JP2008260420A - Active type noise control device - Google Patents

Active type noise control device Download PDF

Info

Publication number
JP2008260420A
JP2008260420A JP2007104771A JP2007104771A JP2008260420A JP 2008260420 A JP2008260420 A JP 2008260420A JP 2007104771 A JP2007104771 A JP 2007104771A JP 2007104771 A JP2007104771 A JP 2007104771A JP 2008260420 A JP2008260420 A JP 2008260420A
Authority
JP
Japan
Prior art keywords
noise
signal
digital filter
tap digital
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007104771A
Other languages
Japanese (ja)
Inventor
Yoshio Nakamura
由男 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2007104771A priority Critical patent/JP2008260420A/en
Publication of JP2008260420A publication Critical patent/JP2008260420A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Fittings On The Vehicle Exterior For Carrying Loads, And Devices For Holding Or Mounting Articles (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an active type noise control device with practicality suppressing offensive quantization noise in a low noise condition, even if an operation at low bit rates having no high calculation accuracy is used. <P>SOLUTION: In this active type noise control device, an adaptive type notch filter is used. When the sum or the sum of squares of each absolute value of each of a filter coefficient W1[n] of a first 1-tap digital filter and a filter coefficient W2[n] of a second 1-tap digital filter becomes lower than a prescribed value, a noise control signal is interrupted to prevent the quantization noise from being heard. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、車両のエンジン等の回転機器から発生する振動騒音を能動的に低減する能動型騒音制御装置に関するものである。   The present invention relates to an active noise control apparatus that actively reduces vibration noise generated from rotating equipment such as a vehicle engine.

従来の能動騒音低減装置においては、適応ノッチフィルタを利用した適応制御を行う方法が知られている(例えば、特許文献1参照)。図7は、この特許文献1に記載された従来の能動騒音低減装置の構成と等価な構成を示すものである。   In a conventional active noise reduction device, a method of performing adaptive control using an adaptive notch filter is known (see, for example, Patent Document 1). FIG. 7 shows a configuration equivalent to the configuration of the conventional active noise reduction device described in Patent Document 1. In FIG.

図7において、能動騒音低減装置を実現するための離散演算は離散演算処理部15において実行される。エンジン回転数検出器1はエンジン回転数に比例した周波数をもつパルス列をエンジンパルスpとして出力する。たとえばこのエンジンパルスpはクランク角センサーの出力を取り出すことによって作成される。周波数検出部2は、エンジンパルスpを基に騒音周波数fを算出し出力する。基準信号生成部18は、正弦波1周期を所定等分した各ポイントの値をメモリ上に保持する正弦波テーブル3を有し、選択手段19により正弦波テーブル3からデータを選択し、周波数が騒音周波数fに等しい基準正弦波信号x1[n]と基準余弦波信号x2[n]とを生成し出力する。補正信号生成部20は、スピーカ10からマイクロフォン11までの伝達特性値を模擬した基準正弦波信号補正値テーブル21(周波数f〔Hz〕のときの基準正弦波信号補正値をC1[f]と表す)と基準余弦波信号補正値テーブル22(周波数f〔Hz〕のときの基準余弦波信号補正値をC2[f]と表す)とを利用し、補正正弦波信号r1[n]と補正余弦波信号r2[n]とを生成し出力する。   In FIG. 7, the discrete calculation for realizing the active noise reduction device is executed in the discrete calculation processing unit 15. The engine speed detector 1 outputs a pulse train having a frequency proportional to the engine speed as an engine pulse p. For example, the engine pulse p is generated by taking out the output of the crank angle sensor. The frequency detector 2 calculates and outputs a noise frequency f based on the engine pulse p. The reference signal generation unit 18 has a sine wave table 3 that holds the value of each point obtained by equally dividing one cycle of the sine wave in a memory, and the data is selected from the sine wave table 3 by the selection means 19, and the frequency is A reference sine wave signal x1 [n] and a reference cosine wave signal x2 [n] equal to the noise frequency f are generated and output. The correction signal generation unit 20 represents a reference sine wave signal correction value table 21 that simulates a transfer characteristic value from the speaker 10 to the microphone 11 (a reference sine wave signal correction value at a frequency f [Hz] is represented as C1 [f]. ) And the reference cosine wave signal correction value table 22 (the reference cosine wave signal correction value at the frequency f [Hz] is expressed as C2 [f]), and the corrected sine wave signal r1 [n] and the corrected cosine wave. A signal r2 [n] is generated and output.

r1[n]= x1[n]×C1[f]+x2[n]×C2[f] ・・・(1)
r2[n]= x2[n]×C2[f]−x1[n]×C1[f] ・・・(2)
第1の1タップデジタルフィルタ7は、内部に保持するフィルタ係数W1[n]によりx1[n]をフィルタリングし、第1の制御信号y1[n]を生成する。第2の1タップデジタルフィルタ8は、内部に保持するフィルタ係数W2[n]により基準余弦波信号x2[n]をフィルタリングし、第2の制御信号y2[n]を生成する。電力増幅器9は第1の制御信号y1[n]と第2の制御信号y2[n]とを加算した信号を増幅する。スピーカ10は電力増幅器9からの出力信号を騒音打ち消し音として出力する。マイクロフォン11は騒音と騒音打消し音とが干渉した結果生じる音を誤差信号ε[n]として検出する。第1の適応制御アルゴリズム演算部12は補正正弦波信号r1[n]と誤差信号ε[n]を基に、例えば最急降下法の一種であるLMS(Least Mean Square)アルゴリズムに基づいてフィルタ係数W1[n]を逐次更新する。同様に、第2の適応制御アルゴリズム演算部13は補正余弦波信号r2[n]と誤差信号ε[n]を基に、フィルタ係数W2[n]を逐次更新する。
r1 [n] = x1 [n] × C1 [f] + x2 [n] × C2 [f] (1)
r2 [n] = x2 [n] × C2 [f] −x1 [n] × C1 [f] (2)
The first one-tap digital filter 7 filters x1 [n] with a filter coefficient W1 [n] held therein to generate a first control signal y1 [n]. The second 1-tap digital filter 8 filters the reference cosine wave signal x2 [n] with a filter coefficient W2 [n] held therein to generate a second control signal y2 [n]. The power amplifier 9 amplifies a signal obtained by adding the first control signal y1 [n] and the second control signal y2 [n]. The speaker 10 outputs the output signal from the power amplifier 9 as noise canceling sound. The microphone 11 detects sound generated as a result of interference between noise and noise canceling sound as an error signal ε [n]. Based on the corrected sine wave signal r1 [n] and the error signal ε [n], the first adaptive control algorithm calculation unit 12 uses, for example, a filter coefficient W1 based on an LMS (Least Mean Square) algorithm which is a kind of steepest descent method. [N] is updated sequentially. Similarly, the second adaptive control algorithm calculation unit 13 sequentially updates the filter coefficient W2 [n] based on the corrected cosine wave signal r2 [n] and the error signal ε [n].

この係数W1及びW2の逐次更新式は
W1[n+1]=W1[n]−μ×r1[n]×ε[n] ・・・(3)
W2[n+1]=W2[n]−μ×r2[n]×ε[n] ・・・(4)
となる。ここでμは収束係数と呼ばれる定数であり、係数W1及びW2が最適値に収束する時間に関係するものである。
The sequential updating formulas of the coefficients W1 and W2 are W1 [n + 1] = W1 [n] −μ × r1 [n] × ε [n] (3)
W2 [n + 1] = W2 [n] −μ × r2 [n] × ε [n] (4)
It becomes. Here, μ is a constant called a convergence coefficient, and is related to the time for which the coefficients W1 and W2 converge to the optimum value.

そして、このような上述の処理を所定周期(以下サンプリング周期と表す)で繰り返すことにより、騒音を低減させることができる。
特開2004−361721号公報
And it is possible to reduce noise by repeating such a process described above at a predetermined cycle (hereinafter referred to as a sampling cycle).
JP 2004-361721 A

このような従来の能動騒音低減装置においては離散演算処理部15において離散数値計算を行い、騒音と等振幅、逆位相の騒音制御信号を作り出している。そして、離散演算処理部15は一般的にはマイクロコントローラが用いられ、デジタル演算で実現されている。一般的にマイクロコントローラを用いたデジタル演算においては、計算桁数が大きいほど、また積演算を多用するほどその処理時間が長くなる。上記従来の構成の能動騒音制御装置においても式(1)、(2)(3)、(4)に示すように、その演算の中では積演算を多用しておりその演算負荷は大きい。そのため、マイクロコントローラの性能にもよるが、サンプリング周期内で所定の演算処理を完了させる為にはその計算桁数を小さくしなければならず、8bit精度での演算というような計算桁数の小さな方式を採用しなければならないケースが多い。このような8bitの演算を行った場合、その量子化ノイズは非常に大きくなる。この量子化ノイズは出力の大きさに依存せず常に一定のため、出力信号が大きい時は全く気にならないが、出力信号の小さなときにはノイズばかりが聞こえて非常に耳障りである。言い換えると、このような従来の能動騒音低減装置を用いて大きな騒音を低減する場合は能動騒音低減装置からの出力も大きく、量子化ノイズも気にならず騒音が低減した効果を享受できるが、騒音が小さい時には能動騒音低減装置からの出力が小さく騒音が減少する効果よりもむしろ量子化ノイズが目だってしまい、非常に耳障りなノイズばかりが目立ってしまうという課題がある。   In such a conventional active noise reduction device, the discrete arithmetic processing unit 15 performs discrete numerical calculation to generate a noise control signal having the same amplitude and opposite phase as the noise. The discrete calculation processing unit 15 is generally implemented by digital calculation using a microcontroller. In general, in a digital calculation using a microcontroller, the processing time becomes longer as the number of calculation digits is larger and the product operation is used more frequently. Even in the active noise control apparatus having the above-described conventional configuration, as shown in the equations (1), (2), (3), and (4), product calculation is frequently used in the calculation, and the calculation load is large. Therefore, depending on the performance of the microcontroller, the number of calculation digits must be reduced in order to complete predetermined calculation processing within the sampling period, and the number of calculation digits such as an operation with 8-bit accuracy is small. There are many cases where the method must be adopted. When such 8-bit computation is performed, the quantization noise becomes very large. Since this quantization noise is always constant without depending on the magnitude of the output, it does not matter at all when the output signal is large. However, when the output signal is small, only the noise is heard, which is very disturbing. In other words, when such a conventional active noise reduction device is used to reduce a large noise, the output from the active noise reduction device is also large, and the effect of reducing the noise can be enjoyed without worrying about the quantization noise. When the noise is low, the output from the active noise reduction device is small, and the quantization noise is noticeable rather than the effect of reducing the noise, and there is a problem that only very annoying noise is noticeable.

本発明は、計算精度が高くない低bitでの演算を用いても、騒音が小さな状態での耳障りな量子化ノイズを押さえた実用性ある能動型騒音制御装置を提供することを目的とする。   It is an object of the present invention to provide a practical active noise control apparatus that suppresses annoying quantization noise in a low noise state even when low-bit calculation with low calculation accuracy is used.

本発明の能動型騒音制御装置は、騒音源に起因する制御すべき騒音の周波数を検出する制御対象騒音周波数検出手段と、前記制御対象騒音周波数検出手段で検出された騒音の周波数と同一の周波数の基準正弦波を生成する正弦波生成手段と基準余弦波を生成する余弦波生成手段と前記正弦波生成手段からの基準正弦波信号が入力される第1の1タップデジタルフィルタと、前記余弦波生成手段からの基準余弦波信号が入力される第2の1タップデジタルフィルタと、前記第1の1タップデジタルフィルタからの出力と前記第2の1タップデジタルフィルタからの出力とが加算された騒音制御信号をアナログ増幅するアナログ増幅手段と前記アナログ増幅手段からの信号が入力され前記騒音源に起因する制御すべき騒音と干渉させるための干渉信号を出力させる干渉信号生成手段と、前記干渉信号生成手段から出力される前記干渉信号と前記騒音源に起因する制御すべき騒音との干渉の結果生じる誤差信号を検出する誤差信号検出手段と、前記第1の1タップデジタルフィルタのフィルタ係数を更新する第1の係数更新手段と、前記第2の1タップデジタルフィルタのフィルタ係数を更新する第2の係数更新手段からなり、前記第1の係数更新手段及び第2の係数更新手段は前記誤差信号検出手段からの誤差信号と前記正弦波生成手段からの基準正弦波信号と前記余弦波生成手段からの基準余弦波信号を前記誤差検出手段から前記干渉信号生成手段までの伝達特性で補正した補正正弦波信号及び補正余弦波信号とによって前記誤差信号検出手段における騒音が低減されるように構成された能動型騒音低減装置において前記第1の1タップデジタルフィルタのフィルタ係数の絶対値と前記第2の1タップデジタルフィルタのフィルタ係数の絶対値の和が所定値以下の時には前記騒音制御信号の値を強制的に0とすることを特徴とする。   The active noise control apparatus of the present invention includes a control target noise frequency detection unit that detects a frequency of noise to be controlled due to a noise source, and a frequency that is the same as the noise frequency detected by the control target noise frequency detection unit. A sine wave generating means for generating a reference sine wave, a cosine wave generating means for generating a reference cosine wave, a first one-tap digital filter to which a reference sine wave signal from the sine wave generating means is input, and the cosine wave Noise obtained by adding the second one-tap digital filter to which the reference cosine wave signal from the generation unit is input, the output from the first one-tap digital filter, and the output from the second one-tap digital filter. Analog amplifying means for amplifying the control signal and interference for interfering with the noise to be controlled caused by the noise source when the signal from the analog amplifying means is inputted. An interference signal generating means for outputting a signal; and an error signal detecting means for detecting an error signal resulting from interference between the interference signal output from the interference signal generating means and the noise to be controlled due to the noise source; The first coefficient updating means for updating the filter coefficient of the first one-tap digital filter and the second coefficient updating means for updating the filter coefficient of the second one-tap digital filter, the first coefficient The updating means and the second coefficient updating means receive the error signal from the error signal detecting means, the reference sine wave signal from the sine wave generating means, and the reference cosine wave signal from the cosine wave generating means from the error detecting means. The noise in the error signal detecting means is reduced by the corrected sine wave signal and the corrected cosine wave signal corrected by the transfer characteristic to the interference signal generating means. In the active noise reduction apparatus, when the sum of the absolute value of the filter coefficient of the first one-tap digital filter and the absolute value of the filter coefficient of the second one-tap digital filter is less than a predetermined value, the value of the noise control signal Is forcibly set to 0.

また、他の形態においては前記第1の1タップデジタルフィルタのフィルタ係数と前記第2の1タップデジタルフィルタのフィルタ係数の二乗和が所定値以下の時には前記騒音制御信号の値を強制的に0とすることを特徴とする。   In another embodiment, when the sum of squares of the filter coefficient of the first one-tap digital filter and the filter coefficient of the second one-tap digital filter is less than a predetermined value, the value of the noise control signal is forcibly set to 0. It is characterized by.

また、他の形態においては前記第1の1タップデジタルフィルタのフィルタ係数と前記第2の1タップデジタルフィルタのフィルタ係数の絶対値の和が所定値以下の時には前記アナログ増幅手段の増幅度を下げることを特徴とする。   In another embodiment, when the sum of the absolute values of the filter coefficient of the first one-tap digital filter and the filter coefficient of the second one-tap digital filter is less than or equal to a predetermined value, the amplification degree of the analog amplification means is lowered. It is characterized by that.

また、他の形態においては前記第1の1タップデジタルフィルタのフィルタ係数と前記第2の1タップデジタルフィルタのフィルタ係数の二乗和が所定値以下の時には前記アナログ増幅手段の増幅度を下げることを特徴とする。   In another embodiment, when the sum of squares of the filter coefficient of the first one-tap digital filter and the filter coefficient of the second one-tap digital filter is less than a predetermined value, the amplification degree of the analog amplifying means is lowered. Features.

本発明の能動型騒音制御装置は、前記第1の1タップデジタルフィルタのフィルタ係数と前記第2の1タップデジタルフィルタのフィルタ係数を演算することによって騒音の大きさを推定し、その演算された値が所定値以下の場合には、騒音制御信号を停止する、もしくは騒音制御信号を増幅するアナログ増幅手段の増幅度を下げる。このことによって量子化ノイズが目立ちそうな小さな騒音の時には量子化ノイズが聞こえるのを防止し、騒音が大きい時には通常通り騒音低減動作が行われ騒音が小さな時から大きな時までバランスの取れた騒音低減効果を発揮できるという作用効果が得られる。   The active noise control apparatus of the present invention estimates the noise level by calculating a filter coefficient of the first one-tap digital filter and a filter coefficient of the second one-tap digital filter, and the calculation is performed. When the value is less than or equal to the predetermined value, the noise control signal is stopped or the amplification degree of the analog amplification means for amplifying the noise control signal is lowered. This prevents the quantization noise from being heard when the quantization noise is conspicuous, and the noise reduction operation is performed as usual when the noise is loud. The effect that an effect can be exhibited is obtained.

(実施の形態)
以下、本発明の実施の形態1における能動型騒音制御装置について図面を参照しながら説明する。
(Embodiment)
Hereinafter, an active noise control apparatus according to Embodiment 1 of the present invention will be described with reference to the drawings.

図1は本発明の実施の形態1における能動型騒音制御装置のブロック図である。   FIG. 1 is a block diagram of an active noise control apparatus according to Embodiment 1 of the present invention.

図1において、エンジン回転数検出器1は車両に搭載された騒音源としてのエンジンの回転数に比例した周波数をもつパルス列をエンジンパルスpとして出力する。制御対象騒音周波数検出手段としての周波数検出部2はエンジンパルスpから制御対象騒音周波数f〔Hz〕を算出し出力する。離散化された正弦波のデータとしての正弦波テーブル3は正弦波1周期をN等分した各ポイントの正弦値をメモリ上に保持する。正弦波生成手段5はサンプリング周期ごとに正弦波テーブルより、制御対象騒音周波数fに基づいた所定の間隔でデータを読み出して基準正弦波信号x1[n]を生成する。同様に余弦波生成手段6はサンプリング周期ごとに正弦波テーブル3より、制御対象騒音周波数fに基づいた所定の間隔でデータを読み出すが、同一時点では正弦波生成手段よりN/4だけ先行したポイントを読み出すことによって基準余弦波信号x2[n]を生成している。読み出しポイントはNを超えた場合はその読み出しポイントからNを引いたポイントを新たな読み出しポイントとしなければならない。特性テーブル4はスピーカ10からマイクロフォン11までの位相特性を前記正弦波テーブル3のポイント数Nの相対的なポイント移動量に換算した位相特性換算値P[f]を周波数毎に保持する。参照信号生成部14 は制御対象騒音周波数fに基づき、特性テーブル4から制御対象騒音周波数fにおける位相特性換算値P[f]を読み込み、それらに基づき参照正弦波信号r1[n]、参照余弦波信号r2[n]を生成する。   In FIG. 1, an engine speed detector 1 outputs a pulse train having a frequency proportional to the engine speed as a noise source mounted on a vehicle as an engine pulse p. The frequency detection unit 2 as the control target noise frequency detection means calculates and outputs the control target noise frequency f [Hz] from the engine pulse p. The sine wave table 3 serving as discretized sine wave data holds a sine value at each point obtained by dividing one cycle of the sine wave into N equal parts. The sine wave generating means 5 reads out data at a predetermined interval based on the control target noise frequency f from the sine wave table for each sampling period, and generates a reference sine wave signal x1 [n]. Similarly, the cosine wave generating means 6 reads out data from the sine wave table 3 at a predetermined interval based on the control target noise frequency f at every sampling period, but at the same time point, the point preceding the sine wave generating means by N / 4. Is generated as a reference cosine wave signal x2 [n]. When the read point exceeds N, a point obtained by subtracting N from the read point must be set as a new read point. The characteristic table 4 holds, for each frequency, a phase characteristic conversion value P [f] obtained by converting the phase characteristic from the speaker 10 to the microphone 11 into a relative point movement amount of the number N of points in the sine wave table 3. Based on the control target noise frequency f, the reference signal generation unit 14 reads the phase characteristic conversion value P [f] at the control target noise frequency f from the characteristic table 4, and based on them, the reference sine wave signal r1 [n], the reference cosine wave A signal r2 [n] is generated.

次に、第1の1タップデジタルフィルタ7は第1のフィルタ係数W1[n]を内部に保持し、基準正弦波信号x1[n]と第1のフィルタ係数W1[n]とに基づいて第1の制御信号y1[n]を出力する。第2の1タップデジタルフィルタ8は第2のフィルタ係数W2[n]を内部に保持し、基準余弦波信号x2[n]と第2のフィルタ係数W2[n]とに基づいて第2の制御信号y2[n]を出力する。アナログ増幅手段としての電力増幅器9は第1の制御信号y1[n]と第2の制御信号y2[n]とが加算された騒音制御信号をDA変換した信号を増幅する。干渉信号生成手段としてのスピーカ10は電力増幅器9からの出力信号を騒音打ち消し音として出力する。誤差信号検出手段としてのマイクロフォン11はエンジン振動に起因して発生する制御対象騒音と騒音打消し音とが干渉した結果生じる音を誤差信号ε[n]として検出する。第1の係数更新手段としての第1の適応制御アルゴリズム演算部12は参照正弦波信号r1[n]と誤差信号ε[n]を基に、第1の1タップデジタルフィルタ7のフィルタ係数W1[n]を逐次更新する。第2の係数更新手段としての第2の適応制御アルゴリズム演算部13は参照余弦波信号r2[n]と誤差信号ε[n]を基に、第2の1タップデジタルフィルタ8のフィルタ係数W2[n]を逐次更新する。このように離散演算処理部15はソフトウェアにより構成される。   Next, the first one-tap digital filter 7 holds the first filter coefficient W1 [n] inside, and based on the reference sine wave signal x1 [n] and the first filter coefficient W1 [n]. 1 control signal y1 [n] is output. The second one-tap digital filter 8 holds the second filter coefficient W2 [n] inside, and performs the second control based on the reference cosine wave signal x2 [n] and the second filter coefficient W2 [n]. The signal y2 [n] is output. The power amplifier 9 as an analog amplifying unit amplifies a signal obtained by DA-converting the noise control signal obtained by adding the first control signal y1 [n] and the second control signal y2 [n]. The speaker 10 as the interference signal generating means outputs the output signal from the power amplifier 9 as noise canceling sound. The microphone 11 serving as the error signal detection means detects a sound generated as a result of interference between the control target noise generated due to engine vibration and the noise canceling sound as an error signal ε [n]. The first adaptive control algorithm calculation unit 12 as the first coefficient updating unit 12 uses the filter coefficient W1 [of the first one-tap digital filter 7 based on the reference sine wave signal r1 [n] and the error signal ε [n]. n] are updated sequentially. The second adaptive control algorithm computing unit 13 as the second coefficient updating means 13 uses the filter coefficient W2 [of the second one-tap digital filter 8 based on the reference cosine wave signal r2 [n] and the error signal ε [n]. n] are updated sequentially. As described above, the discrete arithmetic processing unit 15 is configured by software.

16は第1の1タップデジタルフィルタ7における第1のフィルタ係数W1[n]と第2の1タップデジタルフィルタ8における第2のフィルタ係数W2[n]を演算し、その値が所定値以上の場合には制御信号を発生する係数演算手段であり、17は係数演算手段16からの制御信号によって開閉動作を行うスイッチであり、係数演算手段16での演算値が所定値以上になった場合には開放し騒音制御信号が遮断されるようになっている。   16 calculates a first filter coefficient W1 [n] in the first one-tap digital filter 7 and a second filter coefficient W2 [n] in the second one-tap digital filter 8, and the values are equal to or larger than a predetermined value. In this case, a coefficient calculating means for generating a control signal is provided, and 17 is a switch for performing an opening / closing operation by a control signal from the coefficient calculating means 16, and when the calculated value in the coefficient calculating means 16 becomes a predetermined value or more. Is opened and the noise control signal is cut off.

次に、本装置の具体的な動作を説明する。   Next, a specific operation of this apparatus will be described.

基準正弦波信号x1[n]の生成と、基準余弦波信号x2[n]の生成と、参照正弦波信号r1[n]の生成と、参照余弦波信号r2[n]の生成と、第1の制御信号y1[n]の生成と、第2の制御信号y2[n]の生成と、誤差信号ε[n]の検出と、フィルタ係数W1[n]の更新と、フィルタ係数W2[n]の更新と第2の正弦波信号x3[n]は、すべて同一の周期で実行する。以降では、この周期をT〔秒〕として説明する。   Generation of the reference sine wave signal x1 [n], generation of the reference cosine wave signal x2 [n], generation of the reference sine wave signal r1 [n], generation of the reference cosine wave signal r2 [n], first Generation of the control signal y1 [n], generation of the second control signal y2 [n], detection of the error signal ε [n], update of the filter coefficient W1 [n], and filter coefficient W2 [n] And the second sine wave signal x3 [n] are all executed in the same cycle. Hereinafter, this period is described as T [seconds].

周波数検出部2は、例えばエンジンパルスpの立ち上がりエッジ毎に割り込みを発生させ、立ち上がりエッジ間の時間を測定し、測定結果をもとに制御対象騒音の周波数fを算出する。   For example, the frequency detector 2 generates an interrupt at each rising edge of the engine pulse p, measures the time between the rising edges, and calculates the frequency f of the control target noise based on the measurement result.

正弦波テーブル3は、正弦波1周期をN等分し、各ポイントの正弦値の離散データをメモリ上に保持する。0ポイント目からN−1ポイント目までの正弦値を格納した配列をz[m](0≦m<N)で表すとき、関係式(5)が成り立つ。   The sine wave table 3 equally divides one cycle of the sine wave into N, and holds discrete data of sine values at each point on the memory. When an array storing sine values from the 0th point to the (N-1) th point is represented by z [m] (0 ≦ m <N), the relational expression (5) is established.

z[m]=sin(360°×m/N) ・・・(5)
例えば、8bit精度でN=3000の場合のz[m]のグラフと表をそれぞれ図3と表1に示す。
z [m] = sin (360 ° × m / N) (5)
For example, FIG. 3 and Table 1 show a graph and a table of z [m] when N = 3000 with 8-bit accuracy, respectively.

Figure 2008260420
Figure 2008260420

特性テーブル4は、スピーカ10からマイクロフォン11までの伝達特性の振幅特性を表す振幅特性配列G[f]と位相特性を正弦波テーブル3のポイント数Nの相対的なポイント移動量に換算した位相特性換算値配列P[f]をメモリ上に保持する(fは周波数〔Hz〕)。   The characteristic table 4 is a phase characteristic obtained by converting the amplitude characteristic array G [f] representing the amplitude characteristic of the transmission characteristic from the speaker 10 to the microphone 11 and the phase characteristic into a relative point movement amount of the number N of points of the sine wave table 3. The converted value array P [f] is held in the memory (f is the frequency [Hz]).

f〔Hz〕のときの振幅特性をβ[f](dB)、位相特性をθ[f](度)とすると、関係式(6)が成り立つ。   When the amplitude characteristic at f [Hz] is β [f] (dB) and the phase characteristic is θ [f] (degrees), the relational expression (6) is established.

P[f]=N×θ[f]/360 ・・・(6)
例えば、N=3000で、制御対象騒音周波数の範囲が30Hzから100Hzまでの場合の位相特性θ[f]の例を図5に、それに対応する位相特性配列P[f]を表2に示す。
P [f] = N × θ [f] / 360 (6)
For example, FIG. 5 shows an example of the phase characteristic θ [f] when N = 3000 and the range of the noise frequency to be controlled is 30 Hz to 100 Hz, and Table 2 shows the corresponding phase characteristic array P [f].

Figure 2008260420
Figure 2008260420

正弦波生成手段5は、正弦波テーブル3の現在の読み出し位置i[n]をメモリ上に記憶しており、制御対象騒音周波数fに基づいて現在の読み出し位置を式(7)により毎周期移動させる。   The sine wave generating means 5 stores the current read position i [n] of the sine wave table 3 in the memory, and moves the current read position every cycle based on the control target noise frequency f by the equation (7). Let

i[n+1]=i[n]+N×f×T ・・・(7)
ただし、式(7)の右辺の計算結果がN以上となった場合は、式(7)の右辺の計算結果からNを減算したものをi[n+1]とする。
i [n + 1] = i [n] + N × f × T (7)
However, when the calculation result of the right side of Expression (7) is N or more, the result of subtracting N from the calculation result of the right side of Expression (7) is i [n + 1].

同時に、正弦波生成手段5は、制御対象騒音周波数fと同一周波数の基準正弦波信号x1[n]を式(8)と式(9)により生成する。   At the same time, the sine wave generating means 5 generates the reference sine wave signal x1 [n] having the same frequency as the control target noise frequency f by the equations (8) and (9).

ix1 =i[n] ・・・(8)
x1[n]=z[ix1] ・・・(9)
ただし、式(8)の右辺の計算結果がN以上となった場合は、式(8)の右辺の計算結果からNを減算したものをix1とする。
ix1 = i [n] (8)
x1 [n] = z [ix1] (9)
However, when the calculation result of the right side of Expression (8) is N or more, ix1 is obtained by subtracting N from the calculation result of the right side of Expression (8).

また、余弦波生成手段6は、制御対象騒音周波数fと同一周波数で、かつ、基準正弦波信号x1[n]より4分の1周期進んだ基準余弦波信号x2[n]を式(10)と式(11)により生成する。   Further, the cosine wave generating means 6 generates a reference cosine wave signal x2 [n] having the same frequency as the control target noise frequency f and advanced by a quarter of a period from the reference sine wave signal x1 [n] using the equation (10). And the equation (11).

ix2 =i[n]+N/4 ・・・(10)
x2[n]=z[ix2] ・・・(11)
ただし、式(10)の右辺の計算結果がN以上となった場合は、式(10)の右辺の計算結果からNを減算したものをix2とする。
ix2 = i [n] + N / 4 (10)
x2 [n] = z [ix2] (11)
However, when the calculation result of the right side of Expression (10) is N or more, ix2 is obtained by subtracting N from the calculation result of the right side of Expression (10).

同時に、参照信号生成部14は、制御対象騒音周波数fにおけるスピーカ10からマイクロフォン11までの伝達特性の振幅特性値と位相特性を正弦波テーブル3のポイント数Nの相対的なポイント移動量に換算した位相特性換算値を特性テーブル4よりP[f]として抽出し、以下の方法で参照正弦波信号r1[n]及び参照余弦波信号r2[n]を作成する。   At the same time, the reference signal generation unit 14 converts the amplitude characteristic value and the phase characteristic of the transfer characteristic from the speaker 10 to the microphone 11 at the control target noise frequency f into the relative point movement amount of the number N of points in the sine wave table 3. The phase characteristic conversion value is extracted as P [f] from the characteristic table 4, and the reference sine wave signal r1 [n] and the reference cosine wave signal r2 [n] are created by the following method.

参照正弦波信号r1[n]
ix3 =i[n]+P[f] ・・・(12)
r1[n]=z[ix3] ・・・(13)
参照余弦波信号r2[n]
ix4 =i[n]+N/4+P[f] ・・・(14)
r1[n]=z[ix3] ・・・(15)
次に、第1の1タップデジタルフィルタ7は第1のフィルタ係数W1[n]を内部に保持し、基準正弦波信号x1[n]と第1のフィルタ係数W1[n]とに基づいて第1の制御信号y1[n]を出力する。第2の1タップデジタルフィルタ8は第2のフィルタ係数W2[n]を内部に保持し、基準余弦波信号x2[n]と第2のフィルタ係数W2[n]とに基づいて第2の制御信号y2[n]を出力する。アナログ増幅手段としての電力増幅器9は第1の制御信号y1[n]と第2の制御信号y2[n]とが加算された騒音制御信号をDA変換した信号を増幅する。干渉信号生成手段としてのスピーカ10は電力増幅器9からの出力信号を騒音打ち消し音として出力する。誤差信号検出手段としてのマイクロフォン11はエンジン振動に起因して発生する制御対象騒音と騒音打消し音とが干渉した結果生じる音を誤差信号ε[n]として検出する。第1の係数更新手段としての第1の適応制御アルゴリズム演算部12は誤差信号ε[n]と参照正弦波信号r1[n]を用いて第1の1タップデジタルフィルタ7のフィルタ係数W1[n]を逐次更新する。第2の係数更新手段としての第2の適応制御アルゴリズム演算部13は係数更新用誤差信号ε[n]と参照余弦波信号r2[n]を用いて第2の1タップデジタルフィルタ8のフィルタ係数W2[n]を逐次更新する。このように離散演算処理部15はソフトウェアにより構成される。
Reference sine wave signal r1 [n]
ix3 = i [n] + P [f] (12)
r1 [n] = z [ix3] (13)
Reference cosine wave signal r2 [n]
ix4 = i [n] + N / 4 + P [f] (14)
r1 [n] = z [ix3] (15)
Next, the first one-tap digital filter 7 holds the first filter coefficient W1 [n] inside, and based on the reference sine wave signal x1 [n] and the first filter coefficient W1 [n]. 1 control signal y1 [n] is output. The second one-tap digital filter 8 holds the second filter coefficient W2 [n] inside, and performs the second control based on the reference cosine wave signal x2 [n] and the second filter coefficient W2 [n]. The signal y2 [n] is output. The power amplifier 9 as an analog amplifying unit amplifies a signal obtained by DA-converting the noise control signal obtained by adding the first control signal y1 [n] and the second control signal y2 [n]. The speaker 10 as the interference signal generating means outputs the output signal from the power amplifier 9 as noise canceling sound. The microphone 11 serving as the error signal detection means detects a sound generated as a result of interference between the control target noise generated due to engine vibration and the noise canceling sound as an error signal ε [n]. The first adaptive control algorithm calculation unit 12 as the first coefficient updating unit 12 uses the error signal ε [n] and the reference sine wave signal r1 [n] to filter coefficient W1 [n of the first one-tap digital filter 7. ] Are updated sequentially. The second adaptive control algorithm computing unit 13 as the second coefficient updating means uses the coefficient updating error signal ε [n] and the reference cosine wave signal r2 [n] to filter coefficients of the second one-tap digital filter 8. W2 [n] is updated sequentially. As described above, the discrete arithmetic processing unit 15 is configured by software.

W1[n+1]=W1[n]−μ×r1[n]×ε[n] ・・・(16)
W2[n+1]=W2[n]−μ×r2[n]×ε[n] ・・・(17)
これらの過程をサンプリング周期ごとに実行することによって誤差信号ε[n]の中の周波数fの成分は低減する。
W1 [n + 1] = W1 [n] −μ × r1 [n] × ε [n] (16)
W2 [n + 1] = W2 [n] −μ × r2 [n] × ε [n] (17)
By executing these processes for each sampling period, the frequency f component in the error signal ε [n] is reduced.

一方、係数演算手段16は第1の1タップデジタルフィルタ7における第1のフィルタ係数W1[n]と第2の1タップデジタルフィルタ8における第2のフィルタ係数W2[n]のそれぞれの絶対値の和を計算しており、その計算値が所定値以下の場合はスイッチ17を開放し、騒音制御信号が電力増幅器9に入力されないようにしている。第1の1タップデジタルフィルタ7における第1のフィルタ係数W1[n]と第2の1タップデジタルフィルタ8における第2のフィルタ係数W2[n]のそれぞれの絶対値の和は間接的に騒音の大きさを表しており、この値が小さな時は相対的に量子化ノイズが目立ちやすくなるので、騒音の低減による効果と量子化ノイズが聞こえる範囲を総合的に勘案して、前記所定値を決定すればよい。また、第1の1タップデジタルフィルタ7における第1のフィルタ係数W1[n]と第2の1タップデジタルフィルタ8における第2のフィルタ係数W2[n]のそれぞれの絶対値の和が所定値を超える、あるいは下回る時にはスイッチ17が開閉されるが、その時の騒音制御信号はどの値であるか特定できずポップ音が発生する可能性がある。このような場合にはスイッチ17の開閉を少し遅らせ、騒音制御信号が0になる瞬間にスイッチ17の開閉を行うような制御を加えることも好ましい。   On the other hand, the coefficient calculation means 16 calculates the absolute values of the first filter coefficient W1 [n] in the first 1-tap digital filter 7 and the second filter coefficient W2 [n] in the second 1-tap digital filter 8. The sum is calculated, and when the calculated value is equal to or less than the predetermined value, the switch 17 is opened so that the noise control signal is not input to the power amplifier 9. The sum of the absolute values of the first filter coefficient W1 [n] in the first one-tap digital filter 7 and the second filter coefficient W2 [n] in the second one-tap digital filter 8 is indirectly noise. When the value is small, quantization noise is relatively conspicuous. Therefore, the predetermined value is determined by comprehensively considering the effect of noise reduction and the range where the quantization noise can be heard. do it. The sum of the absolute values of the first filter coefficient W1 [n] in the first 1-tap digital filter 7 and the second filter coefficient W2 [n] in the second 1-tap digital filter 8 has a predetermined value. When it exceeds or falls, the switch 17 is opened and closed. However, the value of the noise control signal at that time cannot be specified, and a pop sound may be generated. In such a case, it is also preferable to apply control such that the opening and closing of the switch 17 is slightly delayed and the switch 17 is opened and closed at the moment when the noise control signal becomes zero.

本発明の実施の形態2においては、係数演算手段16において第1の1タップデジタルフィルタ7における第1のフィルタ係数W1[n]と第2の1タップデジタルフィルタ8における第2のフィルタ係数W2[n]の二乗和を計算しており、その計算値が所定値以下の場合はスイッチ17を開放する。これは実施の形態1に比較して、騒音の大きさの推定がより正確に行なえる中で、量子化ノイズの低減が図れるという効果がある。   In the second embodiment of the present invention, the coefficient calculating means 16 uses the first filter coefficient W1 [n] in the first 1-tap digital filter 7 and the second filter coefficient W2 [ n] is calculated, and the switch 17 is opened when the calculated value is equal to or less than a predetermined value. This has an effect that the quantization noise can be reduced while the noise magnitude can be estimated more accurately than in the first embodiment.

また、実施の形態1と同様にスイッチ17の開閉タイミングを遅らせ騒音制御信号が0になる瞬間にスイッチ17の開閉を行うような制御を加えることも好ましいことはいうまでもない。   Needless to say, it is also preferable to delay the opening / closing timing of the switch 17 as in the first embodiment and to perform control to open / close the switch 17 at the moment when the noise control signal becomes zero.

図2は本発明の実施の形態3の構成を示すブロック図である。ほとんどの構成は実施の形態1と同様であるが、アナログ増幅手段としての電力増幅器9は係数演算手段16の制御信号によって増幅度が可変できるように構成されている。そして、第1の1タップデジタルフィルタ7における第1のフィルタ係数W1[n]と第2の1タップデジタルフィルタ8における第2のフィルタ係数W2[n]のそれぞれの絶対値の和もしくは二乗和が所定値を下回った時には係数演算手段16は制御信号を出力し、電力増幅器9の増幅度を下げることによって、量子化ノイズが目立ちにくいようにしている。   FIG. 2 is a block diagram showing the configuration of the third embodiment of the present invention. Although most of the configurations are the same as those of the first embodiment, the power amplifier 9 as the analog amplifying means is configured so that the amplification degree can be varied by the control signal of the coefficient calculating means 16. The sum or square sum of the absolute values of the first filter coefficient W1 [n] in the first 1-tap digital filter 7 and the second filter coefficient W2 [n] in the second 1-tap digital filter 8 is When the value is lower than the predetermined value, the coefficient calculation means 16 outputs a control signal and lowers the amplification degree of the power amplifier 9 so that the quantization noise is not noticeable.

この際、第1の1タップデジタルフィルタ7における第1のフィルタ係数W1[n]と第2の1タップデジタルフィルタ8における第2のフィルタ係数W2[n]のそれぞれの絶対値の和もしくは二乗和が所定値を下回った時、あるいは上回った時には電力増幅器9の増幅度を変化させるが、増幅度を急激に変化させるとポップ音の心配があるため、除々に一定の時間をかけて目的の増幅度まで変化させるような制御をすることが好ましい。   At this time, the sum or square sum of the absolute values of the first filter coefficient W1 [n] in the first one-tap digital filter 7 and the second filter coefficient W2 [n] in the second one-tap digital filter 8 are used. When the value falls below or exceeds the predetermined value, the amplification factor of the power amplifier 9 is changed. However, if the amplification factor is changed suddenly, there is a concern about pop noise. It is preferable to control to change the degree.

本発明にかかる能動型騒音制御装置は、騒音が小さな時に目立つ量子化ノイズを低減し、低い騒音から大きい騒音の時まで対応しうる実用性の高い能動型騒音制御装置として有用である。   The active noise control device according to the present invention is useful as a highly practical active noise control device that can reduce quantization noise that is noticeable when the noise is low and can cope with low noise to high noise.

本発明の実施の形態1における能動型騒音制御装置を説明するためのブロック図Block diagram for explaining an active noise control apparatus according to Embodiment 1 of the present invention 本発明の実施の形態3における能動型騒音制御装置を説明するためのブロック図Block diagram for explaining an active noise control apparatus according to Embodiment 3 of the present invention 同能動型騒音制御装置における正弦波テーブルの例を示す特性図Characteristic diagram showing an example of a sine wave table in the active noise control device 同能動型騒音制御装置におけるスピーカからマイクまでの伝達特性の例を示す特性図Characteristic diagram showing an example of transfer characteristics from the speaker to the microphone in the active noise control device 従来の能動騒音低減装置の構成を示すブロック図Block diagram showing the configuration of a conventional active noise reduction device

符号の説明Explanation of symbols

1 エンジン回転数検出器
2 周波数検出部(制御対象騒音周波数検出手段)
3 正弦波テーブル
4 特性テーブル
5 正弦波生成手段
6 余弦波生成手段
7 第1の1タップデジタルフィルタ
8 第2の1タップデジタルフィルタ
9 電力増幅器(アナログ増幅手段)
10 スピーカ(干渉信号生成手段)
11 マイクロフォン(誤差信号検出手段)
12 第1の適応制御アルゴリズム演算部(第1の係数更新手段)
13 第2の適応制御アルゴリズム演算部(第2の係数更新手段)
14 参照信号生成部
15 離散演算処理部
16 係数演算手段
17 スイッチ
18 基準信号生成部
19 選択手段
20 補正信号生成部
21 基準正弦波信号補正値テーブル
22 基準余弦波信号補正値テーブル
1 Engine speed detector 2 Frequency detector (Controlled noise frequency detection means)
DESCRIPTION OF SYMBOLS 3 Sine wave table 4 Characteristic table 5 Sine wave production | generation means 6 Cosine wave production | generation means 7 1st 1 tap digital filter 8 2nd 1 tap digital filter 9 Power amplifier (analog amplification means)
10 Speaker (Interference signal generation means)
11 Microphone (error signal detection means)
12 1st adaptive control algorithm calculating part (1st coefficient update means)
13 2nd adaptive control algorithm calculating part (2nd coefficient update means)
DESCRIPTION OF SYMBOLS 14 Reference signal production | generation part 15 Discrete operation processing part 16 Coefficient calculation means 17 Switch 18 Reference signal generation part 19 Selection means 20 Correction signal generation part 21 Reference sine wave signal correction value table 22 Reference cosine wave signal correction value table

Claims (4)

騒音源に起因する制御すべき騒音の周波数を検出する制御対象騒音周波数検出手段と、前記制御対象騒音周波数検出手段で検出された騒音の周波数と同一の周波数の基準正弦波を生成する正弦波生成手段と基準余弦波を生成する余弦波生成手段と前記正弦波生成手段からの基準正弦波信号が入力される第1の1タップデジタルフィルタと、前記余弦波生成手段からの基準余弦波信号が入力される第2の1タップデジタルフィルタと、前記第1の1タップデジタルフィルタからの出力と前記第2の1タップデジタルフィルタからの出力とが加算された騒音制御信号をアナログ増幅するアナログ増幅手段と前記アナログ増幅手段からの信号が入力され前記騒音源に起因する制御すべき騒音と干渉させるための干渉信号を出力させる干渉信号生成手段と、前記干渉信号生成手段から出力される前記干渉信号と前記騒音源に起因する制御すべき騒音との干渉の結果生じる誤差信号を検出する誤差信号検出手段と、前記第1の1タップデジタルフィルタのフィルタ係数を更新する第1の係数更新手段と、前記第2の1タップデジタルフィルタのフィルタ係数を更新する第2の係数更新手段からなり、前記第1の係数更新手段及び第2の係数更新手段は前記誤差信号検出手段からの誤差信号と前記正弦波生成手段からの基準正弦波信号と前記余弦波生成手段からの基準余弦波信号を前記誤差検出手段から前記干渉信号生成手段までの伝達特性で補正した補正正弦波信号及び補正余弦波信号とによって前記誤差信号検出手段における騒音が低減されるように構成された能動型騒音低減装置において前記第1の1タップデジタルフィルタのフィルタ係数の絶対値と前記第2の1タップデジタルフィルタのフィルタ係数の絶対値の和が所定値以下の時には前記騒音制御信号の値を強制的に0とすることを特徴とする能動型騒音制御装置。 Control target noise frequency detection means for detecting the frequency of the noise to be controlled due to the noise source, and sine wave generation for generating a reference sine wave having the same frequency as the noise frequency detected by the control target noise frequency detection means Means, a cosine wave generating means for generating a reference cosine wave, a first one-tap digital filter to which a reference sine wave signal from the sine wave generating means is input, and a reference cosine wave signal from the cosine wave generating means are input. A second one-tap digital filter, and analog amplifying means for analog-amplifying a noise control signal obtained by adding the output from the first one-tap digital filter and the output from the second one-tap digital filter; An interference signal generator that receives the signal from the analog amplification means and outputs an interference signal for causing interference with noise to be controlled caused by the noise source. Error signal detecting means for detecting an error signal resulting from interference between the interference signal output from the interference signal generating means and the noise to be controlled caused by the noise source, and the first one-tap digital filter The first coefficient updating means for updating the filter coefficient and the second coefficient updating means for updating the filter coefficient of the second one-tap digital filter, and the first coefficient updating means and the second coefficient updating. The means transmits the error signal from the error signal detection means, the reference sine wave signal from the sine wave generation means, and the reference cosine wave signal from the cosine wave generation means to the transfer characteristic from the error detection means to the interference signal generation means. In the active noise reduction device configured to reduce the noise in the error signal detection means by the corrected sine wave signal and the corrected cosine wave signal When the sum of the absolute value of the filter coefficient of the first 1-tap digital filter and the absolute value of the filter coefficient of the second 1-tap digital filter is less than or equal to a predetermined value, the value of the noise control signal is forcibly set to 0. An active noise control device. 前記第1の1タップデジタルフィルタのフィルタ係数と前記第2の1タップデジタルフィルタのフィルタ係数の二乗和が所定値以下の時には前記騒音制御信号の値を強制的に0とすることを特徴とする請求項1に記載の能動型騒音制御装置。 The value of the noise control signal is forcibly set to 0 when the sum of squares of the filter coefficient of the first one-tap digital filter and the filter coefficient of the second one-tap digital filter is equal to or less than a predetermined value. The active noise control device according to claim 1. 前記第1の1タップデジタルフィルタのフィルタ係数の絶対値と前記第2の1タップデジタルフィルタのフィルタ係数の絶対値の和が所定値以下の時には前記アナログ増幅手段の増幅度を下げることを特徴とする請求項1に記載の能動型騒音制御装置。 When the sum of the absolute value of the filter coefficient of the first one-tap digital filter and the absolute value of the filter coefficient of the second one-tap digital filter is less than or equal to a predetermined value, the amplification degree of the analog amplifying means is lowered. The active noise control device according to claim 1. 前記第1の1タップデジタルフィルタのフィルタ係数と前記第2の1タップデジタルフィルタのフィルタ係数の二乗和が所定値以下の時には前記アナログ増幅手段の増幅度を下げることを特徴とする請求項1に記載の能動型騒音制御装置。 2. The degree of amplification of the analog amplifying means is lowered when the sum of squares of the filter coefficient of the first one-tap digital filter and the filter coefficient of the second one-tap digital filter is a predetermined value or less. The active noise control apparatus as described.
JP2007104771A 2007-04-12 2007-04-12 Active type noise control device Pending JP2008260420A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007104771A JP2008260420A (en) 2007-04-12 2007-04-12 Active type noise control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007104771A JP2008260420A (en) 2007-04-12 2007-04-12 Active type noise control device

Publications (1)

Publication Number Publication Date
JP2008260420A true JP2008260420A (en) 2008-10-30

Family

ID=39983232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007104771A Pending JP2008260420A (en) 2007-04-12 2007-04-12 Active type noise control device

Country Status (1)

Country Link
JP (1) JP2008260420A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010084704A1 (en) * 2009-01-21 2010-07-29 パナソニック株式会社 Active noise control apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010084704A1 (en) * 2009-01-21 2010-07-29 パナソニック株式会社 Active noise control apparatus
JP2010167844A (en) * 2009-01-21 2010-08-05 Panasonic Corp Active noise control device

Similar Documents

Publication Publication Date Title
JP2007328219A (en) Active noise controller
JP5359305B2 (en) Active noise control device
JP4079831B2 (en) Active noise reduction device
JP5712348B2 (en) Active noise reduction device, active noise reduction system using the same, mobile device, and active noise reduction method
EP1480494B1 (en) Feedback suppression in sound signal processing using frequency translation
Wu et al. A simplified adaptive feedback active noise control system
JP6125389B2 (en) Active silencer and method
WO2007011010A1 (en) Active noise reduction device
WO2006117915A1 (en) Active noise suppressor
JP2013109352A (en) Adjustable active noise control
CN106531145B (en) Recurrence active noise control method based on M estimator
WO2001067434A1 (en) Active noise reduction system
CN104981865A (en) Active vibration/noise control device
JP2008250131A (en) Active noise controller
JPH05341792A (en) Noise reduction device
JP2005318518A (en) Double-talk state judging method, echo cancel method, double-talk state judging apparatus, echo cancel apparatus, and program
JP6270136B2 (en) Active noise control device and active noise control method
JP2008260420A (en) Active type noise control device
JP2020086206A (en) Active noise reduction device, mobile device, and noise reduction method
JP2008247279A (en) Active type cabin noise control device
JP5141351B2 (en) Active noise control device
JP4962095B2 (en) Active noise control device
JP2008250130A (en) Active noise controller
KR100206834B1 (en) Apparatus and method for eliminating noise by active control
JPH0719157B2 (en) Noise control device