い重合体粒子を生産性よく得ることができる。なお、含量の上限は100重量%である。
本明細書において、疎水性とは、25℃における水に対する溶解度が1g/L以下であることを意味する。
The present invention relates to a method for producing monodisperse polymer particles by a seed polymerization method in which a monomer is absorbed in seed particles in an aqueous medium and then the monomer is polymerized.
The monomer contains 5% by weight or more of a hydrophobic vinyl monomer. According to the method of the present invention, even when a hydrophobic vinyl monomer is contained in an amount of 5% by weight or more, the generation of small particles and coarse particles is suppressed, and highly monodisperse polymer particles are produced with high productivity. Obtainable. Further, even if the content of the hydrophobic vinyl monomer is 20% by weight or more, further 40% by weight or more, and further 60% by weight or more, the monodispersity High polymer particles can be obtained with high productivity. The upper limit of the content is 100% by weight.
In the present specification, hydrophobic means that the solubility in water at 25 ° C. is 1 g / L or less.

疎水性のビニル系単量体としては、スチレン、p−メチルスチレン、p−クロロスチレン、α−メチルスチレン等の単官能スチレン類、ジビニルベンゼン等の多官能スチレン類、アクリル酸ブチル、アクリル酸2−エチルヘキシル、メタクリル酸ブチル、トリメチロールプロパントリアクリレート等が挙げられる。これらの単量体は1種又は2種以上を混合して用いることもできる。
疎水性のビニル系単量体に、他の単量体を加えてもよい。他の単量体には、25℃における水に対する溶解度が1g/Lより大きい単量体が含まれる。他の単量体は、全単量体中95重量%以下の量使用される。
Examples of hydrophobic vinyl monomers include monofunctional styrenes such as styrene, p-methylstyrene, p-chlorostyrene, and α-methylstyrene, polyfunctional styrenes such as divinylbenzene, butyl acrylate, and acrylic acid 2 -Ethylhexyl, butyl methacrylate, trimethylolpropane triacrylate and the like. These monomers can be used alone or in combination of two or more.
Other monomers may be added to the hydrophobic vinyl monomer. Other monomers include monomers having a water solubility at 25 ° C. of greater than 1 g / L. The other monomer is used in an amount of 95% by weight or less based on the total monomer.

他の単量体としては、アクリル酸メチル、アクリル酸エチル、ジエチルアミノエチルアクリレート等のアクリル酸エステル類、メタクリル酸メチル、メタクリル酸エチル、ジエチルアミノエチルメタクリレート等のメタクリル酸エステル類、エチレングリコールモノ(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート等の(メタ)アクリル酸のグリコールエステル類、メチルビニルエーテル、エチルビニルエーテル等のアルキルビニルエーテル類、酢酸ビニル、酪酸ビニル等のビニルエステル類、N−メチルアクリルアミド、N−エチルアクリルアミド、N−メチルメタクリルアミド、N−エチルメタクリルアミド等のN−アルキル置換(メタ)アクリルアミド類、アクリロニトリル、メタアクリロニトリル等のニトリル類を用いることができる。また、エチレングリコールジ(メタ)アクリレート等の多官能性単量体をアクリル酸エステル又はメタクリル酸エステル類と混合して用いることもできる。これらの単量体はそれら1種又は2種以上を混合して用いることもできる。
好ましい他の単量体は、アクリル酸メチル、アクリル酸エチル、メタクリル酸メチル及びメタクリル酸エチルである。
なお、本明細書において、(メタ)アクリは、アクリ又はメタクリを意味する。
Other monomers include acrylic esters such as methyl acrylate, ethyl acrylate and diethylaminoethyl acrylate, methacrylic esters such as methyl methacrylate, ethyl methacrylate and diethylaminoethyl methacrylate, ethylene glycol mono (meth) Glycol esters of (meth) acrylic acid such as acrylate and polyethylene glycol mono (meth) acrylate, alkyl vinyl ethers such as methyl vinyl ether and ethyl vinyl ether, vinyl esters such as vinyl acetate and vinyl butyrate, N-methylacrylamide, N- N-alkyl substituted (meth) acrylamides such as ethyl acrylamide, N-methyl methacrylamide, N-ethyl methacrylamide, nitrile such as acrylonitrile, methacrylonitrile, etc. It can be used Le acids. Moreover, polyfunctional monomers, such as ethylene glycol di (meth) acrylate, can also be used by mixing with acrylic acid esters or methacrylic acid esters. These monomers can be used alone or in combination of two or more.
Preferred other monomers are methyl acrylate, ethyl acrylate, methyl methacrylate and ethyl methacrylate.
In the present specification, “(meth) acryl” means “acryl” or “methacryl”.

水性媒体としては、水、水と水溶性溶媒(例えば、低級アルコール)との混合媒体が挙げられる。
水性媒体には、界面活性剤が含まれている。界面活性剤としては、アニオン系、カチオン系、ノニオン系及び両性イオン系のもののいずれをも用いることができる。
Examples of the aqueous medium include water and a mixed medium of water and a water-soluble solvent (for example, lower alcohol).
The aqueous medium contains a surfactant. As the surfactant, any of anionic, cationic, nonionic and zwitterionic compounds can be used.

アニオン系界面活性剤としては、例えば、オレイン酸ナトリウム、ヒマシ油カリ等の脂肪酸油、ラウリル硫酸ナトリウム、ラウリル硫酸アンモニウム等のアルキル硫酸エステル塩、ドデシルベンゼンスルホン酸ナトリウム等のアルキルベンゼンスルホン酸塩、アルキルナフタレンスルホン酸塩、アルカンスルホン酸塩、ジオクチルスルホコハク酸ナトリウム等のジアルキルスルホコハク酸塩、アルケルニルコハク酸塩(ジカリウム塩)、アルキルリン酸エステル塩、ナフタレンスルホン酸ホルマリン縮合物、ポリオキシエチレンアルキルフェニルエーテル硫酸エステル塩、ポリオキシエチレンラウリルエーテル硫酸ナトリウム等のポリオキシエチレンアルキルエーテル硫酸塩、ポリオキシエチレンアルキル硫酸エステル塩等が挙げられる。   Examples of anionic surfactants include fatty acid oils such as sodium oleate and castor oil, alkyl sulfate salts such as sodium lauryl sulfate and ammonium lauryl sulfate, alkylbenzene sulfonates such as sodium dodecylbenzenesulfonate, and alkylnaphthalene sulfone. Acid salts, alkane sulfonates, dialkyl sulfosuccinates such as sodium dioctyl sulfosuccinate, alkenyl succinates (dipotassium salts), alkyl phosphate esters, naphthalene sulfonate formalin condensates, polyoxyethylene alkyl phenyl ether sulfates Examples thereof include salts, polyoxyethylene alkyl ether sulfates such as sodium polyoxyethylene lauryl ether sulfate, and polyoxyethylene alkyl sulfate salts.

カチオン系界面活性剤としては、例えば、ラウリルアミンアセテート、ステアリルアミンアセテート等のアルキルアミン塩、ラウリルトリメチルアンモニウムクロライド等の第四級アンモニウム塩等が挙げられる。
両性イオン系界面活性剤としては、ラウリルジメチルアミンオキサイドや、リン酸エステル系又は亜リン酸エステル系界面活性剤が挙げられる。
上記界面活性剤は、単独で又は2種以上を組み合わせて用いてもよい。上記界面活性剤の内、重合時の分散安定性の観点から、アニオン系界面活性剤が好ましい。
Examples of the cationic surfactant include alkylamine salts such as laurylamine acetate and stearylamine acetate, and quaternary ammonium salts such as lauryltrimethylammonium chloride.
Examples of zwitterionic surfactants include lauryl dimethylamine oxide and phosphate ester or phosphite ester surfactants.
You may use the said surfactant individually or in combination of 2 or more types. Of the above surfactants, anionic surfactants are preferred from the viewpoint of dispersion stability during polymerization.

本発明において、界面活性剤は、臨界ミセル濃度の9〜24倍量を用いる。臨界ミセル濃度とは、界面活性剤が水中でミセルと呼ばれる分子集合体を形成し始める濃度である。また、本明細書において、臨界ミセル濃度は、Wilhelmy法で測定された値である。
界面活性剤の含量を臨界ミセル濃度の9〜24倍量としたのは、臨界ミセル濃度の9倍より少ないと、平均粒子径の80%(80%径)以下の大きさの小粒子の占める割合が増えて単分散性が低下することがあり、逆に24倍より多いと、重合体粒子が凝集し単分散重合体粒子が得られないことがあるからである。より好ましい含量は、臨界ミセル濃度の9〜16倍量である。
In the present invention, the surfactant is used in an amount of 9 to 24 times the critical micelle concentration. The critical micelle concentration is a concentration at which the surfactant starts to form molecular aggregates called micelles in water. In the present specification, the critical micelle concentration is a value measured by the Wilhelmy method.
The reason why the surfactant content is 9 to 24 times the critical micelle concentration is less than 9 times the critical micelle concentration, and is occupied by small particles of 80% (80% diameter) or less of the average particle size. This is because the proportion may increase and the monodispersibility may decrease, and conversely if it is more than 24 times, the polymer particles may aggregate and monodisperse polymer particles may not be obtained. A more preferable content is 9 to 16 times the critical micelle concentration.

(種粒子)
本発明で使用できる種粒子としては、特に限定されないが、アクリル系粒子、スチレン系粒子等のビニル系樹脂粒子が挙げられる。
アクリル系粒子としては、(メタ)アクリル系単量体由来の粒子が挙げられる。(メタ)アクリル系単量体としては、アクリル酸、アクリル酸メチル、アクリル酸エチル、アクリル酸n−ブチル、アクリル酸イソブチル、アクリル酸t−ブチル、アクリル酸ドデシル、アクリル酸ステアリル、アクリル酸2−エチルヘキシル、アクリル酸テトラヒドロフルフリル、ジエチルアミノエチルアクリレート、メタクリル酸、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸n−ブチル、メタクリル酸イソブチル、メタクリル酸t−ブチル、メタクリル酸n−オクチル、メタクリル酸ドデシル、メタクリル酸2−エチルヘキシル、メタクリル酸ステアリル、ジエチルアミノエチルメタクリレート等が挙げられる。これら単量体は、単独で使用してもよく、2種以上併用してもよい。
(Seed particles)
The seed particles that can be used in the present invention are not particularly limited, and examples thereof include vinyl resin particles such as acrylic particles and styrene particles.
Examples of the acrylic particles include particles derived from (meth) acrylic monomers. Examples of (meth) acrylic monomers include acrylic acid, methyl acrylate, ethyl acrylate, n-butyl acrylate, isobutyl acrylate, t-butyl acrylate, dodecyl acrylate, stearyl acrylate, 2-acrylic acid 2- Ethylhexyl, tetrahydrofurfuryl acrylate, diethylaminoethyl acrylate, methacrylic acid, methyl methacrylate, ethyl methacrylate, propyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, t-butyl methacrylate, n-octyl methacrylate, methacrylic acid Examples include dodecyl acid, 2-ethylhexyl methacrylate, stearyl methacrylate, and diethylaminoethyl methacrylate. These monomers may be used alone or in combination of two or more.

上記アクリル系単量体に、他の単量体を加えてもよい。他の単量体としては、エチレングリコールモノ(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート等の(メタ)アクリル酸のグリコールエステル類、メチルビニルエーテル、エチルビニルエーテル等のアルキルビニルエーテル類、酢酸ビニル、酪酸ビニル等のビニルエステル類、N−メチルアクリルアミド、N−エチルアクリルアミド、N−メチルメタクリルアミド、N−エチルメタクリルアミド等のN−アルキル置換(メタ)アクリルアミド類、アクリロニトリル、メタクリロニトリル等のニトリル類、ジビニルベンゼン、エチレングリコールジ(メタ)アクリレート、トリメチロールプロパントリアクリレート等の多官能性単量体、スチレン、p−メチルスチレン、p−クロロスチレン、クロロメチルスチレン、α−メチルスチレン等のスチレン系単量体が挙げられる。これら他の単量体は、単独で使用してもよく、2種以上併用してもよい。   Other monomers may be added to the acrylic monomer. Other monomers include glycol esters of (meth) acrylic acid such as ethylene glycol mono (meth) acrylate and polyethylene glycol mono (meth) acrylate, alkyl vinyl ethers such as methyl vinyl ether and ethyl vinyl ether, vinyl acetate, butyric acid Vinyl esters such as vinyl; N-alkyl substituted (meth) acrylamides such as N-methylacrylamide, N-ethylacrylamide, N-methylmethacrylamide, N-ethylmethacrylamide; nitriles such as acrylonitrile and methacrylonitrile; Polyfunctional monomers such as divinylbenzene, ethylene glycol di (meth) acrylate, trimethylolpropane triacrylate, styrene, p-methylstyrene, p-chlorostyrene, chloromethylstyrene, - it includes styrene monomers such as methylstyrene. These other monomers may be used alone or in combination of two or more.

スチレン系粒子としては、スチレン、p−メチルスチレン、p−クロロスチレン、クロロメチルスチレン、α−メチルスチレン等のスチレン系単量体由来の粒子が挙げられる。これらスチレン系単量体は、単独で使用してもよく、2種以上併用してもよい。   Examples of the styrene particles include particles derived from styrene monomers such as styrene, p-methylstyrene, p-chlorostyrene, chloromethylstyrene, and α-methylstyrene. These styrene monomers may be used alone or in combination of two or more.

上記スチレン系単量体に、他の単量体を加えてもよい。他の単量体としては、エチレングリコールモノ(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート等の(メタ)アクリル酸のグリコールエステル類、メチルビニルエーテル、エチルビニルエーテル等のアルキルビニルエーテル類、酢酸ビニル、酪酸ビニル等のビニルエステル類、N−メチルアクリルアミド、N−エチルアクリルアミド、N−メチルメタクリルアミド、N−エチルメタクリルアミド等のN−アルキル置換(メタ)アクリルアミド類、アクリロニトリル、メタクリロニトリル等のニトリル類、ジビニルベンゼン、エチレングリコールジ(メタ)アクリレート、トリメチロールプロパントリアクリレート等の多官能性単量体、アクリル酸、アクリル酸メチル、アクリル酸エチル、アクリル酸n−ブチル、アクリル酸イソブチル、アクリル酸t−ブチル、アクリル酸ドデシル、アクリル酸ステアリル、アクリル酸2−エチルヘキシル、アクリル酸テトラヒドロフルフリル、ジエチルアミノエチルアクリレート、メタクリル酸、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸n−ブチル、メタクリル酸イソブチル、メタクリル酸t−ブチル、メタクリル酸n−オクチル、メタクリル酸ドデシル、メタクリル酸2−エチルヘキシル、メタクリル酸ステアリル、ジエチルアミノエチルメタクリレート等の(メタ)アクリル系単量体が挙げられる。これら他の単量体は、単独で使用してもよく、2種以上併用してもよい。   You may add another monomer to the said styrene-type monomer. Other monomers include glycol esters of (meth) acrylic acid such as ethylene glycol mono (meth) acrylate and polyethylene glycol mono (meth) acrylate, alkyl vinyl ethers such as methyl vinyl ether and ethyl vinyl ether, vinyl acetate, butyric acid Vinyl esters such as vinyl; N-alkyl substituted (meth) acrylamides such as N-methylacrylamide, N-ethylacrylamide, N-methylmethacrylamide, N-ethylmethacrylamide; nitriles such as acrylonitrile and methacrylonitrile; Polyfunctional monomers such as divinylbenzene, ethylene glycol di (meth) acrylate, trimethylolpropane triacrylate, acrylic acid, methyl acrylate, ethyl acrylate, n-butyl acrylate, acrylic Isobutyl acrylate, t-butyl acrylate, dodecyl acrylate, stearyl acrylate, 2-ethylhexyl acrylate, tetrahydrofurfuryl acrylate, diethylaminoethyl acrylate, methacrylic acid, methyl methacrylate, ethyl methacrylate, propyl methacrylate, methacryl (Meth) acrylic monomers such as n-butyl acid, isobutyl methacrylate, t-butyl methacrylate, n-octyl methacrylate, dodecyl methacrylate, 2-ethylhexyl methacrylate, stearyl methacrylate and diethylaminoethyl methacrylate It is done. These other monomers may be used alone or in combination of two or more.

種粒子の平均粒子径は、吸収させるビニル系単量体の量、所望する単分散重合体粒子の粒子径等の条件により適宜調整できる。
種粒子がアクリル系粒子の場合、それを構成するアクリル系樹脂の重量平均分子量は、1万〜4万であることが好ましい。1万未満の場合、単分散性に優れた重合体粒子を得がたいことがある。また、種粒子と吸収される単量体の分子構造が異なる場合には相分離を起こすことがある。この場合、重合が進むにつれて内部のボイドや亀裂が発生し、得られた単分散重合体粒子の力学的強度が著しく低下することがある。4万より大きい場合、単量体吸収率が低下することがある。より好ましい重量平均分子量は、1万〜3万である。
The average particle size of the seed particles can be appropriately adjusted depending on the conditions such as the amount of the vinyl monomer to be absorbed and the desired particle size of the monodisperse polymer particles.
When the seed particles are acrylic particles, the acrylic resin constituting the seed particles preferably has a weight average molecular weight of 10,000 to 40,000. If it is less than 10,000, it may be difficult to obtain polymer particles having excellent monodispersibility. In addition, phase separation may occur when the molecular structure of the seed particle and the absorbed monomer are different. In this case, as the polymerization proceeds, internal voids and cracks are generated, and the mechanical strength of the resulting monodisperse polymer particles may be significantly reduced. When it is larger than 40,000, the monomer absorption rate may decrease. A more preferred weight average molecular weight is 10,000 to 30,000.

種粒子がスチレン系粒子の場合、それを構成するスチレン系樹脂の重量平均分子量は、上記アクリル系粒子と同様の理由から、1万〜4万であることが好ましい。より好ましい重量平均分子量は、1万〜3万である。
なお、種粒子は、例えば乳化重合法、懸濁重合法等の公知の方法により入手可能である。
種粒子は、重合系から単離してもよく、単離せずにそのまま単分散重合体粒子の製造に使用してもよい。
When the seed particles are styrene particles, the weight average molecular weight of the styrene resin constituting the seed particles is preferably 10,000 to 40,000 for the same reason as the acrylic particles. A more preferred weight average molecular weight is 10,000 to 30,000.
The seed particles can be obtained by a known method such as an emulsion polymerization method or a suspension polymerization method.
The seed particles may be isolated from the polymerization system, or may be used as they are for the production of monodisperse polymer particles without isolation.

ここで、小粒子及び粗大粒子の発生を抑制する観点から、単分散重合体粒子が、種粒子の重量を1とした場合に、80以上の重量を有するように、種粒子の重量を調整する。好ましい単分散重合体粒子の重量は100〜300であり、より好ましい重量は100〜250である。このように種粒子の重量に対する単分散重合体粒子の重量を多くしても、高い単分散性の重合体粒子を得ることができる。
また、上記と同様の観点から、単分散重合体粒子が、種粒子の粒子径を1とした場合に、4.5以上の粒子径を有するように、種粒子の平均粒子径を調整することが好ましい。
Here, from the viewpoint of suppressing the generation of small particles and coarse particles, the weight of the seed particles is adjusted so that the monodisperse polymer particles have a weight of 80 or more when the weight of the seed particles is 1. . The weight of the preferable monodisperse polymer particle is 100 to 300, and the more preferable weight is 100 to 250. Thus, even if the weight of the monodisperse polymer particles is increased with respect to the weight of the seed particles, highly monodisperse polymer particles can be obtained.
Further, from the same viewpoint as described above, the average particle size of the seed particles is adjusted so that the monodisperse polymer particles have a particle size of 4.5 or more when the particle size of the seed particles is 1. Is preferred.

本発明の方法は、公知のシード重合法を参考にすればよい。以下にシード重合法の一般的な方法を述べるが、この方法に限定されるものではない。
まず、単量体と水性媒体とから構成される乳化液に種粒子を添加する。乳化液は、公知の方法により作製できる。例えば、単量体を、水性媒体に添加し、ホモジナイザー、超音波処理機、ナノマイザー等の微細乳化機により分散させることで、乳化液を得ることができる。単量体は、必要に応じて重合開始剤を含んでいてもよい。重合開始剤は、単量体に予め混合させた後、水性媒体中に分散させてもよいし、両者を別々に水性媒体に分散させたものを混合してもよい。得られた乳化液中の単量体の液滴の粒子径は、種粒子よりも小さい方が、重合性単量体が種粒子に効率よく吸収されるので好ましい。
種粒子は、乳化液に直接添加してもよく、種粒子を水性分散媒体に分散させた形態(以下、種粒子分散液という)で添加してもよい。
The method of the present invention may be referred to a known seed polymerization method. A general method of the seed polymerization method will be described below, but is not limited to this method.
First, seed particles are added to an emulsion composed of a monomer and an aqueous medium. The emulsion can be prepared by a known method. For example, an emulsion can be obtained by adding a monomer to an aqueous medium and dispersing the monomer with a fine emulsifier such as a homogenizer, an ultrasonic processor, or a nanomizer. The monomer may contain a polymerization initiator as necessary. The polymerization initiator may be premixed with the monomer and then dispersed in an aqueous medium, or a mixture of both separately dispersed in an aqueous medium. The particle diameter of the monomer droplets in the obtained emulsion is preferably smaller than the seed particles because the polymerizable monomer is efficiently absorbed by the seed particles.
The seed particles may be added directly to the emulsion, or may be added in a form in which the seed particles are dispersed in an aqueous dispersion medium (hereinafter referred to as seed particle dispersion).

種粒子の乳化液への添加後、種粒子へ単量体を吸収させる。この吸収は、通常、種粒子添加後の乳化液を、室温(約20℃)で1〜12時間撹拌することで行うことができる。また、乳化液を30〜50℃程度に加温することにより吸収を促進してもよい。
種粒子は、単量体の吸収により膨潤する。単量体と種粒子との混合比率は、種粒子1重量部に対して単量体80重量部以上であり、単量体100〜300重量部の範囲であることが好ましく、100〜250重量部がより好ましい。単量体の混合比率が小さくなると、重合による粒子径の増加が小さくなることにより、生産性が低下し、大きくなると完全に種粒子に吸収されず、水性媒体中で独自に懸濁重合し異常粒子を生成することがある。なお、吸収の終了は光学顕微鏡の観察で粒子径の拡大を確認することにより判定できる。
After the seed particles are added to the emulsion, the seed particles are allowed to absorb the monomer. This absorption can usually be performed by stirring the emulsion after addition of seed particles at room temperature (about 20 ° C.) for 1 to 12 hours. Moreover, you may accelerate | stimulate absorption by heating an emulsion to about 30-50 degreeC.
The seed particles swell due to the absorption of the monomer. The mixing ratio of the monomer and the seed particle is 80 parts by weight or more of the monomer with respect to 1 part by weight of the seed particle, and is preferably in the range of 100 to 300 parts by weight of the monomer, and 100 to 250 parts by weight. Part is more preferred. When the monomer mixing ratio decreases, the increase in particle diameter due to polymerization decreases, resulting in a decrease in productivity. May produce particles. The end of absorption can be determined by confirming the enlargement of the particle diameter by observation with an optical microscope.

必要に応じて添加される重合開始剤としては、例えば、過酸化ベンゾイル、過酸化ラウロイル、オルソクロロ過酸化ベンゾイル、オルソメトキシ過酸化ベンゾイル、3,5,5−トリメチルヘキサノイルパーオキサイド、t−ブチルパーオキシ−2−エチルヘキサノエート、ジ−t−ブチルパーオキサイド等の有機過酸化物;2,2'−アゾビスイソブチロニトリル、1,1'−アゾビスシクロヘキサンカルボニトリル、2,2'−アゾビス(2,4−ジメチルバレロニトリル)等のアゾ系化合物等が挙げられる。重合開始剤は、重合性単量体100重量部に対して、0.1〜1.0重量部の範囲で使用することが好ましい。   Examples of the polymerization initiator to be added as needed include benzoyl peroxide, lauroyl peroxide, orthochlorobenzoyl peroxide, orthomethoxybenzoyl peroxide, 3,5,5-trimethylhexanoyl peroxide, and t-butyl peroxide. Organic peroxides such as oxy-2-ethylhexanoate and di-t-butyl peroxide; 2,2′-azobisisobutyronitrile, 1,1′-azobiscyclohexanecarbonitrile, 2,2 ′ -Azo compounds such as azobis (2,4-dimethylvaleronitrile). The polymerization initiator is preferably used in the range of 0.1 to 1.0 part by weight with respect to 100 parts by weight of the polymerizable monomer.

次に、種粒子に吸収させた単量体を重合させることで、単分散重合体粒子が得られる。
重合温度は、単量体、重合開始剤の種類に応じて、適宜選択することができる。重合温度は、25〜110℃が好ましく、より好ましくは50〜100℃である。重合反応は、種粒子に単量体、任意に重合開始剤が完全に吸収された後に、昇温して行うのが好ましい。重合完了後、必要に応じて単分散重合体粒子を遠心分離して水性媒体を除去し、水及び溶剤で洗浄した後、乾燥、単離される。
Next, the monomer absorbed in the seed particles is polymerized to obtain monodisperse polymer particles.
The polymerization temperature can be appropriately selected according to the type of monomer and polymerization initiator. The polymerization temperature is preferably 25 to 110 ° C, more preferably 50 to 100 ° C. The polymerization reaction is preferably carried out by raising the temperature after the monomer particles, and optionally the polymerization initiator, are completely absorbed by the seed particles. After completion of the polymerization, the monodisperse polymer particles are centrifuged as necessary to remove the aqueous medium, washed with water and a solvent, and then dried and isolated.

上記重合工程において、単分散重合体粒子の分散安定性を向上させるために、高分子分散安定剤を添加してもよい。
高分子分散安定剤としては、例えば、ポリビニルアルコール、ポリカルボン酸、セルロース類(ヒドロキシエチルセルロース、カルボキシメチルセルロース等)、ポリビニルピロリドン等である。またトリポリリン酸ナトリウム等の無機系水溶性高分子化合物も併用することができる。これらのうち、ポリビニルアルコール、ポリビニルピロリドンが好ましい。高分子分散安定剤の添加量は、単量体100重量部に対して1〜10重量部が好ましい。
また、水系での乳化粒子の発生を抑えるために、亜硝酸塩類、亜硫酸塩類、ハイドロキノン類、アスコルビン酸類、水溶性ビタミンB類、クエン酸、ポリフェノール類等の水溶性の重合禁止剤を用いてもよい。
In the polymerization step, a polymer dispersion stabilizer may be added in order to improve the dispersion stability of the monodisperse polymer particles.
Examples of the polymer dispersion stabilizer include polyvinyl alcohol, polycarboxylic acid, celluloses (such as hydroxyethyl cellulose and carboxymethyl cellulose), and polyvinyl pyrrolidone. An inorganic water-soluble polymer compound such as sodium tripolyphosphate can also be used in combination. Of these, polyvinyl alcohol and polyvinyl pyrrolidone are preferable. The addition amount of the polymer dispersion stabilizer is preferably 1 to 10 parts by weight with respect to 100 parts by weight of the monomer.
In order to suppress the generation of emulsified particles in an aqueous system, water-soluble polymerization inhibitors such as nitrites, sulfites, hydroquinones, ascorbic acids, water-soluble vitamin Bs, citric acid, and polyphenols may be used. Good.

本発明の方法によれば、ビニル系単量体由来の小粒子や粗大粒子の生成が抑制され、生産性よく単分散性が良好な重合体粒子が得られる。
例えば、単分散重合体粒子の平均粒子径の80%以下の粒子径を有する小粒子の量を、体積換算で2.2%以下、又は個数換算で25%以下に抑制された単分散重合体粒子を得ることが可能となる。
また、単分散重合体粒子の平均粒子径の120%以上の粒子径を有する粗大粒子の量を、体積換算で4.5%以下、又は個数換算で2.0%以下に抑制された単分散重合体粒子を得ることが可能となる。
According to the method of the present invention, the production of small particles and coarse particles derived from a vinyl monomer is suppressed, and polymer particles having good productivity and good monodispersibility can be obtained.
For example, a monodispersed polymer in which the amount of small particles having a particle size of 80% or less of the average particle size of monodispersed polymer particles is suppressed to 2.2% or less by volume or 25% or less by number. It becomes possible to obtain particles.
Further, the amount of coarse particles having a particle diameter of 120% or more of the average particle diameter of the monodisperse polymer particles is suppressed to 4.5% or less by volume or 2.0% or less by number. It becomes possible to obtain polymer particles.

本発明により得られた単分散重合体粒子は、光拡散剤として使用できる。また、光拡散剤以外に、LCDスペーサー・銀塩フィルム用表面改質剤・磁気テープ用フィルム用改質剤・感熱紙走行安定剤等の電子工業分野、レオロジーコントロール剤・艶消し剤等の塗料・インク・接着剤等の化学分野、抗原抗体反応検査用粒子等の医療分野、滑り剤、体質顔料等の化粧品分野、不飽和等ポリエステル等の樹脂の低収縮化剤、紙、歯科材料、アンチブロッキング剤、マット化剤、樹脂改質剤等の一般工業分野等へ使用可能である。   The monodisperse polymer particles obtained by the present invention can be used as a light diffusing agent. In addition to light diffusing agents, paints such as LCD spacers, silver salt film surface modifiers, magnetic tape film modifiers, thermal paper running stabilizers, etc., rheology control agents, matting agents, etc.・ Chemical field such as ink and adhesive, medical field such as antigen-antibody reaction test particle, cosmetic field such as slip agent and extender pigment, low shrinkage agent of resin such as unsaturated polyester, paper, dental material, anti It can be used in general industrial fields such as blocking agents, matting agents, and resin modifiers.

以下、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例によって限定されるものではない。なお、重量平均分子量、平均粒子径、変動係数の測定法を下記する。
(重量平均分子量の測定)
ゲルパーミエーションクロマトグラフィー(GPC)を用いて、重量平均分子量を測定する。その測定方法は次の通りである。なお、重量平均分子量はポリスチレン(PS)換算重量平均分子量を意味する。
測定装置:東ソー社製 GPC HLC−8020
ガードカラム:TOSOH TSKguardcolumn HHR(S)×1(7.5mmID×7.5cm)
カラム:TOSOH TSK−GEL GMHHR−H(S)×3(7.8mmID×30cm)
測定条件:カラム温度(40℃)、移動相(一級THF/45℃)、
S.PUMP/R.PUMP流量(0.8/0.5mL/分)、
RI温度(35℃)、INLET温度(35℃)、
測定時間(55min)、検出器(UV254nm、RI)
測定方法:試料50mgを10mL一級THF(移動相)で一晩放置して溶解し、0.45μm又は0.20μmのフィルターで濾過する。
検量線用標準ポリスチレン:昭和電工社製、商品名「shodex」重量平均分子量:1030000と、東ソー社製、重量平均分子量:5480000、3840000、355000、102000、37900、9100、2630、495
EXAMPLES Hereinafter, although this invention is demonstrated in detail based on an Example, this invention is not limited by these Examples. In addition, the measuring method of a weight average molecular weight, an average particle diameter, and a variation coefficient is described below.
(Measurement of weight average molecular weight)
The weight average molecular weight is measured using gel permeation chromatography (GPC). The measuring method is as follows. In addition, a weight average molecular weight means a polystyrene (PS) conversion weight average molecular weight.
Measuring device: GPC HLC-8020 manufactured by Tosoh Corporation
Guard column: TOSOH TSK guard column HHR (S) x 1 (7.5 mm ID x 7.5 cm)
Column: TOSOH TSK-GEL GMHHR-H (S) × 3 (7.8 mm ID × 30 cm)
Measurement conditions: column temperature (40 ° C.), mobile phase (primary THF / 45 ° C.),
S. PUMP / R. PUMP flow rate (0.8 / 0.5 mL / min),
RI temperature (35 ° C), INLET temperature (35 ° C),
Measurement time (55 min), detector (UV254 nm, RI)
Measurement method: 50 mg of a sample is left standing overnight in 10 mL primary THF (mobile phase) and dissolved, and then filtered through a 0.45 μm or 0.20 μm filter.
Standard polystyrene for calibration curve: manufactured by Showa Denko KK, trade name “shodex”, weight average molecular weight: 1030000, manufactured by Tosoh Corporation, weight average molecular weight: 5480000, 3840000, 355000, 102000, 37900, 9100, 2630, 495

(平均粒子径と変動係数の測定)
平均粒子径の測定方法は、Coulter Electronics Limited発行のReference MANUAL FOR THE COULTER MULTISIZER(1987)に従って、50μmアパチャーを用いてキャリブレーションを行い測定する。
具体的には、樹脂粒子0.1gを0.1%ノニオン系界面活性剤10ml中にタッチミキサー及び超音波を用いて予備分散させ、これを本体備え付けのISOTON II(ベックマンコールター社:測定用電解液)を満たしたビーカー中に、緩く撹拌しながらスポイドで滴下して、本体画面の濃度計の示度を10%前後に合わせる。次にコールターマルチサイザーII(ベックマンコールター社製:測定装置)本体にアパチャーサイズ50μm、Currentを800、Gainを4、Polarityを+と入力してmanualで測定を行う。測定中はビーカー内を気泡が入らない程度に緩く撹拌しておき、樹脂粒子を10万個測定した時点で測定を終了する。体積加重の平均値(体積%モードの算術平均粒子径:体積メジアン径)を樹脂粒子の平均粒子径(x)として算出する。
変動係数(Cv値)とは、標準偏差(σ)及び上記平均粒子径(x)から以下の式により算出された値である。
Cv値(%)=(σ/x)×100
(Measurement of average particle size and coefficient of variation)
The average particle diameter is measured by performing calibration using a 50 μm aperture in accordance with Reference MANUAL FOR THE COULTER MULTISIZER (1987) published by Coulter Electronics Limited.
Specifically, 0.1 g of resin particles are predispersed in 10 ml of 0.1% nonionic surfactant using a touch mixer and ultrasonic waves, and this is provided with ISOTON II (Beckman Coulter, Inc .: electrolysis for measurement) provided in the main body. In a beaker filled with (Liquid), drop with a dropper while gently stirring, and adjust the reading of the densitometer on the main body screen to about 10%. Next, an aperture size of 50 μm, a current of 800, a gain of 4, and a polarity of + are input to the body of a Coulter Multisizer II (manufactured by Beckman Coulter, Inc .: measuring device) and measured manually. During the measurement, the beaker is gently stirred to the extent that bubbles do not enter, and the measurement ends when 100,000 resin particles are measured. The average value of volume weight (arithmetic average particle diameter in volume% mode: volume median diameter) is calculated as the average particle diameter (x) of the resin particles.
The coefficient of variation (Cv value) is a value calculated from the standard deviation (σ) and the average particle diameter (x) by the following formula.
Cv value (%) = (σ / x) × 100

実施例1
[種粒子の製造]
はじめに、イオン交換水3000g、次いで分子量調整剤として1−オクタンチオール10gを溶解したメタクリル酸エチル(EMA)500gを加え、これを撹拌しながら窒素気流中で55℃に昇温し、重合開始剤として過硫酸カリウム2.6gをイオン交換水100gに溶解した後に投入し、55℃で12時間撹拌し重合反応を行い、平均粒子径が0.5μm、重量平均分子量1.3万の単分散ポリEMAの分散液(固形分14.3%)を得た。
Example 1
[Manufacture of seed particles]
First, 3000 g of ion-exchanged water, and then 500 g of ethyl methacrylate (EMA) in which 10 g of 1-octanethiol was dissolved as a molecular weight regulator were added, and the temperature was raised to 55 ° C. in a nitrogen stream while stirring. A monodisperse polyEMA having an average particle size of 0.5 μm and a weight average molecular weight of 13,000 is charged after 2.6 g of potassium persulfate is dissolved in 100 g of ion-exchanged water and stirred for 12 hours at 55 ° C. Dispersion (solid content 14.3%) was obtained.

次に、メタクリル酸メチル(MMA)550gに、2,2'−アゾビスイソブチロニトリル5.5g、1−オクタンチオール11gを溶解し得られた単量体混合物を、ジオクチルスルホコハク酸ナトリウム5.5gが含まれたイオン交換水2200gと混合し、T.KホモミキサーMark2.5型(特殊機化工業社製)に入れて10000rpmで5分間処理して乳化液を得た。   Next, a monomer mixture obtained by dissolving 5.5 g of 2,2′-azobisisobutyronitrile and 11 g of 1-octanethiol in 550 g of methyl methacrylate (MMA) was added to sodium dioctylsulfosuccinate. Mixed with 2200 g of ion-exchanged water containing 5 g; It was put into K homomixer Mark 2.5 type (made by Tokushu Kika Kogyo Co., Ltd.) and treated at 10,000 rpm for 5 minutes to obtain an emulsion.

この乳化液に上で得た平均粒子径が0.5μmの種粒子の分散液(固形分14.3%)390gを加え、室温で3時間撹拌した。その時の分散液を光学顕微鏡で観察したところ、乳化液中の単量体は完全に種粒子に吸収されていることを認めた。この分散液にポリビニルアルコール(日本合成化学社製、GH−17)の3.6%水溶液1100gを加え、その後55℃で6時間、次いで80℃で1.5時間重合を行い、平均粒子径が1.50μm、重量平均分子量1.16万の単分散ポリメチルメタクリレートの分散液(固形分14.3%)を得た。   To this emulsion, 390 g of a seed particle dispersion (solid content: 14.3%) having an average particle size of 0.5 μm obtained above was added and stirred at room temperature for 3 hours. When the dispersion at that time was observed with an optical microscope, it was confirmed that the monomer in the emulsion was completely absorbed by the seed particles. To this dispersion was added 1100 g of a 3.6% aqueous solution of polyvinyl alcohol (manufactured by Nippon Synthetic Chemical Co., Ltd., GH-17), followed by polymerization at 55 ° C. for 6 hours and then at 80 ° C. for 1.5 hours, and the average particle size was A dispersion liquid (solid content: 14.3%) of monodisperse polymethyl methacrylate having 1.50 μm and a weight average molecular weight of 16,000 was obtained.

[単分散重合体粒子の製造]
はじめに、MMA450g、スチレン180g、ジビニルベンゼン370gを用い、2,2'−アゾイソブチロニトリル6g、過酸化ベンゾイル6gを溶解し得られた単量体混合物を、ジオクチルスルホコハク酸ナトリウム20g(臨界ミセル濃度(0.125重量%)の16倍)が含まれたイオン交換水1000gと混合し、T.KホモミキサーMark2.5型(特殊機化工業社製)に入れて10000rpmで10分間処理して乳化液を得た。
[Production of monodisperse polymer particles]
First, 450 g of MMA, 180 g of styrene, 370 g of divinylbenzene, 6 g of 2,2′-azoisobutyronitrile and 6 g of benzoyl peroxide were dissolved in a monomer mixture, and 20 g of sodium dioctylsulfosuccinate (critical micelle concentration) (16 times as much as 0.125% by weight) is mixed with 1000 g of ion-exchanged water. The mixture was placed in K homomixer Mark 2.5 type (manufactured by Tokushu Kika Kogyo Co., Ltd.) and treated at 10,000 rpm for 10 minutes to obtain an emulsion.

この乳化液に上で得た平均粒子径が1.50μmの種粒子分散液(固形分14.3%)60gを加え、30℃で5時間撹拌した。この分散液にポリビニルアルコールGH−17の4%水溶液2000g、亜硝酸ナトリウム0.6gを加え、その後60℃で5時間、次いで105℃で2.5時間撹拌し重合反応を行った。   60 g of the seed particle dispersion (solid content: 14.3%) having an average particle diameter of 1.50 μm obtained above was added to this emulsion and stirred at 30 ° C. for 5 hours. To this dispersion was added 2000 g of a 4% aqueous solution of polyvinyl alcohol GH-17 and 0.6 g of sodium nitrite, and then the mixture was stirred at 60 ° C. for 5 hours and then at 105 ° C. for 2.5 hours to carry out a polymerization reaction.

得られた重合体粒子の粒度分布をコールター社製のコールターカウンターで測定したところ、体積%分布において平均粒子径が8.0μm、変動係数が7.2%、粒子径7.3μm以下が0.9%、7.3〜9.1μmが96.6%、9.1μm以上が2.5%、また個数%分布において25%径が7.6μm、75%径が8.1μmであり、80%径(6.4μm)以下の小粒子割合が、体積換算にて1.13%、個数換算にて16.6%となることから、粒子径が非常によく揃った粒子であることが認められた。   When the particle size distribution of the obtained polymer particles was measured with a Coulter counter manufactured by Coulter, the average particle size was 8.0 μm, the coefficient of variation was 7.2%, and the particle size of 7.3 μm or less was 0.00 in the volume% distribution. 9%, 7.3-9.1 [mu] m is 96.6%, 9.1 [mu] m or more is 2.5%, 25% diameter is 7.6 [mu] m, 75% diameter is 8.1 [mu] m in the number% distribution, 80 Since the ratio of small particles having a% diameter (6.4 μm) or less is 1.13% in terms of volume and 16.6% in terms of number, it is recognized that the particles have very uniform particle diameters. It was.

実施例2
[種粒子の製造]
はじめに、イオン交換水3000g、次いで分子量調整剤として1−オクタンチオール10gを溶解したMMA500gを加え、これを撹拌しながら窒素気流中で70℃に昇温し、重合開始剤として過硫酸カリウム2.5gをイオン交換水100gに溶解した後に投入し、70℃で12時間撹拌し重合反応を行い、平均粒子径が0.5μm、重量平均分子量2.4万の単分散ポリMMAの分散液(固形分14.3%)を得た。
Example 2
[Manufacture of seed particles]
First, 3000 g of ion-exchanged water, and then 500 g of MMA in which 10 g of 1-octanethiol was dissolved as a molecular weight regulator were added. The temperature was raised to 70 ° C. in a nitrogen stream while stirring, and 2.5 g of potassium persulfate as a polymerization initiator. Was dissolved in 100 g of ion-exchanged water and stirred for 12 hours at 70 ° C. to carry out a polymerization reaction. A dispersion of monodisperse polyMMA having an average particle size of 0.5 μm and a weight average molecular weight of 24,000 (solid content) 14.3%).

次に、MMA200gに、2,2'−アゾビスイソブチロニトリル5g、1−オクタンチオール5gを溶解し得られた単量体混合物を、ジオクチルスルホコハク酸ナトリウム5gが含まれたイオン交換水2000gと混合し、T.KホモミキサーMark2.5型(特殊機化工業社製)に入れて10000rpmで5分間処理して乳化液を得た。   Next, a monomer mixture obtained by dissolving 5 g of 2,2′-azobisisobutyronitrile and 5 g of 1-octanethiol in 200 g of MMA was mixed with 2000 g of ion-exchanged water containing 5 g of sodium dioctylsulfosuccinate. Mixed, T.W. It was put into K homomixer Mark 2.5 type (made by Tokushu Kika Kogyo Co., Ltd.) and treated at 10,000 rpm for 5 minutes to obtain an emulsion.

この乳化液に上で得た平均粒子径が0.5μmの種粒子の分散液(固形分14.3%)140gを加え、室温で3時間撹拌した。その時の分散液を光学顕微鏡で観察したところ、乳化液中の単量体は完全に種粒子に吸収されていることを認めた。この分散液にポリビニルアルコール(日本合成化学社製、GH−17)の3.6%水溶液1800gを加え、その後70℃で6時間重合を行い、平均粒子径が1.00μm、重量平均分子量2.3万の単分散ポリMMAの分散液(固形分10.0%)を得た。   140 g of the seed particle dispersion (solid content: 14.3%) having an average particle diameter of 0.5 μm obtained above was added to this emulsion, and the mixture was stirred at room temperature for 3 hours. When the dispersion at that time was observed with an optical microscope, it was confirmed that the monomer in the emulsion was completely absorbed by the seed particles. To this dispersion was added 1800 g of a 3.6% aqueous solution of polyvinyl alcohol (manufactured by Nippon Synthetic Chemical Co., Ltd., GH-17), followed by polymerization at 70 ° C. for 6 hours, an average particle size of 1.00 μm, and a weight average molecular weight of 2. A dispersion of 30,000 monodispersed polyMMA (solid content 10.0%) was obtained.

[単分散重合体粒子の製造]
はじめに、MMA100g、スチレン600g、エチレングリコールジメタクリレート300gを用い、2,2'−アゾイソブチロニトリル6g、過酸化ベンゾイル6gを溶解し得られた単量体混合物を、ジオクチルスルホコハク酸ナトリウム15g(臨界ミセル濃度の12倍)が含まれたイオン交換水1000gと混合し、T.KホモミキサーMark2.5型(特殊機化工業社製)に入れて10000rpmで10分間処理して乳化液を得た。
[Production of monodisperse polymer particles]
First, a monomer mixture obtained by dissolving 6 g of 2,2′-azoisobutyronitrile and 6 g of benzoyl peroxide using 100 g of MMA, 600 g of styrene and 300 g of ethylene glycol dimethacrylate, 15 g of sodium dioctylsulfosuccinate (critical) Mixed with 1000 g of ion-exchanged water containing 12 times the micelle concentration). The mixture was placed in K homomixer Mark 2.5 type (manufactured by Tokushu Kika Kogyo Co., Ltd.) and treated at 10,000 rpm for 10 minutes to obtain an emulsion.

この乳化液に上で得た平均粒子径が1.00μmの種粒子分散液(固形分10.0%)45gを加え、30℃で4時間撹拌した。この分散液にポリビニルアルコールGH−17の4%水溶液2000g、亜硝酸ナトリウム0.6gを加え、その後60℃で3時間、次いで105℃で2.5時間撹拌し重合反応を行った。   To this emulsion, 45 g of a seed particle dispersion (solid content 10.0%) having an average particle size of 1.00 μm obtained above was added and stirred at 30 ° C. for 4 hours. To this dispersion, 2000 g of a 4% aqueous solution of polyvinyl alcohol GH-17 and 0.6 g of sodium nitrite were added, followed by stirring at 60 ° C. for 3 hours and then at 105 ° C. for 2.5 hours to carry out a polymerization reaction.

得られた重合体粒子の粒度分布をコールター社製のコールターカウンターで測定したところ、体積%分布において平均粒子径が6.0μm、変動係数が9.1%、粒子径5.2μm以下が1.9%、5.2〜6.5μmが94.4%、6.5μm以上が3.7%、また個数%分布において25%径が5.7μm、75%径が6.2μmであり、80%径(4.8μm)以下の小粒子割合が、体積換算にて1.99%、個数換算にて22.8%となることから、非常によく揃った粒子であることが認められた。   When the particle size distribution of the obtained polymer particles was measured with a Coulter counter manufactured by Coulter, the average particle size was 6.0 μm, the coefficient of variation was 9.1%, and the particle size was 5.2 μm or less in the volume% distribution. 9%, 5.2 to 6.5 μm is 94.4%, 6.5 μm or more is 3.7%, and in the number% distribution, the 25% diameter is 5.7 μm, and the 75% diameter is 6.2 μm. Since the ratio of small particles having a% diameter (4.8 μm) or less was 1.99% in terms of volume and 22.8% in terms of number, it was confirmed that the particles were very well aligned.

実施例3
[種粒子の製造]
実施例2と同様の条件で重合反応を行った。
[単分散重合体粒子の製造]
単量体混合物の組成をMMA200g、スチレン500g、エチレングリコールジメタクリレート300gを用い、2,2'−アゾイソブチロニトリル6g、過酸化ベンゾイル6gとし、またジオクチルスルホコハク酸ナトリウムの添加量を11.5g(臨界ミセル濃度の9倍)、種粒子分散液の添加量を70gに変更したこと以外は、実施例2と同様の条件で重合反応を行った。
Example 3
[Manufacture of seed particles]
The polymerization reaction was carried out under the same conditions as in Example 2.
[Production of monodisperse polymer particles]
The composition of the monomer mixture is 200 g of MMA, 500 g of styrene, 300 g of ethylene glycol dimethacrylate, 6 g of 2,2′-azoisobutyronitrile, 6 g of benzoyl peroxide, and 11.5 g of sodium dioctylsulfosuccinate. The polymerization reaction was carried out under the same conditions as in Example 2 except that the addition amount of the seed particle dispersion was changed to 70 g (9 times the critical micelle concentration).

得られた重合体粒子の粒度分布をコールター社製のコールターカウンターで測定したところ、体積%分布において平均粒子径が5.4μm、変動係数が7.3%、粒子径4.7μm以下が1.1%、4.7〜5.8μmが95.5%、5.8μm以上が3.4%、また個数%分布において25%径が5.1μm、75%径が5.5μmであり、80%径(4.3μm)以下の小粒子割合が、体積換算にて1.16%、個数換算にて12.7%となることから、粒子径が非常によく揃った粒子であることが認められた。   When the particle size distribution of the obtained polymer particles was measured with a Coulter counter manufactured by Coulter, the average particle size was 5.4 μm, the coefficient of variation was 7.3%, and the particle size was 4.7 μm or less in the volume% distribution. 1%, 4.7 to 5.8 μm is 95.5%, 5.8 μm or more is 3.4%, and in the number% distribution, the 25% diameter is 5.1 μm, and the 75% diameter is 5.5 μm. Since the ratio of small particles having a% diameter (4.3 μm) or less is 1.16% in terms of volume and 12.7% in terms of number, it is recognized that the particles have very uniform particle diameters. It was.

実施例4
[種粒子の製造]
実施例2と同様の条件で重合反応を行った。
[単分散重合体粒子の製造]
はじめに、MMA80g、スチレン480g、エチレングリコールジメタクリレート240gを用い、2,2'−アゾイソブチロニトリル4.8g、過酸化ベンゾイル4.8gを溶解し得られた単量体混合物を、ジオクチルスルホコハク酸ナトリウム24g(臨界ミセル濃度の24倍)が含まれたイオン交換水800gと混合し、T.KホモミキサーMark2.5型(特殊機化工業社製)に入れて10000rpmで10分間処理して乳化液を得た。
Example 4
[Manufacture of seed particles]
The polymerization reaction was carried out under the same conditions as in Example 2.
[Production of monodisperse polymer particles]
First, a monomer mixture obtained by dissolving 4.8 g of 2,2′-azoisobutyronitrile and 4.8 g of benzoyl peroxide using 80 g of MMA, 480 g of styrene, and 240 g of ethylene glycol dimethacrylate was converted into dioctylsulfosuccinic acid. Mixed with 800 g of ion-exchanged water containing 24 g of sodium (24 times the critical micelle concentration); The mixture was placed in K homomixer Mark 2.5 type (manufactured by Tokushu Kika Kogyo Co., Ltd.) and treated at 10,000 rpm for 10 minutes to obtain an emulsion.

この乳化液に上で得た平均粒子径が1.00μmの種粒子分散液(固形分10.0%)36gを加え、30℃で4時間撹拌した。この分散液にポリビニルアルコールGH−17の4%水溶液2400g、亜硝酸ナトリウム0.64gを加え、その後60℃で3時間、次いで105℃で2.5時間撹拌し重合反応を行った。   To this emulsion, 36 g of a seed particle dispersion (solid content: 10.0%) having an average particle diameter of 1.00 μm obtained above was added and stirred at 30 ° C. for 4 hours. To this dispersion were added 2400 g of a 4% aqueous solution of polyvinyl alcohol GH-17 and 0.64 g of sodium nitrite, and then the mixture was stirred at 60 ° C. for 3 hours and then at 105 ° C. for 2.5 hours to carry out a polymerization reaction.

得られた重合体粒子の粒度分布をコールター社製のコールターカウンターで測定したところ、体積%分布において平均粒子径が6.0μm、変動係数が7.7%、粒子径5.2μm以下が1.1%、5.2〜6.5μmが95.8%、6.5μm以上が3.1%、また個数%分布において25%径が5.7μm、75%径が6.1mであり、80%径(4.8μm)以下の小粒子割合が、体積換算にて1.17%、個数換算にて20.2%となることから、非常によく揃った粒子であることが認められた。   When the particle size distribution of the obtained polymer particles was measured with a Coulter counter manufactured by Coulter, the average particle size was 6.0 μm, the coefficient of variation was 7.7%, and the particle size was 5.2 μm or less in the volume% distribution. 1%, 5.2 to 6.5 μm is 95.8%, 6.5 μm or more is 3.1%, 25% diameter is 5.7 μm, 75% diameter is 6.1 m in the number% distribution, 80 Since the ratio of small particles having a% diameter (4.8 μm) or less was 1.17% in terms of volume and 20.2% in terms of number, it was confirmed that the particles were very well aligned.

実施例5
[種粒子の製造]
実施例2と同様の条件で重合反応を行った。
[単分散重合体粒子の製造]
ジオクチルスルホコハク酸ナトリウムに変えてドデシルベンゼンスルホン酸ナトリウムを9.6g(臨界ミセル濃度(0.08重量%)の12倍)とした点を除き、実施例2と同様の条件で重合反応を行った。
Example 5
[Manufacture of seed particles]
The polymerization reaction was carried out under the same conditions as in Example 2.
[Production of monodisperse polymer particles]
The polymerization reaction was carried out under the same conditions as in Example 2 except that sodium dodecylbenzenesulfonate was changed to sodium dioctylsulfosuccinate to 9.6 g (12 times the critical micelle concentration (0.08 wt%)). .

得られた重合体粒子の粒度分布をコールター社製のコールターカウンターで測定したところ、体積%分布において平均粒子径が6.0μm、変動係数が7.6%、粒子径5.2μm以下が1.4%、5.2〜6.5μmが95.2%、6.5μm以上が3.4%、また個数%分布において25%径が5.7μm、75%径が6.1μmであり、80%径(6.4μm)以下の小粒子割合が、体積換算にて1.55%、個数換算にて11.0%となることから、粒子径が非常によく揃った粒子であることが認められた。   When the particle size distribution of the obtained polymer particles was measured with a Coulter counter manufactured by Coulter, the average particle size was 6.0 μm, the coefficient of variation was 7.6%, and the particle size of 5.2 μm or less was 1. 4%, 5.2 to 6.5 μm is 95.2%, 6.5 μm or more is 3.4%, 25% diameter is 5.7 μm, and 75% diameter is 6.1 μm in the number% distribution, 80 Since the ratio of small particles having a% diameter (6.4 μm) or less is 1.55% in terms of volume and 11.0% in terms of number, it is recognized that the particles have very uniform particle diameters. It was.

実施例6
[種粒子の製造]
実施例2と同様の条件で重合反応を行った。
[単分散重合体粒子の製造]
単量体混合物の組成をMMA500g、スチレン200g、エチレングリコールジメタクリレート300gを用い、2,2'−アゾイソブチロニトリル6g、過酸化ベンゾイル6gとし、またジオクチルスルホコハク酸ナトリウムの添加量を11.5g(臨界ミセル濃度の9倍)、種粒子分散液の添加量を55gに変更したこと以外は、実施例2と同様の条件で重合反応を行った。
Example 6
[Manufacture of seed particles]
The polymerization reaction was carried out under the same conditions as in Example 2.
[Production of monodisperse polymer particles]
The composition of the monomer mixture is 500 g of MMA, 200 g of styrene, 300 g of ethylene glycol dimethacrylate, 6 g of 2,2′-azoisobutyronitrile, 6 g of benzoyl peroxide, and 11.5 g of sodium dioctylsulfosuccinate. The polymerization reaction was carried out under the same conditions as in Example 2 except that the addition amount of the seed particle dispersion was changed to 55 g (9 times the critical micelle concentration).

得られた重合体粒子の粒度分布をコールター社製のコールターカウンターで測定したところ、体積%分布において平均粒子径が5.4μm、変動係数が7.5%、粒子径4.7μm以下が1.2%、4.7〜5.8μmが95.4%、5.8μm以上が3.4%、また個数%分布において25%径が5.2μm、75%径が5.6μmであり、80%径(4.3μm)以下の小粒子割合が、体積換算にて1.28%、個数換算にて12.9%となることから、粒子径が非常によく揃った粒子であることが認められた。   When the particle size distribution of the obtained polymer particles was measured with a Coulter counter manufactured by Coulter, the average particle size was 5.4 μm, the coefficient of variation was 7.5%, and the particle size was 4.7 μm or less in the volume% distribution. 2%, 4.7 to 5.8 μm is 95.4%, 5.8 μm or more is 3.4%, and in the number% distribution, the 25% diameter is 5.2 μm and the 75% diameter is 5.6 μm. Since the ratio of small particles having a% diameter (4.3 μm) or less is 1.28% in terms of volume and 12.9% in terms of number, it is recognized that the particles have very well-equipped particles. It was.

実施例7
[種粒子の製造]
はじめに、イオン交換水3000g、次いで分子量調整剤として1−オクタンチオール10gを溶解したエチルメタクリレート(EMA)500gを加え、これを撹拌しながら窒素気流中で55℃に昇温し、重合開始剤として過硫酸カリウム2.6gをイオン交換水100gに溶解した後に投入し、55℃で12時間撹拌し重合反応を行い、平均粒子径が0.5μm、重量平均分子量1.3万の単分散ポリEMAの分散液(固形分14.3%)を得た。
Example 7
[Manufacture of seed particles]
First, 3000 g of ion-exchanged water and then 500 g of ethyl methacrylate (EMA) in which 10 g of 1-octanethiol was dissolved as a molecular weight regulator were added, and the temperature was raised to 55 ° C. in a nitrogen stream while stirring. After 2.6 g of potassium sulfate was dissolved in 100 g of ion-exchanged water, it was added and stirred at 55 ° C. for 12 hours to conduct a polymerization reaction. A monodispersed polyEMA having an average particle size of 0.5 μm and a weight average molecular weight of 13,000 A dispersion (solid content: 14.3%) was obtained.

[単分散重合体粒子の製造]
はじめに、スチレン720g、ジビニルベンゼン98gを用い、2,2'−アゾイソブチロニトリル6g、過酸化ベンゾイル6gを溶解し得られた単量体混合物を、ポリオキシエチレンオクチルフェニルエーテル2.4g(臨界ミセル濃度の20倍)が含まれたイオン交換水1000gと混合し、T.KホモミキサーMark2.5型(特殊機化工業社製)に入れて10000rpmで10分間処理して乳化液を得た。
[Production of monodisperse polymer particles]
First, using 720 g of styrene and 98 g of divinylbenzene, 6 g of 2,2′-azoisobutyronitrile and 6 g of benzoyl peroxide were dissolved, and 2.4 g of polyoxyethylene octylphenyl ether (critical) Mixed with 1000 g of ion-exchanged water containing 20 times the micelle concentration). The mixture was placed in K homomixer Mark 2.5 type (manufactured by Tokushu Kika Kogyo Co., Ltd.) and treated at 10,000 rpm for 10 minutes to obtain an emulsion.

この乳化液に上で得た平均粒子径が0.5μmの種粒子分散液(固形分14.3%)46gを加え、30℃で5時間撹拌した。この分散液にポリビニルアルコールGH−17の4%水溶液2000g、亜硝酸ナトリウム0.6gを加え、その後60℃で3時間、次いで105℃で2.5時間撹拌し重合反応を行った。   46 g of the seed particle dispersion (solid content: 14.3%) having an average particle diameter of 0.5 μm obtained above was added to this emulsion and stirred at 30 ° C. for 5 hours. To this dispersion, 2000 g of a 4% aqueous solution of polyvinyl alcohol GH-17 and 0.6 g of sodium nitrite were added, followed by stirring at 60 ° C. for 3 hours and then at 105 ° C. for 2.5 hours to carry out a polymerization reaction.

得られた重合体粒子の粒度分布をコールター社製のコールターカウンターで測定したところ、体積%分布において平均粒子径が3.5μm、変動係数が8.7%、粒子径3.3μm以下が1.1%、3.3〜4.2μmが94.2%、4.2μm以上が4.7%、また個数%分布において25%径が3.4μm、75%径が3.6μmであり、80%径(2.8μm)以下の小粒子割合が、体積換算にて1.02%、個数換算にて9.75%となることから、粒子径が非常によく揃った粒子であることが認められた。   When the particle size distribution of the obtained polymer particles was measured with a Coulter counter manufactured by Coulter, the average particle size was 3.5 μm, the coefficient of variation was 8.7%, and the particle size of 3.3 μm or less was 1. 1%, 3.3-4.2 μm is 94.2%, 4.2 μm or more is 4.7%, and the 25% diameter is 3.4 μm and the 75% diameter is 3.6 μm in the number distribution, 80 Since the ratio of small particles having a% particle size (2.8 μm) or less is 1.02% in terms of volume and 9.75% in terms of number, it is recognized that the particles have very uniform particle sizes. It was.

実施例8
[種粒子の製造]
はじめに、イオン交換水3000g、次いで分子量調整剤として1−オクタンチオール10gを溶解したMMA500gを加え、これを攪拌しながら窒素気流中で70℃に昇温し、重合開始剤として過硫酸カリウム2.5gをイオン交換水100gに溶解した後に投入し、70℃で12時間攪拌し重合反応を行い、平均粒子径が0.5μm、重量平均分子量2.4万の単分散ポリMMAの分散液(固形分14.3%)を得た。
Example 8
[Manufacture of seed particles]
First, 3000 g of ion-exchanged water and then 500 g of MMA in which 10 g of 1-octanethiol was dissolved as a molecular weight regulator were added, and the temperature was raised to 70 ° C. in a nitrogen stream while stirring, and 2.5 g of potassium persulfate as a polymerization initiator. Was dissolved in 100 g of ion-exchanged water, and stirred at 70 ° C. for 12 hours to conduct a polymerization reaction. A dispersion of monodisperse polyMMA having an average particle size of 0.5 μm and a weight average molecular weight of 24,000 (solid content) 14.3%).

[単分散微粒子の製造]
はじめに、MMA550g、スチレン150g、エチレングリコールジメタクリレート300gを用い、2,2’−アゾイソブチロニトリル6g、過酸化ベンゾイル6gを溶解し得られた単量体混合物を、ジオクチルスルホコハク酸ナトリウム11.5g(臨界ミセル濃度の9倍)が含まれたイオン交換水1000gと混合し、T.KホモミキサーMark2.5型(特殊機化工業社製)に入れて10000rpmで10分間処理して乳化液を得た。
[Production of monodisperse fine particles]
First, a monomer mixture obtained by dissolving 6 g of 2,2′-azoisobutyronitrile and 6 g of benzoyl peroxide using 550 g of MMA, 150 g of styrene and 300 g of ethylene glycol dimethacrylate, 11.5 g of sodium dioctylsulfosuccinate (9 times the critical micelle concentration) and mixed with 1000 g of ion-exchanged water. The mixture was placed in K homomixer Mark 2.5 type (manufactured by Tokushu Kika Kogyo Co., Ltd.) and treated at 10,000 rpm for 10 minutes to obtain an emulsion.

この乳化液に上で得た平均粒子径が0.5μmの種粒子分散液(固形分14.3%)40gを加え、30℃で3時間攪拌した。この分散液にポリビニルアルコールGH−17の4%水溶液2000g、亜硝酸ナトリウム0.6gを加え、その後60℃で3時間、次いで105℃で2.5時間攪拌し重合反応を行った。   To this emulsion, 40 g of a seed particle dispersion (solid content: 14.3%) having an average particle size of 0.5 μm obtained above was added and stirred at 30 ° C. for 3 hours. To this dispersion was added 2000 g of a 4% aqueous solution of polyvinyl alcohol GH-17 and 0.6 g of sodium nitrite, and then the mixture was stirred at 60 ° C. for 3 hours and then at 105 ° C. for 2.5 hours to carry out a polymerization reaction.

得られた重合体粒子の粒度分布をコールター社製のコールターカウンターで測定したところ、体積%分布において平均粒子径が2.4μm、変動係数が12.8%、粒子径2.0μm以下が2.2%、2.0〜3.2μmが95.6%、3.2μm以上が2.0%、また個数%分布において25%径が2.24μm、75%径が2.44μmであり、80%径(1.9μm)以下の小粒子割合が、体積換算にて2.00%、個数換算にて9.83%となることから、非常によく揃った粒子であることが認められた。   When the particle size distribution of the obtained polymer particles was measured with a Coulter counter manufactured by Coulter, the average particle size was 2.4 μm, the coefficient of variation was 12.8%, and the particle size was 2.0 μm or less in the volume% distribution. 2%, 2.0-3.2 μm is 95.6%, 3.2 μm or more is 2.0%, 25% diameter is 2.24 μm, 75% diameter is 2.44 μm in the number distribution, 80 Since the ratio of small particles having a% diameter (1.9 μm) or less was 2.00% in terms of volume and 9.83% in terms of number, it was confirmed that the particles were very well aligned.

実施例9
[種粒子の製造]
はじめに、イオン交換水3000g、次いで分子量調整剤として1−オクタンチオール10gを溶解したMMA500gを加え、これを攪拌しながら窒素気流中で70℃に昇温し、重合開始剤として過硫酸カリウム2.5gをイオン交換水100gに溶解した後に投入し、70℃で12時間攪拌し重合反応を行い、平均粒子径が0.5μm、重量平均分子量2.4万の単分散ポリMMAの分散液(固形分14.3%)を得た。
Example 9
[Manufacture of seed particles]
First, 3000 g of ion-exchanged water and then 500 g of MMA in which 10 g of 1-octanethiol was dissolved as a molecular weight regulator were added, and the temperature was raised to 70 ° C. in a nitrogen stream while stirring, and 2.5 g of potassium persulfate as a polymerization initiator. Was dissolved in 100 g of ion-exchanged water, and stirred at 70 ° C. for 12 hours to conduct a polymerization reaction. A dispersion of monodisperse polyMMA having an average particle size of 0.5 μm and a weight average molecular weight of 24,000 (solid content) 14.3%).

次に、MMA200gに、2,2’−アゾビスイソブチロニトリル5g、1−オクタンチオール5gを溶解し得られた単量体混合物を、ジオクチルスルホコハク酸ナトリウム5gが含まれたイオン交換水2000gと混合し、T.KホモミキサーMark2.5型(特殊機化工業社製)に入れて10000rpmで5分間処理して乳化液を得た。   Next, a monomer mixture obtained by dissolving 5 g of 2,2′-azobisisobutyronitrile and 5 g of 1-octanethiol in 200 g of MMA was mixed with 2000 g of ion-exchanged water containing 5 g of sodium dioctylsulfosuccinate. Mixed, T.W. It was put into K homomixer Mark 2.5 type (made by Tokushu Kika Kogyo Co., Ltd.) and treated at 10,000 rpm for 5 minutes to obtain an emulsion.

この乳化液に上で得た平均粒子径が0.5μmの種粒子の分散液(固形分14.3%)140gを加え、室温で3時間攪拌した。その時の分散液を光学顕微鏡で観察したところ、乳化液中の単量体は完全に種粒子に吸収されていることを認めた。この分散液にポリビニルアルコール(日本合成化学社製、GH−17)の3.6%水溶液1800gを加え、その後70℃で6時間重合を行い、平均粒子径が1.00μm、重量平均分子量2.3万の単分散ポリMMAの分散液(固形分10.0%)を得た。   To this emulsion, 140 g of a seed particle dispersion (solid content: 14.3%) having an average particle size of 0.5 μm obtained above was added and stirred at room temperature for 3 hours. When the dispersion at that time was observed with an optical microscope, it was confirmed that the monomer in the emulsion was completely absorbed by the seed particles. To this dispersion was added 1800 g of a 3.6% aqueous solution of polyvinyl alcohol (manufactured by Nippon Synthetic Chemical Co., Ltd., GH-17), followed by polymerization at 70 ° C. for 6 hours, an average particle size of 1.00 μm, and a weight average molecular weight of 2. A dispersion of 30,000 monodispersed polyMMA (solid content 10.0%) was obtained.

[単分散微粒子の製造]
はじめに、MMA650g、スチレン50g、エチレングリコールジメタクリレート300gを用い、2,2’−アゾイソブチロニトリル6g、過酸化ベンゾイル6gを溶解し得られた単量体混合物を、ジオクチルスルホコハク酸ナトリウム11.5g(臨界ミセル濃度の9倍)が含まれたイオン交換水1000gと混合し、T.KホモミキサーMark2.5型(特殊機化工業社製)に入れて10000rpmで10分間処理して乳化液を得た。
[Production of monodisperse fine particles]
First, 650 g of MMA, 50 g of styrene, 300 g of ethylene glycol dimethacrylate, 6 g of 2,2′-azoisobutyronitrile and 6 g of benzoyl peroxide were dissolved in a monomer mixture obtained by adding 11.5 g of sodium dioctylsulfosuccinate. (9 times the critical micelle concentration) and mixed with 1000 g of ion-exchanged water. The mixture was placed in K homomixer Mark 2.5 type (manufactured by Tokushu Kika Kogyo Co., Ltd.) and treated at 10,000 rpm for 10 minutes to obtain an emulsion.

この乳化液に上で得た平均粒子径が1.00μmの種粒子分散液(固形分10.0%)45gを加え、30℃で2時間攪拌した。この分散液にポリビニルアルコールGH−17の4%水溶液2000g、亜硝酸ナトリウム0.6gを加え、その後60℃で3時間、次いで105℃で2.5時間攪拌し重合反応を行った。   To this emulsion, 45 g of a seed particle dispersion (solid content 10.0%) having an average particle size of 1.00 μm obtained above was added and stirred at 30 ° C. for 2 hours. To this dispersion was added 2000 g of a 4% aqueous solution of polyvinyl alcohol GH-17 and 0.6 g of sodium nitrite, and then the mixture was stirred at 60 ° C. for 3 hours and then at 105 ° C. for 2.5 hours to carry out a polymerization reaction.

得られた重合体粒子の粒度分布をコールター社製のコールターカウンターで測定したところ、体積%分布において平均粒子径が6.2μm、変動係数が7.4%、粒子径5.4μm以下が1.4%、5.4〜6.7μmが94.8%、6.7μm以上が3.8%、また個数%分布において25%径が5.9μm、75%径が6.3μmであり、80%径(5.0μm)以下の小粒子割合が、体積換算にて1.21%、個数換算にて10.9%となることから、非常によく揃った粒子であることが認められた。   When the particle size distribution of the obtained polymer particles was measured with a Coulter counter manufactured by Coulter, the average particle size was 6.2 μm, the coefficient of variation was 7.4%, and the particle size was 5.4 μm or less in the volume% distribution. 4%, 5.4 to 6.7 μm is 94.8%, 6.7 μm or more is 3.8%, and the 25% diameter is 5.9 μm and the 75% diameter is 6.3 μm in the number distribution, 80 Since the ratio of small particles having a% diameter (5.0 μm) or less was 1.21% in terms of volume and 10.9% in terms of number, it was confirmed that the particles were very well aligned.

実施例10
[種粒子の製造]
はじめに、イオン交換水3000g、次いで分子量調整剤として1−オクタンチオール10gを溶解したMMA100gを加え、これを撹拌しながら窒素気流中で70℃に昇温し、重合開始剤として過硫酸カリウム0.5gをイオン交換水50gに溶解した後に投入し、70℃で12時間撹拌し重合反応を行った。次いで、1−オクタンチオール4gを溶解したMMA400g、イオン交換水50gに溶解した過硫酸カリウム2gを投入し、70℃で更に3時間攪拌することで、平均粒子径が0.6μm、重量平均分子量2.4万の単分散ポリMMAの分散液(固形分20.0%)を得た。
Example 10
[Manufacture of seed particles]
First, 3000 g of ion-exchanged water and then 100 g of MMA in which 10 g of 1-octanethiol was dissolved as a molecular weight regulator were added. The temperature was raised to 70 ° C. in a nitrogen stream while stirring, and 0.5 g of potassium persulfate as a polymerization initiator. Was dissolved in 50 g of ion-exchanged water and charged, and stirred at 70 ° C. for 12 hours to carry out a polymerization reaction. Next, 400 g of MMA in which 4 g of 1-octanethiol was dissolved and 2 g of potassium persulfate dissolved in 50 g of ion-exchanged water were added, and the mixture was further stirred at 70 ° C. for 3 hours. A dispersion of 40,000 monodispersed polyMMA (solid content 20.0%) was obtained.

[単分散重合体粒子の製造]
はじめに、スチレン700g、ジビニルベンゼン100gを用い、2,2'−アゾイソブチロニトリル4.8g、過酸化ベンゾイル4.8gを溶解し得られた単量体混合物を、ジオクチルスルホコハク酸ナトリウム8.8g(臨界ミセル濃度の9倍)が含まれたイオン交換水800gと混合し、T.KホモミキサーMark2.5型(特殊機化工業社製)に入れて10000rpmで10分間処理して乳化液を得た。
[Production of monodisperse polymer particles]
First, a monomer mixture obtained by dissolving 4.8 g of 2,2′-azoisobutyronitrile and 4.8 g of benzoyl peroxide using 700 g of styrene and 100 g of divinylbenzene was dissolved in 8.8 g of sodium dioctylsulfosuccinate. Mixed with 800 g of ion-exchanged water containing 9 times the critical micelle concentration. The mixture was placed in K homomixer Mark 2.5 type (manufactured by Tokushu Kika Kogyo Co., Ltd.) and treated at 10,000 rpm for 10 minutes to obtain an emulsion.

この乳化液に上で得た平均粒子径が0.6μmの種粒子分散液(固形分20.0%)30gを加え、30℃で3時間撹拌した。この分散液にポリビニルアルコールGH−17の4%水溶液2000g、亜硝酸ナトリウム0.6gを加え、その後60℃で3時間、次いで105℃で2.5時間撹拌し重合反応を行った。   30 g of the seed particle dispersion (solid content: 20.0%) having an average particle diameter of 0.6 μm obtained above was added to this emulsion and stirred at 30 ° C. for 3 hours. To this dispersion, 2000 g of a 4% aqueous solution of polyvinyl alcohol GH-17 and 0.6 g of sodium nitrite were added, followed by stirring at 60 ° C. for 3 hours and then at 105 ° C. for 2.5 hours to carry out a polymerization reaction.

得られた重合体粒子の粒度分布をコールター社製のコールターカウンターで測定したところ、体積%分布において平均粒子径が3.0μm、変動係数が12.5%、粒子径2.4μm以下が2.2%、2.4〜3.6μmが92.1%、3.6μm以上が5.7%、また個数%分布において25%径が2.80μm、75%径が3.03μmであり、80%径(2.4μm)以下の小粒子割合が、体積換算にて2.18%、個数換算にて10.6%となることから、粒子径が非常によく揃った粒子であることが認められた。   When the particle size distribution of the obtained polymer particles was measured with a Coulter counter manufactured by Coulter, the average particle size was 3.0 μm, the coefficient of variation was 12.5%, and the particle size was 2.4 μm or less in the volume% distribution. 2%, 2.4-3.6 μm is 92.1%, 3.6 μm or more is 5.7%, and in the number% distribution, the 25% diameter is 2.80 μm, and the 75% diameter is 3.03 μm. Since the ratio of small particles having a% diameter (2.4 μm) or less is 2.18% in terms of volume and 10.6% in terms of number, it is recognized that the particles have very uniform particle diameters. It was.

実施例11
[種粒子の製造]
はじめに、イオン交換水3000g、次いで分子量調整剤として1−オクタンチオール10gを溶解したMMA500gを加え、これを撹拌しながら窒素気流中で70℃に昇温し、重合開始剤として過硫酸カリウム2.5gをイオン交換水100gに溶解した後に投入し、70℃で12時間撹拌し重合反応を行い、平均粒子径が0.5μm、重量平均分子量2.4万の単分散ポリMMAの分散液(固形分14.3%)を得た。
Example 11
[Manufacture of seed particles]
First, 3000 g of ion-exchanged water, and then 500 g of MMA in which 10 g of 1-octanethiol was dissolved as a molecular weight regulator were added. The temperature was raised to 70 ° C. in a nitrogen stream while stirring, and 2.5 g of potassium persulfate as a polymerization initiator. Was dissolved in 100 g of ion-exchanged water and stirred for 12 hours at 70 ° C. to carry out a polymerization reaction. A dispersion of monodisperse polyMMA having an average particle size of 0.5 μm and a weight average molecular weight of 24,000 (solid content) 14.3%).

次に、MMA800gに、2,2'−アゾビスイソブチロニトリル8g、1−オクタンチオール12gを溶解し得られた単量体混合物を、ジオクチルスルホコハク酸ナトリウム5.5gが含まれたイオン交換水2200gと混合し、T.KホモミキサーMark2.5型(特殊機化工業社製)に入れて10000rpmで5分間処理して乳化液を得た。   Next, a monomer mixture obtained by dissolving 8 g of 2,2′-azobisisobutyronitrile and 12 g of 1-octanethiol in 800 g of MMA, ion-exchanged water containing 5.5 g of sodium dioctylsulfosuccinate. Mixed with 2200 g; It was put into K homomixer Mark 2.5 type (made by Tokushu Kika Kogyo Co., Ltd.) and treated at 10,000 rpm for 5 minutes to obtain an emulsion.

この乳化液に上で得た平均粒子径が0.5μmの種粒子の分散液(固形分14.3%)140gを加え、室温で3時間撹拌した。その時の分散液を光学顕微鏡で観察したところ、乳化液中の単量体は完全に種粒子に吸収されていることを認めた。この分散液にポリビニルアルコール(日本合成化学社製、GH−17)の3.6%水溶液1200gを加え、その後70℃で6時間重合を行い、平均粒子径が1.2μm、重量平均分子量1.6万の単分散ポリMMAの分散液(固形分20.0%)を得た。   To this emulsion, 140 g of a seed particle dispersion (solid content: 14.3%) having an average particle diameter of 0.5 μm obtained above was added and stirred at room temperature for 3 hours. When the dispersion at that time was observed with an optical microscope, it was confirmed that the monomer in the emulsion was completely absorbed by the seed particles. To this dispersion, 1200 g of a 3.6% aqueous solution of polyvinyl alcohol (manufactured by Nippon Synthetic Chemical Co., Ltd., GH-17) was added, followed by polymerization at 70 ° C. for 6 hours, an average particle size of 1.2 μm, and a weight average molecular weight of 1. A 60,000 monodispersed polyMMA dispersion (solid content 20.0%) was obtained.

[単分散重合体粒子の製造]
はじめに、MMA100g、スチレン600g、エチレングリコールジメタクリレート300gを用い、2,2'−アゾイソブチロニトリル6g、過酸化ベンゾイル6gを溶解し得られた単量体混合物を、ジオクチルスルホコハク酸ナトリウム11.5g(臨界ミセル濃度の9倍)が含まれたイオン交換水1000gと混合し、T.KホモミキサーMark2.5型(特殊機化工業社製)に入れて10000rpmで10分間処理して乳化液を得た。
[Production of monodisperse polymer particles]
First, a monomer mixture obtained by dissolving 6 g of 2,2′-azoisobutyronitrile and 6 g of benzoyl peroxide using 100 g of MMA, 600 g of styrene and 300 g of ethylene glycol dimethacrylate, 11.5 g of sodium dioctylsulfosuccinate (9 times the critical micelle concentration) and mixed with 1000 g of ion-exchanged water. The mixture was placed in K homomixer Mark 2.5 type (manufactured by Tokushu Kika Kogyo Co., Ltd.) and treated at 10,000 rpm for 10 minutes to obtain an emulsion.

この乳化液に上で得た平均粒子径が1.2μmの種粒子分散液(固形分10.0%)57gを加え、30℃で3時間撹拌した。この分散液にポリビニルアルコールGH−17の4%水溶液2000g、亜硝酸ナトリウム0.6gを加え、その後60℃で3時間、次いで105℃で2.5時間撹拌し重合反応を行った。   To this emulsion, 57 g of a seed particle dispersion (solid content: 10.0%) having an average particle size of 1.2 μm obtained above was added and stirred at 30 ° C. for 3 hours. To this dispersion, 2000 g of a 4% aqueous solution of polyvinyl alcohol GH-17 and 0.6 g of sodium nitrite were added, followed by stirring at 60 ° C. for 3 hours and then at 105 ° C. for 2.5 hours to carry out a polymerization reaction.

得られた重合体粒子の粒度分布をコールター社製のコールターカウンターで測定したところ、体積%分布において平均粒子径が5.9μm、変動係数が7.9%、粒子径5.3μm以下が1.5%、5.3〜6.5μmが94.6%、6.5μm以上が3.9%、また個数%分布において25%径が5.7μm、75%径が6.1μmであり、80%径(4.7μm)以下の小粒子割合が、体積換算にて0.95%、個数換算にて14.6%となることから、非常によく揃った粒子であることが認められた。   When the particle size distribution of the obtained polymer particles was measured with a Coulter counter manufactured by Coulter, the average particle size was 5.9 μm, the coefficient of variation was 7.9%, and the particle size was 5.3 μm or less in the volume% distribution. 5%, 5.3 to 6.5 μm is 94.6%, 6.5 μm or more is 3.9%, 25% diameter is 5.7 μm, 75% diameter is 6.1 μm in the number% distribution, 80 Since the ratio of small particles having a% diameter (4.7 μm) or less was 0.95% in terms of volume and 14.6% in terms of number, it was confirmed that the particles were very well aligned.

比較例1
[種粒子の製造]
実施例1と同様の条件で重合反応を行った。
[単分散重合体粒子の製造]
ジオクチルスルホコハク酸ナトリウムの使用量を7.5g(臨界ミセル濃度の6倍)とした点を除き、実施例1と同様の条件で重合反応を行った。
Comparative Example 1
[Manufacture of seed particles]
The polymerization reaction was carried out under the same conditions as in Example 1.
[Production of monodisperse polymer particles]
The polymerization reaction was carried out under the same conditions as in Example 1 except that the amount of sodium dioctylsulfosuccinate used was 7.5 g (six times the critical micelle concentration).

得られた重合体粒子の粒度分布をコールター社製のコールターカウンターで測定したところ、体積%分布において平均粒子径が8.1μm、変動係数が10.8%、粒子径7.3μm以下が2.4%、7.3〜9.1μmが96.4%、9.1μm以上が1.2%、個数%分布において25%径が1.3μm、75%径が8.0μmとなり、また80%径(6.5μm)以下の小粒子割合が、体積換算にて2.39%、個数換算にて64.6%となることから、実施例1に比べ小粒子径の粒子が増加し単分散性が低下した。   When the particle size distribution of the obtained polymer particles was measured with a Coulter counter manufactured by Coulter, the average particle size was 8.1 μm, the coefficient of variation was 10.8%, and the particle size was 7.3 μm or less in the volume% distribution. 4%, 7.3 to 9.1 μm is 96.4%, 9.1 μm or more is 1.2%, and in the number% distribution, the 25% diameter is 1.3 μm, the 75% diameter is 8.0 μm, and 80%. Since the ratio of small particles having a diameter (6.5 μm) or less is 2.39% in terms of volume and 64.6% in terms of number, the number of particles having a small particle size is increased and monodispersed compared to Example 1. Decreased.

比較例2
[種粒子の製造]
実施例2と同様の条件で重合反応を行った。
[単分散重合体粒子の製造]
ジオクチルスルホコハク酸ナトリウムの使用量を10g(臨界ミセル濃度の8倍)とした点を除き、実施例2と同様の条件で重合反応を行った。
Comparative Example 2
[Manufacture of seed particles]
The polymerization reaction was carried out under the same conditions as in Example 2.
[Production of monodisperse polymer particles]
The polymerization reaction was carried out under the same conditions as in Example 2 except that the amount of sodium dioctylsulfosuccinate used was 10 g (8 times the critical micelle concentration).

得られた重合体粒子の粒度分布をコールター社製のコールターカウンターで測定したところ、体積%分布において平均粒子径が5.8μm、変動係数が13.8%、粒子径5.2μm以下が6.7%、5.8〜6.5μmが89.6%、6.5μm以上が3.7%、個数%分布において25%径が2.5μm、75%径が6.0μmとなり、また80%径(4.6μm)以下の小粒子割合が、体積換算にて6.66%、個数換算にて44.6%となることから、実施例2に比べ小粒子径の粒子が増加し単分散性が低下した。   When the particle size distribution of the obtained polymer particles was measured with a Coulter counter manufactured by Coulter, the average particle size was 5.8 μm, the coefficient of variation was 13.8%, and the particle size was 5.2 μm or less in the volume% distribution. 7%, 5.8-6.5 μm is 89.6%, 6.5 μm or more is 3.7%, 25% diameter is 2.5 μm, 75% diameter is 6.0 μm in the number% distribution, and 80%. The proportion of small particles having a diameter (4.6 μm) or less is 6.66% in terms of volume and 44.6% in terms of number. Decreased.

比較例3
[種粒子の製造]
実施例2と同様の条件で重合反応を行った。
[単分散重合体粒子の製造]
ジオクチルスルホコハク酸ナトリウムの使用量を10g(臨界ミセル濃度の8倍)とした点を除き、実施例3と同様の条件で重合反応を行った。
Comparative Example 3
[Manufacture of seed particles]
The polymerization reaction was carried out under the same conditions as in Example 2.
[Production of monodisperse polymer particles]
The polymerization reaction was carried out under the same conditions as in Example 3 except that the amount of sodium dioctylsulfosuccinate used was 10 g (8 times the critical micelle concentration).

得られた重合体粒子の粒度分布をコールター社製のコールターカウンターで測定したところ、体積%分布において平均粒子径が5.2μm、変動係数が10.9%、粒子径4.7μm以下が3.1%、4.7〜5.8μmが92.4%、5.8μm以上が5.5%、個数%分布において25%径が3.6μm、75%径が5.4μmとなり、また80%径(4.2μm)以下の小粒子割合が、体積換算にて3.11%、個数換算にて26.8%となることから、実施例3に比べ小粒子径の粒子が増加し単分散性が低下した。   When the particle size distribution of the obtained polymer particles was measured with a Coulter counter manufactured by Coulter, the average particle size was 5.2 μm, the coefficient of variation was 10.9%, and the particle size was 4.7 μm or less in the volume% distribution. 1%, 4.7-5.8 μm is 92.4%, 5.8 μm or more is 5.5%, 25% diameter is 3.6 μm, 75% diameter is 5.4 μm and 80% in the number% distribution. Since the proportion of small particles having a diameter (4.2 μm) or less is 3.11% in terms of volume and 26.8% in terms of number, the number of particles having a small particle size is increased as compared with Example 3 and monodispersed. Decreased.

比較例4
[種粒子の製造]
実施例2と同様の条件で重合反応を行った。
[単分散重合体粒子の製造]
ジオクチルスルホコハク酸ナトリウムの使用量を32g(臨界ミセル濃度の32倍)とした点を除き、実施例4と同様の条件で重合反応を行ったが、粒子が凝集し単分散の重合体粒子が得られなかった。
Comparative Example 4
[Manufacture of seed particles]
The polymerization reaction was carried out under the same conditions as in Example 2.
[Production of monodisperse polymer particles]
The polymerization reaction was carried out under the same conditions as in Example 4 except that the amount of sodium dioctylsulfosuccinate used was 32 g (32 times the critical micelle concentration), but the particles were aggregated to obtain monodisperse polymer particles. I couldn't.

比較例5
[分散重合法による種粒子の製造]
ポリビニルピロリドン(重量平均分子量4万)20g、スチレン300g、t−ブチルペルオキシオクトエート15gをイソプロピルアルコール1000gに溶解し、これを撹拌しながら窒素気流中で70℃に昇温し、70℃で24時間重合反応して平均粒子径3.5μm、重量平均分子量4.6万の重合体粒子を得た。
Comparative Example 5
[Production of seed particles by the dispersion polymerization method]
Polyvinylpyrrolidone (weight average molecular weight 40,000) 20 g, styrene 300 g, and t-butyl peroxyoctoate 15 g were dissolved in isopropyl alcohol 1000 g. The temperature was raised to 70 ° C. in a nitrogen stream while stirring, and the mixture was heated at 70 ° C. for 24 hours. Polymerization reaction was performed to obtain polymer particles having an average particle diameter of 3.5 μm and a weight average molecular weight of 46,000.

[単分散重合体粒子の製造]
スチレン176g、ジビニルベンゼン24g(純分80%)に2,2'−アゾビス−(2,4−ジメチルバレロニトリル)0.5gを溶解した単量体混合物を、ドデシルベンゼンスルホン酸ナトリウム1.6g(臨界ミセル濃度の5倍)を溶解したイオン交換水400gと混合し、T.KホモミキサーMark2.5型(特殊機化工業製)を用いて8000rpmにて10分間処理した。得られた乳化液を、分散重合法により得られたポリスチレンの種粒子の水分散液(固形分10%)200gに加え、室温で2時間撹拌すると乳化液中の単量体は完全に種粒子に吸収された。この分散液にポリビニルアルコールGH−23(日本合成化学工業製)の5%水溶液400gを加えた後、70℃にて8時間重合を行った。得られた重合体粒子の粒度分布をコールター社製のコールターカウンターで測定したところ、平均粒子径が6.5μmで、粒子径7.5μm以上が6.6%、6.0〜7.5μmが92.3%、6.0μm以下が1.1%となり、粗大粒子が多く発生した。
[Production of monodisperse polymer particles]
A monomer mixture prepared by dissolving 0.5 g of 2,2′-azobis- (2,4-dimethylvaleronitrile) in 176 g of styrene and 24 g of divinylbenzene (80% pure) was added to 1.6 g of sodium dodecylbenzenesulfonate ( 5 times the critical micelle concentration) and 400 g of dissolved ion-exchanged water. It processed for 10 minutes at 8000 rpm using K homomixer Mark2.5 type (made by Tokushu Kika Kogyo). When the obtained emulsion is added to 200 g of an aqueous dispersion (10% solid content) of polystyrene seed particles obtained by the dispersion polymerization method and stirred at room temperature for 2 hours, the monomers in the emulsion are completely seed particles. Was absorbed. After adding 400 g of 5% aqueous solution of polyvinyl alcohol GH-23 (manufactured by Nippon Synthetic Chemical Industry) to this dispersion, polymerization was carried out at 70 ° C. for 8 hours. When the particle size distribution of the obtained polymer particles was measured with a Coulter counter manufactured by Coulter, the average particle size was 6.5 μm, the particle size of 7.5 μm or more was 6.6%, and 6.0 to 7.5 μm. 92.3%, 6.0 μm or less was 1.1%, and many coarse particles were generated.

比較例6
[種粒子の製造]
実施例8と同様の条件で重合反応を行った。
[単分散微粒子の製造]
ジオクチルスルホコハク酸ナトリウムの使用量を5g(臨界ミセル濃度の4倍)とした点を除き、実施例8と同様の条件で重合反応を行った。
Comparative Example 6
[Manufacture of seed particles]
The polymerization reaction was carried out under the same conditions as in Example 8.
[Production of monodisperse fine particles]
The polymerization reaction was carried out under the same conditions as in Example 8, except that the amount of sodium dioctylsulfosuccinate used was 5 g (4 times the critical micelle concentration).

得られた重合体粒子の粒度分布をコールター社製のコールターカウンターで測定したところ、体積%分布において平均粒子径が2.6μm、変動係数が33.4%、粒子径2.0μm以下が2.4%、2.0〜3.2μmが90.3%、3.2μm以上が7.3%、個数%分布において25%径が2.23μm、75%径が2.45μmとなり、また80%径(2.1μm)以下の小粒子割合が、体積換算にて4.08%、個数換算にて19.3%となることから、実施例8に比べ変動係数が大幅に増加し単分散性が低下した。   When the particle size distribution of the obtained polymer particles was measured with a Coulter counter manufactured by Coulter, the average particle size was 2.6 μm, the coefficient of variation was 33.4%, and the particle size was 2.0 μm or less in the volume% distribution. 4%, 2.0-3.2 μm is 90.3%, 3.2 μm or more is 7.3%, 25% diameter is 2.23 μm, 75% diameter is 2.45 μm in the number% distribution, and 80% Since the proportion of small particles having a diameter (2.1 μm) or less is 4.08% in terms of volume and 19.3% in terms of number, the coefficient of variation is significantly increased compared to Example 8 and monodispersity is achieved. Decreased.

比較例7
[種粒子の製造]
実施例9と同様の条件で重合反応を行った。
[単分散微粒子の製造]
ジオクチルスルホコハク酸ナトリウムの使用量を5g(臨界ミセル濃度の4倍)とした点を除き、実施例9と同様の条件で重合反応を行った。
Comparative Example 7
[Manufacture of seed particles]
The polymerization reaction was carried out under the same conditions as in Example 9.
[Production of monodisperse fine particles]
The polymerization reaction was carried out under the same conditions as in Example 9, except that the amount of sodium dioctylsulfosuccinate used was 5 g (4 times the critical micelle concentration).

得られた重合体粒子の粒度分布をコールター社製のコールターカウンターで測定したとところ、体積%分布において平均粒子径が5.9μm、変動係数が10.6%、粒子径5.4μm以下が5.0%、5.4〜6.7μmが92.7%、6.7μm以上が2.3%、個数%分布において25%径が3.5μm、75%径が6.3μmとなり、また80%径(4.7μm)以下の小粒子割合が、体積換算にて4.3%、個数換算にて29.9%となることから、実施例9に比べ小粒子径の粒子が増加し単分散性が低下した。   When the particle size distribution of the obtained polymer particles was measured with a Coulter counter manufactured by Coulter, the average particle size was 5.9 μm, the coefficient of variation was 10.6%, and the particle size of 5.4 μm or less was 5 in the volume% distribution. 0.0%, 5.4 to 6.7 μm is 92.7%, 6.7 μm or more is 2.3%, and in the number% distribution, the 25% diameter is 3.5 μm, the 75% diameter is 6.3 μm, and 80 The ratio of small particles having a% diameter (4.7 μm) or less is 4.3% in terms of volume and 29.9% in terms of number. Dispersibility decreased.

上記の実施例1及び比較例1で得られた重合体粒子の個数%で表した粒度分布を図1に示す。さらに、それらの電子顕微鏡写真を図2に示す。
これらの結果より、実施例1で得られた重合体粒子は、比較例1で得られた重合体粒子に比べて単分散性に優れていることが判る。
また、上記の実施例1〜11及び比較例1〜7における重合体粒子の製造に用いた各組成物及び得られた重合体粒子について、まとめて表1に示す。
FIG. 1 shows the particle size distribution represented by the number% of the polymer particles obtained in Example 1 and Comparative Example 1 above. Furthermore, those electron micrographs are shown in FIG.
From these results, it can be seen that the polymer particles obtained in Example 1 are superior in monodispersibility as compared with the polymer particles obtained in Comparative Example 1.
Moreover, it shows in Table 1 collectively about each composition used for manufacture of the polymer particle in said Examples 1-11 and Comparative Examples 1-7, and the obtained polymer particle.

実施例1〜11では界面活性剤の使用量を、臨界ミセル濃度の9〜24倍量に設定した結果、単分散性に優れた重合体粒子が得られた。
しかし、比較例1〜3及び比較例5〜7では界面活性剤の使用量を、臨界ミセル濃度の9倍量未満に設定した結果、小粒子が多く発生してしまい、単分散性に優れた重合体粒子が得られなかった。
また、比較例4では界面活性剤の使用量を、臨界ミセル濃度の24倍量を超えた値に設定した結果、重合体粒子が凝集してしまい、一次粒子を得ることができなかった。
したがって、本発明の方法は、疎水性の単量体のシード重合において、粒子径の揃った(単分散性の高い)重合体粒子を生産性よく得るのに優れた方法である。
In Examples 1 to 11, the amount of the surfactant used was set to 9 to 24 times the critical micelle concentration, and as a result, polymer particles excellent in monodispersibility were obtained.
However, in Comparative Examples 1 to 3 and Comparative Examples 5 to 7, the amount of surfactant used was set to less than 9 times the critical micelle concentration, resulting in the generation of many small particles and excellent monodispersity. Polymer particles could not be obtained.
In Comparative Example 4, the amount of the surfactant used was set to a value exceeding 24 times the critical micelle concentration. As a result, the polymer particles aggregated and primary particles could not be obtained.
Therefore, the method of the present invention is an excellent method for obtaining polymer particles having a uniform particle diameter (highly monodispersed) with high productivity in seed polymerization of a hydrophobic monomer.

Claims (7)

水性媒体中で種粒子に単量体を吸収させた後、前記単量体を重合させるシード重合法による単分散重合体粒子の製造方法であって、
前記単量体が、疎水性のビニル系単量体を5重量%以上含み、かつ前記種粒子1重量部に対して80重量部以上前記種粒子に吸収され、
前記水性媒体が、臨界ミセル濃度の9〜24倍量の界面活性剤を含むことを特徴とする単分散重合体粒子の製造方法。
A method for producing monodisperse polymer particles by a seed polymerization method in which a monomer is absorbed in seed particles in an aqueous medium and then the monomer is polymerized,
The monomer contains 5% by weight or more of a hydrophobic vinyl monomer and is absorbed by the seed particles by 80 parts by weight or more with respect to 1 part by weight of the seed particles;
The method for producing monodisperse polymer particles, wherein the aqueous medium contains a surfactant in an amount of 9 to 24 times the critical micelle concentration.
前記単分散重合体粒子が、体積換算で2.2%以下、又は個数換算で25%以下の小粒子を含み、
前記小粒子が、前記単分散重合体粒子の平均粒子径の80%以下の粒子径を有する粒子である請求項1に記載の単分散重合体粒子の製造方法。
The monodisperse polymer particles include small particles of 2.2% or less in terms of volume, or 25% or less in terms of number,
The method for producing monodisperse polymer particles according to claim 1, wherein the small particles are particles having a particle diameter of 80% or less of an average particle diameter of the monodisperse polymer particles.
前記単分散重合体粒子が、前記種粒子の粒子径を1とした場合に、4.5以上の粒子径を有する請求項1又は2に記載の単分散重合体粒子の製造方法。   The method for producing monodisperse polymer particles according to claim 1 or 2, wherein the monodisperse polymer particles have a particle diameter of 4.5 or more when the particle diameter of the seed particles is 1. 前記界面活性剤が、アニオン系界面活性剤である請求項1〜3のいずれか1つに記載の単分散重合体粒子の製造方法。   The method for producing monodisperse polymer particles according to any one of claims 1 to 3, wherein the surfactant is an anionic surfactant. 前記疎水性のビニル系単量体は25℃における水に対する溶解度が1g/L以下の単量体であり、前記単量体が前記疎水性のビニル系単量体以外の他の単量体を95重量%以下含む請求項1〜4のいずれか1つに記載の単分散重合体粒子の製造方法。   The hydrophobic vinyl monomer is a monomer having a solubility in water at 25 ° C. of 1 g / L or less, and the monomer is a monomer other than the hydrophobic vinyl monomer. The manufacturing method of the monodisperse polymer particle as described in any one of Claims 1-4 containing 95 weight% or less. 前記単量体が、前記種粒子1重量部に対して100〜300重量部前記種粒子に吸収される請求項1〜5のいずれか1つに記載の単分散重合体粒子の製造方法。   The method for producing monodisperse polymer particles according to any one of claims 1 to 5, wherein the monomer is absorbed by the seed particles in an amount of 100 to 300 parts by weight with respect to 1 part by weight of the seed particles. 前記疎水性のビニル系単量体が、単官能又は多官能スチレン類から選択される請求項1〜6のいずれか1つに記載の単分散重合体粒子の製造方法。   The method for producing monodisperse polymer particles according to any one of claims 1 to 6, wherein the hydrophobic vinyl monomer is selected from monofunctional or polyfunctional styrenes.
JP2009068299A 2008-03-28 2009-03-19 Method for producing monodisperse polymer particles Active JP5281938B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009068299A JP5281938B2 (en) 2008-03-28 2009-03-19 Method for producing monodisperse polymer particles

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008086765 2008-03-28
JP2008086765 2008-03-28
JP2009068299A JP5281938B2 (en) 2008-03-28 2009-03-19 Method for producing monodisperse polymer particles

Publications (2)

Publication Number Publication Date
JP2009256639A true JP2009256639A (en) 2009-11-05
JP5281938B2 JP5281938B2 (en) 2013-09-04

Family

ID=41384441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009068299A Active JP5281938B2 (en) 2008-03-28 2009-03-19 Method for producing monodisperse polymer particles

Country Status (1)

Country Link
JP (1) JP5281938B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012062388A (en) * 2010-09-15 2012-03-29 Sekisui Plastics Co Ltd Method of manufacturing polymer particle, seed particle, and method of manufacturing the same
JP2012062389A (en) * 2010-09-15 2012-03-29 Sekisui Plastics Co Ltd Method of manufacturing hydrophilic polymer particle, and hydrophilic polymer particle
JP2013203938A (en) * 2012-03-29 2013-10-07 Sekisui Plastics Co Ltd Resin particle, method for producing the same and method for manufacturing porous resin molded product using the resin particle
JP2016539232A (en) * 2013-12-04 2016-12-15 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft An improved process for producing magnetic monodisperse polymer particles

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7124621B2 (en) 2017-10-11 2022-08-24 オムロン株式会社 Information processing device, image display method, and image display program

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007161744A (en) * 2005-12-09 2007-06-28 Toyo Ink Mfg Co Ltd Method for producing crosslinked resin microparticle

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007161744A (en) * 2005-12-09 2007-06-28 Toyo Ink Mfg Co Ltd Method for producing crosslinked resin microparticle

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012062388A (en) * 2010-09-15 2012-03-29 Sekisui Plastics Co Ltd Method of manufacturing polymer particle, seed particle, and method of manufacturing the same
JP2012062389A (en) * 2010-09-15 2012-03-29 Sekisui Plastics Co Ltd Method of manufacturing hydrophilic polymer particle, and hydrophilic polymer particle
JP2013203938A (en) * 2012-03-29 2013-10-07 Sekisui Plastics Co Ltd Resin particle, method for producing the same and method for manufacturing porous resin molded product using the resin particle
JP2016539232A (en) * 2013-12-04 2016-12-15 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft An improved process for producing magnetic monodisperse polymer particles
US10573443B2 (en) 2013-12-04 2020-02-25 Roche Diagnostics Operations, Inc. Process for producing magnetic monodisperse polymer particles

Also Published As

Publication number Publication date
JP5281938B2 (en) 2013-09-04

Similar Documents

Publication Publication Date Title
JP5281938B2 (en) Method for producing monodisperse polymer particles
WO2006093179A1 (en) Porous monodispersed particles and method for production thereof, and use thereof
JP5352104B2 (en) Monodisperse resin particles, method for producing the same, and coating
JP5500981B2 (en) Resin particles for light diffusion film, method for producing the same, and light diffusion film
JP5592735B2 (en) Method for producing hydrophilic polymer particles and hydrophilic polymer particles
JP4261403B2 (en) Method for producing porous resin particles
JP4302149B2 (en) Colored resin particles and method for producing the same
JP7121275B2 (en) Method for producing hollow resin microparticles
JP2015067694A (en) (meth)acrylic crosslinked fine particle and manufacturing method therefor
JP4465294B2 (en) Method for producing resin particles
JP4852327B2 (en) Method for producing polymer particles having pores inside and polymer particles having pores inside
JP6530594B2 (en) Method of producing core-shell particles
JP4977327B2 (en) Method for producing hollow particles
JP2009242632A (en) Method for producing hydrophilic resin particle
JP5433536B2 (en) Method for producing polymer particles
JP2011153217A (en) Crosslinked (meth)acrylate resin particle
JP5297596B2 (en) Method for producing polymer particles
JP5144982B2 (en) Method for producing monodisperse particles
JP5075441B2 (en) Method for producing resin particles
JP2019065134A (en) Pore-forming material
JP6348312B2 (en) Method for producing core-shell particles
JP2023181691A (en) Resin particle
JPH08169907A (en) Production of polymer particle uniform in size
JP5297846B2 (en) Suspension production method and polymer particle production method
JP3977272B2 (en) Method for producing resin particles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101006

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130521

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130527

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5281938

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150