JP2007140249A - Active type noise reducing apparatus - Google Patents

Active type noise reducing apparatus Download PDF

Info

Publication number
JP2007140249A
JP2007140249A JP2005335486A JP2005335486A JP2007140249A JP 2007140249 A JP2007140249 A JP 2007140249A JP 2005335486 A JP2005335486 A JP 2005335486A JP 2005335486 A JP2005335486 A JP 2005335486A JP 2007140249 A JP2007140249 A JP 2007140249A
Authority
JP
Japan
Prior art keywords
discrete data
noise
sine wave
digital filter
tap digital
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005335486A
Other languages
Japanese (ja)
Inventor
Tsukasa Matono
司 的野
Yoshio Nakamura
由男 中村
Toshiyuki Funayama
敏之 舟山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005335486A priority Critical patent/JP2007140249A/en
Publication of JP2007140249A publication Critical patent/JP2007140249A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Fittings On The Vehicle Exterior For Carrying Loads, And Devices For Holding Or Mounting Articles (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an active type noise reducing apparatus in which an operating load required for noise canceling control is reduced by minimizing a product sum operation. <P>SOLUTION: A third discrete data which is input to a first adaptive control algorithm operation section (a first coefficient update means) 12, and a fourth discrete data which is input to a second adaptive control algorithm operation section (a second coefficient update means) 13, are directly selected from a sine wave table 3 which is made discrete based on a frequency detected by a frequency detecting section (a frequency detecting means for noise to be controlled) 2, in a selection means 5. Thereby, as the product sum operation is not required when a reference sine wave signal and a reference cosine wave signal are generated, the operation load is reduced. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、車両等から発生する振動騒音を能動的に低減する能動騒音低減装置に関するものである。   The present invention relates to an active noise reduction device that actively reduces vibration noise generated from a vehicle or the like.

従来の能動騒音低減装置においては、適応ノッチフィルタを利用したフィードフォワード適応制御を行う方法が知られている(例えば、特許文献1参照)。図7は、この特許文献1に記載された従来の能動騒音低減装置の構成と等価な構成を示すものである。   In a conventional active noise reduction apparatus, a method for performing feedforward adaptive control using an adaptive notch filter is known (see, for example, Patent Document 1). FIG. 7 shows a configuration equivalent to the configuration of the conventional active noise reduction device described in Patent Document 1. In FIG.

図7において、能動騒音低減装置を実現するための離散演算は離散演算処理部14において実行される。エンジン回転数検出器1はエンジン回転数をエンジンパルスpとして出力する。周波数検出部2は、エンジンパルスpを基に騒音周波数fを算出し出力する。基準信号生成部19は、正弦波1周期を所定等分した各ポイントの制限値をメモリ上に保持する正弦波テーブル3を有し、選択手段5により正弦波テーブル3からデータを選択し、周波数が騒音周波数fに等しい基準正弦波信号x1[n]と基準余弦波信号x2[n]とを生成し出力する。参照信号生成部22は、スピーカ10からマイクロフォン11までの伝達特性値を模擬した基準正弦波信号補正値テーブル20(周波数k〔Hz〕のときの基準正弦波信号補正値をC1[k]と表す)と基準余弦波信号補正値テーブル21(周波数k〔Hz〕のときの基準余弦波信号補正値をC2[k]と表す)とを利用し、参照正弦波信号r1[n]と参照余弦波信号r2[n]とを生成し出力する。第1の1タップデジタルフィルタ7は、内部に保持するフィルタ係数W1[n]によりx1[n]をフィルタリングし、第1の制御信号y1[n]を生成する。第2の1タップデジタルフィルタ8は、内部に保持するフィルタ係数W2[n]により基準余弦波信号x2[n]をフィルタリングし、第2の制御信号y2[n]を生成する。電力増幅器9は第1の制御信号y1[n]と第2の制御信号y2[n]とを加算した信号を増幅する。スピーカ10は電力増幅器9からの出力信号を騒音打ち消し音として出力する。マイクロフォン11は騒音と騒音打消し音とが干渉した結果生じる音を誤差信号ε[n]として検出する。第1の適応制御アルゴリズム演算部12は参照正弦波信号r1[n]と誤差信号ε[n]を基に、例えば最急降下法の一種であるLMS(Least Mean Square)アルゴリズムに基づいてフィルタ係数W1[n]を逐次更新する。同様に、第2の適応制御アルゴリズム演算部13は参照余弦波信号r2[n]と誤差信号ε[n]を基に、フィルタ係数W2[n]を逐次更新する。上述の処理を所定周期で繰り返すことにより、騒音を低減させることができる。   In FIG. 7, the discrete calculation for realizing the active noise reduction device is executed in the discrete calculation processing unit 14. The engine speed detector 1 outputs the engine speed as an engine pulse p. The frequency detector 2 calculates and outputs a noise frequency f based on the engine pulse p. The reference signal generation unit 19 has a sine wave table 3 that holds a limit value of each point obtained by equally dividing one cycle of the sine wave in a memory, and selects data from the sine wave table 3 by the selection unit 5 to select a frequency. Generates and outputs a reference sine wave signal x1 [n] and a reference cosine wave signal x2 [n] equal to the noise frequency f. The reference signal generation unit 22 represents a reference sine wave signal correction value table 20 that simulates a transfer characteristic value from the speaker 10 to the microphone 11 (a reference sine wave signal correction value at a frequency k [Hz] is represented as C1 [k]. ) And the reference cosine wave signal correction value table 21 (the reference cosine wave signal correction value at the frequency k [Hz] is expressed as C2 [k]) and the reference sine wave signal r1 [n] and the reference cosine wave. A signal r2 [n] is generated and output. The first one-tap digital filter 7 filters x1 [n] with a filter coefficient W1 [n] held therein to generate a first control signal y1 [n]. The second 1-tap digital filter 8 filters the reference cosine wave signal x2 [n] with a filter coefficient W2 [n] held therein to generate a second control signal y2 [n]. The power amplifier 9 amplifies a signal obtained by adding the first control signal y1 [n] and the second control signal y2 [n]. The speaker 10 outputs the output signal from the power amplifier 9 as noise canceling sound. The microphone 11 detects sound generated as a result of interference between noise and noise canceling sound as an error signal ε [n]. Based on the reference sine wave signal r1 [n] and the error signal ε [n], the first adaptive control algorithm calculation unit 12 uses, for example, a filter coefficient W1 based on an LMS (Least Mean Square) algorithm which is a kind of steepest descent method. [N] is updated sequentially. Similarly, the second adaptive control algorithm calculation unit 13 sequentially updates the filter coefficient W2 [n] based on the reference cosine wave signal r2 [n] and the error signal ε [n]. By repeating the above-described processing at a predetermined cycle, noise can be reduced.

なお、この出願に関する先行技術文献情報としては、例えば、特許文献1が知られている。
特開2004−361721号公報
As prior art document information relating to this application, for example, Patent Document 1 is known.
JP 2004-361721 A

しかしながら、上記従来の構成では、参照正弦波信号r1[n]および参照余弦波信号r2[n]を生成する際に、基準正弦波信号x1[n]と基準正弦波信号補正値C1[k]との積和演算、および基準余弦波信号x2[n]と基準余弦波信号補正値C2[k]との積和演算を伴う。この結果、演算負荷が増大するという問題があった。   However, in the conventional configuration, when generating the reference sine wave signal r1 [n] and the reference cosine wave signal r2 [n], the reference sine wave signal x1 [n] and the reference sine wave signal correction value C1 [k] are generated. And the product-sum operation of the reference cosine wave signal x2 [n] and the reference cosine wave signal correction value C2 [k]. As a result, there is a problem that the calculation load increases.

本発明は、積和演算の実行を最小限に抑えることにより、騒音の消音制御に必要な演算負荷を低減させた能動騒音低減装置を提供することを目的とする。   An object of the present invention is to provide an active noise reduction device that reduces the calculation load necessary for noise suppression control by minimizing the execution of the product-sum operation.

上記目的を達成するために本発明は、騒音源に起因する制御すべき騒音の周波数を検出する制御対象騒音周波数検出手段と、離散化された正弦波テーブルと、第1の1タップデジタルフィルタと、第2の1タップデジタルフィルタと、前記第1の1タップデジタルフィルタからの出力と前記第2の1タップデジタルフィルタからの出力とが加算されたものが入力され前記騒音源に起因する制御すべき騒音と干渉させるための駆動信号を出力させる駆動信号生成手段と、前記駆動信号生成手段から出力される前記駆動信号と前記騒音源に起因する制御すべき騒音との干渉の結果生じる誤差信号を検出する誤差信号検出手段と、前記第1の1タップデジタルフィルタのフィルタ係数を更新する第1の係数更新手段と、前記第2の1タップデジタルフィルタのフィルタ係数を更新する第2の係数更新手段と、前記第1の1タップデジタルフィルタに入力させる第1の離散データと前記第2の1タップデジタルフィルタに入力させる第2の離散データと前記第1の係数更新手段に入力させる第3の離散データと前記第2の係数更新手段に入力させる第4の離散データとを前記制御対象騒音周波数検出手段より検出した周波数に基づいて前記正弦波テーブルから所定の時間毎にそれぞれ選択する選択手段とを備え、前記誤差信号と前記第3の離散データと前記第4の離散データとに基づいて前記誤差信号が最小となるように前記第1の係数更新手段と前記第2の係数更新手段により前記フィルタ係数を更新することにより、前記騒音源に起因する制御すべき騒音を低減するように構成されており、特に、第1の係数更新手段に入力させる第3の離散データと第2の係数更新手段に入力させる第4の離散データとを前記制御対象騒音周波数検出手段より検出した周波数に基づいて離散化された正弦波テーブルから直接選択する選択手段を備えていることを特徴とする。   To achieve the above object, the present invention provides a control target noise frequency detecting means for detecting a frequency of noise to be controlled due to a noise source, a discretized sine wave table, a first one-tap digital filter, , A second one-tap digital filter, and an output obtained by adding the output from the first one-tap digital filter and the output from the second one-tap digital filter are input and controlled due to the noise source. Drive signal generation means for outputting a drive signal for causing interference with power noise, and an error signal resulting from interference between the drive signal output from the drive signal generation means and noise to be controlled due to the noise source. Error signal detecting means for detecting, first coefficient updating means for updating a filter coefficient of the first one-tap digital filter, and the second one-tap digital Second coefficient updating means for updating filter coefficients of the filter, first discrete data to be input to the first one-tap digital filter, second discrete data to be input to the second one-tap digital filter, and The sine wave table based on the frequency detected by the control target noise frequency detecting means for the third discrete data to be inputted to the first coefficient updating means and the fourth discrete data to be inputted to the second coefficient updating means. Selecting means for selecting each at a predetermined time from the first coefficient, and the first coefficient so as to minimize the error signal based on the error signal, the third discrete data, and the fourth discrete data. The filter coefficient is updated by the updating means and the second coefficient updating means, thereby reducing noise to be controlled due to the noise source. In particular, the third discrete data to be input to the first coefficient updating means and the fourth discrete data to be input to the second coefficient updating means are discretized based on the frequency detected by the control target noise frequency detecting means. And selecting means for directly selecting from the sine wave table.

本発明の能動騒音低減装置は、第1の係数更新手段に入力させる第3の離散データと第2の係数更新手段に入力させる第4の離散データとを前記制御対象騒音周波数検出手段より検出した周波数に基づいて離散化された正弦波テーブルから直接選択する選択手段を備えているので、従来例のように参照正弦波信号(第3の離散データに相当)と参照余弦波信号(第4の離散データに相当)とを生成する際に積和演算を伴わず、演算負荷を低減させることができるという作用効果が得られる。   In the active noise reduction device of the present invention, the third discrete data to be input to the first coefficient updating unit and the fourth discrete data to be input to the second coefficient updating unit are detected by the control target noise frequency detecting unit. Since selection means for directly selecting from a sine wave table discretized based on frequency is provided, a reference sine wave signal (corresponding to third discrete data) and a reference cosine wave signal (fourth In this case, the operation load can be reduced without generating a product-sum operation.

(実施の形態1)
以下、本発明の実施の形態1における能動騒音低減装置について図面を参照しながら説明する。
(Embodiment 1)
Hereinafter, an active noise reduction apparatus according to Embodiment 1 of the present invention will be described with reference to the drawings.

図1は本発明の実施の形態1における能動騒音低減装置のブロック図である。   FIG. 1 is a block diagram of an active noise reduction apparatus according to Embodiment 1 of the present invention.

図1において、エンジン回転数検出器1は車両に搭載された騒音源としてのエンジンの回転数をエンジンパルスpとして出力する。制御対象騒音周波数検出手段としての周波数検出部2はエンジンパルスpから制御対象騒音周波数f〔Hz〕を算出し出力する。離散化された正弦波のデータとしての正弦波テーブル3は正弦波1周期を所定等分した各ポイントの制限値をメモリ上に保持する。位相特性テーブル4はスピーカ10からマイクロフォン11までの伝達特性の位相特性値を前記正弦波テーブル3の相対的なポイント移動量に換算した値を周波数毎に保持する。選択手段5は制御対象騒音周波数fと位相特性テーブル4とに基づいて第1の離散データとしての基準正弦波信号x1[n]と第2の離散データとしての基準余弦波信号x2[n]と第3の離散データとしての参照正弦波信号r1[n]と第4の離散データとしての参照余弦波信号r2[n]とを正弦波テーブル3から選択する。信号生成部6は正弦波テーブル3と位相特性テーブル4と選択手段5とにより構成される。第1の1タップデジタルフィルタ7は第1のフィルタ係数W1[n]を内部に保持し、基準正弦波信号x1[n]と第1のフィルタ係数W1[n]とに基づいて第1の制御信号y1[n]を出力する。第2の1タップデジタルフィルタ8は第2のフィルタ係数W2[n]を内部に保持し、基準余弦波信号x2[n]と第2のフィルタ係数W2[n]とに基づいて第2の制御信号y2[n]を出力する。電力増幅器9は第1の制御信号y1[n]と第2の制御信号y2[n]とが加算された信号を増幅する。駆動信号生成手段としてのスピーカ10は電力増幅器9からの出力信号を騒音打ち消し音として出力する。誤差信号検出手段としてのマイクロフォン11はエンジン振動に起因して発生する制御対象騒音と騒音打ち消し音とが干渉した結果生じる音を誤差信号ε[n]として検出する。第1の係数更新手段としての第1の適応制御アルゴリズム演算部12は参照正弦波信号r1[n]と誤差信号ε[n]を基に、第1の1タップデジタルフィルタ7のフィルタ係数W1[n]を逐次更新する。第2の係数更新手段としての第2の適応制御アルゴリズム演算部13は参照余弦波信号r2[n]と誤差信号ε[n]を基に、第2の1タップデジタルフィルタ8のフィルタ係数W2[n]を逐次更新する。このように離散演算処理部14はソフトウェアにより構成される。   In FIG. 1, an engine speed detector 1 outputs the engine speed p as an engine pulse p as a noise source mounted on a vehicle. The frequency detection unit 2 as the control target noise frequency detection means calculates and outputs the control target noise frequency f [Hz] from the engine pulse p. The sine wave table 3 as discretized sine wave data holds a limit value of each point obtained by equally dividing one cycle of the sine wave in a memory. The phase characteristic table 4 holds a value obtained by converting a phase characteristic value of a transfer characteristic from the speaker 10 to the microphone 11 into a relative point movement amount of the sine wave table 3 for each frequency. The selection means 5 is based on the control target noise frequency f and the phase characteristic table 4 and the reference sine wave signal x1 [n] as the first discrete data and the reference cosine wave signal x2 [n] as the second discrete data. The reference sine wave signal r1 [n] as the third discrete data and the reference cosine wave signal r2 [n] as the fourth discrete data are selected from the sine wave table 3. The signal generator 6 includes a sine wave table 3, a phase characteristic table 4, and a selection unit 5. The first one-tap digital filter 7 holds the first filter coefficient W1 [n] inside, and performs the first control based on the reference sine wave signal x1 [n] and the first filter coefficient W1 [n]. The signal y1 [n] is output. The second one-tap digital filter 8 holds the second filter coefficient W2 [n] inside, and performs the second control based on the reference cosine wave signal x2 [n] and the second filter coefficient W2 [n]. The signal y2 [n] is output. The power amplifier 9 amplifies a signal obtained by adding the first control signal y1 [n] and the second control signal y2 [n]. The speaker 10 as the drive signal generating means outputs the output signal from the power amplifier 9 as noise canceling sound. The microphone 11 serving as the error signal detection means detects a sound generated as a result of interference between the control target noise generated due to engine vibration and the noise canceling sound as an error signal ε [n]. The first adaptive control algorithm computing unit 12 as the first coefficient updating unit 12 uses the filter coefficient W1 [of the first one-tap digital filter 7 based on the reference sine wave signal r1 [n] and the error signal ε [n]. n] are updated sequentially. The second adaptive control algorithm calculation unit 13 as the second coefficient updating unit 13 uses the filter coefficient W2 [of the second one-tap digital filter 8 based on the reference cosine wave signal r2 [n] and the error signal ε [n]. n] are updated sequentially. As described above, the discrete arithmetic processing unit 14 is configured by software.

次に、本装置の具体的な動作を説明する。   Next, a specific operation of this apparatus will be described.

基準正弦波信号x1[n]の生成と、基準余弦波信号x2[n]の生成と、参照正弦波信号r1[n]の生成と、参照余弦波信号r2[n]の生成と、第1の制御信号y1[n]の生成と、第2の制御信号y2[n]の生成と、誤差信号ε[n]の検出と、フィルタ係数W1[n]の更新と、フィルタ係数W2[n]の更新は、すべて同一の周期で実行する。以降では、この周期をT〔秒〕として説明する。   Generation of the reference sine wave signal x1 [n], generation of the reference cosine wave signal x2 [n], generation of the reference sine wave signal r1 [n], generation of the reference cosine wave signal r2 [n], first Generation of the control signal y1 [n], generation of the second control signal y2 [n], detection of the error signal ε [n], update of the filter coefficient W1 [n], and filter coefficient W2 [n] All updates are performed at the same cycle. Hereinafter, this period is described as T [seconds].

周波数検出部2は、例えばエンジンパルスpの立ち上がりエッジ毎に割り込みを発生させ、立ち上がりエッジ間の時間を測定し、測定結果をもとに制御対象騒音の周波数fを算出する。   For example, the frequency detector 2 generates an interrupt at each rising edge of the engine pulse p, measures the time between the rising edges, and calculates the frequency f of the control target noise based on the measurement result.

正弦波テーブル3は、正弦波1周期をd等分し、各ポイントの正弦値の離散データをメモリ上に保持する。0ポイント目からd−1ポイント目までの正弦値を格納した配列をz[m](0≦m<d)で表すとき、関係式(1)が成り立つ。   The sine wave table 3 divides one cycle of the sine wave into d equal parts, and holds discrete data of sine values at each point on the memory. When an array storing sine values from the 0th point to the (d−1) th point is represented by z [m] (0 ≦ m <d), the relational expression (1) is established.

z[m]=sin(360°×m/d) ・・・(1)
例えば、d=3000の場合のz[m]のグラフと表をそれぞれ図2と図3に示す。
z [m] = sin (360 ° × m / d) (1)
For example, a graph and a table of z [m] when d = 3000 are shown in FIGS. 2 and 3, respectively.

位相特性テーブル4は、スピーカ10からマイクロフォン11までの伝達特性の位相特性値(グラフの例:図4)を正弦波テーブル3の相対的なポイント移動量に換算した値を、配列c[k]としてメモリ上に保持する(kは周波数〔Hz〕)。k〔Hz〕のときの位相特性値をθ[k]〔度〕とすると、関係式(2)が成り立つ。   The phase characteristic table 4 is an array c [k] obtained by converting the phase characteristic value (example of graph: FIG. 4) of the transfer characteristic from the speaker 10 to the microphone 11 into the relative point movement amount of the sine wave table 3. Is stored in the memory (k is the frequency [Hz]). When the phase characteristic value at k [Hz] is θ [k] [degrees], the relational expression (2) is established.

c[k]=d×θ[k]/360) ・・・(2)
例えば、d=3000で、制御対象騒音周波数の範囲が30Hzから100Hzまでの場合のc[k]の様子を図5に示す。
c [k] = d × θ [k] / 360) (2)
For example, FIG. 5 shows the state of c [k] when d = 3000 and the control target noise frequency range is from 30 Hz to 100 Hz.

信号生成部6は、正弦波テーブル3の現在の読み出し位置i[n]をメモリ上に記憶しており、制御対象騒音周波数fに基づいて現在の読み出し位置を式(3)により毎周期移動させる。   The signal generation unit 6 stores the current readout position i [n] of the sine wave table 3 in the memory, and moves the current readout position every period based on the control target noise frequency f using the equation (3). .

i[n+1]=i[n]+d×f×T ・・・(3)
ただし、式(3)の右辺の計算結果がd以上となった場合は、式(3)の右辺の計算結果からdを減算したものをi[n+1]とする。
i [n + 1] = i [n] + d × f × T (3)
However, when the calculation result on the right side of Expression (3) is equal to or greater than d, i [n + 1] is obtained by subtracting d from the calculation result on the right side of Expression (3).

同時に、信号生成部6は、制御対象騒音周波数fと同一周波数の基準正弦波信号x1[n]を式(4)と式(5)により生成する。   At the same time, the signal generation unit 6 generates a reference sine wave signal x1 [n] having the same frequency as the control target noise frequency f by Expressions (4) and (5).

ix1 =i[n] ・・・(4)
x1[n]=z[ix1] ・・・(5)
ただし、式(4)の右辺の計算結果がd以上となった場合は、式(4)の右辺の計算結果からdを減算したものをix1とする。
ix1 = i [n] (4)
x1 [n] = z [ix1] (5)
However, when the calculation result of the right side of Expression (4) becomes d or more, ix1 is obtained by subtracting d from the calculation result of the right side of Expression (4).

同時に、信号生成部6は、制御対象騒音周波数fと同一周波数で、かつ、基準正弦波信号x1[n]より4分の1周期進んだ基準余弦波信号x2[n]を式(6)と式(7)により生成する。   At the same time, the signal generation unit 6 generates a reference cosine wave signal x2 [n] having the same frequency as the control target noise frequency f and advanced by a quarter of a period from the reference sine wave signal x1 [n] as shown in Expression (6). Generated by equation (7).

ix2 =i[n]+d/4 ・・・(6)
x2[n]=z[ix2] ・・・(7)
ただし、式(6)の右辺の計算結果がd以上となった場合は、式(6)の右辺の計算結果からdを減算したものをix2とする。
ix2 = i [n] + d / 4 (6)
x2 [n] = z [ix2] (7)
However, when the calculation result of the right side of Expression (6) is equal to or greater than d, ix2 is obtained by subtracting d from the calculation result of the right side of Expression (6).

同時に、信号生成部6は、制御対象騒音周波数fと同一周波数で、かつ、基準正弦波信号x1[n]との位相差がスピーカ10からマイクロフォン11までの伝達特性の位相特性値に等しい参照余弦波信号r1[n]を式(8)と式(9)により生成する。   At the same time, the signal generator 6 has the same frequency as the control target noise frequency f, and the reference cosine of which the phase difference from the reference sine wave signal x1 [n] is equal to the phase characteristic value of the transfer characteristic from the speaker 10 to the microphone 11. The wave signal r1 [n] is generated by the equations (8) and (9).

ir1 =i[n]+c[f] ・・・(8)
r1[n]=z[ir1] ・・・(9)
ただし、式(8)の右辺の計算結果がd以上となった場合は、式(8)の右辺の計算結果からdを減算したものをir1とする。
ir1 = i [n] + c [f] (8)
r1 [n] = z [ir1] (9)
However, when the calculation result on the right side of Expression (8) is equal to or greater than d, ir1 is obtained by subtracting d from the calculation result on the right side of Expression (8).

同時に、信号生成部6は、制御対象騒音周波数fと同一周波数で、かつ、基準正弦波信号x2[n]との位相差がスピーカ10からマイクロフォン11までの伝達特性の位相特性値に等しい参照余弦波信号r2[n]を式(10)と式(11)により生成する。   At the same time, the signal generator 6 has the same reference cosine as the control target noise frequency f and the phase difference from the reference sine wave signal x2 [n] is equal to the phase characteristic value of the transfer characteristic from the speaker 10 to the microphone 11. The wave signal r2 [n] is generated by the equations (10) and (11).

ir2 =i[n]+d/4+c[f] ・・・(10)
r2[n]=z[ir2] ・・・(11)
ただし、式(10)の右辺の計算結果がd以上となった場合は、式(10)の右辺の計算結果からdを減算したものをir2とする。
ir2 = i [n] + d / 4 + c [f] (10)
r2 [n] = z [ir2] (11)
However, when the calculation result of the right side of Expression (10) is equal to or greater than d, ir2 is obtained by subtracting d from the calculation result of the right side of Expression (10).

第1、第2の1タップデジタルフィルタ7、8は、それぞれ第1、第2の制御信号y1[n]、y2[n]を式(12)、式(13)により生成する。   The first and second one-tap digital filters 7 and 8 generate the first and second control signals y1 [n] and y2 [n] by Expression (12) and Expression (13), respectively.

y1[n]=W1[n]×x1[n] ・・・(12)
y2[n]=W2[n]×x2[n] ・・・(13)
第1、第2の適応制御アルゴリズム演算部12、13は、例えば最急降下法の一種であるLMS(Least Mean Square)アルゴリズムにより、それぞれ第1、第2の1タップデジタルフィルタ7、8が保持するフィルタ係数W1[n]、W2[n]を式(14)、式(15)により更新する。
y1 [n] = W1 [n] × x1 [n] (12)
y2 [n] = W2 [n] × x2 [n] (13)
The first and second adaptive control algorithm calculation units 12 and 13 are respectively held by the first and second one-tap digital filters 7 and 8 according to an LMS (Least Mean Square) algorithm, which is a kind of steepest descent method, for example. The filter coefficients W1 [n] and W2 [n] are updated by Expression (14) and Expression (15).

W1[n+1]=W1[n]−μ×ε[n]×r1[n] ・・・(14)
W2[n+2]=W2[n]−μ×ε[n]×r2[n] ・・・(15)
ここで、μはステップサイズパラメータであり、最急降下法における収束速度を決定する。
W1 [n + 1] = W1 [n] −μ × ε [n] × r1 [n] (14)
W2 [n + 2] = W2 [n] −μ × ε [n] × r2 [n] (15)
Here, μ is a step size parameter and determines the convergence speed in the steepest descent method.

上述の手順によりフィルタ係数W1[n]とフィルタ係数W2[n]とを収束させることにより、制御対象騒音を低減させることができる。   Control target noise can be reduced by converging the filter coefficient W1 [n] and the filter coefficient W2 [n] by the above-described procedure.

ここで、参照正弦波信号r1[n]と参照余弦波信号r2[n]との生成方法について、本発明と特許文献1に記載の方法とを、演算負荷と演算性能とメモリ使用量の観点から比較する。特許文献1に記載の方法では、スピーカ10からマイクロフォン11までの伝達特性値を模擬した基準正弦波信号補正値テーブル20(周波数k〔Hz〕のときの基準正弦波信号補正値をC1[k]と表す)と基準余弦波信号補正値テーブル21(周波数k〔Hz〕のときの基準余弦波信号補正値をC2[k]と表す)とを利用して、式(16)と式(17)とによりそれぞれ参照正弦波信号r1[n]と参照余弦波信号r2[n]とを生成する。   Here, regarding the generation method of the reference sine wave signal r1 [n] and the reference cosine wave signal r2 [n], the present invention and the method described in Patent Document 1 are compared in terms of calculation load, calculation performance, and memory usage. Compare from. In the method described in Patent Document 1, a reference sine wave signal correction value table 20 simulating a transfer characteristic value from the speaker 10 to the microphone 11 (the reference sine wave signal correction value at the frequency k [Hz] is C1 [k]. And the reference cosine wave signal correction value table 21 (the reference cosine wave signal correction value at the frequency k [Hz] is expressed as C2 [k]). And a reference sine wave signal r1 [n] and a reference cosine wave signal r2 [n], respectively.

r1[n]=C1[f]×x1[n]+C2[f]×x2[n] ・・・(16)
r2[n]=C1[f]×x1[n]−C2[f]×x2[n] ・・・(17)
まず、式(16)と式(17)とにおいては乗算を伴っているのに対し、本発明においては式(8)、式(9)、式(10)、式(11)に記載のとおり、乗算を伴わない(dは定数のため、d/4の演算を毎周期実行する必要はない)。したがって、本発明は特許文献1に記載の方法に比べ、桁落ちが起こらないために演算性能は向上するとともに、演算負荷を低減できるという効果がある。また、特許文献1に記載の方法では、基準正弦波信号補正値C1[k]と基準余弦波信号補正値C2[k]とをメモリ上に保持しておく必要があるのに対し、本発明ではスピーカ10からマイクロフォン11までの伝達特性の位相特性値を正弦波テーブル3の相対的なポイント移動量に換算した値c[k]のみをメモリ上に保持すればよい。したがって、本発明は特許文献1に記載の方法に比べ、メモリ使用量を削減できるという効果がある。
r1 [n] = C1 [f] × x1 [n] + C2 [f] × x2 [n] (16)
r2 [n] = C1 [f] × x1 [n] −C2 [f] × x2 [n] (17)
First, while Expression (16) and Expression (17) involve multiplication, in the present invention, as described in Expression (8), Expression (9), Expression (10), and Expression (11) No multiplication is required (d is a constant, so it is not necessary to execute d / 4 operation every cycle). Therefore, compared with the method described in Patent Document 1, the present invention has an effect that calculation performance is improved and calculation load can be reduced because no digit loss occurs. In the method described in Patent Document 1, it is necessary to store the reference sine wave signal correction value C1 [k] and the reference cosine wave signal correction value C2 [k] in the memory. Then, only the value c [k] obtained by converting the phase characteristic value of the transfer characteristic from the speaker 10 to the microphone 11 into the relative point movement amount of the sine wave table 3 may be held in the memory. Therefore, the present invention has an effect that the amount of memory used can be reduced as compared with the method described in Patent Document 1.

なお、正弦波テーブル3が保持する正弦値は4分の1周期分で十分である。ただし、4分の1周期目の正弦値も必要であり、合計(d/4)+1ポイントの正弦値が必要である。このときの正弦波テーブルの配列をz’[x](0≦x≦d/4)とすると、z[n]は式(18)により算出可能である。   Note that a sine value held by the sine wave table 3 is sufficient for a quarter period. However, a sine value in the quarter cycle is also required, and a total (d / 4) +1 point sine value is required. Assuming that the arrangement of the sine wave table at this time is z ′ [x] (0 ≦ x ≦ d / 4), z [n] can be calculated by Expression (18).

z[n]= z’[n] (0≦n<d/4)
z’[d/2−n] (d/4≦n<d/2)
−z’[n−d/2] (d/2≦n<3×d/4)
−z’[d−n] (3×d/4≦n<d)
・・・(18)
この方法では、正弦波テーブル3のために確保するメモリ領域を最小限に抑えることができるという効果がある。
z [n] = z ′ [n] (0 ≦ n <d / 4)
z ′ [d / 2−n] (d / 4 ≦ n <d / 2)
−z ′ [n−d / 2] (d / 2 ≦ n <3 × d / 4)
−z ′ [dn] (3 × d / 4 ≦ n <d)
... (18)
This method has an effect that the memory area reserved for the sine wave table 3 can be minimized.

なお、本発明においては、第2の1タップデジタルフィルタへの入力x2[n]を参照余弦波信号、第2の適応制御アルゴリズム演算部への入力r2[n]を参照余弦波信号として説明したが、x1[n]とx2[n]との位相差、および、r1[n]とr2[n]との位相差は90°に限るものではなく、若干の誤差は許容されることは言うまでもない。   In the present invention, the input x2 [n] to the second one-tap digital filter is described as a reference cosine wave signal, and the input r2 [n] to the second adaptive control algorithm calculation unit is described as a reference cosine wave signal. However, the phase difference between x1 [n] and x2 [n] and the phase difference between r1 [n] and r2 [n] are not limited to 90 °, and it goes without saying that some errors are allowed. Yes.

なお、第1、第2の1タップデジタルフィルタ7、8と、第1、第2の適応制御アルゴリズム演算部12、13とをそれぞれ複数個用意することにより、制御対象騒音の複数次数成分を消音させることも可能である。   A plurality of first and second one-tap digital filters 7 and 8 and a plurality of first and second adaptive control algorithm computing units 12 and 13 are prepared to mute the multiple-order components of the control target noise. It is also possible to make it.

具体的には、例えば、第1、第2の1タップデジタルフィルタ7、8と第1、第2の適応制御アルゴリズム演算部12、13とをそれぞれ2つずつ用意した場合の能動騒音低減装置のブロック図を図6に示し、図1と異なる箇所について説明する。   Specifically, for example, the active noise reduction apparatus when two first and second one-tap digital filters 7 and 8 and two first and second adaptive control algorithm calculation units 12 and 13 are prepared. A block diagram is shown in FIG. 6, and different points from FIG. 1 will be described.

図6において、周波数検出部2は、エンジン回転数検出器1からのエンジンパルスpに基づいて、例えば制御対象騒音の1次成分の周波数f1〔Hz〕と2次成分の周波数f2〔Hz〕を算出する。信号生成部6は、f1とf2を入力とし、図1におけるx1[n]、x2[n]、r1[n]、r2[n]の生成方法と同様に、制御対象騒音の1次成分を制御するための基準正弦波信号x11[n]と基準余弦波信号x12[n]と参照余弦波信号r11[n]と参照余弦波信号r12[n]とを生成し、制御対象騒音の2次成分を制御するための基準正弦波信号x21[n]と基準余弦波信号x22[n]と参照正弦波信号r21[n]と参照余弦波信号r22[n]とを生成する。第1、第2、第3、第4の1タップデジタルフィルタ7、8、15、16は、それぞれフィルタ係数W11[n]、W12[n]、W21[n]、W22[n]を内部に持ち、図1における第1、第2の1タップデジタルフィルタ7、8の動作と同様に、それぞれ制御信号y11[n]、y12[n]、y21[n]、y22[n]を生成する。電力増幅器9は、制御信号y11[n]とy12[n]とy21[n]とy22[n]とが加算された信号を増幅する。第1、第2、第3、第4の適応制御アルゴリズム演算部12、13、17、18は、図1における第1、第2の適応制御アルゴリズム演算部12、13の動作と同様に、それぞれフィルタ係数W11[n]、W12[n]、W21[n]、W22[n]を更新する。   In FIG. 6, the frequency detector 2 determines, for example, the frequency f1 [Hz] of the primary component and the frequency f2 [Hz] of the secondary component of the control target noise based on the engine pulse p from the engine speed detector 1. calculate. The signal generator 6 receives f1 and f2 as input, and uses the primary component of the control target noise in the same manner as the generation method of x1 [n], x2 [n], r1 [n], and r2 [n] in FIG. A reference sine wave signal x11 [n], a reference cosine wave signal x12 [n], a reference cosine wave signal r11 [n], and a reference cosine wave signal r12 [n] for control are generated, and the second order of the control target noise is generated. A reference sine wave signal x21 [n], a reference cosine wave signal x22 [n], a reference sine wave signal r21 [n], and a reference cosine wave signal r22 [n] for controlling the components are generated. The first, second, third, and fourth one-tap digital filters 7, 8, 15, and 16 have filter coefficients W11 [n], W12 [n], W21 [n], and W22 [n] inside, respectively. The control signals y11 [n], y12 [n], y21 [n], and y22 [n] are generated similarly to the operations of the first and second one-tap digital filters 7 and 8 in FIG. The power amplifier 9 amplifies the signal obtained by adding the control signals y11 [n], y12 [n], y21 [n], and y22 [n]. The first, second, third, and fourth adaptive control algorithm computing units 12, 13, 17, and 18 are respectively similar to the operations of the first and second adaptive control algorithm computing units 12 and 13 in FIG. The filter coefficients W11 [n], W12 [n], W21 [n], and W22 [n] are updated.

図6のように制御対象騒音の複数次数成分を消音することにより、より大きな消音効果を得ることが期待できる。   As shown in FIG. 6, it can be expected that a greater silencing effect can be obtained by silencing the multiple-order components of the control target noise.

本発明にかかる能動騒音低減装置は、積和演算の実行を最小限に抑えることにより演算負荷の低減を実現でき、低コストで実用性のある能動騒音低減装置として有用である。   The active noise reduction device according to the present invention can reduce the calculation load by minimizing the execution of the product-sum operation, and is useful as a practical active noise reduction device at low cost.

本発明の実施の形態1における能動騒音低減装置を説明するためのブロック図The block diagram for demonstrating the active noise reduction apparatus in Embodiment 1 of this invention 同能動騒音低減装置における正弦波テーブルの例を示すグラフGraph showing an example of a sine wave table in the active noise reduction device 同能動騒音低減装置における正弦波テーブルの例を示す表を表した図The figure showing the table | surface which shows the example of the sine wave table in the active noise reduction apparatus 同能動騒音低減装置におけるスピーカからマイクまでの伝達特性の位置特性値の例を示すグラフThe graph which shows the example of the position characteristic value of the transfer characteristic from a speaker to a microphone in the active noise reduction device 同能動騒音低減装置におけるスピーカからマイクまでの伝達特性の位置特性値を正弦波テーブルの相対的なポイント移動量に換算した配列の列を示す表を表した図The figure showing the table | surface which shows the row | line | column of the arrangement | sequence which converted the position characteristic value of the transmission characteristic from a speaker in the active noise reduction apparatus into the relative point movement amount of the sine wave table 同能動騒音低減装置における制御対象騒音の複数次数成分の消音方法を説明するためのブロック図Block diagram for explaining a method of silencing multiple order components of noise to be controlled in the active noise reduction apparatus 従来の能動騒音低減装置の構成を示すブロック図Block diagram showing the configuration of a conventional active noise reduction device

符号の説明Explanation of symbols

1 エンジン回転数検出器
2 周波数検出部(制御対象騒音周波数検出手段)
3 正弦波テーブル
4 位相特性テーブル
5 選択手段
6 信号生成部
7 第1の1タップデジタルフィルタ
8 第2の1タップデジタルフィルタ
9 電力増幅器
10 スピーカ(駆動信号生成手段)
11 マイクロフォン(誤差信号検出手段)
12 第1の適応制御アルゴリズム演算部(第1の係数更新手段)
13 第2の適応制御アルゴリズム演算部(第2の係数更新手段)
14 離散演算処理部
15 第3の1タップデジタルフィルタ
16 第4の1タップデジタルフィルタ
17 第3の適応制御アルゴリズム演算部
18 第4の適応制御アルゴリズム演算部
1 Engine speed detector 2 Frequency detector (Controlled noise frequency detection means)
DESCRIPTION OF SYMBOLS 3 Sine wave table 4 Phase characteristic table 5 Selection means 6 Signal generation part 7 1st 1 tap digital filter 8 2nd 1 tap digital filter 9 Power amplifier 10 Speaker (drive signal generation means)
11 Microphone (error signal detection means)
12 1st adaptive control algorithm calculating part (1st coefficient update means)
13 2nd adaptive control algorithm calculating part (2nd coefficient update means)
DESCRIPTION OF SYMBOLS 14 Discrete arithmetic processing part 15 3rd 1 tap digital filter 16 4th 1 tap digital filter 17 3rd adaptive control algorithm calculating part 18 4th adaptive control algorithm calculating part

Claims (5)

騒音源に起因する制御すべき騒音の周波数を検出する制御対象騒音周波数検出手段と、離散化された正弦波テーブルと、第1の1タップデジタルフィルタと、第2の1タップデジタルフィルタと、前記第1の1タップデジタルフィルタからの出力と前記第2の1タップデジタルフィルタからの出力とが加算されたものが入力され前記騒音源に起因する制御すべき騒音と干渉させるための駆動信号を出力させる駆動信号生成手段と、前記駆動信号生成手段から出力される前記駆動信号と前記騒音源に起因する制御すべき騒音との干渉の結果生じる誤差信号を検出する誤差信号検出手段と、前記第1の1タップデジタルフィルタのフィルタ係数を更新する第1の係数更新手段と、前記第2の1タップデジタルフィルタのフィルタ係数を更新する第2の係数更新手段と、前記第1の1タップデジタルフィルタに入力させる第1の離散データと前記第2の1タップデジタルフィルタに入力させる第2の離散データと前記第1の係数更新手段に入力させる第3の離散データと前記第2の係数更新手段に入力させる第4の離散データとを前記制御対象騒音周波数検出手段より検出した周波数に基づいて前記正弦波テーブルから所定の時間毎にそれぞれ選択する選択手段とを備え、前記誤差信号と前記第3の離散データと前記第4の離散データとに基づいて前記誤差信号が最小となるように前記第1の係数更新手段と前記第2の係数更新手段により前記フィルタ係数を更新することにより、前記騒音源に起因する制御すべき騒音を低減するように構成された能動騒音低減装置。 Control target noise frequency detecting means for detecting the frequency of noise to be controlled due to a noise source, a discretized sine wave table, a first one-tap digital filter, a second one-tap digital filter, The sum of the output from the first one-tap digital filter and the output from the second one-tap digital filter is input, and a drive signal for causing interference with the noise to be controlled due to the noise source is output. Drive signal generating means for detecting, error signal detecting means for detecting an error signal resulting from interference between the drive signal output from the drive signal generating means and noise to be controlled caused by the noise source, and the first First coefficient updating means for updating the filter coefficient of the one-tap digital filter, and first filter coefficient for updating the filter coefficient of the second one-tap digital filter. Coefficient updating means, first discrete data to be input to the first one-tap digital filter, second discrete data to be input to the second one-tap digital filter, and input to the first coefficient updating means. Third discrete data and fourth discrete data to be input to the second coefficient updating unit are selected from the sine wave table for each predetermined time based on the frequency detected by the control target noise frequency detecting unit. Selecting means, and based on the error signal, the third discrete data, and the fourth discrete data, the first coefficient updating means and the second coefficient updating so that the error signal is minimized. An active noise reduction device configured to reduce noise to be controlled due to the noise source by updating the filter coefficient by means. 選択手段は、制御対象騒音周波数検出手段より検出した制御対象騒音周波数と駆動信号生成手段から誤差信号検出手段までの伝達特性の位相特性とに基づいて、第1の離散データと第2の離散データと第3の離散データと第4の離散データとをそれぞれ選択するように構成された請求項1記載の能動騒音低減装置。 The selection unit is configured to select the first discrete data and the second discrete data based on the control target noise frequency detected by the control target noise frequency detection unit and the phase characteristic of the transfer characteristic from the drive signal generation unit to the error signal detection unit. The active noise reduction device according to claim 1, wherein the active noise reduction device is configured to select the third discrete data and the fourth discrete data. 選択手段は、第1の離散データと第2の離散データとの位相差が4分の1周期となるように、かつ、第1の離散データと第3の離散データとの位相差および第2の離散データと第4の離散データとの位相差が駆動信号生成手段から誤差信号検出手段までの伝達特性の位相特性値と一致するように、前記第1の離散データと前記第2の離散データと前記第3の離散データと前記第4の離散データとを選択するように構成された請求項1記載の能動騒音低減装置。 The selection means is configured so that the phase difference between the first discrete data and the second discrete data is a quarter cycle, the phase difference between the first discrete data and the third discrete data, and the second The first discrete data and the second discrete data are set such that the phase difference between the discrete data and the fourth discrete data matches the phase characteristic value of the transfer characteristic from the drive signal generating means to the error signal detecting means. The active noise reduction device according to claim 1, wherein the active noise reduction device is configured to select the third discrete data and the fourth discrete data. 第1の1タップデジタルフィルタと第2の1タップデジタルフィルタと第1の係数更新手段と第2の係数更新手段とが、それぞれ少なくとも1つ以上有するように構成された請求項1記載の能動騒音低減装置。 2. The active noise according to claim 1, wherein at least one of the first one-tap digital filter, the second one-tap digital filter, the first coefficient updating unit, and the second coefficient updating unit is provided. Reduction device. 離散化された正弦波テーブルが少なくとも正弦波の4分の1周期分のデータ数を有するように構成された請求項1記載の能動騒音低減装置。 2. The active noise reduction device according to claim 1, wherein the discretized sine wave table has a data number corresponding to at least a quarter cycle of the sine wave.
JP2005335486A 2005-11-21 2005-11-21 Active type noise reducing apparatus Pending JP2007140249A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005335486A JP2007140249A (en) 2005-11-21 2005-11-21 Active type noise reducing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005335486A JP2007140249A (en) 2005-11-21 2005-11-21 Active type noise reducing apparatus

Publications (1)

Publication Number Publication Date
JP2007140249A true JP2007140249A (en) 2007-06-07

Family

ID=38203167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005335486A Pending JP2007140249A (en) 2005-11-21 2005-11-21 Active type noise reducing apparatus

Country Status (1)

Country Link
JP (1) JP2007140249A (en)

Similar Documents

Publication Publication Date Title
JP2007328219A (en) Active noise controller
JP5823362B2 (en) Active silencer
US8817998B2 (en) Active vibratory noise control apparatus
US20110280410A1 (en) Active noise control apparatus
JP6125389B2 (en) Active silencer and method
CN108735196B (en) Active noise control device and error route characteristic model correction method
WO2007011010A1 (en) Active noise reduction device
JP4881913B2 (en) Active noise control device
JP5757346B2 (en) Active vibration noise control device
WO2017006547A1 (en) Active noise reducing device
Wang et al. Stochastic analysis of FXLMS-based internal model control feedback active noise control systems
CN104981865A (en) Active vibration/noise control device
JP6054739B2 (en) Distortion compensation apparatus and distortion compensation method
JP2008250131A (en) Active noise controller
US20190259371A1 (en) Noise reduction device, mobile body device, and noise reduction method
JP6270136B2 (en) Active noise control device and active noise control method
JPH11168792A (en) Sound field controller
JP5262783B2 (en) Active noise vibration control apparatus, active noise vibration control apparatus for vehicle, and active noise vibration control method
JP2007140249A (en) Active type noise reducing apparatus
JP5141351B2 (en) Active noise control device
JP4843581B2 (en) Active noise control device
JP2014095770A5 (en)
JP2008247279A (en) Active type cabin noise control device
JP2010012813A (en) Active vibration noise controller
JP4962095B2 (en) Active noise control device