JP2009253313A - Plasma display device - Google Patents

Plasma display device Download PDF

Info

Publication number
JP2009253313A
JP2009253313A JP2008094661A JP2008094661A JP2009253313A JP 2009253313 A JP2009253313 A JP 2009253313A JP 2008094661 A JP2008094661 A JP 2008094661A JP 2008094661 A JP2008094661 A JP 2008094661A JP 2009253313 A JP2009253313 A JP 2009253313A
Authority
JP
Japan
Prior art keywords
voltage
period
electrode
plasma display
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008094661A
Other languages
Japanese (ja)
Inventor
Mitsuhiro Murata
充弘 村田
Kaname Mizogami
要 溝上
Shunichi Wakabayashi
俊一 若林
Shinichiro Hashimoto
伸一郎 橋本
Keiji Akamatsu
慶治 赤松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2008094661A priority Critical patent/JP2009253313A/en
Priority to CN200980000451.2A priority patent/CN101689454B/en
Priority to EP09727522A priority patent/EP2139020A4/en
Priority to KR1020107006458A priority patent/KR101115704B1/en
Priority to US12/596,774 priority patent/US8482490B2/en
Priority to PCT/JP2009/001396 priority patent/WO2009122688A1/en
Publication of JP2009253313A publication Critical patent/JP2009253313A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/20Constructional details
    • H01J11/34Vessels, containers or parts thereof, e.g. substrates
    • H01J11/40Layers for protecting or enhancing the electron emission, e.g. MgO layers
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/28Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels
    • G09G3/288Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels
    • G09G3/291Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels controlling the gas discharge to control a cell condition, e.g. by means of specific pulse shapes
    • G09G3/292Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels controlling the gas discharge to control a cell condition, e.g. by means of specific pulse shapes for reset discharge, priming discharge or erase discharge occurring in a phase other than addressing
    • G09G3/2927Details of initialising
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/10AC-PDPs with at least one main electrode being out of contact with the plasma
    • H01J11/12AC-PDPs with at least one main electrode being out of contact with the plasma with main electrodes provided on both sides of the discharge space
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/06Details of flat display driving waveforms
    • G09G2310/066Waveforms comprising a gently increasing or decreasing portion, e.g. ramp
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/28Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels
    • G09G3/288Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels
    • G09G3/291Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels controlling the gas discharge to control a cell condition, e.g. by means of specific pulse shapes
    • G09G3/293Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels controlling the gas discharge to control a cell condition, e.g. by means of specific pulse shapes for address discharge
    • G09G3/2932Addressed by writing selected cells that are in an OFF state

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Control Of Gas Discharge Display Tubes (AREA)
  • Gas-Filled Discharge Tubes (AREA)
  • Transforming Electric Information Into Light Information (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem that a high-definition PDP is unable to perform image display normally due to a writing operation defect, which is caused by forcible discharge generation in an initialization period and discharge interference between adjacent cells. <P>SOLUTION: In the plasma display device, groups of agglomerated grains consisting of agglomerated crystal grains of metal oxides are arranged on the periphery of a protective layer 18, and image display is performed by driving the device by a drive system comprising, in the initialization period, the first half portion of the initialization period of applying voltage boosting gently from a first voltage to a second voltage to a second electrode and a second half portion of the initialization period of applying voltage dropping gently from a third voltage to a fourth voltage to the second electrode. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明はコンピュータやテレビなどの画像表示に用いるプラズマディスプレイ装置に関するものである。   The present invention relates to a plasma display device used for image display such as a computer or a television.

近年、コンピュータやテレビなどの画像表示に用いられているプラズマディスプレイパネル(以下、PDPと表記)は、大型で薄型軽量化を実現するだけでなく、より高画質を実現するために高精細化への要望が高まっている。   In recent years, plasma display panels (hereinafter referred to as PDP) used for image display of computers and televisions are not only large, thin, and lightweight, but also have high definition in order to realize higher image quality. The demand is growing.

従来のPDPは、図1に示す構成が一般的である。図1において、PDPは前面パネルPA1と背面パネルPA2から構成されている。   A conventional PDP generally has the configuration shown in FIG. In FIG. 1, the PDP is composed of a front panel PA1 and a back panel PA2.

前面パネルPA1は、前面ガラス基板11上にストライプ状に配設された第2の電極である走査電極19a、第1の電極である維持電極19b、ブラックストライプ(遮光層)7と、走査電極19a、維持電極19b、ブラックストライプ7を覆うように形成された第1の誘電体ガラス層17a、第1の誘電体ガラス層17a上に形成された第2の誘電体ガラス層17bからなる誘電体ガラス層17、さらに誘電体ガラス層17上に形成された誘電体保護膜層18の積層から構成されている。走査電極19aおよび維持電極19bは透明電極19a1、透明電極19b1および金属電極19a2、金属電極19b2から構成されている。   The front panel PA1 includes a scanning electrode 19a as a second electrode, a sustain electrode 19b as a first electrode, a black stripe (light-shielding layer) 7 and a scanning electrode 19a. A dielectric glass comprising a sustaining electrode 19b, a first dielectric glass layer 17a formed so as to cover the black stripe 7, and a second dielectric glass layer 17b formed on the first dielectric glass layer 17a. The layer 17 is composed of a laminate of a dielectric protective film layer 18 formed on the dielectric glass layer 17. Scan electrode 19a and sustain electrode 19b are composed of transparent electrode 19a1, transparent electrode 19b1, metal electrode 19a2, and metal electrode 19b2.

背面パネルPA2は、背面ガラス基板12上にストライプ状に配設された第3の電極であるアドレス電極14と、アドレス電極14を覆うように形成された電極保護層13と、アドレス電極14を囲むように電極保護層13上に箱状に形成された隔壁15とから構成されている。隔壁15の内壁には蛍光体層16が塗布されている。蛍光体層は通常カラー表示のため、赤、緑、青の三色の蛍光体が順に配置されている。   The back panel PA <b> 2 surrounds the address electrodes 14, which are third electrodes arranged in a stripe pattern on the back glass substrate 12, the electrode protection layer 13 formed so as to cover the address electrodes 14, and the address electrodes 14. Thus, the barrier rib 15 is formed in a box shape on the electrode protective layer 13. A phosphor layer 16 is applied to the inner wall of the partition wall 15. Since the phosphor layer is usually a color display, phosphors of three colors of red, green and blue are arranged in order.

前面パネルPA1と背面パネルPA2とが張り合わせられ、隔壁15により区切られた放電部20には放電ガスが封入されている。たとえば、放電部20にはヘリウム、ネオン、アルゴン、クリプトン、キセノンなどからなる混合ガスが通常67kPa程度の圧力で封入されている。   The front panel PA1 and the rear panel PA2 are attached to each other, and a discharge gas is sealed in the discharge unit 20 separated by the partition walls 15. For example, a mixed gas composed of helium, neon, argon, krypton, xenon, or the like is normally sealed in the discharge unit 20 at a pressure of about 67 kPa.

次に、PDPの電極配置およびPDPを表示駆動するための駆動回路を備えるプラズマディスプレイ装置について説明する。図2は、PDPの電極配置を示す。また図3はプラズマディスプレイ装置の駆動回路の構成を示したブロック図である。このプラズマディスプレイ装置は、パネル1、走査電極駆動回路21、維持電極駆動回路22、アドレス電極駆動回路23、タイミング発生回路24、A/D(アナログ/ディジタル)変換器25、走査線数変換部26、サブフィールド変換部27、APL(Averaged Picture Level(平均輝度レベル))検出部28を備えている。   Next, a description will be given of a plasma display device including a PDP electrode arrangement and a driving circuit for driving the display of the PDP. FIG. 2 shows the electrode arrangement of the PDP. FIG. 3 is a block diagram showing the configuration of the driving circuit of the plasma display device. This plasma display device includes a panel 1, a scan electrode drive circuit 21, a sustain electrode drive circuit 22, an address electrode drive circuit 23, a timing generation circuit 24, an A / D (analog / digital) converter 25, and a scan line number conversion unit 26. , A subfield conversion unit 27, and an APL (Averaged Picture Level (average luminance level)) detection unit 28.

図3において、画像信号VDはA/D変換器25に入力される。また、水平同期信号Hおよび垂直同期信号Vはタイミング発生回路24、A/D変換器25、走査線数変換部26に入力される。A/D変換器25は、画像信号VDをデジタル信号の画像データに変換し、その画像データを走査線数変換部26およびAPL検出部28に出力する。APL検出部28は画像データの平均輝度レベルを検出する。検出した平均輝度レベルに基づいて、1テレビフィールドを構成する駆動波形を制御する。走査線数変換部26は、画像データをパネル1の画素数に応じた画像データに変換し、サブフィールド変換部27に出力する。サブフィールドについては、後述する。サブフィールドに分割された画像データをアドレス電極駆動回路23に出力し、アドレス電極駆動回路23は、サブフィールド毎にアドレス電極D1〜アドレス電極Dmに対応する電圧をアドレス電極に印加する。   In FIG. 3, the image signal VD is input to the A / D converter 25. The horizontal synchronization signal H and the vertical synchronization signal V are input to the timing generation circuit 24, the A / D converter 25, and the scanning line number conversion unit 26. The A / D converter 25 converts the image signal VD into digital image data, and outputs the image data to the scanning line number conversion unit 26 and the APL detection unit 28. The APL detection unit 28 detects the average luminance level of the image data. Based on the detected average luminance level, a drive waveform constituting one television field is controlled. The scanning line number conversion unit 26 converts the image data into image data corresponding to the number of pixels of the panel 1 and outputs the image data to the subfield conversion unit 27. The subfield will be described later. The image data divided into the subfields is output to the address electrode drive circuit 23, and the address electrode drive circuit 23 applies voltages corresponding to the address electrodes D1 to Dm to the address electrodes for each subfield.

タイミング発生回路24は、水平同期信号Hおよび垂直同期信号Vをもとにしてタイミング信号を発生し、走査電極駆動回路21および維持電極駆動回路22に出力する。走査電極駆動回路21および維持電極駆動回路22は、タイミング信号に基づいて走査電極SCN1〜走査電極SCNnおよび維持電極SUS1〜維持電極SUSnに駆動電圧を印加する。   The timing generation circuit 24 generates a timing signal based on the horizontal synchronization signal H and the vertical synchronization signal V and outputs the timing signal to the scan electrode drive circuit 21 and the sustain electrode drive circuit 22. Scan electrode drive circuit 21 and sustain electrode drive circuit 22 apply drive voltages to scan electrode SCN1 through scan electrode SCNn and sustain electrode SUS1 through sustain electrode SUSn based on the timing signal.

次に、PDPで用いられている階調表現の方式について説明する。図4は、PDPで用いられている階調表現の方式を示す。テレビ映像表示する場合、NTSC方式における映像は1秒間60フレームで構成されている。元来、PDPでは点灯あるいは非点灯の2階調しか階調表現できないため、1フレームの期間を複数のサブフィールド(以下、SFと記載する)の期間に分割することによって赤、緑、青の各色の点灯時間を時分割し、その組み合わせによって中間色を表現する方式が用いられている。各SFの放電維持期間に印加する維持パルス数の比を、例えば「1」、「2」、「4」、「8」、「16」、「32」、「64」、「128」のように2進数モードで重み付けを行い、SF8ビットの組み合わせにより256階調を表現している。   Next, the gradation expression method used in the PDP will be described. FIG. 4 shows a gradation expression method used in the PDP. When displaying a television image, the image in the NTSC system is composed of 60 frames per second. Originally, the PDP can express only two gradations of lighting or non-lighting, so that one frame period is divided into a plurality of subfield (hereinafter referred to as SF) periods to display red, green, and blue. A method is used in which lighting times of the respective colors are time-divided and intermediate colors are expressed by combinations thereof. The ratio of the number of sustain pulses applied during the discharge sustain period of each SF is, for example, “1”, “2”, “4”, “8”, “16”, “32”, “64”, “128” Are weighted in binary mode, and 256 gradations are expressed by a combination of SF8 bits.

この方式では放電部20での気体放電を制御するために各SFをさらに4つの期間に分割する。ひとつのSFにおけるプラズマディスプレイ装置を駆動させるために、走査電極SCN、維持電極SUSおよびアドレス電極Dに印加する電圧波形を図5に示す。またこれら4つの期間について図1、図2および図5を用いて説明する。   In this method, each SF is further divided into four periods in order to control gas discharge in the discharge unit 20. FIG. 5 shows voltage waveforms applied to scan electrode SCN, sustain electrode SUS, and address electrode D in order to drive the plasma display device in one SF. In addition, these four periods will be described with reference to FIGS.

初期化期間では、点灯させるセルを選択する書込み放電を行う書込み期間32に先立って、書込み放電に所望の壁電荷を弱放電によって蓄積する。1テレビフィールド内の最初のSFでは、画像表示を行うすべてのセルに対して初期化放電を発生させる全セル初期化動作を行う全セル初期化期間31を設ける。一方、その他のSFでは、全セル初期化動作あるいは前のSFにおいて維持放電を経験したセルに対してのみ初期化放電を発生させる選択初期化動作を行う選択初期化期間34を設ける。書込み期間32では、書込み放電によって点灯させるセルの選択を行う。維持期間33では書込み期間32で書込み放電を行ったセルのみ発光を維持させる維持動作を行う。   In the initialization period, a desired wall charge is accumulated in the address discharge by weak discharge prior to the address period 32 in which the address discharge for selecting the cell to be lit is performed. In the first SF in one television field, an all-cell initializing period 31 in which an all-cell initializing operation for generating an initializing discharge is provided for all cells that perform image display is provided. On the other hand, in the other SFs, there is provided a selective initialization period 34 in which the initializing operation for generating the initializing discharge only for the cells that have undergone the sustaining discharge in the previous SF is performed. In the address period 32, a cell to be lit by address discharge is selected. In the sustain period 33, a sustain operation is performed in which light emission is maintained only in the cells that have undergone the address discharge in the address period 32.

全セル初期化期間31の前半の初期化動作では、すべての維持電極SUS1〜維持電極SUSnおよびアドレス電極D1〜アドレス電極Dmを0Vに保持し、すべての走査電極SCN1〜走査電極SCNnには、それらと対になる維持電極SUS1〜維持電極SUSnおよび対向交差するアドレス電極D1〜アドレス電極Dmとの間で放電が開始する閾値電圧Vff以上の電圧Vhに向かって、緩やかに上昇するランプ電圧を印加し、放電部20にて気体放電を起こさせる。ここでの放電は電離増倍が時間的に緩やかに進展する弱放電であり、弱放電により発生した電荷は、アドレス電極14、走査電極19a、維持電極19b周辺の放電部20の内部および表面の電界を弱めるように放電部20を囲む壁面に壁電荷として蓄積される。走査電極19a付近の保護膜18表面には負電荷が、維持電極19b付近の保護膜18表面およびアドレス電極14付近の蛍光体層16表面には正電荷が壁電荷として蓄積される。   In the initialization operation in the first half of the all-cell initializing period 31, all sustain electrodes SUS1 to sustain electrode SUSn and address electrode D1 to address electrode Dm are held at 0 V, and all scan electrodes SCN1 to scan electrode SCNn A ramp voltage that gradually rises is applied to a voltage Vh that is equal to or higher than a threshold voltage Vff at which discharge starts between sustain electrode SUS1 to sustain electrode SUSn and address electrode D1 to address electrode Dm that cross each other. Then, gas discharge is caused in the discharge unit 20. The discharge here is a weak discharge in which the ionization multiplication gradually progresses in time, and the electric charge generated by the weak discharge is generated inside and on the surface of the discharge portion 20 around the address electrode 14, the scan electrode 19a, and the sustain electrode 19b. It accumulates as wall charges on the wall surface surrounding the discharge part 20 so as to weaken the electric field. Negative charges are accumulated on the surface of the protective film 18 near the scanning electrode 19a, and positive charges are accumulated on the surface of the protective film 18 near the sustain electrode 19b and the phosphor layer 16 near the address electrode 14 as wall charges.

さらに、全セル初期化期間31の後半の初期化動作では、すべての維持電極SUS1〜維持電極SUSnを正電圧Veに保持し、すべての走査電極SCN1〜走査電極SCNnには、それらと対になる維持電極SUS1〜維持電極SUSnおよび対向交差するアドレス電極D1〜アドレス電極Dmとの間で放電が開始する閾値電圧Vpf以下の電圧Vbtに向かって、緩やかに下降するランプ電圧を印加し、放電部20にて気体放電を起こさせる。ここでの放電も電離増倍が時間的に緩やかに進展する弱放電である。この弱放電によって、走査電極19a付近の保護膜18表面に蓄積された負電荷および維持電極19b付近の保護膜18表面に蓄積された正壁電荷が弱められる。   Furthermore, in the initializing operation in the latter half of all-cell initializing period 31, all sustain electrodes SUS1 to SUSn are held at positive voltage Ve, and all scan electrodes SCN1 to SCNn are paired with them. A discharge voltage is applied by applying a ramp voltage that gradually decreases toward sustain voltage SUS1 through sustain electrode SUSn and address electrode D1 through address electrode Dm that face each other toward voltage Vbt that is equal to or lower than threshold voltage Vpf at which discharge starts. Cause gas discharge. The discharge here is also a weak discharge in which the ionization multiplication progresses gradually in time. Due to this weak discharge, the negative charge accumulated on the surface of the protective film 18 near the scan electrode 19a and the positive wall charge accumulated on the surface of the protective film 18 near the sustain electrode 19b are weakened.

全セル初期化動作を終えて、すべての電極が接地された状態では、走査電極とアドレス電極14および維持電極19b間に書込み放電によって点灯セルを選択するのに必要な所望の電位差(壁電位と呼ぶ)が、蓄積された壁電荷により生じる。なお、初期化動作とは書込み放電を制御するための所望の壁電荷を放電によって形成する動作である。   In the state where all the cells are initialized and all the electrodes are grounded, a desired potential difference (a wall potential and a wall potential) necessary for selecting a lighting cell by an address discharge between the scan electrode, the address electrode 14 and the sustain electrode 19b. Is caused by the accumulated wall charge. The initialization operation is an operation for forming a desired wall charge for controlling the address discharge by the discharge.

書込み期間32では走査電極19aにアドレス電極14および維持電極19bよりも低い電圧を印加し、さらに点灯させるセルのアドレス電極14にのみ、走査電極19aとアドレス電極14との間に壁電位と同符号の電圧差が生じるように電圧を印加することによって、書込み放電を起こさせる。これにより蛍光体表面および維持電極19b付近の保護層表面には負電荷、走査電極19a付近の保護層表面には正電荷が壁電荷として蓄積される。書込み期間が終了し、すべての電極が接地された状態では、壁電荷により走査電極19aと維持電極19b間に維持放電を起こすのに必要な所望の壁電位が生じる。   In the address period 32, a voltage lower than that of the address electrode 14 and the sustain electrode 19b is applied to the scan electrode 19a, and only the address electrode 14 of the cell to be lighted has the same sign as the wall potential between the scan electrode 19a and the address electrode 14. An address discharge is caused by applying a voltage so that a voltage difference of. As a result, negative charges are accumulated on the phosphor surface and the surface of the protective layer near the sustain electrode 19b, and positive charges are accumulated on the surface of the protective layer near the scan electrode 19a as wall charges. When the address period is completed and all the electrodes are grounded, a desired wall potential necessary for causing a sustain discharge between the scan electrode 19a and the sustain electrode 19b is generated by the wall charges.

維持期間33ではまず走査電極19aに維持電極19bよりも高い電圧を印加し放電を起こさせる。その後、走査電極19aと維持電極19bが交互に極性が入れ替わるように電圧を印加することにより断続的に発光を維持させる。   In the sustain period 33, first, a voltage higher than that of the sustain electrode 19b is applied to the scan electrode 19a to cause discharge. Thereafter, light emission is intermittently maintained by applying a voltage so that the polarities of the scan electrode 19a and the sustain electrode 19b are alternately switched.

次に続く選択初期化期間34では、前のSFの維持期間33の最後に維持電極19bに走査電極19aとの位相差時間幅の狭い矩形波形消去電圧を印加することにより、不完全な放電を発生させ壁電荷を一部消滅させ、次のSFの初期化動作に備える。このように従来のPDPの駆動方法では、初期化期間、書込み期間、維持期間という一連のシーケンスによって画像表示を行っている。なお、全セル初期化期間は、1フィールドの最初のSFにおいてのみ実施されるわけでなく、他のSFにおいて行われることも可能である。   In the subsequent selective initialization period 34, imperfect discharge is caused by applying a rectangular waveform erasing voltage having a narrow phase difference time width with respect to the scan electrode 19a to the sustain electrode 19b at the end of the sustain period 33 of the previous SF. The generated wall charges are partially extinguished to prepare for the next SF initialization operation. As described above, in the conventional PDP driving method, image display is performed by a series of sequences of an initialization period, an address period, and a sustain period. Note that the all-cell initialization period is not performed only in the first SF of one field, but can also be performed in another SF.

図1に示したPDPでは、弱放電によって所望の壁電荷を蓄積するための全セル初期化期間31において、初期に放電部20に存在するイオンや電子(電離増倍のもととなる荷電粒子)の密度が低い場合や、荷電粒子の電荷を吸収しやすい蛍光体や隔壁が放電部20を取り囲んでいる場合、放電の種となる荷電粒子の数が絶対的に減少するため、電離増倍が時間的に急激に進展する強い放電(以下、強放電と記載する)が発生する確率が高くなる。   In the PDP shown in FIG. 1, in the all-cell initialization period 31 for accumulating desired wall charges by weak discharge, ions and electrons (charged particles that are the source of ionization multiplication) that are initially present in the discharge unit 20 are stored. ) Is low, or when a phosphor or barrier that easily absorbs the charge of the charged particles surrounds the discharge portion 20, the number of charged particles that become the seed of discharge is absolutely reduced. Is likely to generate a strong discharge (hereinafter referred to as a strong discharge) that progresses rapidly in time.

強放電が発生すると、所望の壁電荷よりも過剰な壁電荷(例えば、放電部20の電界をほぼ打ち消す壁電荷)が蓄積し、所望の壁電位よりも高い異常壁電位が発生する。   When a strong discharge occurs, a wall charge that is excessive than the desired wall charge (for example, a wall charge that substantially cancels the electric field of the discharge unit 20) accumulates, and an abnormal wall potential that is higher than the desired wall potential is generated.

この異常壁電位の作用により、維持期間において非点灯であるべきにもかかわらず維持発光してしまい、正常に画像表示を行えないという問題を有していた(たとえば、特許文献1参照)。   Due to the action of the abnormal wall potential, there has been a problem in that sustain light emission occurs despite the fact that it should not be lit during the sustain period, and image display cannot be performed normally (see, for example, Patent Document 1).

また、高精細PDPを用いて映像表示を行う場合には、下記のような問題を抱えている。たとえば、高精細化されたPDPでは、セルピッチ(隔壁の間隔)が短いために隔壁によりセル同士が隔離されていたとしても、隣接セルとの電界干渉や荷電粒子の飛散の影響が大きくなる。   In addition, when performing video display using a high-definition PDP, there are the following problems. For example, in a high-definition PDP, since the cell pitch (distance between the partition walls) is short, even if the cells are separated from each other by the partition walls, the influence of electric field interference with adjacent cells and the scattering of charged particles increase.

図5に示した従来のPDP駆動方式(以下、従来例2と記載する)では、選択初期化期間34において矩形波形電圧を印加するので、消去放電が強くなる。そのため、高精細PDPを従来例2で駆動する場合、初期化期間における隣接セル間の放電干渉の影響は顕著になり、書込み動作に所望の壁電位を蓄積することができず、書込み動作を正常に行えないという問題を有していた(たとえば、特許文献2参照)。
特開2000−214823号公報 特開2006−151295号公報
In the conventional PDP driving method shown in FIG. 5 (hereinafter referred to as Conventional Example 2), since the rectangular waveform voltage is applied in the selective initialization period 34, the erasing discharge becomes strong. Therefore, when driving a high-definition PDP in Conventional Example 2, the influence of discharge interference between adjacent cells in the initialization period becomes significant, and a desired wall potential cannot be accumulated in the write operation, and the write operation is normal. (For example, refer to Patent Document 2).
JP 2000-214823 A JP 2006-151295 A

従来PDPでは、高精細化のため画素ピッチが小さくなり、放電部20の容積に対する表面積の割合が大きくなる場合や、高輝度化のためキセノンやクリプトンなどの原子番号の大きい放電ガスの混合割合を高めた場合に、安定した初期化動作を行うための電子供給量が不足し、初期化期間において強放電が発生し、強放電により蓄積された異常壁電荷により、維持期間において非点灯であるにもかかわらず維持発光してしまい、正常に画像表示を行えないという課題を有していた。   In the conventional PDP, the pixel pitch is reduced for higher definition, and the ratio of the surface area to the volume of the discharge unit 20 is increased, or the mixing ratio of discharge gas having a large atomic number such as xenon or krypton is set for higher brightness. When increased, the electron supply amount for performing a stable initialization operation is insufficient, a strong discharge is generated in the initialization period, and the abnormal wall charges accumulated by the strong discharge are not turned on in the sustain period. However, there has been a problem that the image is not normally displayed because the sustain light is emitted.

また、従来の駆動方式では、高精細PDPを駆動する場合、選択初期化期間における隣接セル間の電界干渉や荷電粒子の飛散の影響が顕著になり、維持期間において点灯であるにもかかわらず維持発光せず、正常に画像表示を行えないという課題を有していた。   In addition, in the conventional driving method, when driving a high-definition PDP, the influence of electric field interference between adjacent cells and scattering of charged particles during the selective initialization period becomes significant, and is maintained despite the lighting during the maintenance period. There was a problem that the image could not be displayed normally without light emission.

高精細化にともない、課題が顕著になる理由を以下に詳細に説明する。   The reason why the problem becomes conspicuous as the definition becomes higher will be described in detail below.

高精細化にともない、1セルあたりの放電部20の体積が減少し、放電部20の体積に対する壁面の表面積の割合が増加し、壁面での荷電粒子の再吸収および弾性衝突に起因した発熱によるエネルギー損失が増大し、外部からより多くの電力を投入する必要がある。その結果、全セル初期化動作前の放電部20内部の荷電粒子数が減少し、また各期間での駆動電圧が上昇する。   With the increase in definition, the volume of the discharge unit 20 per cell decreases, the ratio of the surface area of the wall surface to the volume of the discharge unit 20 increases, and due to heat generation caused by reabsorption of charged particles on the wall surface and elastic collision Energy loss increases, and more power must be supplied from the outside. As a result, the number of charged particles in the discharge unit 20 before the all-cell initializing operation is decreased, and the driving voltage in each period is increased.

電極に印加する電圧が上昇すると、電極周辺の放電部20内部および表面での電界強度がより強くなり、電離増倍が時間的に急激に進む確率がより高くなる。その結果、従来の初期化動作において利用していた弱放電を発生させることがより困難となる。   When the voltage applied to the electrode rises, the electric field strength inside and on the surface of the discharge part 20 around the electrode becomes stronger, and the probability that ionization multiplication proceeds rapidly in time increases. As a result, it becomes more difficult to generate the weak discharge used in the conventional initialization operation.

このように、高精細化にともない、放電部20内部の荷電粒子の減少および駆動電圧の増大により、初期化期間において強放電が発生しやすくなる。その結果、書込み期間での点灯あるいは非点灯セルの選択を正常に行うことが従来よりもさらに困難になる。   As described above, with the increase in definition, a strong discharge is likely to occur in the initialization period due to a decrease in charged particles in the discharge unit 20 and an increase in drive voltage. As a result, it becomes more difficult than before to properly select a lighted or non-lighted cell in the address period.

また、高精細化にともない、各セルの大きさが小さくなることにより隔壁および金属電極による遮光率が増え、輝度は低下し、映像が全体的に暗くなる。そこで、高画質表示に必要な輝度を確保する方法として、可視光の発光を担うキセノンやクリプトンの混合比あるいは放電ガスの全圧を上昇させる方法が注目されている。たとえば、全圧は180Torr以上750Torr以下、キセノン分圧比は10%、15%、20%、30%、50%、80%、90%、95%、98%、100%などが検討されている。   Further, as the definition is increased, the size of each cell is reduced, so that the light shielding rate by the partition walls and the metal electrodes is increased, the luminance is lowered, and the image is darkened as a whole. Thus, as a method for ensuring the luminance necessary for high-quality display, a method of increasing the mixing ratio of xenon or krypton responsible for visible light emission or the total pressure of the discharge gas has attracted attention. For example, the total pressure is 180 Torr or more and 750 Torr or less, and the xenon partial pressure ratio is 10%, 15%, 20%, 30%, 50%, 80%, 90%, 95%, 98%, 100%, and the like.

キセノンやクリプトンなどの混合割合が大きい場合に、前述の課題が顕著になる理由を以下に詳細に説明する。   The reason why the above-mentioned problem becomes remarkable when the mixing ratio of xenon, krypton, etc. is large will be described in detail below.

キセノンやクリプトンなど原子番号の大きい元素は最外殻の電子エネルギー(第一イオン化エネルギー)が小さいため、最外殻の電子エネルギーが大きいヘリウム、ネオン、アルゴンと比べて2次電子放出係数が非常に小さい。その結果、保護膜表面から放電部20に供給される電子の絶対数が減少し、放電開始に必要な閾値電圧は高くなる。   Elements with large atomic numbers, such as xenon and krypton, have a lower secondary electron emission coefficient than helium, neon, and argon, which have a higher electron energy in the outermost shell, because they have lower electron energy (first ionization energy). small. As a result, the absolute number of electrons supplied from the surface of the protective film to the discharge unit 20 decreases, and the threshold voltage necessary for starting discharge increases.

電極に印加する電圧が上昇すると、電極周辺の放電部20内部および表面での電界強度がより強くなり、電離増倍が時間的に急激に進む確率がより高くなる。その結果、初期化期間において利用していた弱放電を発生させることがより困難となる。   When the voltage applied to the electrode rises, the electric field strength inside and on the surface of the discharge part 20 around the electrode becomes stronger, and the probability that ionization multiplication proceeds rapidly in time increases. As a result, it becomes more difficult to generate the weak discharge used during the initialization period.

高画質表示に必要な高輝度を確保するためにキセノンやクリプトンなどの分圧比を増加させる場合にも、全セル初期化期間において強放電が発生しやすくなる。強放電が発生した場合、1発の放電による発光強度が強いため、コントラスト比は著しく低下し、低階調表現が多い映像を表示する場合には画質が著しく劣化する。さらに、過剰な壁電位の形成により、書込み期間での点灯あるいは非点灯セルの選択を正常に行うことが従来よりも困難になる。   Even when the partial pressure ratio of xenon, krypton, or the like is increased in order to ensure the high luminance necessary for high-quality display, strong discharge tends to occur during the all-cell initialization period. When a strong discharge occurs, the intensity of light emitted by a single discharge is strong, so the contrast ratio is significantly reduced, and the image quality is significantly deteriorated when displaying an image with many low gradation representations. Further, due to the formation of an excessive wall potential, it becomes more difficult than before to select normally the lighted or non-lighted cells in the address period.

本発明は、従来PDPの課題および従来駆動方式の課題を同時に解決するもので、画像のチラツキ、ザラツキなどを飛躍的に改善するだけでなく、アドレス電極駆動回路の部品点数削減や走査パルスの低電圧化によるスキャンICの低価格化が可能となり、高精細・省電力・低価格を実現するプラズマディスプレイ装置を提供することを目的とする。   The present invention solves the problem of the conventional PDP and the problem of the conventional driving method at the same time, and not only dramatically improves the flickering and roughness of the image, but also reduces the number of parts of the address electrode driving circuit and reduces the scanning pulse. An object of the present invention is to provide a plasma display device that can reduce the price of a scan IC by increasing the voltage and realize high definition, power saving, and low price.

本発明は、平行する少なくとも1組の第1の電極および第2の電極を有し、第1の電極および第2の電極の周辺部に誘電体層を形成し、誘電体層表面に保護層を形成した第1基板と、少なくとも1本の第3の電極を有し、第3の電極周辺部に誘電体層を形成した第2基板を対向配置し、対向する第1基板と第2基板の間に放電ガスを封入したPDPにおいて、金属酸化物からなる複数の結晶粒子が凝集した凝集粒子群を保護層周辺部に複数配置したものである。なお、誘電体層は電極と接触している場合に限らず、電極の周辺部に配置されていればよい。また、凝集粒子群は保護層の表面あるいは内部に配置された場合にも同様の効果が得られる。また、PDPのセル構成は、図1に示すような面放電型に限らず、対向電極を形成した対向放電型PDPにおいても同様の効果が得られる。   The present invention has at least one pair of a first electrode and a second electrode that are parallel to each other, a dielectric layer is formed around the first electrode and the second electrode, and a protective layer is formed on the surface of the dielectric layer And a first substrate having at least one third electrode, a second substrate having a dielectric layer formed on the periphery of the third electrode, and opposing the first substrate and the second substrate In the PDP in which the discharge gas is sealed between the two, a plurality of aggregated particle groups in which a plurality of crystal particles made of a metal oxide are aggregated are arranged in the periphery of the protective layer. Note that the dielectric layer is not limited to being in contact with the electrode, but may be disposed in the periphery of the electrode. The same effect can be obtained when the aggregated particle group is arranged on the surface or inside of the protective layer. Further, the cell structure of the PDP is not limited to the surface discharge type as shown in FIG. 1, and the same effect can be obtained in the counter discharge type PDP in which the counter electrode is formed.

また、従来駆動方式の第2課題を解決するために本発明は、1フィールドが複数のSFから構成され、各SFは初期化期間、書込み期間、維持期間のうち少なくとも初期化期間と書込み期間を有し、初期化期間は、第2の電極に第1電圧から第2電圧まで緩やかに上昇する電圧を印加する初期化期間前半部と、第2の電極に第3電圧から第4電圧まで緩やかに下降する電圧を印加する初期化期間後半部を有する駆動方式により、画像表示を行うものである。   Further, in order to solve the second problem of the conventional driving method, the present invention includes one field composed of a plurality of SFs, and each SF has at least an initialization period and an address period among an initialization period, an address period, and a sustain period. The initializing period includes a first half of an initializing period in which a voltage that gradually increases from the first voltage to the second voltage is applied to the second electrode, and a slow voltage from the third voltage to the fourth voltage to the second electrode. An image is displayed by a driving method having a second half of the initializing period in which a voltage that falls in the direction is applied.

また、本発明はプラズマディスプレイ装置であって、結晶粒子の粒径が、平均0.9μm〜2μmの範囲のものである。   The present invention is also a plasma display device, wherein the crystal particles have an average particle size in the range of 0.9 μm to 2 μm.

また、本発明はプラズマディスプレイ装置であって、保護層がMgOより構成されるものである。   The present invention is also a plasma display device, wherein the protective layer is made of MgO.

また、本発明はプラズマディスプレイ装置であって、サブフィールドの初期化期間に行う初期化動作がすべて選択初期化動作であるフィールドを、画像表示に関わるフィールドのうち、少なくとも1フィールド以上有するものである。   Further, the present invention is a plasma display device having at least one field among fields related to image display, in which all initialization operations performed during the subfield initialization period are selective initialization operations. .

また、本発明はプラズマディスプレイ装置であって、初期化期間前半部において、上り電圧傾斜が異なる少なくとも2つ以上の期間を有し、後ろの期間のほうが前の期間よりも傾斜が緩やかになるものである。   Further, the present invention is a plasma display device, wherein the first half of the initialization period has at least two periods with different rising voltage slopes, and the slope of the later period is gentler than the preceding period. It is.

また、本発明はプラズマディスプレイ装置であって、初期化期間後半部において、下り電圧傾斜が異なる少なくとも2つ以上の期間を有し、後ろの期間のほうが前の期間よりも傾斜が緩やかになるものである。   The present invention also relates to a plasma display device, wherein the latter half of the initialization period has at least two periods with different downward voltage slopes, and the slope of the back period is gentler than that of the previous period. It is.

また、本発明はプラズマディスプレイ装置であって、書込み期間において、第2の電極に印加する走査パルスの電圧が第4電圧と同電位とするものである。   In addition, the present invention is a plasma display device in which the voltage of the scan pulse applied to the second electrode is set to the same potential as the fourth voltage in the writing period.

また、本発明はプラズマディスプレイ装置であって、初期化期間前半部において、第3の電極の電圧が正極性である期間を有するものである。なお、初期化前半部を迎える前に、第3の電極の電圧が正極性に立上る場合や、初期化前半部の途中で正極性から立下る場合、正極性である期間が複数回現れる場合も含む。   In addition, the present invention is a plasma display device having a period in which the voltage of the third electrode is positive in the first half of the initialization period. In addition, when the voltage of the third electrode rises to positive polarity before reaching the first half of initialization, or when it falls from positive polarity in the middle of the first half of initialization, a period of positive polarity appears multiple times Including.

また、本発明はプラズマディスプレイ装置であって、初期化期間前半部の上り電圧傾斜が20V/μsec以下のものである。   Further, the present invention is a plasma display device, wherein the rising voltage gradient in the first half of the initializing period is 20 V / μsec or less.

また、本発明はプラズマディスプレイ装置であって、初期化期間後半部の下り電圧傾斜が20V/μsec以下のものである。   Further, the present invention is a plasma display device, wherein the downward voltage gradient in the latter half of the initialization period is 20 V / μsec or less.

また、本発明はプラズマディスプレイ装置であって、書込み期間において、第2の電極に印加する走査パルスの周期が0.5μsecから1.8μsecのものである。   Further, the present invention is a plasma display device, wherein a period of a scanning pulse applied to the second electrode is 0.5 μsec to 1.8 μsec in an address period.

本発明のプラズマディスプレイ装置によれば、初期に放電部に存在する荷電粒子や励起粒子(以下、プライミング粒子と表記)の密度を増加させ、書込み期間に先立つ初期化期間において、コントラスト比を著しく低下させる強放電を抑制する効果がある。   According to the plasma display device of the present invention, the density of charged particles and excited particles (hereinafter referred to as priming particles) present in the discharge part in the initial stage is increased, and the contrast ratio is significantly reduced in the initialization period preceding the writing period. There is an effect of suppressing the strong discharge.

また、選択初期化期間における隣接セル間の電界干渉や荷電粒子の飛散の影響を軽減させることができ、書込み期間での点灯あるいは非点灯セルの選択不良による画質劣化を抑制する効果がある。   Further, the influence of electric field interference between adjacent cells and scattering of charged particles in the selective initialization period can be reduced, and there is an effect of suppressing image quality deterioration due to poor selection of lighting or non-lighting cells in the writing period.

また、高精細化して走査線本数が増えた場合にも、放電遅れによる書込み不良を抑制して、書込み動作を高速に行うことができ、高精細化により高画質化することができる。   In addition, even when the number of scanning lines is increased due to high definition, it is possible to suppress a write failure due to a discharge delay and to perform a high-speed address operation, and it is possible to improve image quality by increasing the definition.

また、初期化動作終了後、書込み動作までの待機期間に発生する電荷抜けを防止し、書込み期間に印加するスキャン電圧や書込み電圧を低減でき、スキャンICおよびアドレス電極駆動回路の部品点数削減が可能となり、より低コストなPDPを提供することができる。   In addition, after the initialization operation is completed, charge loss that occurs during the standby period until the write operation can be prevented, the scan voltage and write voltage applied during the write period can be reduced, and the number of parts of the scan IC and address electrode drive circuit can be reduced. Thus, a lower cost PDP can be provided.

また、初期化動作での強放電を抑止する効果、電荷抜けを防止する効果、放電遅れを抑制する効果から、キセノンやクリプトンなど原子番号の大きいガスの混合比や放電ガスの全圧を増やすことが可能になり、より高輝度で高効率・省電力なプラズマディスプレイ装置を提供できる。   Also, increase the mixing ratio of gases with large atomic numbers such as xenon and krypton and the total pressure of the discharge gas from the effect of suppressing strong discharge in initialization operation, the effect of preventing charge loss, and the effect of suppressing discharge delay. Therefore, it is possible to provide a plasma display device with higher brightness, higher efficiency and lower power consumption.

本発明によるPDP装置のパネルの特徴である保護層の構成及び製造方法について説明する。本発明によるPDPにおいては、図6に示すように、保護層18は、誘電体層17上に、アルミニウム(Al)を不純物として含有する酸化マグネシウム(MgO)からなる下地保護層18aを形成するとともに、その下地保護層18a上に、金属酸化物であるMgOの結晶粒子18bが複数個凝集した凝集粒子群18cを離散的に散布させ、全面に亘ってほぼ均一に分布するように複数付着させることにより構成している。   The structure and manufacturing method of the protective layer, which is a feature of the panel of the PDP device according to the present invention, will be described. In the PDP according to the present invention, as shown in FIG. 6, the protective layer 18 includes a base protective layer 18 a made of magnesium oxide (MgO) containing aluminum (Al) as an impurity on the dielectric layer 17. Then, agglomerated particle groups 18c in which a plurality of MgO crystal particles 18b as metal oxides are agglomerated are discretely dispersed on the base protective layer 18a, and a plurality of particles are adhered so as to be distributed almost uniformly over the entire surface. It is constituted by.

ここで、凝集粒子群18cについて説明する。凝集粒子群18cは、図7に示すように所定の一次粒径の結晶粒子18bが凝集またはネッキングした状態のものである。結晶粒子18bの各々は、固体として強い結合力を持って結合しているのではなく、静電気やファンデルワールス力によって結合しており、超音波などの外的刺激により、一部または全部が結晶粒子に離散する程度の結合力で結合している。   Here, the aggregated particle group 18c will be described. Aggregated particle group 18c is in a state where crystal particles 18b having a predetermined primary particle size are aggregated or necked as shown in FIG. Each of the crystal particles 18b is not bonded as a solid with a strong bonding force but is bonded by static electricity or van der Waals force, and a part or all of the crystal particles 18b are crystallized by an external stimulus such as ultrasonic waves. They are bonded to the particles with a binding force that is discrete.

また、結晶粒子18bの粒径は約1マイクロメートル(μm)程度のもので、結晶粒子18bとしては、14面体や12面体などの7面以上の面を持つ多面体形状を有するのが望ましい。結晶粒子18bの一次粒子の粒径や形状は、製造方法によって制御できる。   The crystal particles 18b have a particle size of about 1 micrometer (μm), and the crystal particles 18b preferably have a polyhedral shape having seven or more faces such as a tetrahedron and a dodecahedron. The particle size and shape of the primary particles of the crystal particle 18b can be controlled by the manufacturing method.

例えば、炭酸マグネシウムや水酸化マグネシウムなどのMgO前駆体を焼成して生成する場合、焼成温度や焼成雰囲気を調整すると粒径を制御できる。一般的に、焼成温度は700度程度から1500度程度の範囲で選択できるが、焼成温度が比較的高い1000度以上にすることで、一次粒径を0.3〜2μm程度に制御できる。さらに、MgO前駆体を加熱して結晶粒子18bを生成することにより、生成過程において、複数個の一次粒子同士が凝集またはネッキングと呼ばれる現象により結合した凝集粒子群18cを作成することができる。   For example, when an MgO precursor such as magnesium carbonate or magnesium hydroxide is calcined and produced, the particle size can be controlled by adjusting the calcining temperature or calcining atmosphere. Generally, the firing temperature can be selected in the range of about 700 to 1500 degrees, but the primary particle size can be controlled to about 0.3 to 2 μm by setting the firing temperature to a relatively high 1000 degrees or more. Furthermore, by heating the MgO precursor to generate the crystal particles 18b, an aggregated particle group 18c in which a plurality of primary particles are bonded by a phenomenon called aggregation or necking can be created in the generation process.

次に、本発明によるPDPにおいて、保護層18を形成する製造工程について説明する。図8に製造工程のフローを示すように、第1の誘電体層17aと第2の誘電体層17bとの積層構造からなる誘電体層17を形成する誘電体層形成工程A1を行う。   Next, a manufacturing process for forming the protective layer 18 in the PDP according to the present invention will be described. As shown in the flow of the manufacturing process in FIG. 8, a dielectric layer forming step A1 for forming the dielectric layer 17 having a laminated structure of the first dielectric layer 17a and the second dielectric layer 17b is performed.

下地保護層蒸着工程A2において、Alを不純物として含むMgO焼結体を原材料とした真空蒸着法により、MgOからなる下地保護層18aを第2の誘電体層表面17b上に形成する。   In the base protective layer deposition step A2, a base protective layer 18a made of MgO is formed on the second dielectric layer surface 17b by a vacuum deposition method using a MgO sintered body containing Al as an impurity as a raw material.

下地保護層蒸着工程A2において形成した未焼成の下地保護層18a表面に、複数個の凝集粒子群18cを離散的に付着させる工程を行う。所定の粒径分布を持つ結晶粒子18bを樹脂成分とともに溶剤に混合した凝集粒子ペーストを準備する。凝集粒子ペースト層形成工程A3において、凝集粒子ペーストをスクリーン印刷法により、未焼成の下地保護層18a上に塗布して凝集粒子ペースト層を形成する。なお、凝集粒子ペースト層を形成するための方法として、スクリーン印刷法以外に、スプレー法、スピンコート法、ダイコート法、スリットコート法などもある。   A step of discretely attaching a plurality of aggregated particle groups 18c to the surface of the unfired base protective layer 18a formed in the base protective layer deposition step A2 is performed. An agglomerated particle paste is prepared by mixing crystal particles 18b having a predetermined particle size distribution in a solvent together with a resin component. In the agglomerated particle paste layer forming step A3, the agglomerated particle paste is applied onto the unfired base protective layer 18a by screen printing to form an agglomerated particle paste layer. In addition to the screen printing method, there are a spray method, a spin coat method, a die coat method, a slit coat method and the like as a method for forming the aggregated particle paste layer.

凝集粒子ペースト層を形成した後、凝集粒子ペースト層を乾燥させる乾燥工程A4を行う。   After forming the aggregated particle paste layer, a drying step A4 for drying the aggregated particle paste layer is performed.

次に、下地保護層蒸着工程A2において形成した未焼成の下地保護層18aと、乾燥工程A4を実施した凝集粒子ペースト層とを、数百度の温度で加熱焼成する焼成工程A5において、同時焼成を行い、凝集粒子ペースト層に残っている溶剤や樹脂成分を除去することにより、下地保護層18a上に複数個の凝集粒子群18cを付着させた保護層18を形成することができる。この方法によれば、下地保護層18aに複数個の凝集粒子群18cを全面に亘って均一に分布するように付着させることが可能である。以上の工程により、プラズマディスプレイパネルを製造する。   Next, co-firing is performed in a firing step A5 in which the unfired base protective layer 18a formed in the base protective layer deposition step A2 and the aggregated particle paste layer subjected to the drying step A4 are heated and fired at a temperature of several hundred degrees. By performing the removal of the solvent and the resin component remaining in the aggregated particle paste layer, it is possible to form the protective layer 18 in which a plurality of aggregated particle groups 18c are adhered on the base protective layer 18a. According to this method, it is possible to adhere the plurality of aggregated particle groups 18c to the base protective layer 18a so as to be uniformly distributed over the entire surface. The plasma display panel is manufactured through the above steps.

なお、上記以外にも、溶媒などを用いずに、ガス中に結晶粒子を浮遊させた状態でガスとともに吹き付ける方法や、吹き付けずに重力を用いて沈降させる方法などもある。   In addition to the above, there are a method in which crystal particles are suspended in a gas without using a solvent and the like, and a method in which the particles are settled by using gravity without spraying.

次に、本発明によるPDPにおける駆動方式の初期化期間の駆動波形および駆動回路について説明する。本発明によるPDP駆動波形は、図9に示すように、各SFの初期化期間34において、走査電極19aに第1電圧Va1から第2電圧Vb1まで、緩やかに上昇する電圧を印加する初期化期間前半部T1と、第3電圧Vc1から第4電圧Vd1まで、緩やかに下降する電圧を印加する初期化期間後半部T2とする初期化期間に設けることを特徴とする。   Next, drive waveforms and drive circuits in the initialization period of the drive method in the PDP according to the present invention will be described. As shown in FIG. 9, the PDP drive waveform according to the present invention has an initialization period in which a slowly increasing voltage is applied to the scan electrode 19a from the first voltage Va1 to the second voltage Vb1 in the initialization period 34 of each SF. It is characterized in that it is provided in the initial period T1 and an initializing period which is an initial period T2 in which a slowly decreasing voltage is applied from the third voltage Vc1 to the fourth voltage Vd1.

本発明によるPDP駆動波形を実現するための維持電極駆動回路構成を図10に示す。この維持電極駆動回路では、初期化期間前半部T1において、緩やかに上昇する電圧を印加するための電源Vbを用意し、分離回路によって正極性の電圧の出力を制御することを特徴とする。また、初期化期間後半部T2において、緩やかに下降する電圧を印加するための電源Vdを用意し、分離回路によって負極性の電圧の出力を制御することを特徴とする。   A sustain electrode drive circuit configuration for realizing the PDP drive waveform according to the present invention is shown in FIG. This sustain electrode drive circuit is characterized in that a power supply Vb for applying a slowly increasing voltage is prepared in the first half T1 of the initialization period, and the output of a positive voltage is controlled by a separation circuit. In addition, in the latter half of the initialization period T2, a power supply Vd for applying a slowly decreasing voltage is prepared, and the output of a negative voltage is controlled by a separation circuit.

維持電圧Vsusの出力を制御する回路Aに対して、回路Aの出力端子に正極性の電圧Vbの出力を制御する分離回路Bを接続し、回路Bの出力端子に負極性の電圧Vdの出力を制御する分離回路Cを接続した回路構成である。また、分離回路Bのハイサイドスイッチのゲート・ドレイン間には、定電流回路I1、コンデンサC1、ダイオードD1、抵抗R1、電源電圧Vbから構成される傾斜発生回路RMP1が接続され、分離回路Cのローサイドスイッチのゲート・ドレイン間にも、定電流回路I2、コンデンサC2、ダイオードD2、抵抗R2、電源電圧Vdから構成される傾斜発生回路RMP2が接続されている。この駆動回路の構成によって、初期化期間前半部T1において、緩やかに上昇する電圧および初期化期間後半部T2において緩やかに下降する電圧を走査電極19aに印加することができる。なお、図10に示した回路構成は傾斜電圧を出力させる一例であり、この限りではない。   For the circuit A that controls the output of the sustain voltage Vsus, a separation circuit B that controls the output of the positive voltage Vb is connected to the output terminal of the circuit A, and the output of the negative voltage Vd is connected to the output terminal of the circuit B. This is a circuit configuration in which a separation circuit C for controlling is connected. Further, between the gate and drain of the high-side switch of the separation circuit B, a slope generating circuit RMP1 composed of a constant current circuit I1, a capacitor C1, a diode D1, a resistor R1, and a power supply voltage Vb is connected. Also connected between the gate and drain of the low-side switch is a ramp generating circuit RMP2 including a constant current circuit I2, a capacitor C2, a diode D2, a resistor R2, and a power supply voltage Vd. With this drive circuit configuration, it is possible to apply to the scan electrode 19a a voltage that gradually increases in the first half T1 of the initialization period and a voltage that gradually decreases in the second half T2 of the initialization period. Note that the circuit configuration shown in FIG. 10 is an example of outputting a ramp voltage, and is not limited to this.

次に、本発明に関わるプラズマディスプレイ装置において、効果を確認するため行った実験について説明する。   Next, an experiment conducted for confirming the effect in the plasma display apparatus according to the present invention will be described.

(検証実験1) 保護層18と凝集粒子群18cの構成が異なるPDPを4サンプル試作した。
試作品1:MgOから構成された保護層のみを形成したPDP
試作品2:Al,Siなどの不純物をドープしたMgOから構成された保護層を形成したPDP
試作品3:MgOから構成された下地保護層18a表面に金属酸化物からなる結晶一次子のみを散布し、MgO下地保護層18aに付着させたPDP
試作品4:本発明に関わる試作品であって、MgOから構成された下地保護層18a表面に、結晶一次粒子を凝集させた凝集粒子群を全面に亘ってほぼ均一に分布するように付着させたPDP
である。なお、試作品3、試作品4において、金属酸化物として、MgO単結晶粒子を用いている。
(Verification Experiment 1) Four samples of PDPs having different configurations of the protective layer 18 and the aggregated particle group 18c were manufactured.
Prototype 1: PDP with only a protective layer composed of MgO
Prototype 2: PDP with a protective layer made of MgO doped with impurities such as Al and Si
Prototype 3: PDP in which only the primary crystal composed of a metal oxide is dispersed on the surface of the base protective layer 18a made of MgO and adhered to the MgO base protective layer 18a
Prototype 4: Prototype related to the present invention, and agglomerated particle group obtained by aggregating crystal primary particles is adhered to the surface of the base protective layer 18a made of MgO so as to be distributed almost uniformly over the entire surface. PDP
It is. In prototype 3 and prototype 4, MgO single crystal particles are used as the metal oxide.

本発明に関わる試作品4について、下地保護層18a表面に付着させた凝集粒子群に電子ビームを照射して、カソードルミネッセンスを測定したところ、図11のような特性を示した。   With respect to prototype 4 according to the present invention, the aggregated particle group adhered to the surface of the base protective layer 18a was irradiated with an electron beam and the cathodoluminescence was measured, and the characteristics shown in FIG. 11 were shown.

4種類の保護層を用いたPDPについて、電子放出性能と電荷保持性能について計測を行った。ここで、電子放出性能と電荷保持性能について説明する。   The PDP using four types of protective layers was measured for electron emission performance and charge retention performance. Here, the electron emission performance and the charge retention performance will be described.

電子放出性能とは、単位面積あたり単位時間あたり下地保護層18aおよび凝集粒子群を含めた保護層表面から放出される電子数(電流密度)によって決まる。保護層表面から放電部20に流れる電流密度を測定する方法としては、試作品を破壊して前面板の小片サンプルを真空チャンバーに入れ、外部電場により空間に放出される電子を捕捉し、光電子増倍管などにより検出する方法などが考えられる。しかし、実際にPDPを駆動している際の保護層からの電流密度を計測することは難しい。   The electron emission performance is determined by the number of electrons (current density) emitted from the surface of the protective layer including the base protective layer 18a and the aggregated particle group per unit time per unit area. As a method of measuring the current density flowing from the surface of the protective layer to the discharge unit 20, the prototype is destroyed, a small sample of the front plate is placed in a vacuum chamber, and the electrons emitted into the space are captured by an external electric field to increase photoelectrons. A method of detecting by a double tube or the like is conceivable. However, it is difficult to measure the current density from the protective layer when the PDP is actually driven.

そこで、放電までの電流密度と相関がある測定量として、放電の統計遅れ時間Tsを用いる。電圧が印加されてから放電がピークをむかえるまでの時間的な放電の遅れを、放電の形成遅れ時間Tfと放電の統計遅れ時間Tsの和として解釈する。放電遅れ時間は、印加する電圧および放電開始前のガス中の電子数密度に依存する。形成遅れ時間Tfは印加電圧と相関があり、統計遅れ時間Tsは放電開始前のガス中の電子数密度と相関がある。放電開始まで時間の関数として、各時刻での統計遅れ時間Tsを計測する。統計遅れ時間Tsの逆数は、放電ガスを取り囲む保護層からの電子の電流密度と比例関係にある。統計遅れ時間Tsの逆数を、放電開始までの時間の関数として時間積分すれば、保護層からの単位面積あたりの電子放出量の相対比較を行うことができる。ここでは、統計遅れ時間Tsの計測により、試作品の電子放出性能を相対比較した。   Therefore, the statistical delay time Ts of discharge is used as a measurement amount correlated with the current density until discharge. The temporal discharge delay from when the voltage is applied until the discharge reaches its peak is interpreted as the sum of the discharge formation delay time Tf and the discharge statistical delay time Ts. The discharge delay time depends on the voltage to be applied and the electron number density in the gas before the start of discharge. The formation delay time Tf correlates with the applied voltage, and the statistical delay time Ts correlates with the electron number density in the gas before the start of discharge. The statistical delay time Ts at each time is measured as a function of time until the start of discharge. The reciprocal of the statistical delay time Ts is proportional to the current density of electrons from the protective layer surrounding the discharge gas. If the reciprocal of the statistical delay time Ts is integrated over time as a function of the time until the start of discharge, a relative comparison of the amount of electron emission from the protective layer per unit area can be performed. Here, the electron emission performance of the prototype was relatively compared by measuring the statistical delay time Ts.

次に、電荷保持性能について説明する。電荷保持性能の指標として、書込み期間において印加する電圧Vscnがある。初期化動作が終わってから書込み動作を行うまでに、書込み動作に所望の壁電荷が失われないように、走査電極19aに壁電位と逆極性の電圧Vscnを印加して、書込み動作待ちの期間の壁電荷損失を抑える。   Next, the charge retention performance will be described. As an index of the charge retention performance, there is a voltage Vscn applied in the address period. A period of waiting for an address operation by applying a voltage Vscn having a polarity opposite to the wall potential to the scan electrode 19a so that a desired wall charge is not lost during the address operation after the initialization operation is completed. Reduce wall charge loss.

保護膜18表面の表面電流や放電ガスとの電荷交換により、蓄積した壁電荷が失われやすい場合には、Vscn電圧が高くなる傾向がある。Vscn電圧が低いほうが電荷保持性能は高いことを示す。現行製品において、走査電圧を順次パネルに印加するためのMOSFETなどの半導体スイッチング素子には、耐圧150V程度の素子が使用されており、Vscn電圧としては、スイッチング素子の発熱による損傷を考慮して、Vscn120V以下に抑えることが望ましい。ここでは、書込み動作に必要な最低スキャン電圧Vscnを測定し、試作品の電荷保持性能を比較した。   When the accumulated wall charges are easily lost due to surface current on the surface of the protective film 18 or charge exchange with the discharge gas, the Vscn voltage tends to increase. The lower the Vscn voltage, the higher the charge retention performance. In the current product, an element having a withstand voltage of about 150 V is used as a semiconductor switching element such as a MOSFET for sequentially applying a scanning voltage to the panel. As the Vscn voltage, in consideration of damage due to heat generation of the switching element, It is desirable to suppress to Vscn 120V or less. Here, the minimum scan voltage Vscn required for the write operation was measured, and the charge retention performance of the prototypes was compared.

前述の電子放出性能と電荷保持性能について調べた結果を図12に示す。横軸に電子放出性能、縦軸に電荷保持性能として、試作品の性能をプロットした。本発明に関わる試作品4は、電子放出性能が6以上、かつ、電荷保持性能がVscn電圧120V以下という特性が得られた。電子放出性能が高い試作品2や試作品3では、Vscn電圧120以上であり、電荷保持性能は悪い。一方、電荷保持性能が高い試作品1では、電子放出性能が2以下であり、電子放出性能が悪い。   FIG. 12 shows the results of examining the aforementioned electron emission performance and charge retention performance. The performance of the prototype was plotted with the electron emission performance on the horizontal axis and the charge retention performance on the vertical axis. Prototype 4 according to the present invention has characteristics of an electron emission performance of 6 or more and a charge retention performance of Vscn voltage of 120 V or less. In the prototype 2 and the prototype 3 with high electron emission performance, the Vscn voltage is 120 or more, and the charge retention performance is poor. On the other hand, in the prototype 1 having high charge retention performance, the electron emission performance is 2 or less, and the electron emission performance is poor.

(検証実験2) Al,Siなどの不純物をドープしたMgOから構成される保護層を形成した試作品5(試作品2とはドープ量が異なる)と、MgOから構成された保護層表面に結晶一次粒子を凝集させた凝集粒子群を全面に亘ってほぼ均一に分布するように付着させた試作品6(試作品4のリピート品)を試作した。   (Verification Experiment 2) Prototype 5 (with a different doping amount from Prototype 2) in which a protective layer made of MgO doped with impurities such as Al and Si was formed, and crystals on the surface of the protective layer made of MgO Prototype 6 (repeat product of prototype 4) in which the aggregated particle group obtained by aggregating the primary particles was adhered so as to be distributed almost uniformly over the entire surface was manufactured as a prototype.

これらの試作品について、全セル初期化期間での強放電の発生しやすさを比較し、本発明に関わる試作品6による全セル初期化期間での強放電の抑止効果の検証を行った。   For these prototypes, the ease of occurrence of strong discharge in the all-cell initialization period was compared, and the effect of suppressing strong discharge in the all-cell initialization period by the prototype 6 according to the present invention was verified.

本実験では、計測機器として光信号の受信部として利用されている近赤外線用のフォトダイオード(以下、APDと表記)を用いた。全セル初期化期間における放電の強弱を、APDの出力により観測した。放電の強弱は、キセノンの励起状態間の遷移から放射される近赤外線の発生量により識別することができる。放電が強い場合には、近赤外線の発生量は増大する。   In this experiment, a near-infrared photodiode (hereinafter referred to as APD) used as an optical signal receiver as a measuring instrument was used. The strength of discharge during the all-cell initialization period was observed by the output of the APD. The intensity of the discharge can be identified by the amount of generated near infrared rays emitted from the transition between the excited states of xenon. When the discharge is strong, the generation amount of near infrared rays increases.

例として、図13に全セル初期化期間において弱放電発生時のAPD出力波形模式図、図14に全セル初期化期間において強放電発生時のAPD出力波形模式図を示す。   As an example, FIG. 13 shows a schematic diagram of an APD output waveform when a weak discharge occurs in the all-cell initialization period, and FIG. 14 shows a schematic diagram of an APD output waveform when a strong discharge occurs in the all-cell initialization period.

図13において、初期化期間前半部T1では、走査電極19aに正電圧が印加され、電極周辺の放電部20内部あるいは表面での壁電位を含めた電位差が放電開始の電位差よりも高い。ここでは、時間的に急激な電離増倍ではなく緩やかに進展する弱放電が安定して起こっている。走査電極19aの印加電圧が正電圧から負電圧に入れ替わる初期化期間後半部T2では、初期化期間前半部T1で蓄積された壁電荷のうち余分な壁電荷を取り除き、壁電荷を調整する。初期化期間前半部T1および後半部T2での弱放電により、走査電極19aおよびアドレス電極14周辺の放電部20に、書込み放電に所望の壁電荷を蓄積させることができる。   In FIG. 13, in the first half T1 of the initialization period, a positive voltage is applied to the scan electrode 19a, and the potential difference including the wall potential inside or on the surface of the discharge unit 20 around the electrode is higher than the potential difference at the start of discharge. Here, the weak discharge which progresses slowly rather than rapid ionization multiplication with time occurs stably. In the second half of the initialization period T2 in which the applied voltage of the scan electrode 19a is switched from the positive voltage to the negative voltage, unnecessary wall charges are removed from the wall charges accumulated in the first half T1 of the initialization period, and the wall charges are adjusted. Due to the weak discharge in the first half T1 and the second half T2 of the initialization period, desired wall charges can be accumulated in the address discharge in the discharge portions 20 around the scan electrodes 19a and the address electrodes 14.

図14において、初期化期間前半部T1では、走査電極19aに正電圧が印加され、電極周辺の放電部20内部あるいは表面での壁電位を含めた電位差が放電開始の電位差よりも高い。ここでは、時間的に急激な電離増倍が進展してしまい、強放電が発生している。走査電極19aの印加電圧が正電圧から負電圧に入れ替わる初期化期間後半部T2では、初期化期間前半部T1で蓄積された過剰な壁電荷により、走査電極19aの電圧がピーク電圧から立下った時にも強放電が発生している。   In FIG. 14, in the first half T1 of the initialization period, a positive voltage is applied to the scan electrode 19a, and the potential difference including the wall potential inside or on the surface of the discharge unit 20 around the electrode is higher than the potential difference at the start of discharge. Here, rapid ionization multiplication progresses in time, and strong discharge is generated. In the latter half T2 of the initialization period in which the applied voltage of the scan electrode 19a is switched from the positive voltage to the negative voltage, the voltage of the scan electrode 19a falls from the peak voltage due to excessive wall charges accumulated in the first half T1 of the initialization period. Sometimes a strong discharge occurs.

このように、全セル初期化期間において強放電が発生したか否かを、APDによりモニタリングしながら、試作品5および試作品6について、パネル温度を変化させて、初期化前半部において強放電が発生する傾斜電圧の限界傾きを測定した。ここで、傾斜電圧発生回路RMP1の定電流回路I1として、p型半導体、MOSFETおよびボリューム抵抗を組み合わせた回路構成により制御を行った。また、あるセルで強放電が発生した場合には弱放電している他のセルに比べて発光が強く、目視でも強放電の発生を確認できる。そこで、APDと目視の両方により、強放電のモニタリングを行った。   In this way, while monitoring whether or not a strong discharge has occurred in the all-cell initialization period, the panel temperature was changed for the prototype 5 and the prototype 6 while monitoring the strong discharge in the first half of the initialization. The limit slope of the generated ramp voltage was measured. Here, the constant current circuit I1 of the ramp voltage generation circuit RMP1 was controlled by a circuit configuration combining a p-type semiconductor, a MOSFET, and a volume resistor. Further, when a strong discharge is generated in a certain cell, light emission is stronger than other cells that are weakly discharged, and the occurrence of a strong discharge can be confirmed visually. Therefore, strong discharge was monitored by both APD and visual observation.

各パネル温度での電子放出性能に関しては、後述の事前実験により既知であり、本実験により電子放出性能と限界傾きの関係が明らかになった。結果を図15に示す。   The electron emission performance at each panel temperature is known by a preliminary experiment described later, and the relationship between the electron emission performance and the limit slope has been clarified by this experiment. The results are shown in FIG.

試作品5では、パネル温度が低い時には、電子放出性能が著しく悪化し、傾斜電圧の傾きをより緩やかにしなければならないことがわかる。一方、試作品6では、パネル温度に関係なく、傾斜電圧の傾きを評価装置の測定限界の20V/μsecにしても、強放電は発生しなかった。図15では、試作品6の限界傾きとしては20V/μsecとしてプロットした。   In Prototype 5, it can be seen that when the panel temperature is low, the electron emission performance is remarkably deteriorated, and the slope of the ramp voltage must be made gentler. On the other hand, in Prototype 6, no strong discharge occurred regardless of the panel temperature even when the slope of the ramp voltage was set to 20 V / μsec, which is the measurement limit of the evaluation device. In FIG. 15, the limit slope of the prototype 6 is plotted as 20 V / μsec.

試作品5では、全セル初期化期間での強放電を防止するために、傾斜電圧の傾きをより緩やかにしなければならず、初期化期間の延長が必要になる。そのため、維持期間や書込み期間を短縮する手段が考えられる。   In Prototype 5, in order to prevent strong discharge in the all-cell initialization period, the gradient of the ramp voltage must be made gentler, and the initialization period must be extended. Therefore, means for shortening the sustain period and the writing period can be considered.

しかし、維持期間の短縮は、高精細化する際には大きな問題となる。高精細PDPではセルピッチが小さくなり、画素内の金属電極や隔壁の占める割合が増加し、開口率が下がり、輝度が低下する。さらに、前述の強放電防止のために初期化期間を延長して維持期間を短縮すると、最大維持パルス数が少なくなり、ピーク輝度が低下する。以上のことが重なって、高精細PDPでは、明所コントラストが著しく悪化し、画質が極端に劣化する。   However, the shortening of the maintenance period becomes a serious problem when the definition is increased. In the high-definition PDP, the cell pitch is reduced, the ratio of the metal electrodes and partition walls in the pixel is increased, the aperture ratio is decreased, and the luminance is decreased. Further, if the initializing period is extended to prevent the above-mentioned strong discharge and the sustain period is shortened, the maximum number of sustain pulses is reduced and the peak luminance is lowered. Overlapping the above, in the high-definition PDP, the bright place contrast is remarkably deteriorated, and the image quality is extremely deteriorated.

また、書込み期間を短縮すると、放電遅れ時間よりもスキャン電圧の周期が短くなり、正常に書込み動作を行えなくなる。例として、スキャン電圧の周期を1.2μsecに設定し、電子放出性能と書込み動作ミス発生率の関係を図16に示す。試作品5では、パネル温度が低温になると、電子放出性能が悪化し、放電遅れ時間が長くなり、正常に書込み動作を行えない。一方、本発明に関わる試作品6では、書込み動作ミスは発生せず、安定した書込み動作ができる。   If the address period is shortened, the scan voltage period becomes shorter than the discharge delay time, and the address operation cannot be performed normally. As an example, FIG. 16 shows the relationship between the electron emission performance and the write operation error occurrence rate when the scan voltage cycle is set to 1.2 μsec. In Prototype 5, when the panel temperature becomes low, the electron emission performance deteriorates, the discharge delay time becomes long, and the address operation cannot be performed normally. On the other hand, in the prototype 6 according to the present invention, a writing operation error does not occur and a stable writing operation can be performed.

以上のことから、試作品5では初期化期間での強放電防止と維持期間および書込み期間に対する時間的な制約を両立できない。   From the above, the prototype 5 cannot achieve both strong discharge prevention in the initialization period and time restrictions on the sustain period and the address period.

ここで、前述の事前実験について説明する。事前実験では、統計遅れ時間Tsの逆数から計算した電子放出性能の相対値とパネル温度の関係を調べた。結果を図17に示す。ここでは、電子放出性能では、試作品5にてパネル温度30℃での電子放出性能を1として、他のパネル温度や試作品6の電子放出性能の相対値を計算した。   Here, the aforementioned preliminary experiment will be described. In the preliminary experiment, the relationship between the relative value of the electron emission performance calculated from the reciprocal of the statistical delay time Ts and the panel temperature was examined. The results are shown in FIG. Here, in the electron emission performance, the electron emission performance at the panel temperature of 30 ° C. was set to 1 in the prototype 5, and the relative values of the other panel temperatures and the electron emission performance of the prototype 6 were calculated.

図17から、パネルの温度の降下にともない、単位時間あたりの電子放出性能が急激に悪化する。一方、試作品6では、パネルの温度に関係なく、安定して高い電子放出性能を保持している。   FIG. 17 shows that the electron emission performance per unit time deteriorates rapidly as the panel temperature decreases. On the other hand, Prototype 6 stably maintains high electron emission performance regardless of the panel temperature.

(検証実験3) 本発明に関わる試作品6において、従来の駆動方式に関わる駆動波形1と本発明に関わる駆動波形2を印加して、隣接セル間の放電干渉による点灯不良の比較を行った。従来の駆動方式に関わる駆動波形1では、選択初期化期間において、立ち上がり37V/μsecである矩形波形の消去電圧を印加した。駆動波形2では、選択初期化期間前半部において、10V/μsecと緩やかに上昇する傾斜電圧を印加した。駆動波形1での点灯写真を図18に、駆動波形2での点灯写真を図19に示す。   (Verification Experiment 3) In the prototype 6 related to the present invention, the driving waveform 1 related to the conventional driving method and the driving waveform 2 related to the present invention were applied, and the lighting failure due to the discharge interference between adjacent cells was compared. . In the driving waveform 1 related to the conventional driving method, an erasing voltage having a rectangular waveform having a rising edge of 37 V / μsec was applied in the selective initialization period. In the driving waveform 2, a ramp voltage that gradually rises to 10 V / μsec was applied in the first half of the selective initialization period. A lighting photograph with the driving waveform 1 is shown in FIG. 18, and a lighting photograph with the driving waveform 2 is shown in FIG.

図18からもわかるように、選択初期化期間において矩形波形を印加した駆動方式1では、点灯不良を起こしているセルが多数観察された。一方、図19に示すように、選択初期化期間において緩やかに上昇する傾斜電圧を印加した駆動波形2では、点灯不良を起こすセルは観察されなかった。駆動波形1では、選択初期化期間において強放電が発生し、隣接セル間との放電干渉は大きい。駆動波形2では、選択初期化期間において弱放電が発生し、隣接セル間との放電干渉は小さい。各駆動波形での選択初期化期間での放電の強弱は、APDにより確認を行った。   As can be seen from FIG. 18, in the driving method 1 in which a rectangular waveform was applied during the selective initialization period, a large number of cells that caused lighting failures were observed. On the other hand, as shown in FIG. 19, in the driving waveform 2 to which a ramp voltage that gradually increases during the selective initialization period was applied, no cell causing a lighting failure was observed. In the drive waveform 1, strong discharge occurs in the selective initialization period, and discharge interference between adjacent cells is large. In the drive waveform 2, weak discharge occurs in the selective initialization period, and discharge interference between adjacent cells is small. The strength of the discharge during the selective initialization period in each drive waveform was confirmed by APD.

試作品6に関して、パネル面内での誘電体層の膜厚ばらつきなどから放電干渉の度合いにばらつきがあり、映像表示が破綻する選択初期化期間前半部の傾斜電圧の傾きを調べた結果、上り下りともに傾斜電圧の傾き限界は、25V/μsec〜35V/μsecであった。   Regarding Prototype 6, as a result of investigating the slope of the ramp voltage in the first half of the selective initialization period when the degree of discharge interference varies due to variations in the dielectric layer thickness within the panel surface, and the video display fails, The slope limit of the slope voltage was 25 V / [mu] sec to 35 V / [mu] sec in both cases.

本発明により、全セル初期化期間、選択初期化期間に関わらず、初期化期間での強放電の発生が抑えられ、また、Vscn電圧120V以下で安定した書込み動作を行うことができ、高精細、高画質、低価格なプラズマディスプレイ装置を提供することができる。   According to the present invention, regardless of the all-cell initializing period and the selective initializing period, the occurrence of strong discharge in the initializing period can be suppressed, and a stable address operation can be performed at a Vscn voltage of 120 V or less. A high-quality, low-cost plasma display device can be provided.

(実施例1)
保護層18の結晶粒子18bの粒径が、平均0.9μm〜2μmの範囲にあることを特徴としたPDPを使用したプラズマディスプレイ装置について説明する。以下の説明において、粒径とは平均粒径を意味し、平均粒径とは、体積累積平均径(D50)のことを表す。また、粒径は、結晶粒子をSEM観察することで測長できる。
Example 1
A plasma display device using a PDP in which the crystal grains 18b of the protective layer 18 have an average particle size in the range of 0.9 μm to 2 μm will be described. In the following description, the particle diameter means an average particle diameter, and the average particle diameter represents a volume cumulative average diameter (D50). The particle size can be measured by observing the crystal particles with an SEM.

図12で説明した本発明の試作品4において、MgO結晶粒子の粒径を変化させて電子放出性能を調べた。結果を図20に示す。   In the prototype 4 of the present invention described with reference to FIG. 12, the electron emission performance was examined by changing the particle diameter of the MgO crystal particles. The results are shown in FIG.

粒径が0.3μm程度に小さくなると、電子放出性能が低くなり、ほぼ0.9μm以上であれば、高い電子放出性能が得られた。   When the particle size was reduced to about 0.3 μm, the electron emission performance was lowered. When the particle size was about 0.9 μm or more, high electron emission performance was obtained.

次に、図12で説明した本発明の試作品4において、保護層18表面に粒径の異なる結晶粒子を単位面積あたり一定個数散布し、隔壁の破損発生確率を調べた。結果を図21に示す。放電セル内での電子放出数を増加させるためには、保護層18上の単位面積あたりの結晶粒子数は多い方が望ましい。しかし、前面板PA1の保護層18と密着する背面板PA2の隔壁15の頂部の間に結晶粒子が存在する場合、前面板PA1と背面板PA2を封着した際に隔壁の一部が破損する。破損した隔壁材料の一部が放電部20に落ち込み、セルが正常に点灯消灯しなくなる不良が発生する。隔壁破損による不良は、結晶粒子が隔壁頂部に多く存在した場合に顕著に現れることから、付着させる結晶粒子数が多くなれば、隔壁の破損発生確率が高くなる。   Next, in Prototype 4 of the present invention described with reference to FIG. 12, a certain number of crystal particles having different particle diameters were dispersed on the surface of the protective layer 18 per unit area, and the probability of breakage of the partition walls was examined. The results are shown in FIG. In order to increase the number of electrons emitted in the discharge cell, it is desirable that the number of crystal grains per unit area on the protective layer 18 is large. However, when crystal particles are present between the tops of the partition walls 15 of the back plate PA2 that are in close contact with the protective layer 18 of the front plate PA1, some of the partitions are damaged when the front plate PA1 and the back plate PA2 are sealed. . A part of the damaged barrier rib material falls into the discharge part 20, and a defect that the cell does not normally turn on and off occurs. Defects due to the breakage of the partition walls are conspicuous when a large number of crystal particles are present on the tops of the partition walls. Therefore, if the number of attached crystal particles is increased, the probability of the breakage of the partition walls is increased.

図21からわかるように、結晶粒子の粒径が2.5μm程度まで大きくなると、隔壁破損の確率が急激に高くなる。一方、粒径が2.5μmより小さい結晶粒子であれば、隔壁破損の確率は比較的小さく抑えることができる。   As can be seen from FIG. 21, when the grain size of the crystal particles increases to about 2.5 μm, the probability of partition wall breakage increases rapidly. On the other hand, if the grain size is smaller than 2.5 μm, the probability of partition wall breakage can be kept relatively small.

以上の結果に基づき、結晶粒子18bの製造ばらつきや保護層18を形成する際のプロセスばらつきを考慮し、結晶粒子として粒径が0.9μm以上2.0μm以下のものが望ましい。   Based on the above results, considering the manufacturing variation of the crystal particles 18b and the process variation when forming the protective layer 18, it is desirable that the crystal particles have a particle size of 0.9 μm or more and 2.0 μm or less.

また、放電ガスのイオンスパッタによる下地保護層18aの損傷を抑えるためには、イオンスパッタされた後に再結晶化する過程で、凝集粒子群と下地保護層18aが同質の材料であることが好ましい。そこで、下地保護層18aも結晶粒子18bと同質のMgOから構成されることが好ましい。   In order to suppress damage to the underlying protective layer 18a due to ion sputtering of the discharge gas, the aggregated particle group and the underlying protective layer 18a are preferably made of the same material in the process of recrystallization after ion sputtering. Therefore, the base protective layer 18a is also preferably composed of MgO of the same quality as the crystal particles 18b.

本発明の(実施例1)によれば、電子放出性能が6以上、かつ、電荷保持性能がVscn電圧120V以下の性能を得ることができ、高精細PDPの保護層18として、電子放出能力と電荷保持能力の両方を満足させることができ、これにより高精細で高輝度の表示性能を備え、かつ低消費電力のPDPを実現することができる。   According to (Example 1) of the present invention, an electron emission performance of 6 or more and a charge retention performance of a Vscn voltage of 120 V or less can be obtained. Both of the charge holding ability can be satisfied, whereby a PDP having high definition and high luminance display performance and low power consumption can be realized.

(実施例2)
本発明に関わる駆動方式は、各SFの初期化期間に行う初期化動作がすべて選択初期化動作であるフィールドを、画像表示に関わるフィールドのうち、少なくとも1フィールド以上有することを特徴とするプラズマディスプレイ装置に関するものである。ここで、実施する駆動波形を図22に示す。
(Example 2)
The driving method according to the present invention has a field in which at least one of the fields related to image display has at least one field in which the initialization operation performed during the initialization period of each SF is a selective initialization operation. It relates to the device. Here, FIG. 22 shows drive waveforms to be implemented.

以下に、本実施例の効果検証を行ったので説明する。この検証で用いたPDPは試作品5、試作品6である。   Hereinafter, the verification of the effect of this embodiment will be described. The PDP used in this verification is prototype 5 and prototype 6.

まず、本発明に関わる図9の駆動波形を用いて、全セル初期化期間での第2電圧Vb1を変えて、黒表示時の輝度の測定を行った。その際、初期化期間前半部および初期化期間後半部での放電に関わった電圧の合計を、初期化飛び出し電圧として計測を行った。具体的には、初期化期間前半部において、第1電圧Va1と第2電圧Vb1の間の電圧で、放電が開始する電圧をVf1、初期化期間後半部において、第3電圧Vc1と第4電圧Vd1の間の電圧で、放電が開始する電圧をVf2とすると、初期化飛び出し電圧は(Vb1−Vf1)+(Vf2−Vd1)となる。初期化飛び出し電圧の計測に関して、模式図を図23に示す。   First, by using the drive waveform of FIG. 9 according to the present invention, the second voltage Vb1 in the all-cell initialization period was changed, and the luminance at the time of black display was measured. At that time, the total of the voltages related to the discharge in the first half of the initialization period and the latter half of the initialization period was measured as the initialization jump-out voltage. Specifically, in the first half of the initialization period, the voltage between the first voltage Va1 and the second voltage Vb1 is Vf1, the voltage at which discharge starts, and in the second half of the initialization period, the third voltage Vc1 and the fourth voltage. When the voltage between Vd1 and the voltage at which discharge starts is Vf2, the initialization jump-out voltage is (Vb1-Vf1) + (Vf2-Vd1). A schematic diagram regarding the measurement of the initialization jump-out voltage is shown in FIG.

横軸に初期化飛び出し電圧、縦軸に黒表示時の輝度(以下、黒輝度と表記)をプロットしたものを図24に示す。ここでは、初期化期間前半部および初期化期間後半部の傾斜電圧の傾きをともに2V/μsec、第3電圧Vc1を210V、第4電圧を132Vに設定した。本発明者らの検討によると、弱放電に関わる電圧(初期化飛び出し電圧)と弱放電による発光量の関係は、電極距離やセルピッチなどセル構造が同じ場合には、保護層18の組成よりも放電ガスの依存性が顕著であった。試作品5と試作品6では、同一セル構造および同一放電ガスであり、保護層18の構成が異なるだけなので、黒輝度特性は同じ傾向が得られた。   FIG. 24 shows a plot of initialization pop-up voltage on the horizontal axis and luminance during black display (hereinafter referred to as black luminance) on the vertical axis. Here, the slopes of the ramp voltages in the first half of the initialization period and the second half of the setup period are both set to 2 V / μsec, the third voltage Vc1 is set to 210 V, and the fourth voltage is set to 132 V. According to the study by the present inventors, the relationship between the voltage related to the weak discharge (initialization jump-out voltage) and the light emission amount due to the weak discharge is higher than the composition of the protective layer 18 when the cell structure such as the electrode distance and the cell pitch is the same. The dependence of the discharge gas was significant. In the prototype 5 and the prototype 6, the same cell structure and the same discharge gas are used, and the configuration of the protective layer 18 is different, so that the same tendency is obtained in the black luminance characteristics.

本発明に関わるPDPおよび図9の駆動方式では、当該フィールドの前のフィールドにおいて、当該セルの書込み動作が行われた場合、当該フィールド内の全セル初期化動作での初期化飛び出し電圧は、選択初期化動作での初期化飛び出し電圧よりも、最大でVb1−Vb2だけ大きくなってしまう。当該SFの前のSFにおいて、書込み動作を行ったセルには、書込み動作を行わなかったセルよりも、多くの壁電荷が蓄積された状態であり、全セル初期化動作時に印加する第2電圧Vb1よりも低い第2電圧Vb2で初期化動作(ここでは、選択初期化動作)を行うことができる。   In the PDP according to the present invention and the driving method of FIG. 9, when the cell write operation is performed in the field preceding the field, the initialization jump-out voltage in the all-cell initialization operation in the field is selected. It will be larger by Vb1-Vb2 at the maximum than the initialization jump-out voltage in the initialization operation. In the SF before the SF, the cell that has performed the write operation is in a state in which more wall charges are accumulated than the cell that has not performed the write operation, and the second voltage applied during the all-cell initialization operation The initialization operation (here, the selective initialization operation) can be performed with the second voltage Vb2 lower than Vb1.

しかし、電荷保持性能が低い場合には、書込み動作を行ってから選択初期化動作を行うまでの休止期間の間に、蓄積した壁電荷が徐々に失われてしまい、選択初期化動作を正常に行えなくなる。   However, if the charge retention performance is low, the accumulated wall charge is gradually lost during the rest period from the writing operation to the selective initialization operation, and the selective initialization operation is performed normally. It becomes impossible to do.

例えば、試作品2と試作品5において、連続表示させてパネル温度が上昇すると、電荷保持性能が悪化し、書込み動作に必要な最低スキャン電圧Vscnが急激に上昇する。また、試作品3では、パネル温度に関わらず最低スキャン電圧Vscnは基準値120Vを大きく超えてしまう。一方、試作品4と試作品6では、パネル温度に関わらず最低スキャン電圧Vscnの上昇は発生せず、基準値120Vよりも低い。   For example, in the prototype 2 and the prototype 5, when the panel temperature is increased by continuously displaying, the charge retention performance is deteriorated, and the minimum scan voltage Vscn necessary for the write operation is rapidly increased. In prototype 3, the minimum scan voltage Vscn greatly exceeds the reference value 120V regardless of the panel temperature. On the other hand, in the prototype 4 and the prototype 6, the minimum scan voltage Vscn does not increase regardless of the panel temperature, and is lower than the reference value 120V.

実際に、試作品2、試作品3、試作品5に対して、図22に示す本発明に関わる駆動方式を実施した場合、セルによっては壁電荷不足により選択書込み動作を行えず、正常に画像表示を行えない。一方、試作品4と試作品6に対して、図22に示す本発明に関わる駆動方式を実施した場合、初期化動作での強放電を抑え、選択書込み動作を行うことができる。   Actually, when the driving method according to the present invention shown in FIG. 22 is applied to the prototype 2, the prototype 3, and the prototype 5, the selective writing operation cannot be performed due to a lack of wall charges depending on the cell, and the image is normally displayed. Cannot display. On the other hand, when the driving method according to the present invention shown in FIG. 22 is performed on the prototype 4 and the prototype 6, the strong discharge in the initialization operation can be suppressed and the selective addressing operation can be performed.

そこで、電荷保持性能が低い従来例に関わるPDPでは、フィールド毎に少なくとも1回は波高値の高い全セル初期化動作を行わなければ、書込み動作に所望の壁電荷を初期化動作により蓄積することができない。本発明に関わるPDPでは、パネル温度に関わらず電荷保持性能が安定して高いので、フィールド毎に全セル初期化動作を行う必要がなくなる。   Therefore, in a PDP related to a conventional example with low charge retention performance, a desired wall charge is accumulated in the write operation by the initialization operation unless the all-cell initialization operation having a high peak value is performed at least once for each field. I can't. In the PDP according to the present invention, the charge retention performance is stable and high regardless of the panel temperature, so that it is not necessary to perform the all-cell initialization operation for each field.

本発明に関わるPDPおよび図9の駆動方式では、前述のように書込み動作を行ったセルでは、全セル初期化動作時に、最大でVb1−Vb2だけ余分な電圧を印加することになってしまう。たとえば、Vb1−Vb2=100Vに設定した図9の駆動方式では、書込み動作を行ったセルに対して全セル初期化動作を行った場合、黒輝度は最大89%も増加してしまう。そこで、本発明に関わる電荷保持性能の高いPDPでは、図22に示すように全セル初期化動作の回数を減らして、図9より黒輝度を下げることができ、黒表現力の高いプラズマディスプレイ装置を提供することができる。   In the PDP according to the present invention and the driving method shown in FIG. 9, in the cell in which the write operation is performed as described above, an extra voltage of Vb1-Vb2 is applied at the maximum during the all-cell initialization operation. For example, in the driving method of FIG. 9 in which Vb1−Vb2 = 100 V is set, when the all-cell initializing operation is performed on the cell on which the writing operation has been performed, the black luminance increases by 89% at the maximum. Therefore, in the PDP having high charge holding performance according to the present invention, the number of all cell initialization operations can be reduced as shown in FIG. 22, and the black luminance can be lowered as compared with FIG. Can be provided.

(実施例3)
本発明に関わる駆動方式において、傾斜電圧の傾きが途中で変化することを特徴とするプラズマディスプレイ装置に関するもので、本実施形態での駆動回路の一例を図26、動作波形を図25に示す。
(Example 3)
FIG. 26 shows an example of a drive circuit in this embodiment, and FIG. 25 shows an operation waveform, which relates to a plasma display device characterized in that the slope of the ramp voltage changes midway in the drive system according to the present invention.

本実施形態の駆動回路では、緩やかに上昇する傾斜電圧の一つを、スキャンICの電源電圧Vicを利用する構成となっている。定電流回路I3、コンデンサC3、ダイオードD3、抵抗R3、スイッチSW7、電源電圧Vbから構成される傾斜発生回路RAMP3、ハイサイドスイッチSW10とローサイドスイッチSW11を直列接続したスキャンIC、書込み動作用の電源電圧Vscnの両端にスイッチSW8とスイッチSW9を直列接続したスキャン電圧選択回路D、電圧比較器を含むスキャン電位嵩上げ回路Eの3つから構成される。傾斜発生回路RAMP3の出力端子およびスキャン電圧選択回路Dの中点をスキャンICの電源入力端子に接続する。また、電源Vscnの負極とスイッチSW9の他端を、スキャンICのGNDに接続し、電源Vsにも接続する。最後に、スキャンICの中点を走査電極19に出力する構成となっている。なお、スキャンICは走査電極19aごとに並列に1つずつ配置されており、スキャン電圧選択回路Dは書込み期間におけるスキャンパルスのオンオフを制御するための回路である。   The drive circuit of the present embodiment is configured to use the power supply voltage Vic of the scan IC as one of the slowly rising ramp voltages. A constant current circuit I3, a capacitor C3, a diode D3, a resistor R3, a switch SW7, a slope generating circuit RAMP3 composed of a power supply voltage Vb, a scan IC in which a high side switch SW10 and a low side switch SW11 are connected in series, a power supply voltage for writing operation The scan voltage selection circuit D includes a switch SW8 and a switch SW9 connected in series at both ends of Vscn, and a scan potential raising circuit E including a voltage comparator. The output terminal of the ramp generation circuit RAMP3 and the midpoint of the scan voltage selection circuit D are connected to the power input terminal of the scan IC. Further, the negative electrode of the power supply Vscn and the other end of the switch SW9 are connected to the GND of the scan IC and also connected to the power supply Vs. Finally, the middle point of the scan IC is output to the scan electrode 19. Note that one scan IC is arranged in parallel for each scan electrode 19a, and the scan voltage selection circuit D is a circuit for controlling on / off of a scan pulse in an address period.

以下に、初期化期間における駆動回路の動作について説明する。はじめに、スキャンICのローサイドスイッチSW11のみがオンし(正確にはダイオードを介して)、電圧Vsが走査電極19aに印加される。ここでの電圧Vsは0Vである。次に、信号S3にハイを入力し、傾斜電圧を発生させるための電源電圧Vbが、スイッチSW7を介してスキャンICに印加される。しかし、スイッチSW8、スイッチSW9、スイッチSW10はオフであり、走査電極19aには出力されない。この間に、メイン電圧Vsを0VからVaまで急峻に上昇させ、走査電極19aに印加する。   Hereinafter, an operation of the drive circuit in the initialization period will be described. First, only the low-side switch SW11 of the scan IC is turned on (more precisely, via a diode), and the voltage Vs is applied to the scan electrode 19a. The voltage Vs here is 0V. Next, high is input to the signal S3, and the power supply voltage Vb for generating the ramp voltage is applied to the scan IC via the switch SW7. However, the switch SW8, the switch SW9, and the switch SW10 are off and are not output to the scan electrode 19a. During this time, the main voltage Vs is rapidly increased from 0 V to Va and applied to the scanning electrode 19a.

次に、スキャンICのローサイドスイッチSW11をオフし、ハイサイドスイッチSW10をオンさせる。この時、定電流回路I3からの充電電流は、スイッチSW9およびスイッチSW10の寄生容量を充電するため、スキャンICに印加される電圧が、動作開始電圧に充電されるまではハイサイドスイッチSW10はオンせず、電圧はVaに保持される。スキャンICの電圧が動作開始電圧を超えると、スイッチSW10がオンし始め、充電電流によりスキャンICにかかる電圧は傾斜電圧となり、電圧Vaから電圧(Va+Vic)まで上昇する。スキャンICにVic以上の電圧が印加され、スイッチSW10が完全にオンした後は、傾斜電圧発生回路RMP3に従って、傾斜電圧が電圧Vbになるまで出力される。   Next, the low side switch SW11 of the scan IC is turned off and the high side switch SW10 is turned on. At this time, since the charging current from the constant current circuit I3 charges the parasitic capacitances of the switch SW9 and the switch SW10, the high-side switch SW10 is turned on until the voltage applied to the scan IC is charged to the operation start voltage. Instead, the voltage is held at Va. When the voltage of the scan IC exceeds the operation start voltage, the switch SW10 starts to be turned on, and the voltage applied to the scan IC by the charging current becomes a ramp voltage and increases from the voltage Va to the voltage (Va + Vic). After a voltage equal to or higher than Vic is applied to the scan IC and the switch SW10 is completely turned on, the voltage is output until the ramp voltage becomes the voltage Vb according to the ramp voltage generation circuit RMP3.

傾斜電圧が電源電圧Vbまで到達後、信号S3がオフされ、スイッチSW8をオンさせ、スイッチSW8およびSW10を介して電圧(Va+Vscn)に立ち下がる。次に、スイッチSW9およびスイッチSW11がオンし、スキャンICの電圧が0Vになり、電圧Vaまで立下がる。   After the ramp voltage reaches the power supply voltage Vb, the signal S3 is turned off, the switch SW8 is turned on, and falls to the voltage (Va + Vscn) via the switches SW8 and SW10. Next, the switch SW9 and the switch SW11 are turned on, the voltage of the scan IC becomes 0V, and falls to the voltage Va.

前述の回路構成により、傾斜電圧の傾きが異なる期間を2つ設け、後ろの傾斜電圧のほうが前の傾斜電圧よりも傾きが緩やかである電圧波形を発生させることができる。なお、図26に示した回路構成は、2つの異なる傾きを有する傾斜電圧を出力させるものの一例であり、この限りではない。   With the above-described circuit configuration, two periods with different slopes of the ramp voltage can be provided, and a voltage waveform in which the back ramp voltage has a gentler slope than the previous ramp voltage can be generated. Note that the circuit configuration shown in FIG. 26 is an example of output of ramp voltages having two different slopes, and is not limited to this.

本実施形態によると、初期化期間前半部において、傾斜電圧の傾きが徐々に緩やかに設定されている。ゲート信号発生器によりシャッターの開閉を制御し、高感度CCDカメラを用いて、初期化動作時の放電広がりの様子をパネル正面から観察したところ、傾斜電圧による初期化動作において、第1電圧Vaから第2電圧Vbに変化するにしたがって、維持電極19bとアドレス電極14を負極、走査電極19aを正極として、透明電極の内側(放電セル中央部に近い側)から外側(放電セルの隔壁に近い側)へ放電が進展することがわかった。   According to the present embodiment, the slope of the ramp voltage is set gradually gradually in the first half of the initialization period. When the opening and closing of the shutter is controlled by the gate signal generator and the state of discharge spreading during the initialization operation is observed from the front of the panel using a high-sensitivity CCD camera, the first voltage Va in the initialization operation using the ramp voltage is observed. As the voltage changes to the second voltage Vb, the sustain electrode 19b and the address electrode 14 are used as the negative electrode, the scan electrode 19a is used as the positive electrode, and from the inner side (the side closer to the center of the discharge cell) to the outer side (the side closer to the discharge cell partition). It was found that the discharge progressed to.

本発明に関わるPDPでは、電子放出特性に優れており、初期化動作時の強放電を抑制することが可能であるが、放電が外側に広がった場合に、隔壁や隔壁近傍の蛍光体に余剰帯電が発生し、初期化動作後の書込み動作に異常をきたし、正常に画像表示を行えないことがある。そのため、傾斜電圧の傾きを徐々に緩やかにすることによって、放電が外側に広がる時間帯に放電をより弱くし、側壁への余剰帯電を緩和することができる。さらに、初期化期間前半部において、アドレス電極14の電圧が正極性である期間を設けることにより、放電の広がりを抑制し、側壁への余剰帯電を緩和することができる。   The PDP according to the present invention has excellent electron emission characteristics and can suppress a strong discharge during the initialization operation. However, when the discharge spreads outward, an excess is present in the barrier ribs and the phosphors in the vicinity of the barrier ribs. There is a case where charging occurs, the writing operation after the initialization operation is abnormal, and the image display cannot be performed normally. Therefore, by gradually reducing the slope of the ramp voltage, it is possible to weaken the discharge in the time zone in which the discharge spreads outward and to alleviate excess charging on the side wall. Furthermore, by providing a period in which the voltage of the address electrode 14 is positive in the first half of the initialization period, it is possible to suppress the spread of discharge and alleviate excess charging on the side wall.

また、傾斜電圧の最初の時間帯に傾きを大きくすることにより、初期化動作にかかる時間を短縮することができ、画像表示の安定性に関わる書込み動作や画像の明るさに関わる維持動作により多くの時間を割くことができるようになる。   In addition, by increasing the slope in the first time zone of the ramp voltage, the time required for the initialization operation can be shortened, and the write operation related to the stability of the image display and the maintenance operation related to the brightness of the image are more frequent. Will be able to spend more time.

前述のように、本発明に関わるPDPにおいて、本発明に関わる駆動方式を用いたプラズマディスプレイ装置では、電子放出源である保護層18の長期信頼性、PDPと駆動回路の製造ばらつき、初期化動作時の強放電発生による画質劣化、側壁への余剰帯電による画質劣化を考慮して、傾斜電圧の傾きを20V/μsec以下にすることが好ましい。   As described above, in the PDP according to the present invention, in the plasma display device using the driving method according to the present invention, the long-term reliability of the protective layer 18 serving as the electron emission source, the manufacturing variation of the PDP and the driving circuit, the initialization operation In consideration of image quality deterioration due to the occurrence of strong discharge at the time and image quality deterioration due to excessive charging on the side wall, it is preferable to set the gradient of the ramp voltage to 20 V / μsec or less.

(実施例4)
本発明に関わる駆動方式は図26に示す回路構成から、スキャン電位嵩上げ回路Eを取り除き、走査電極19aに印加するスキャンパルスの電位が第4電圧Vdと同電位であることを特徴とするプラズマディスプレイ装置に関するものである。本発明に関わるPDPでは、電荷保持性能が安定しており、書込み動作待ちの休止期間における壁電荷の消失が少ないので、消失した電荷に相当する電圧を補うために挿入する電圧Vset2を省くことができる場合がある。この場合には、スキャン電位嵩上げ回路Eをなくすことができ、より低コストなプラズマディスプレイ装置を提供することができる。
Example 4
The driving method according to the present invention is a plasma display characterized in that the scan potential raising circuit E is removed from the circuit configuration shown in FIG. 26, and the potential of the scan pulse applied to the scan electrode 19a is the same potential as the fourth voltage Vd. It relates to the device. In the PDP according to the present invention, the charge holding performance is stable, and the loss of wall charges in the pause period waiting for the write operation is small. Therefore, it is possible to omit the voltage Vset2 inserted to compensate for the voltage corresponding to the lost charge. There are cases where it is possible. In this case, the scan potential raising circuit E can be eliminated, and a lower cost plasma display device can be provided.

本発明に関わるプラズマディスプレイ装置は、金属酸化物からなる複数の結晶粒子が凝集した凝集粒子群を、保護層18周辺部に複数を有するプラズマディスプレイパネルであって、初期化期間は、第2の電極に第1電圧から第2電圧まで緩やかに上昇する電圧を印加する初期化期間前半部と、第2の電極に第3電圧から第4電圧まで緩やかに下降する電圧を印加する初期化期間後半部を有する駆動方式により、良好な画質で画像表示させる画像表示装置として有用である。また、高Xe分圧比や高全圧化によって高効率化したプラズマディスプレイやフルスペックハイビジョン化プラズマディスプレイを用いた画像表示装置等の用途にも応用できる。   The plasma display device according to the present invention is a plasma display panel having a plurality of aggregated particle groups in which a plurality of crystal particles made of a metal oxide are aggregated in the periphery of the protective layer 18, and the initialization period is the second period The first half of the initialization period in which a voltage that gradually increases from the first voltage to the second voltage is applied to the electrode, and the second half of the initialization period in which the voltage that gradually decreases from the third voltage to the fourth voltage is applied to the second electrode It is useful as an image display device that displays an image with good image quality by a drive system having a portion. Further, it can be applied to uses such as an image display device using a plasma display improved in efficiency by a high Xe partial pressure ratio and a high total pressure, and a full-spec high-definition plasma display.

本発明の実施の形態に用いるパネル主要部を示す斜視図The perspective view which shows the main part of the panel used for embodiment of this invention 本発明の実施の形態におけるパネルの電極配線図Electrode wiring diagram of panel in the embodiment of the present invention 同PDPを用いたプラズマディスプレイ装置の構成図Configuration diagram of plasma display device using the same PDP 同PDPの駆動方式における1テレビフィールドのSF構成図SF configuration diagram of one television field in the PDP driving method 同PDPの各電極に印加する駆動電圧のタイミングチャートTiming chart of drive voltage applied to each electrode of the PDP 同PDPの保護層部分を拡大して示す説明図Explanatory drawing which expands and shows the protective layer part of the PDP 同PDPの保護層において、凝集粒子を説明するための拡大図Enlarged view for explaining aggregated particles in the protective layer of the PDP 本発明に関わるPDPの製造方法において、保護層形成の工程を示す工程図Process drawing which shows the process of protective layer formation in the manufacturing method of PDP concerning this invention 本発明に関わる駆動方式において、同PDPの各電極に印加する駆動電圧のタイミングチャートTiming chart of driving voltage applied to each electrode of the PDP in the driving system according to the present invention 同駆動波形を出力するための駆動回路構成の一例を示す図The figure which shows an example of the drive circuit structure for outputting the drive waveform 結晶粒子のカソードルミネッセンス測定結果を示す特性図Characteristic diagram showing the results of cathodoluminescence measurement of crystal particles 本発明によるプラズマディスプレイ装置の効果を検証する実験において、電子放出性能と電荷保持性能を示すVscn点灯電圧の関係を示す特性図FIG. 5 is a characteristic diagram showing the relationship between the electron emission performance and the Vscn lighting voltage indicating the charge retention performance in an experiment for verifying the effect of the plasma display device according to the present invention. 全セル初期化期間において、弱放電の場合のAPD出力電圧を示す図The figure which shows the APD output voltage in the case of weak discharge in the all-cell initialization period 全セル初期化期間において、強放電の場合のAPD出力電圧を示す図The figure which shows the APD output voltage in the case of a strong discharge in the all-cell initialization period 本発明によるプラズマディスプレイ装置の効果を検証する実験において、電子放出性能と初期化傾斜電圧の限界傾きの関係を示す特性図FIG. 5 is a characteristic diagram showing the relationship between the electron emission performance and the limit gradient of the initialization ramp voltage in an experiment for verifying the effect of the plasma display device according to the present invention. 本発明によるプラズマディスプレイ装置の効果を検証する実験において、電子放出性能と初期化傾斜電圧の限界傾きの関係を示す特性図FIG. 5 is a characteristic diagram showing the relationship between the electron emission performance and the limit gradient of the initialization ramp voltage in an experiment for verifying the effect of the plasma display device according to the present invention. 本発明によるプラズマディスプレイ装置の効果を検証する実験において、パネル温度と電子放出性能の関係を示す特性図FIG. 5 is a characteristic diagram showing the relationship between the panel temperature and the electron emission performance in an experiment for verifying the effect of the plasma display device according to the present invention. 本発明によるプラズマディスプレイ装置の効果を検証する実験において、駆動波形1を印加した場合の表示状態をディスプレイ上に表示した画像を示す写真In an experiment for verifying the effect of the plasma display device according to the present invention, a photograph showing an image in which a display state when a drive waveform 1 is applied is displayed on the display 本発明によるプラズマディスプレイ装置の効果を検証する実験において、本発明に関わる駆動波形2を印加した場合の表示状態をディスプレイ上に表示した画像を示す写真In an experiment for verifying the effect of the plasma display device according to the present invention, a photograph showing an image in which the display state when the driving waveform 2 according to the present invention is applied is displayed on the display 結晶粒子の粒径と電子放出特性の関係を示す特性図Characteristic diagram showing the relationship between crystal grain size and electron emission characteristics 結晶粒子の粒径と隔壁の破損の発生率との関係を示す特性図Characteristic diagram showing the relationship between the grain size of crystal grains and the incidence of partition wall breakage 本発明の実施例2において各電極に印加する駆動電圧のタイミングチャートTiming chart of drive voltage applied to each electrode in Example 2 of the present invention 初期化飛び出し電圧を説明するための図Diagram for explaining initialization pop-out voltage 本発明によるプラズマディスプレイ装置の効果を検証する実験において、初期化飛び出し電圧と黒輝度の関係を示す特性図FIG. 6 is a characteristic diagram showing the relationship between the initialization jump-out voltage and the black luminance in the experiment for verifying the effect of the plasma display device according to the present invention. 本発明の実施例3において、初期化期間前半部および初期化期間後半部に走査電極19aに印加する駆動波形の一例を示す図FIG. 10 is a diagram illustrating an example of a driving waveform applied to the scan electrode 19a in the first half of the initialization period and the second half of the initialization period in the third embodiment of the present invention. 本発明の実施例3において、同駆動波形を出力するための走査電極駆動回路の一例を示す図FIG. 10 is a diagram illustrating an example of a scan electrode driving circuit for outputting the driving waveform in the third embodiment of the present invention.

符号の説明Explanation of symbols

1 プラズマディスプレイパネル
11 前面ガラス基板
12 背面ガラス基板
13 下地誘電体層
14 アドレス電極
15 隔壁
16 蛍光体層
17 誘電体層
17a 第1の誘電体層
17b 第2の誘電体層
18 保護層
18a 下地保護層
18b 結晶粒子
18c 凝集粒子群
19a1 維持透明電極
19a2 維持金属電極
19b1 走査透明電極
19b2 走査金属電極
20 放電部
21 走査電極駆動回路
22 維持電極駆動回路
23 アドレス電極駆動回路
24 タイミング発生回路
25 A/D変換器
26 走査線数変換部
27 サブフィールド変換部
28 APL検出部
31 全セル初期化期間
32 書込み期間
33 維持期間
34 選択初期化期間
35 初期化期間
DESCRIPTION OF SYMBOLS 1 Plasma display panel 11 Front glass substrate 12 Rear glass substrate 13 Base dielectric layer 14 Address electrode 15 Partition 16 Phosphor layer 17 Dielectric layer 17a First dielectric layer 17b Second dielectric layer 18 Protective layer 18a Base protection Layer 18b Crystal particle 18c Aggregated particle group 19a1 Sustain transparent electrode 19a2 Sustain metal electrode 19b1 Scan transparent electrode 19b2 Scan metal electrode 20 Discharge unit 21 Scan electrode drive circuit 22 Sustain electrode drive circuit 23 Address electrode drive circuit 24 Timing generation circuit 25 A / D Converter 26 Scanning line number conversion unit 27 Subfield conversion unit 28 APL detection unit 31 All-cell initialization period 32 Write period 33 Maintenance period 34 Select initialization period 35 Initialization period

Claims (11)

平行する少なくとも1組の第1の電極および第2の電極を有し、第1の電極および第2の電極の周辺部に誘電体層を形成し、誘電体層表面に保護層を形成し、金属酸化物からなる複数の結晶粒子が凝集した凝集粒子群を保護層周辺部に複数配置した第1基板と、少なくとも1本の第3の電極を有し、第3の電極周辺部に誘電体層を形成した第2基板を対向配置し、対向する第1基板と第2基板の間に放電ガスを封入したプラズマディスプレイパネルにおいて、
1フィールドが複数のサブフィールドから構成され、各サブフィールドは初期化期間、書込み期間、維持期間のうち少なくとも初期化期間と書込み期間を有し、前記初期化期間は、前記第2の電極に第1電圧から第2電圧まで緩やかに上昇する電圧を印加する初期化期間前半部と、前記第2の電極に第3電圧から第4電圧まで緩やかに下降する電圧を印加する初期化期間後半部とを有する駆動方式により画像表示を行うことを特徴とするプラズマディスプレイ装置。
Having at least one pair of first electrode and second electrode in parallel, forming a dielectric layer around the first electrode and the second electrode, forming a protective layer on the surface of the dielectric layer; A first substrate in which a plurality of aggregated particle groups in which a plurality of crystal particles made of metal oxide are aggregated is arranged in the periphery of the protective layer, and at least one third electrode, and a dielectric in the periphery of the third electrode In a plasma display panel in which a second substrate on which a layer is formed is arranged oppositely, and a discharge gas is sealed between the opposing first substrate and second substrate
One field is composed of a plurality of subfields, and each subfield has at least an initialization period and an address period among an initialization period, an address period, and a sustain period, and the initialization period is connected to the second electrode. A first half of an initialization period in which a voltage that gradually increases from one voltage to a second voltage is applied; and a second half of an initialization period in which a voltage that gradually decreases from a third voltage to a fourth voltage is applied to the second electrode; An image display is performed by a driving method including: a plasma display device.
結晶粒子の粒径が平均0.9マイクロメートル(μm)〜2マイクロメートル(μm)の範囲にあることを特徴とする請求項1に記載のプラズマディスプレイ装置。 2. The plasma display device according to claim 1, wherein the crystal particles have an average particle size in a range of 0.9 μm to 2 μm. 保護層が酸化マグネシウム(MgO)より構成されることを特徴とする請求項1または請求項2のいずれかに記載のプラズマディスプレイ装置。 The plasma display device according to claim 1, wherein the protective layer is made of magnesium oxide (MgO). 初期化期間に行う初期化動作がすべて選択初期化動作であるフィールドを少なくとも1フィールド以上有することを特徴とする請求項1から請求項3のいずれかに記載のプラズマディスプレイ装置。 4. The plasma display device according to claim 1, further comprising at least one field in which all initialization operations performed during the initialization period are selective initialization operations. 初期化期間前半部に上昇する電圧の傾斜が異なる少なくとも2つ以上の期間を有し、後ろの期間が前の期間よりも傾斜が緩やかであることを特徴とする請求項1から請求項4のいずれかに記載のプラズマディスプレイ装置。 5. The first half of the initialization period has at least two or more periods in which the slope of the rising voltage is different, and the slope of the subsequent period is gentler than that of the previous period. The plasma display device according to any one of the above. 初期化期間後半部に下降する電圧の傾斜が異なる少なくとも2つ以上の期間を有し、後ろの期間のほうが前の期間よりも傾斜が緩やかであることを特徴とする請求項1から請求項5のいずれかに記載のプラズマディスプレイ装置。 6. The initial period includes at least two periods having different slopes of the voltage falling, and the slope of the later period is gentler than that of the previous period. The plasma display device according to any one of the above. 書込み期間において、第2の電極に印加する走査パルスの電圧が第4電圧と同電位であることを特徴とする請求項1から請求項6のいずれかに記載のプラズマディスプレイ装置。 7. The plasma display device according to claim 1, wherein the voltage of the scan pulse applied to the second electrode is the same potential as the fourth voltage in the address period. 初期化期間前半部において、第3の電極の電圧が正極性である期間を有することを特徴とする請求項1から請求項7のいずれかに記載のプラズマディスプレイ装置。 8. The plasma display device according to claim 1, wherein the first half of the initialization period includes a period in which the voltage of the third electrode is positive. 初期化期間前半部の上昇する電圧の傾斜が20V/μsec以下であることを特徴とする請求項1から請求項8のいずれかに記載のプラズマディスプレイ装置。 9. The plasma display device according to claim 1, wherein the rising voltage slope in the first half of the initialization period is 20 V / μsec or less. 初期化期間後半部の下降する電圧の傾斜が20V/μsec以下であることを特徴とする請求項1から請求項9のいずれかに記載のプラズマディスプレイ装置。 10. The plasma display device according to claim 1, wherein the slope of the voltage that falls in the latter half of the initialization period is 20 V / μsec or less. 書込み期間において、第2の電極に印加する走査パルスの周期が0.5μsecから1.8μsecであることを特徴とする請求項1から請求項10のいずれかに記載のプラズマディスプレイ装置。 11. The plasma display device according to claim 1, wherein a period of a scan pulse applied to the second electrode in the address period is 0.5 μsec to 1.8 μsec.
JP2008094661A 2008-04-01 2008-04-01 Plasma display device Pending JP2009253313A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2008094661A JP2009253313A (en) 2008-04-01 2008-04-01 Plasma display device
CN200980000451.2A CN101689454B (en) 2008-04-01 2009-03-27 Plasma display device
EP09727522A EP2139020A4 (en) 2008-04-01 2009-03-27 Plasma display device
KR1020107006458A KR101115704B1 (en) 2008-04-01 2009-03-27 plasma display device
US12/596,774 US8482490B2 (en) 2008-04-01 2009-03-27 Plasma display device having a protective layer including a base protective layer and a particle layer
PCT/JP2009/001396 WO2009122688A1 (en) 2008-04-01 2009-03-27 Plasma display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008094661A JP2009253313A (en) 2008-04-01 2008-04-01 Plasma display device

Publications (1)

Publication Number Publication Date
JP2009253313A true JP2009253313A (en) 2009-10-29

Family

ID=41135096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008094661A Pending JP2009253313A (en) 2008-04-01 2008-04-01 Plasma display device

Country Status (6)

Country Link
US (1) US8482490B2 (en)
EP (1) EP2139020A4 (en)
JP (1) JP2009253313A (en)
KR (1) KR101115704B1 (en)
CN (1) CN101689454B (en)
WO (1) WO2009122688A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101257628B1 (en) * 2011-03-24 2013-04-29 (주)아모레퍼시픽 Cosmetics comprising cosmetic composition impregnated in urethane foam
KR101791884B1 (en) * 2012-09-21 2017-10-31 (주)아모레퍼시픽 Urethane foam for impregnating cosmetic composition
KR102186432B1 (en) 2014-03-25 2020-12-03 엘지전자 주식회사 A plasma electrode device
KR20160009261A (en) * 2014-07-16 2016-01-26 엘지전자 주식회사 A plasma electrode device

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001093424A (en) * 1999-09-22 2001-04-06 Matsushita Electric Ind Co Ltd Ac type plasma display panel and drive method of the same
JP2001118511A (en) * 1999-09-15 2001-04-27 Koninkl Philips Electronics Nv Plasma image screen
WO2002033690A1 (en) * 2000-10-16 2002-04-25 Matsushita Electric Industrial Co., Ltd. Plasma display panel device and its drive method
JP2003050563A (en) * 2001-05-30 2003-02-21 Matsushita Electric Ind Co Ltd Plasma display panel display device and driving method therefor
JP2004004513A (en) * 2002-04-25 2004-01-08 Fujitsu Hitachi Plasma Display Ltd Driving method for plasma display panel, and plasma display device
JP2004206094A (en) * 2002-12-13 2004-07-22 Matsushita Electric Ind Co Ltd Plasma display panel drive method
JP2006244784A (en) * 2005-03-01 2006-09-14 Ube Material Industries Ltd Magnesium oxide particulate dispersion for forming dielectric layer protecting film of ac type plasma display panel
JP2007035655A (en) * 2006-11-10 2007-02-08 Pioneer Electronic Corp Plasma display panel and its manufacturing method
JP2007225778A (en) * 2006-02-22 2007-09-06 Pioneer Electronic Corp Driving device for plasma display panel
JP2007311075A (en) * 2006-05-16 2007-11-29 Matsushita Electric Ind Co Ltd Plasma display panel
JP2008021660A (en) * 2006-05-31 2008-01-31 Matsushita Electric Ind Co Ltd Plasma display panel and its manufacturing method
JP2008293803A (en) * 2007-05-24 2008-12-04 Hitachi Ltd Plasma display panel and method for manufacturing the same
JP2008293772A (en) * 2007-05-24 2008-12-04 Panasonic Corp Plasma display panel, its manufacturing method, and plasma display panel

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2571015B2 (en) 1994-04-27 1997-01-16 日本電気株式会社 Method of manufacturing gas discharge display panel
JPH10307561A (en) 1997-05-08 1998-11-17 Mitsubishi Electric Corp Driving method of plasma display panel
TW516014B (en) 1999-01-22 2003-01-01 Matsushita Electric Ind Co Ltd Driving method for AC plasma display panel
JP3915297B2 (en) 1999-01-22 2007-05-16 松下電器産業株式会社 Driving method of AC type plasma display panel
JP2002072957A (en) 2000-08-24 2002-03-12 Matsushita Electric Ind Co Ltd Method for driving plasma display panel
CN101533603B (en) * 2001-06-12 2011-02-02 松下电器产业株式会社 Plasma display device and method of driving the same
KR100458581B1 (en) * 2002-07-26 2004-12-03 삼성에스디아이 주식회사 Driving apparatus and method of plasma display panel
EP1486938A4 (en) 2002-12-13 2009-01-14 Panasonic Corp Plasma display panel drive method
JP4541832B2 (en) * 2004-03-19 2010-09-08 パナソニック株式会社 Plasma display panel
JP4880472B2 (en) * 2004-10-05 2012-02-22 パナソニック株式会社 Plasma display panel and manufacturing method thereof
JP2006151295A (en) 2004-11-30 2006-06-15 Pacific Ind Co Ltd Snap-in valve device
KR100626055B1 (en) * 2005-01-10 2006-09-21 삼성에스디아이 주식회사 Apparatus of driving display panel
JP4870362B2 (en) 2005-01-19 2012-02-08 パナソニック株式会社 Plasma display device
US20060244685A1 (en) * 2005-04-27 2006-11-02 Lg Electronics Inc. Plasma display apparatus and image processing method thereof
JP2007157717A (en) * 2005-12-07 2007-06-21 Lg Electronics Inc Plasma display panel and method of manufacturing same
KR100801703B1 (en) * 2006-03-14 2008-02-11 엘지전자 주식회사 Method for driving plasma display panel
JP4828994B2 (en) * 2006-04-13 2011-11-30 パナソニック株式会社 Driving method of plasma display panel
EP2031630A4 (en) 2006-05-31 2010-07-21 Panasonic Corp Plasma display panel and method for manufacturing the same
US20080157672A1 (en) * 2006-12-28 2008-07-03 Takuji Tsujita Plasma display panel and manufacturing method therefor
JP4566249B2 (en) * 2008-04-11 2010-10-20 株式会社日立製作所 Plasma display panel and manufacturing method thereof
JP2009259512A (en) * 2008-04-15 2009-11-05 Panasonic Corp Plasma display device
KR101076802B1 (en) * 2009-06-05 2011-10-25 삼성에스디아이 주식회사 Material of preparing a protective layer and plasma display panel comprisign the protective layer

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001118511A (en) * 1999-09-15 2001-04-27 Koninkl Philips Electronics Nv Plasma image screen
JP2001093424A (en) * 1999-09-22 2001-04-06 Matsushita Electric Ind Co Ltd Ac type plasma display panel and drive method of the same
WO2002033690A1 (en) * 2000-10-16 2002-04-25 Matsushita Electric Industrial Co., Ltd. Plasma display panel device and its drive method
JP2003050563A (en) * 2001-05-30 2003-02-21 Matsushita Electric Ind Co Ltd Plasma display panel display device and driving method therefor
JP2004004513A (en) * 2002-04-25 2004-01-08 Fujitsu Hitachi Plasma Display Ltd Driving method for plasma display panel, and plasma display device
JP2004206094A (en) * 2002-12-13 2004-07-22 Matsushita Electric Ind Co Ltd Plasma display panel drive method
JP2006244784A (en) * 2005-03-01 2006-09-14 Ube Material Industries Ltd Magnesium oxide particulate dispersion for forming dielectric layer protecting film of ac type plasma display panel
JP2007225778A (en) * 2006-02-22 2007-09-06 Pioneer Electronic Corp Driving device for plasma display panel
JP2007311075A (en) * 2006-05-16 2007-11-29 Matsushita Electric Ind Co Ltd Plasma display panel
JP2008021660A (en) * 2006-05-31 2008-01-31 Matsushita Electric Ind Co Ltd Plasma display panel and its manufacturing method
JP2007035655A (en) * 2006-11-10 2007-02-08 Pioneer Electronic Corp Plasma display panel and its manufacturing method
JP2008293803A (en) * 2007-05-24 2008-12-04 Hitachi Ltd Plasma display panel and method for manufacturing the same
JP2008293772A (en) * 2007-05-24 2008-12-04 Panasonic Corp Plasma display panel, its manufacturing method, and plasma display panel

Also Published As

Publication number Publication date
CN101689454A (en) 2010-03-31
WO2009122688A1 (en) 2009-10-08
KR101115704B1 (en) 2012-03-06
US8482490B2 (en) 2013-07-09
EP2139020A1 (en) 2009-12-30
KR20100044283A (en) 2010-04-29
US20110001425A1 (en) 2011-01-06
EP2139020A4 (en) 2011-04-20
CN101689454B (en) 2011-12-07

Similar Documents

Publication Publication Date Title
US8508437B2 (en) Plasma display device having a protective layer including a base protective layer and a particle layer
US20040196216A1 (en) Plasma display panel display device and its driving method
US8362979B2 (en) Agglomerated particles forming a protective layer of a plasma display panel
JP5081618B2 (en) Plasma display panel device and driving method thereof
JP2001005423A (en) Method of driving plasma display panel
US7733305B2 (en) Plasma display device and method for driving a plasma display panel
WO2009122688A1 (en) Plasma display device
US20090079720A1 (en) Method of driving plasma display panel and image display
JP5240401B2 (en) Plasma display device
US20080150835A1 (en) Plasma display apparatus and driving method thereof
WO2011114672A1 (en) Plasma display device
EP2146336A1 (en) Plasma display device
US20090179877A1 (en) Driving method of plasma display panel
US20120075283A1 (en) Plasma display panel drive method and plasma display device
US20120086690A1 (en) Plasma display panel drive method and plasma display device
US20120081418A1 (en) Driving method for plasma display panel, and plasma display device
WO2009128237A1 (en) Plasma display device
EP2146335A1 (en) Plasma display device
JP2012058654A (en) Method for driving plasma display panel and plasma display device
JP2012058652A (en) Method for driving plasma display panel and plasma display device
JP2007108778A (en) Driving method of plasma display panel and image display device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110331

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20110413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120924

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121120