JP2009255664A - Active type noise control device - Google Patents

Active type noise control device Download PDF

Info

Publication number
JP2009255664A
JP2009255664A JP2008105427A JP2008105427A JP2009255664A JP 2009255664 A JP2009255664 A JP 2009255664A JP 2008105427 A JP2008105427 A JP 2008105427A JP 2008105427 A JP2008105427 A JP 2008105427A JP 2009255664 A JP2009255664 A JP 2009255664A
Authority
JP
Japan
Prior art keywords
control
phase
noise
frequency
sine wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008105427A
Other languages
Japanese (ja)
Other versions
JP5141351B2 (en
JP2009255664A5 (en
Inventor
Tsukasa Matono
司 的野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2008105427A priority Critical patent/JP5141351B2/en
Publication of JP2009255664A publication Critical patent/JP2009255664A/en
Publication of JP2009255664A5 publication Critical patent/JP2009255664A5/ja
Application granted granted Critical
Publication of JP5141351B2 publication Critical patent/JP5141351B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fittings On The Vehicle Exterior For Carrying Loads, And Devices For Holding Or Mounting Articles (AREA)
  • Exhaust Silencers (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an active type noise control device capable of exerting a maximum noise reducing effect in any case of a phase of a control object noise and obtaining an optimum noise reducing effect, even when a control frequency is deviated from a frequency of actually generated control object noise. <P>SOLUTION: A phase of a control signal z[n] is directly updated in a phase correction means 11. Further, the control frequency is corrected in a control frequency correction means 12 to exert the maximum noise reducing effect. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、車両のエンジン等の回転機器から発生する振動騒音を能動的に低減する能動騒音低減装置に関するものである。   The present invention relates to an active noise reduction device that actively reduces vibration noise generated from rotating equipment such as a vehicle engine.

従来の能動騒音低減装置においては、適応ノッチフィルタを利用した適応制御を行う方法が知られている(例えば、特許文献1参照)。図8は、この特許文献1に記載された従来の能動騒音低減装置の構成と等価な構成を示すものである。   In a conventional active noise reduction device, a method of performing adaptive control using an adaptive notch filter is known (see, for example, Patent Document 1). FIG. 8 shows a configuration equivalent to the configuration of the conventional active noise reduction device described in Patent Document 1. In FIG.

図8において、能動騒音低減装置を実現するための離散演算は離散演算処理部29において実行される。エンジン回転数検出器14はエンジン回転数に比例した周波数をもつパルス列をエンジンパルスPとして出力する。たとえばこのエンジンパルスPはクランク角センサーの出力を取り出すことによって作成される。制御周波数検出部15は、エンジンパルスPを基に制御周波数fを算出し出力する。基準信号生成部16は、正弦波1周期を所定等分した各ポイントの正弦値を1/√2倍したものをメモリ上に保持する正弦波テーブル17を有し、選択手段18により正弦波テーブル17からデータを選択し、周波数が制御周波数fに等しい正弦波基準信号x1[n]と余弦波基準信号x2[n]とを生成し出力する。参照信号生成部24は、スピーカ22からマイクロフォン23までの伝達特性値を模擬した正弦波基準信号補正値テーブル25(周波数f〔Hz〕のときの正弦波基準信号補正値をC1[f]と表す)と余弦波基準信号補正値テーブル26(周波数f〔Hz〕のときの余弦波基準信号補正値をC2[f]と表す)とを利用し、正弦波参照信号r1[n]と余弦波参照信号r2[n]とを生成し出力する。第1の1タップディジタルフィルタ19は、内部に保持するフィルタ係数W1[n]によりx1[n]をフィルタリングし、正弦波制御信号y1[n]を生成する。第2の1タップディジタルフィルタ20は、内部に保持するフィルタ係数W2[n]により余弦波基準信号x2[n]をフィルタリングし、余弦波制御信号y2[n]を生成する。電力増幅器21はy1[n]とy2[n]とを加算した制御信号z[n]を増幅する。スピーカ22は電力増幅器21からの出力信号を騒音打ち消し音として出力する。マイクロフォン23は騒音と騒音打ち消し音とが干渉した結果生じる音を誤差信号ε[n]として検出する。第1の適応制御アルゴリズム演算部27は正弦波参照信号r1[n]と誤差信号ε[n]を基に、例えば最急降下法の一種であるLMS(Least Mean Square)アルゴリズムに基づいてフィルタ係数W1[n]を逐次更新する。同様に、第2の適応制御アルゴリズム演算部28は余弦波参照信号r2[n]と誤差信号ε[n]を基に、フィルタ係数W2[n]を逐次更新する。この係数W1及びW2の更新式は、
W1[n]=W1[n−1]―μ×r1[n]×ε[n] …(1)
W2[n]=W2[n−1]―μ×r2[n]×ε[n] …(2)となる。ここでμは収束係数と呼ばれる定数であり、係数W1及びW2が最適値に収束する時間に関係するものである。上述の処理を所定周期で繰り返すことにより、騒音を低減させることができる。
特開2004−361721号公報
In FIG. 8, the discrete calculation for realizing the active noise reduction device is executed in the discrete calculation processing unit 29. The engine speed detector 14 outputs a pulse train having a frequency proportional to the engine speed as an engine pulse P. For example, the engine pulse P is generated by taking out the output of the crank angle sensor. The control frequency detector 15 calculates and outputs a control frequency f based on the engine pulse P. The reference signal generation unit 16 has a sine wave table 17 that holds, in a memory, a sine value obtained by multiplying a sine value of each point obtained by dividing one cycle of a sine wave by 1 / √2 in a memory. Data is selected from 17, and a sine wave reference signal x1 [n] and a cosine wave reference signal x2 [n] whose frequency is equal to the control frequency f are generated and output. The reference signal generator 24 represents a sine wave reference signal correction value table 25 simulating the transfer characteristic value from the speaker 22 to the microphone 23 (the sine wave reference signal correction value at the frequency f [Hz] is represented as C1 [f]. ) And the cosine wave reference signal correction value table 26 (the cosine wave reference signal correction value at the frequency f [Hz] is expressed as C2 [f]), and the sine wave reference signal r1 [n] and the cosine wave reference. A signal r2 [n] is generated and output. The first one-tap digital filter 19 filters x1 [n] with a filter coefficient W1 [n] held therein to generate a sine wave control signal y1 [n]. The second 1-tap digital filter 20 filters the cosine wave reference signal x2 [n] with the filter coefficient W2 [n] held therein to generate the cosine wave control signal y2 [n]. The power amplifier 21 amplifies the control signal z [n] obtained by adding y1 [n] and y2 [n]. The speaker 22 outputs the output signal from the power amplifier 21 as noise canceling sound. The microphone 23 detects a sound generated as a result of interference between noise and noise canceling sound as an error signal ε [n]. Based on the sine wave reference signal r1 [n] and the error signal ε [n], the first adaptive control algorithm calculation unit 27 uses, for example, a filter coefficient W1 based on an LMS (Least Mean Square) algorithm which is a kind of steepest descent method. [N] is updated sequentially. Similarly, the second adaptive control algorithm calculation unit 28 sequentially updates the filter coefficient W2 [n] based on the cosine wave reference signal r2 [n] and the error signal ε [n]. The update formula for the coefficients W1 and W2 is
W1 [n] = W1 [n−1] −μ × r1 [n] × ε [n] (1)
W2 [n] = W2 [n−1] −μ × r2 [n] × ε [n] (2) Here, μ is a constant called a convergence coefficient, and is related to the time for which the coefficients W1 and W2 converge to the optimum value. By repeating the above-described processing at a predetermined cycle, noise can be reduced.
JP 2004-361721 A

しかしながら、上記従来の構成では、正弦波制御信号y1[n]と余弦波制御信号y2[n]を合成して制御信号z[n]を算出する際にデータのオーバフローを避けるために、正弦波テーブルでは正弦値を1/√2倍した値を保持する。このため、z[n]は制御対象騒音の位相が45度、135度、225度、315度の時しか最大出力を出せず、常
に最大限の騒音低減効果を発揮できないという問題があった。さらに、エンジンパルスPの周波数が誤差を持つ等の原因で、制御周波数fが実際に発生している制御対象騒音の周波数とずれた時、騒音低減効果が低くなる問題があった。
However, in the conventional configuration, in order to avoid data overflow when calculating the control signal z [n] by combining the sine wave control signal y1 [n] and the cosine wave control signal y2 [n], the sine wave The table holds a value obtained by multiplying the sine value by 1 / √2. For this reason, z [n] has a problem that the maximum output can be obtained only when the phase of the noise to be controlled is 45 degrees, 135 degrees, 225 degrees, and 315 degrees, and the maximum noise reduction effect can always be exhibited. Furthermore, when the control frequency f deviates from the frequency of the control target noise that is actually generated due to an error in the frequency of the engine pulse P, the noise reduction effect is reduced.

本発明は、制御対象騒音の位相がいかなる場合でも最大限の騒音低減効果を発揮でき、かつ制御周波数fが実際に発生している制御対象騒音の周波数とずれたときでも最適な騒音低減効果が得られる能動型騒音制御装置を提供することを目的とする。   The present invention can exhibit the maximum noise reduction effect regardless of the phase of the noise to be controlled, and the optimum noise reduction effect even when the control frequency f deviates from the frequency of the noise to be controlled actually generated. It is an object of the present invention to provide an active noise control device obtained.

本発明の能動型騒音制御装置は、騒音源に起因する制御すべき騒音の周波数を検出する制御周波数検出手段と、前記制御周波数検出手段で決定した制御周波数と同一の周波数の正弦波を生成する正弦波生成手段と、前記正弦波生成手段からの正弦波が入力される1タップディジタルフィルタと、前記1タップディジタルフィルタからの出力信号が入力され前記騒音源に起因する制御すべき騒音と干渉させるための制御信号を出力させる制御信号生成手段と、前記制御信号生成手段から出力される前記制御信号と前記騒音源に起因する制御すべき騒音との干渉の結果生じる誤差信号を検出する誤差信号検出手段と、前記1タップディジタルフィルタのフィルタ係数を更新する係数更新手段と、前記正弦波生成手段の位相を補正する位相補正手段と、前記制御信号検出手段の制御周波数を補正する制御周波数補正手段とを備え、前記係数更新手段と前記位相補正手段は、前記誤差信号を利用してそれぞれ前記フィルタ係数と前記位相を更新することにより、前記騒音源に起因する制御すべき騒音を低減するように構成され、特に前記係数更新手段は、前記誤差信号と、制御周波数における制御信号生成手段から誤差信号検出手段までの伝達特性の位相特性とに基づいて、前記フィルタ係数を更新するように構成され、前記位相補正手段は、前記誤差信号と、制御周波数における制御信号生成手段から誤差信号検出手段までの伝達特性の位相特性とに基づいて、前記正弦波生成手段の位相を決定するように構成され、前記制御周波数補正手段は、前記位相補正手段が算出した位相補正量の累積値に基づいて、前記制御周波数補正手段の制御周波数を補正するように構成され、前記正弦波生成手段は、離散化された正弦値1周期分を保持する正弦波テーブルの読み出し位置を所定の周期で移動させ、さらに前記読み出し位置を前記位相補正手段が決定した位相補正量だけ移動させるように構成されていることを特徴とする。   The active noise control device of the present invention generates a control frequency detection means for detecting the frequency of noise to be controlled due to a noise source, and a sine wave having the same frequency as the control frequency determined by the control frequency detection means. A sine wave generating means, a one-tap digital filter to which the sine wave from the sine wave generating means is input, and an output signal from the one-tap digital filter is input to cause interference with noise to be controlled due to the noise source Control signal generating means for outputting a control signal for detecting the error signal, and error signal detection for detecting an error signal resulting from interference between the control signal output from the control signal generating means and noise to be controlled due to the noise source Means, coefficient updating means for updating the filter coefficient of the one-tap digital filter, and phase correcting means for correcting the phase of the sine wave generating means And a control frequency correcting means for correcting the control frequency of the control signal detecting means, wherein the coefficient updating means and the phase correcting means update the filter coefficient and the phase, respectively, using the error signal. The noise updating unit is configured to reduce noise to be controlled due to the noise source. In particular, the coefficient updating unit includes the error signal and a phase characteristic of a transfer characteristic from the control signal generating unit to the error signal detecting unit at a control frequency. The phase correction means is configured to update the filter coefficient based on the error signal and the phase characteristic of the transfer characteristic from the control signal generation means to the error signal detection means at the control frequency. The phase of the sine wave generation means is determined, and the control frequency correction means is configured to determine the phase correction amount calculated by the phase correction means. The control frequency correction unit is configured to correct the control frequency based on the product value, and the sine wave generation unit is configured to determine a read position of the sine wave table that holds one cycle of the discretized sine value as a predetermined value. Further, the reading position is moved by a phase correction amount determined by the phase correction means.

本発明の能動型騒音制御装置は、制御信号z[n]を算出する際に信号の合成処理が発生しないため、正弦波テーブルが保持する値は1/√2倍しておく必要が無く、正弦値そのものでかまわない。したがって、制御信号z[n]は制御対象騒音の位相がいかなる場合でも最大値で出力できるという作用効果が得られる。また、制御周波数fが実際に発生している制御対象騒音の周波数とずれた時に、制御周波数fを騒音の周波数に近づける方向に補正することで、より最適な騒音低減効果を実現できるという作用効果が得られる。   In the active noise control device of the present invention, since the signal synthesis process does not occur when calculating the control signal z [n], the value held in the sine wave table does not need to be multiplied by 1 / √2. The sine value itself may be used. Therefore, the effect of being able to output the control signal z [n] at the maximum value whatever the phase of the noise to be controlled is obtained. In addition, when the control frequency f deviates from the frequency of the noise to be controlled that is actually generated, the effect of being able to realize a more optimal noise reduction effect by correcting the control frequency f in a direction closer to the noise frequency. Is obtained.

(実施の形態1)
以下、本発明の実施の形態1における能動騒音低減装置について図面を参照しながら説明する。
(Embodiment 1)
Hereinafter, an active noise reduction apparatus according to Embodiment 1 of the present invention will be described with reference to the drawings.

図1は本発明の実施の形態1における能動騒音低減装置のブロック図である。   FIG. 1 is a block diagram of an active noise reduction apparatus according to Embodiment 1 of the present invention.

図1において、エンジン回転数検出器1は車両に搭載された騒音源としてのエンジンの回転数に比例した周波数を持つパルス列をエンジンパルスPとして出力する。制御周波数検出手段2は制御周波数補正量fcomp[n]〔Hz〕を内部に備え、エンジンパルスPから算出した予測制御周波数fep[n]〔Hz〕と制御周波数補正量fcomp[n]とに基づ
いて制御周波数f[n]〔Hz〕を算出する。正弦波テーブル3は正弦波1周期を所定等分した各ポイントの正弦値をメモリ上に保持する。正弦波生成手段4は位相補正量Δθ[n]〔ポイント〕を内部に備え、正弦波テーブルの現在位置を示すポインタp[n]〔ポイント〕を更新する。1タップディジタルフィルタ5はフィルタ係数W[n]を内部に備え、ポインタp[n]と正弦波テーブル3とを利用して制御信号z[n]を出力する。電力増幅器6は制御信号z[n]を増幅する。制御信号生成手段としてのスピーカ7は電力増幅器6からの出力信号を騒音打ち消し音として出力する。誤差信号検出手段としてのマイクロフォン8はエンジン振動に起因して発生する制御対象騒音と騒音打ち消し音とが干渉した結果生じる音を誤差信号ε[n]として検出する。位相特性テーブル9はスピーカ7からマイクロフォン8までの伝達特性の位相特性値を前記正弦波テーブル3の相対的なポイント移動量に換算した値を周波数毎に保持する。係数更新手段10はポインタp[n]と制御周波数f[n]と正弦波テーブル3と位相特性テーブル9と誤差信号ε[n]とを利用して、1タップディジタルフィルタ5のフィルタ係数W[n]を更新する。位相補正手段11はポインタp[n]と制御周波数f[n]と正弦波テーブル3と位相特性テーブル9と誤差信号ε[n]とを利用して、正弦波生成手段4の位相補正量Δθ[n]を決定する。制御周波数補正手段12は位相補正手段11が決定した位相補正量Δθ[n]を利用して、制御周波数検出手段2の制御周波数補正量fcomp[n]を決定する。離散演算処理部13はソフトウェアにより構成される。
In FIG. 1, an engine speed detector 1 outputs a pulse train having a frequency proportional to the speed of an engine as a noise source mounted on a vehicle as an engine pulse P. The control frequency detection means 2 has a control frequency correction amount fcomp [n] [Hz] inside, and is based on the predicted control frequency fep [n] [Hz] calculated from the engine pulse P and the control frequency correction amount fcomp [n]. Then, the control frequency f [n] [Hz] is calculated. The sine wave table 3 holds a sine value at each point obtained by equally dividing one cycle of the sine wave in a memory. The sine wave generating means 4 has a phase correction amount Δθ [n] [point] inside, and updates a pointer p [n] [point] indicating the current position of the sine wave table. The 1-tap digital filter 5 has a filter coefficient W [n] therein and outputs a control signal z [n] using the pointer p [n] and the sine wave table 3. The power amplifier 6 amplifies the control signal z [n]. The speaker 7 as the control signal generating means outputs the output signal from the power amplifier 6 as noise canceling sound. The microphone 8 serving as the error signal detection means detects a sound generated as a result of interference between the control target noise generated due to engine vibration and the noise canceling sound as an error signal ε [n]. The phase characteristic table 9 holds a value obtained by converting the phase characteristic value of the transfer characteristic from the speaker 7 to the microphone 8 into the relative point movement amount of the sine wave table 3 for each frequency. The coefficient updating means 10 uses the pointer p [n], the control frequency f [n], the sine wave table 3, the phase characteristic table 9, and the error signal ε [n] to filter the filter coefficient W [ n]. The phase correction unit 11 uses the pointer p [n], the control frequency f [n], the sine wave table 3, the phase characteristic table 9, and the error signal ε [n], and the phase correction amount Δθ of the sine wave generation unit 4. [N] is determined. The control frequency correction unit 12 determines the control frequency correction amount fcomp [n] of the control frequency detection unit 2 using the phase correction amount Δθ [n] determined by the phase correction unit 11. The discrete arithmetic processing unit 13 is configured by software.

次に、本装置の具体的な動作を説明する。制御周波数f[n]の算出とポインタp[n]の更新と制御信号z[n]の生成と誤差信号ε[n]の検出とフィルタ係数W[n]の更新と位相補正量Δθ[n]の決定と制御周波数補正量fcomp[n]の決定は、すべて同一の周期で実行され、それぞれn周期後の値を表す。以降では、周期をT〔秒〕として説明する。   Next, a specific operation of this apparatus will be described. Calculation of control frequency f [n], update of pointer p [n], generation of control signal z [n], detection of error signal ε [n], update of filter coefficient W [n], and phase correction amount Δθ [n ] And control frequency correction amount fcomp [n] are all executed in the same cycle, and each represents a value after n cycles. In the following description, the cycle is T (seconds).

制御周波数検出手段2は、まず、例えばエンジンパルスPの立ち上がりエッジ毎に割り込みを発生させ、立ち上がりエッジ間の時間を測定し、測定結果をもとに予測制御周波数fep[n]を算出する。次に、予測制御周波数fep[n]と制御周波数補正量fcomp[n]とに基づいて、式(3)にしたがって制御周波数f[n]を算出する。   The control frequency detection means 2 first generates an interrupt at each rising edge of the engine pulse P, for example, measures the time between the rising edges, and calculates the predicted control frequency fep [n] based on the measurement result. Next, the control frequency f [n] is calculated according to the equation (3) based on the predicted control frequency fep [n] and the control frequency correction amount fcomp [n].

f[n]=fep[n]+fcomp[n] …(3)
正弦波テーブル3は、正弦波1周期をN等分し、各ポイントの正弦値を所定ビットで離散化した値をメモリ上に保持する。0ポイント目からN−1ポイント目までの正弦値をbビットで離散化して格納した配列をs[m](0≦m<N)で表すとき、関係式(4)が成り立つ。
f [n] = fep [n] + fcomp [n] (3)
The sine wave table 3 divides one cycle of the sine wave into N equal parts and holds a value obtained by discretizing the sine value of each point with a predetermined bit in a memory. When an array in which sine values from the 0th point to the (N−1) th point are discretized with b bits and stored is represented by s [m] (0 ≦ m <N), the relational expression (4) is established.

s[m]=int(2b-1×sin(360×m/N)) …(4)
ただし、int(x)はxの整数部を表し、sin関数の角度の単位は〔度〕とする。例えば、N=3000の場合のs[m]のグラフと表をそれぞれ図2と(表1)に示す。
s [m] = int (2 b-1 × sin (360 × m / N)) (4)
Here, int (x) represents the integer part of x, and the unit of the angle of the sine function is [degree]. For example, a graph and a table of s [m] when N = 3000 are shown in FIG. 2 and (Table 1), respectively.

Figure 2009255664
Figure 2009255664

正弦波生成手段4は、制御周波数f[n]と位相補正量Δθ[n]とに基づいて、式(5)にしたがってポインタp[n]を更新する。   The sine wave generating means 4 updates the pointer p [n] according to the equation (5) based on the control frequency f [n] and the phase correction amount Δθ [n].

p[n]=(p[n−1]+(f[n]×N×T)+Δθ[n])
mod N …(5)
ただし、「x mod y」はxをyで割ったときの余りを表す。ここで、あらかじめN×T=1となるようにNとTを選んでおけば、式(5)におけるNとTの乗算は不要である。さらに、通常“f[n]+Δθ[n]<N”であることを考慮すると、式(5)は式(6)のように書き換えることができる。
p [n] = (p [n−1] + (f [n] × N × T) + Δθ [n])
mod N (5)
However, “x mod y” represents the remainder when x is divided by y. Here, if N and T are selected in advance such that N × T = 1, the multiplication of N and T in Equation (5) is not necessary. Furthermore, considering that “f [n] + Δθ [n] <N” normally, Equation (5) can be rewritten as Equation (6).

(p[n−1]+f[n]+Δθ[n]<N)の時:
p[n]=p[n−1]+f[n]+Δθ[n]
(p[n−1]+f[n]+Δθ[n]≧N)の時:
p[n]=p[n−1]+f[n]+Δθ[n]−N …(6)
以降ではN×T=1が成り立つものとして説明する。
When (p [n−1] + f [n] + Δθ [n] <N):
p [n] = p [n−1] + f [n] + Δθ [n]
When (p [n−1] + f [n] + Δθ [n] ≧ N):
p [n] = p [n−1] + f [n] + Δθ [n] −N (6)
In the following description, it is assumed that N × T = 1 holds.

1タップディジタルフィルタ5は、制御信号z[n]を式(7)により生成する。   The 1-tap digital filter 5 generates the control signal z [n] by Expression (7).

z[n]=W[n]×s[p[n]] …(7)
位相特性テーブル9は、スピーカ7からマイクロフォン8までの伝達特性の位相特性値(グラフの例:図3)を正弦波テーブル3の相対的なポイント移動量に換算した値を、配列c[k]としてメモリ上に保持する(kは周波数〔Hz〕)。k〔Hz〕のときの位相特性値をphase[k]〔度〕とすると、関係式(8)が成り立つ。
z [n] = W [n] × s [p [n]] (7)
The phase characteristic table 9 is an array c [k] obtained by converting the phase characteristic value (example of graph: FIG. 3) of the transfer characteristic from the speaker 7 to the microphone 8 into the relative point movement amount of the sine wave table 3. Is stored in the memory (k is the frequency [Hz]). When the phase characteristic value at k [Hz] is phase [k] [degree], the relational expression (8) is established.

c[k]=int(N×phase[k]/360) …(8)
例えば、N=3000で、制御対象騒音周波数の範囲が30Hzから100Hzまでの場合のc[k]の様子を(表2)に示す。
c [k] = int (N × phase [k] / 360) (8)
For example, the state of c [k] when N = 3000 and the range of the control target noise frequency is from 30 Hz to 100 Hz is shown in (Table 2).

Figure 2009255664
Figure 2009255664

係数更新手段10は、例えば最急降下法の一種であるLMS(Least Mean Square)アルゴリズムにより、式(9)と式(10)にしたがってフィルタ係数W[n]を更新する。   The coefficient updating means 10 updates the filter coefficient W [n] according to Expression (9) and Expression (10), for example, by an LMS (Least Mean Square) algorithm which is a kind of steepest descent method.

(0≦p[n]+c[f[n]]<N)の時:
r1[n]=s[p[n]+c[f[n]]]
(p[n]+c[f[n]]≦N)の時:
r1[n]=s[p[n]+c[f[n]]−N]
(p[n]+c[f[n]]<0)の時:
r1[n]=s[p[n]+c[f[n]]+N] …(9)
W[n]=W[n−1]−μ1×r1×ε[n] …(10)
ここで、μ1はW[n]の収束速度を最急降下法における収束速度を決定するパラメータであり、値が大きいほど収束は速くなる。なお、式(10)の計算結果が負の数になる場合は、W[n]の符号を反転させ、式(11)にしたがってp[n]を180度分進ませる。
When (0 ≦ p [n] + c [f [n]] <N):
r1 [n] = s [p [n] + c [f [n]]]
When (p [n] + c [f [n]] ≦ N):
r1 [n] = s [p [n] + c [f [n]] − N]
When (p [n] + c [f [n]] <0):
r1 [n] = s [p [n] + c [f [n]] + N] (9)
W [n] = W [n-1]-[mu] 1 * r1 * [epsilon] [n] (10)
Here, μ1 is a parameter for determining the convergence speed of W [n] in the steepest descent method, and the larger the value, the faster the convergence. When the calculation result of Expression (10) is a negative number, the sign of W [n] is inverted, and p [n] is advanced by 180 degrees according to Expression (11).

(p[n]<N/2)の時: p[n]=p[n]+N/2
(p[n]≧N/2)の時: p[n]=p[n]−N/2 …(11)
これにより、W[n]を常に正の値にでき、後述する位相補正量Δθ[n]の算出が簡単化される。
When (p [n] <N / 2): p [n] = p [n] + N / 2
When (p [n] ≧ N / 2): p [n] = p [n] −N / 2 (11)
Thereby, W [n] can always be a positive value, and calculation of a phase correction amount Δθ [n], which will be described later, is simplified.

位相補正手段11は、式(12)と式(13)にしたがって、位相補正量Δθ[n]を算出する。   The phase correction unit 11 calculates the phase correction amount Δθ [n] according to the equations (12) and (13).

(0≦p[n]+c[f[n]]+N/4<N)の時:
r2[n]=s[p[n]+c[f[n]]+N/4]
(p[n]+c[f[n]]+N/4≦N)の時:
r2[n]=s[p[n]+c[f[n]]+N/4−N]
(p[n]+c[f[n]]+N/4<0)の時:
r2[n]=s[p[n]+c[f[n]]+N/4+N] …(12)
Δθ[n]=−μ2×r2[n]×ε[n] …(13)
ここで、μ2は位相補正量決定の程度を決定するパラメータであり、値が大きいほど収束は速くなる。
When (0 ≦ p [n] + c [f [n]] + N / 4 <N):
r2 [n] = s [p [n] + c [f [n]] + N / 4]
When (p [n] + c [f [n]] + N / 4 ≦ N):
r2 [n] = s [p [n] + c [f [n]] + N / 4-N]
When (p [n] + c [f [n]] + N / 4 <0):
r2 [n] = s [p [n] + c [f [n]] + N / 4 + N] (12)
Δθ [n] = − μ2 × r2 [n] × ε [n] (13)
Here, μ2 is a parameter that determines the degree of phase correction amount determination, and the larger the value, the faster the convergence.

制御周波数補正手段12は、まず位相補正手段11が決定した位相補正量Δθ[n]の累積値Δθaccum[n]を式(14)にしたがって更新する。   The control frequency correction unit 12 first updates the cumulative value Δθaccum [n] of the phase correction amount Δθ [n] determined by the phase correction unit 11 according to the equation (14).

Δθaccum[n]= Δθaccum[n−1]+Δθ[n] …(14)
次に、位相補正量の累積回数が規定回数Naccum達した時、制御周波数補正量fcomp[n]を更新し、Δθaccum[n]を0にリセットする。
Δθaccum [n] = Δθaccum [n−1] + Δθ [n] (14)
Next, when the cumulative number of phase correction amounts reaches the specified number Naccum, the control frequency correction amount fcomp [n] is updated and Δθaccum [n] is reset to zero.

制御周波数補正量fcomp[n]の決定方法としては、例えば式(15)のような算出式に基づく方法がある。   As a method for determining the control frequency correction amount fcomp [n], for example, there is a method based on a calculation expression such as Expression (15).

fcomp[n]=Δθaccum ÷ Naccum …(15)
上述の手順によりフィルタ係数W[n]を一定値に収束させ、位相補正量Δθ[n]を0に収束させ、制御周波数補正量fcomp[n]を一定値に収束させることにより、制御対象騒音を低減させることができる。
fcomp [n] = Δθaccum ÷ Naccum (15)
According to the above procedure, the filter coefficient W [n] is converged to a constant value, the phase correction amount Δθ [n] is converged to 0, and the control frequency correction amount fcomp [n] is converged to a constant value. Can be reduced.

ここで、式(13)による位相補正量算出式で制御周波数の騒音が減少するメカニズムについて説明する。従来例で説明した騒音制御装置においてはLMS(Least Mean Square)アルゴリズムに基づいてフィルタ係数W1[n]、W2[n]を逐次更新している。その更新式は以下に示されるものであった。   Here, the mechanism by which the noise of the control frequency is reduced by the phase correction amount calculation formula according to Formula (13) will be described. In the noise control apparatus described in the conventional example, the filter coefficients W1 [n] and W2 [n] are sequentially updated based on an LMS (Least Mean Square) algorithm. The update formula was as follows.

W1[n]=W1[n−1]−μ×r1[n]×ε[n] …(1)
W2[n]=W2[n−1]−μ×r2[n]×ε[n] …(2)
このように一般的には正弦波参照信号r1[n]、余弦波参照信号r2[n]には低減すべき騒音の周波数の正弦波信号及び余弦波信号と誤差信号ε[n]との積を利用している。これは正弦波、余弦波の直交性を利用したものであり、長い期間の逐次更新(即ちn→∞)では誤差信号ε[n]の中で正弦波参照信号r1[n]及び余弦波参照信号r2[n]の周波数と同じ周波数成分の積が累積し、他の周波数成分の積の累積値は0となる。このことからW1[n]及びW2[n]は誤差信号ε[n]の中で正弦波参照信号r1[n]及び余弦波参照信号r2[n]の周波数と同一の周波数成分を低下させるように係数更新が行われ、最終的に誤差信号の中で正弦波参照信号及び余弦波参照信号の周波数と同一の周波数成分が0となった時にW1[n]及びW2[n]の平均的な係数更新は0となりW1[n]、W2[n]は収束する。ここで見方を変えると、W1[n]とW2[n]は、制御対象騒音が低減されるように制御信号z[n]の振幅と位相を調整しているともいえる。制御信号の振幅と位相はそれぞれ、
振幅:√(W1[n]2+W2[n]2
位相:tan-1(W2[n]/W1[n])
となる。
W1 [n] = W1 [n−1] −μ × r1 [n] × ε [n] (1)
W2 [n] = W2 [n−1] −μ × r2 [n] × ε [n] (2)
As described above, in general, the sine wave reference signal r1 [n] and the cosine wave reference signal r2 [n] have a product of the sine wave signal and cosine wave signal of the noise frequency to be reduced and the error signal ε [n]. Is used. This utilizes the orthogonality of the sine wave and cosine wave, and the sine wave reference signal r1 [n] and cosine wave reference are included in the error signal ε [n] in the long-term sequential update (ie, n → ∞). The product of the same frequency components as the frequency of the signal r2 [n] is accumulated, and the accumulated value of the products of the other frequency components is zero. Therefore, W1 [n] and W2 [n] reduce the same frequency component as the frequency of the sine wave reference signal r1 [n] and the cosine wave reference signal r2 [n] in the error signal ε [n]. The coefficient is updated, and finally the average of W1 [n] and W2 [n] when the same frequency component as the frequency of the sine wave reference signal and the cosine wave reference signal in the error signal becomes zero. The coefficient update is 0, and W1 [n] and W2 [n] converge. In other words, it can be said that W1 [n] and W2 [n] adjust the amplitude and phase of the control signal z [n] so that the noise to be controlled is reduced. The amplitude and phase of the control signal are
Amplitude: √ (W1 [n] 2 + W2 [n] 2 )
Phase: tan −1 (W2 [n] / W1 [n])
It becomes.

一方、本発明においては、制御信号z[n]の振幅に相当するフィルタ係数W[n]は従来どおりの方法で更新する一方で、制御信号z[n]の位相は制御信号z[n]より90度先に進んだ直交成分と誤差信号ε[n]の積“r2[n]×ε[n]”を利用して位相補正量Δθ[n]を直接算出することにより更新する。図4と図5は位相補正方向決定の様子である。r2[n]×ε[n]の符号が正であるときは、図4のように制御信号z[n]を負の方向に位相補正する。一方、r2[n]×ε[n]の符号が負であるときは
、図5のように制御信号z[n]を正の方向に位相補正する。すなわち、式(13)のように制御信号z[n]の直交成分の符号とは逆の方向に制御信号z[n]の位相を補正することにより、制御信号z[n]は誤差信号ε[n]と逆位相の信号に近づくように更新され、制御対象騒音の低減効果は大きくなる。
On the other hand, in the present invention, the filter coefficient W [n] corresponding to the amplitude of the control signal z [n] is updated by a conventional method, while the phase of the control signal z [n] is controlled by the control signal z [n]. The phase correction amount Δθ [n] is updated by directly calculating the product “r2 [n] × ε [n]” of the orthogonal component advanced by 90 degrees and the error signal ε [n]. 4 and 5 show how the phase correction direction is determined. When the sign of r2 [n] × ε [n] is positive, the phase of the control signal z [n] is corrected in the negative direction as shown in FIG. On the other hand, when the sign of r2 [n] × ε [n] is negative, the control signal z [n] is phase-corrected in the positive direction as shown in FIG. That is, the control signal z [n] is corrected to the error signal ε by correcting the phase of the control signal z [n] in the direction opposite to the sign of the orthogonal component of the control signal z [n] as in Expression (13). It is updated so as to approach a signal having a phase opposite to that of [n], and the effect of reducing the control target noise is increased.

次に、式(15)により制御周波数補正量fcomp[n]が正しく算出できるメカニズムについて説明する。適応ノッチフィルタは、制御信号z[n]の周波数が実際に発生している制御対象騒音の周波数とずれた時、後者の周波数に近づけようとして、自身の位相特性θ(t)を追従させる(適当な時刻をt=0とする)。すなわち、
騒音(t) = Rnoise×sin(360×fnoise×t)
制御信号(t)=−Rctrl ×sin(360×fctrl ×t+θ(t))
…(16)
と表す時、適応ノッチフィルタは
360×fnoise×t = 360×fctrl ×t + θ(t) …(17)
となるようにθ(t)を更新し続ける。式(18)より、制御信号と騒音との周波数のずれfdiffは、
fdiff = fnoise − fctrl
= θ(t)÷(360×t) …(18)
と表すことができる。さらに t = Naccum×T の時を考えると、
fdiff = θ(Naccum×T)÷(360×Naccum×T)
= (N×θ(Naccum×T)÷360)÷ Naccum …(19)
ここで、「N×θ(Naccum×T)÷360」は、適応ノッチフィルタのNaccum×T〔秒〕後の位相特性を正弦波テーブルのポイント単位表示にしたものに他ならない。したがって、前記の式(15)の制御周波数補正値の算出式は妥当であるといえる。
Next, a mechanism by which the control frequency correction amount fcomp [n] can be calculated correctly using Expression (15) will be described. When the frequency of the control signal z [n] deviates from the frequency of the control target noise that is actually generated, the adaptive notch filter tracks its own phase characteristic θ (t) in an attempt to approach the latter frequency ( An appropriate time is set to t = 0). That is,
Noise (t) = Rnoise x sin (360 x fnoise x t)
Control signal (t) = − Rctrl × sin (360 × fctrl × t + θ (t))
... (16)
The adaptive notch filter is 360 × fnoise × t = 360 × fctrl × t + θ (t) (17)
The θ (t) is continuously updated so that From equation (18), the frequency deviation fdiff between the control signal and the noise is
fdiff = fnoise-fctrl
= Θ (t) ÷ (360 × t) (18)
It can be expressed as. Further, when t = Naccum × T,
fdiff = θ (Naccum × T) ÷ (360 × Naccum × T)
= (N × θ (Naccum × T) ÷ 360) ÷ Naccum (19)
Here, “N × θ (Naccum × T) ÷ 360” is nothing but the phase characteristic after Naccum × T [seconds] of the adaptive notch filter expressed in points in the sine wave table. Therefore, it can be said that the calculation formula of the control frequency correction value of the above equation (15) is appropriate.

一方、制御周波数補正量fcomp[n]を式(20)に基づいて更新する方法も考えられる。   On the other hand, a method of updating the control frequency correction amount fcomp [n] based on the equation (20) is also conceivable.

(Δθaccum ≧ X)の時:
fcomp[n]=fcomp[n−1]+Δf
(Δθaccum ≦ −X)の時:
fcomp[n]=fcomp[n−1]−Δf
(−X < Δθaccum < X)の時:
fcomp[n]=fcomp[n−1] …(20)
上記算出式は除算を用いない更新式であり、除算命令を持たない演算装置を使用する場合に有効である。ただし、式(20)による制御周波数補正量fcomp[n]の算出方法は、式(15)による方法に比べて、最適な補正値に到達するまでに時間を要する。
When (Δθaccum ≧ X):
fcomp [n] = fcomp [n−1] + Δf
When (Δθaccum ≦ −X):
fcomp [n] = fcomp [n−1] −Δf
(-X <Δθaccum <X):
fcomp [n] = fcomp [n−1] (20)
The above calculation formula is an update formula that does not use division, and is effective when an arithmetic unit that does not have a division instruction is used. However, the method for calculating the control frequency correction amount fcomp [n] according to the equation (20) requires a longer time to reach the optimum correction value than the method according to the equation (15).

なお、Naccumの値は、大きければ大きいほど安定して制御周波数を補正可能であるが、最適な補正値に到達するまでの時間は長くなる。   Note that the larger the Naccum value, the more stable the control frequency can be corrected, but the longer it takes to reach the optimum correction value.

ここで、本発明と特許文献1に記載の方法を、騒音低減効果の観点から比較する。特許文献1に記載の方法では、正弦波制御信号y1[n]と余弦波制御信号y2[n]を合成して制御信号z[n]を算出する際にデータのオーバフローを避けるために、正弦波テーブルでは正弦値を1/√2倍した値を保持する必要があった。このため、制御信号z[n]は制御対象騒音の位相が45度、135度、225度、315度の時しか最大出力を出
せず、常に最大限の騒音低減効果を発揮できないという問題があった。この様子の例を図6に示す。制御信号z[n]は、図6(A)では最大値で出力できるが、図6(B)と(C)では最大値で出力できない。これに対し、本発明では制御信号z[n]を算出する際に信号の合成処理が発生しないため、正弦波テーブルが保持する値は1/√2倍しておく必要が無く、正弦値そのものでかまわない。したがって、制御信号z[n]は制御対象騒音の位相がいかなる場合でも最大値で出力できる。この様子の例を図7に示す。図7(A)〜(C)のいずれの場合においても、制御信号z[n]は最大値で出力できる。
Here, the present invention and the method described in Patent Document 1 are compared from the viewpoint of noise reduction effect. In the method described in Patent Document 1, the sine wave control signal y1 [n] and the cosine wave control signal y2 [n] are combined to calculate the control signal z [n] to avoid data overflow. In the wave table, it was necessary to hold a value obtained by multiplying the sine value by 1 / √2. For this reason, the control signal z [n] has a problem that it can output the maximum output only when the phase of the noise to be controlled is 45 degrees, 135 degrees, 225 degrees, and 315 degrees, and cannot always exert the maximum noise reduction effect. It was. An example of this situation is shown in FIG. The control signal z [n] can be output at the maximum value in FIG. 6 (A), but cannot be output at the maximum value in FIGS. 6 (B) and 6 (C). On the other hand, in the present invention, when the control signal z [n] is calculated, signal synthesis processing does not occur. Therefore, the value held in the sine wave table does not need to be multiplied by 1 / √2, and the sine value itself. It doesn't matter. Therefore, the control signal z [n] can be output at the maximum value regardless of the phase of the noise to be controlled. An example of this situation is shown in FIG. In any case of FIGS. 7A to 7C, the control signal z [n] can be output at the maximum value.

また、特許文献1に記載の方法では、エンジンパルスPの周波数が誤差を持つ等の原因で制御周波数fが実際に発生している制御対象騒音の周波数とずれた時、騒音低減効果が低くなる問題があった。これに対し、本発明ではエンジンパルスPをもとに算出した予測制御周波数fep[n]を、実際に発生している制御対象騒音の周波数に近づける方向に補正することで、より最適な騒音低減効果を実現できる。   Further, in the method described in Patent Document 1, when the control frequency f deviates from the frequency of the control target noise that is actually generated due to an error in the frequency of the engine pulse P, the noise reduction effect is reduced. There was a problem. On the other hand, in the present invention, the predicted control frequency fep [n] calculated based on the engine pulse P is corrected so as to be close to the frequency of the control target noise that is actually generated, thereby further reducing noise more optimally. The effect can be realized.

なお、本発明においては、制御周波数検出手段2と正弦波生成手段4と1タップディジタルフィルタ5と係数更新手段10と位相補正手段11と制御周波数補正手段12とをそれぞれ複数個用意することにより、制御対象騒音の複数次数成分を消音させることも可能である。   In the present invention, by preparing a plurality of control frequency detection means 2, sine wave generation means 4, 1-tap digital filter 5, coefficient update means 10, phase correction means 11 and control frequency correction means 12, respectively. It is also possible to mute multiple order components of the control target noise.

本発明にかかる能動騒音低減装置は、制御対象騒音の位相がいかなる場合でも最大限の騒音低減効果を発揮でき、かつ制御周波数が実際に発生している制御対象騒音の周波数とずれたときでも最適な騒音低減効果が得られる能動騒音低減装置として有用である。   The active noise reduction device according to the present invention can exhibit the maximum noise reduction effect regardless of the phase of the control target noise, and is optimal even when the control frequency deviates from the frequency of the control target noise actually generated. It is useful as an active noise reduction device that can achieve a significant noise reduction effect.

本発明の実施の形態1における能動騒音低減装置を説明するためのブロック図The block diagram for demonstrating the active noise reduction apparatus in Embodiment 1 of this invention 同能動騒音低減装置における正弦波テーブルの例を示すグラフGraph showing an example of a sine wave table in the active noise reduction device 同能動騒音低減装置におけるスピーカからマイクまでの伝達特性の位相特性値の例を示すグラフThe graph which shows the example of the phase characteristic value of the transfer characteristic from the speaker to the microphone in the active noise reduction device 同能動騒音低減装置における制御信号の位相補正の様子を示す図(その1)The figure which shows the mode of the phase correction of the control signal in the active noise reduction apparatus (the 1) 同能動騒音低減装置における制御信号の位相補正の様子を示す図(その2)The figure which shows the mode of the phase correction of the control signal in the active noise reduction apparatus (the 2) 従来の能動騒音低減装置における制御信号の出力の大きさを示すブロック図Block diagram showing magnitude of control signal output in conventional active noise reduction device 本発明の実施の形態1における制御信号の出力の大きさを示すブロック図The block diagram which shows the magnitude | size of the output of the control signal in Embodiment 1 of this invention 従来の能動騒音低減装置の構成を示すブロック図Block diagram showing the configuration of a conventional active noise reduction device

符号の説明Explanation of symbols

1 エンジン回転数検出器(騒音源)
2 制御周波数検出手段
3 正弦波テーブル
4 正弦波生成手段
5 1タップディジタルフィルタ
6 電力増幅器
7 スピーカ(制御信号生成手段)
8 マイクロフォン(誤差信号検出手段)
9 位相特性テーブル
10 係数更新手段
11 位相補正手段
12 制御周波数補正手段
13 離散演算処理部
1 Engine speed detector (noise source)
2 Control frequency detection means 3 Sine wave table 4 Sine wave generation means 5 1 tap digital filter 6 Power amplifier 7 Speaker (control signal generation means)
8 Microphone (error signal detection means)
DESCRIPTION OF SYMBOLS 9 Phase characteristic table 10 Coefficient update means 11 Phase correction means 12 Control frequency correction means 13 Discrete arithmetic processing part

Claims (5)

騒音源に起因する制御すべき騒音の周波数を検出する制御周波数検出手段と、前記制御周波数検出手段で決定した制御周波数と同一の周波数の正弦波を生成する正弦波生成手段と、前記正弦波生成手段からの正弦波が入力される1タップディジタルフィルタと、前記1タップディジタルフィルタからの出力信号が入力され前記騒音源に起因する制御すべき騒音と干渉させるための制御信号を出力させる制御信号生成手段と、前記制御信号生成手段から出力される前記制御信号と前記騒音源に起因する制御すべき騒音との干渉の結果生じる誤差信号を検出する誤差信号検出手段と、前記1タップディジタルフィルタのフィルタ係数を更新する係数更新手段と、前記正弦波生成手段の位相を補正する位相補正手段と、前記制御信号検出手段の制御周波数を補正する制御周波数補正手段とを備え、前記係数更新手段と前記位相補正手段は、前記誤差信号を利用してそれぞれ前記フィルタ係数と前記位相を更新することにより、前記騒音源に起因する制御すべき騒音を低減するように構成された能動型騒音制御装置。 Control frequency detection means for detecting the frequency of noise to be controlled due to a noise source, sine wave generation means for generating a sine wave having the same frequency as the control frequency determined by the control frequency detection means, and the sine wave generation A 1-tap digital filter to which a sine wave from the means is input, and a control signal generation for outputting a control signal for receiving an output signal from the 1-tap digital filter and causing interference with noise to be controlled caused by the noise source Means, an error signal detecting means for detecting an error signal resulting from interference between the control signal output from the control signal generating means and noise to be controlled caused by the noise source, and a filter of the one-tap digital filter Coefficient updating means for updating the coefficient, phase correcting means for correcting the phase of the sine wave generating means, and control of the control signal detecting means Control frequency correction means for correcting the wave number, and the coefficient update means and the phase correction means update the filter coefficient and the phase, respectively, using the error signal, thereby controlling the noise source. An active noise control device configured to reduce noise to be generated. 前記係数更新手段は、前記誤差信号と、制御周波数における制御信号生成手段から誤差信号検出手段までの伝達特性の位相特性とに基づいて、前記フィルタ係数を更新するように構成された請求項1記載の能動型騒音制御装置。 2. The coefficient updating unit is configured to update the filter coefficient based on the error signal and a phase characteristic of a transfer characteristic from a control signal generating unit to an error signal detecting unit at a control frequency. Active noise control device. 前記位相補正手段は、前記誤差信号と、制御周波数における制御信号生成手段から誤差信号検出手段までの伝達特性の位相特性とに基づいて、前記正弦波生成手段の位相を決定するように構成された請求項1記載の能動型騒音制御装置。 The phase correction unit is configured to determine a phase of the sine wave generation unit based on the error signal and a phase characteristic of a transfer characteristic from the control signal generation unit to the error signal detection unit at a control frequency. The active noise control apparatus according to claim 1. 前記制御周波数補正手段は、前記位相補正手段が算出した位相補正量の累積値に基づいて、前記制御周波数補正手段の制御周波数を補正するように構成された請求項1記載の能動型騒音制御装置。 2. The active noise control apparatus according to claim 1, wherein the control frequency correction unit is configured to correct a control frequency of the control frequency correction unit based on a cumulative value of the phase correction amount calculated by the phase correction unit. . 前記正弦波生成手段は、離散化された正弦値1周期分を保持する正弦波テーブルの読み出し位置を所定の周期で移動させ、さらに前記読み出し位置を前記位相補正手段が決定した位相補正量だけ移動させるように構成された請求項1記載の能動型騒音制御装置。 The sine wave generating means moves the reading position of the sine wave table that holds one cycle of the discretized sine value at a predetermined period, and further moves the reading position by the phase correction amount determined by the phase correcting means. The active noise control apparatus according to claim 1, wherein the active noise control apparatus is configured to cause the noise.
JP2008105427A 2008-04-15 2008-04-15 Active noise control device Active JP5141351B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008105427A JP5141351B2 (en) 2008-04-15 2008-04-15 Active noise control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008105427A JP5141351B2 (en) 2008-04-15 2008-04-15 Active noise control device

Publications (3)

Publication Number Publication Date
JP2009255664A true JP2009255664A (en) 2009-11-05
JP2009255664A5 JP2009255664A5 (en) 2011-05-12
JP5141351B2 JP5141351B2 (en) 2013-02-13

Family

ID=41383665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008105427A Active JP5141351B2 (en) 2008-04-15 2008-04-15 Active noise control device

Country Status (1)

Country Link
JP (1) JP5141351B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017166471A (en) * 2016-03-16 2017-09-21 中原大學 Exhaust system having noise elimination and frequency adjusting function of noise
US9773489B2 (en) 2012-11-05 2017-09-26 Mitsubishi Electric Corporation Active vibration noise control apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9773489B2 (en) 2012-11-05 2017-09-26 Mitsubishi Electric Corporation Active vibration noise control apparatus
JP2017166471A (en) * 2016-03-16 2017-09-21 中原大學 Exhaust system having noise elimination and frequency adjusting function of noise

Also Published As

Publication number Publication date
JP5141351B2 (en) 2013-02-13

Similar Documents

Publication Publication Date Title
JP5359305B2 (en) Active noise control device
US8817998B2 (en) Active vibratory noise control apparatus
US8004434B2 (en) RD converter and angle detecting apparatus
JP5712348B2 (en) Active noise reduction device, active noise reduction system using the same, mobile device, and active noise reduction method
JP2007328219A (en) Active noise controller
JP4074612B2 (en) Active vibration noise control device
US20040247137A1 (en) Apparatus for and method of actively controlling vibratory noise, and vehicle with active vibratory noise control apparatus
JP5757346B2 (en) Active vibration noise control device
JP5967213B2 (en) Active vibration noise control device
JP6180680B2 (en) Active vibration noise control device
CN104981865A (en) Active vibration/noise control device
JP2008250131A (en) Active noise controller
JP5141351B2 (en) Active noise control device
WO2015125275A1 (en) Acceleration detector and active noise-control device
JP5262783B2 (en) Active noise vibration control apparatus, active noise vibration control apparatus for vehicle, and active noise vibration control method
JP2020086206A (en) Active noise reduction device, mobile device, and noise reduction method
JP2008247279A (en) Active type cabin noise control device
JP4962095B2 (en) Active noise control device
JP2007140249A (en) Active type noise reducing apparatus
JP2008260420A (en) Active type noise control device
JP2008250130A (en) Active noise controller
JP2005318136A (en) Variable type random noise generating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110325

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110329

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20110413

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121018

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121023

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121105

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151130

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5141351

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350