JP2009250851A - Magnetization method of encoder - Google Patents

Magnetization method of encoder Download PDF

Info

Publication number
JP2009250851A
JP2009250851A JP2008100928A JP2008100928A JP2009250851A JP 2009250851 A JP2009250851 A JP 2009250851A JP 2008100928 A JP2008100928 A JP 2008100928A JP 2008100928 A JP2008100928 A JP 2008100928A JP 2009250851 A JP2009250851 A JP 2009250851A
Authority
JP
Japan
Prior art keywords
encoder
shape
magnetizing
head
magnetized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008100928A
Other languages
Japanese (ja)
Other versions
JP5151634B2 (en
Inventor
Akitsu Kawaguchi
秋津 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2008100928A priority Critical patent/JP5151634B2/en
Publication of JP2009250851A publication Critical patent/JP2009250851A/en
Application granted granted Critical
Publication of JP5151634B2 publication Critical patent/JP5151634B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To achieve a magnetization method of an encoder for converting a shape of a boundary between a S-pole and a N-pole provided on a to-be-detected surface of the completed encoder into a target shape in a state that the to-be-detected surface is assumed to be planarly developed. <P>SOLUTION: The problem is overcome by using magnetization heads 12a, 12a having planar shapes at both circumferential side edges on apical surfaces 13a, 13a as a curve slightly shifted from the target shape. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、例えば車輪支持用軸受ユニットに作用するアキシアル荷重等の状態量を測定する為に使用されるエンコーダ、即ち、被検出面にS極とN極とを円周方向に関して交互に配置すると共に、これらS極とN極との境界の少なくとも一部分を、上記被検出面の幅方向に対して傾斜させたエンコーダの着磁方法及び着磁装置の改良に関する。   The present invention is, for example, an encoder used for measuring a state quantity such as an axial load acting on a wheel support bearing unit, that is, an S pole and an N pole are alternately arranged on the detected surface in the circumferential direction. In addition, the present invention relates to an encoder magnetization method and an improvement of a magnetization apparatus in which at least a part of the boundary between the S pole and the N pole is inclined with respect to the width direction of the detected surface.

例えば自動車の車輪は懸架装置に対し、複列アンギュラ型等の転がり軸受ユニットにより回転自在に支持する。又、自動車の走行安定性を確保する為に、例えばアンチロックブレーキシステム(ABS)やトラクションコントロールシステム(TCS)、更には、電子制御式ビークルスタビリティコントロールシステム(ESC)等の車両用走行安定化装置が使用されている。この様な各種車両用走行安定化装置を制御する為には、車輪の回転速度、車体に加わる各方向の加速度等を表す信号が必要になる。そして、より高度の制御を行う為には、車輪を介して上記転がり軸受ユニットに加わる荷重(例えばラジアル荷重とアキシアル荷重との一方又は双方)の大きさを知る事が好ましい場合がある。   For example, a wheel of an automobile is rotatably supported by a rolling bearing unit such as a double-row angular type with respect to a suspension device. In addition, in order to ensure the running stability of automobiles, for example, anti-lock braking system (ABS), traction control system (TCS), and electronically controlled vehicle stability control system (ESC) etc. The device is in use. In order to control such various vehicle running stabilization devices, signals representing the rotational speed of the wheels, acceleration in each direction applied to the vehicle body, and the like are required. In order to perform higher-level control, it may be preferable to know the magnitude of a load (for example, one or both of a radial load and an axial load) applied to the rolling bearing unit via a wheel.

この様な事情に鑑みて、特許文献1には、特殊なエンコーダを使用して、転がり軸受ユニットに加わる荷重の大きさを測定する発明が記載されている。図2は、この特許文献1に記載された構造と同じ荷重の測定原理を採用している、転がり軸受ユニットの状態量測定装置に関する従来構造の1例を示している。この従来構造は、使用時に懸架装置に結合固定した状態で回転しない外輪1の内径側に、使用時に車輪を支持固定した状態でこの車輪と共に回転するハブ2を、複数個の転動体3、3を介して、回転自在に支持している。これら各転動体3、3には、背面組み合わせ型の接触角と共に、予圧を付与している。尚、図示の例では、これら各転動体3、3として玉を使用しているが、重量が嵩む自動車用の軸受ユニットの場合には、玉に代えて円すいころを使用する場合もある。   In view of such circumstances, Patent Document 1 describes an invention in which a special encoder is used to measure the magnitude of a load applied to a rolling bearing unit. FIG. 2 shows an example of a conventional structure relating to a state quantity measuring device for a rolling bearing unit, which employs the same load measurement principle as the structure described in Patent Document 1. In this conventional structure, a hub 2 that rotates together with a wheel while supporting and fixing the wheel in use is fixed to a plurality of rolling elements 3 and 3 on the inner diameter side of the outer ring 1 that does not rotate while being coupled and fixed to a suspension device when used. It is rotatably supported via A preload is applied to each of the rolling elements 3 and 3 together with a contact angle of the rear combination type. In the illustrated example, balls are used as the rolling elements 3 and 3. However, in the case of an automobile bearing unit that is heavy, tapered rollers may be used instead of balls.

又、上記ハブ2の軸方向内端部(軸方向に関して「内」とは、自動車への組付け状態で車両の幅方向中央側を言い、図2の右側。反対に、車両の幅方向外側となる、図2の左側を、軸方向に関して「外」と言う。本明細書全体で同じ。)には、円筒状のエンコーダ4を、上記ハブ2と同心に支持固定している。このエンコーダ4は、磁性金属板製で円筒状の芯金5と、この芯金5の外周面の軸方向内半部に添着固定した、永久磁石製で円筒状のエンコーダ本体6とから成る。このエンコーダ本体6は、上記芯金5の外周面の軸方向内半部に、素材である円筒状の磁性部材(永久磁石材、高保磁力材)を添着固定(接着固定、モールドによる固定等)した後、この磁性部材に着磁する事により構成している。被検出面である、上記エンコーダ本体6の外周面には、S極とN極とを、円周方向に関して交互に且つ等間隔に配置している。これらS極とN極との境界は、上記被検出面の軸方向(幅方向)中央部が円周方向に関して最も突出した、「く」字形になっている。尚、測定精度は劣るが、上記被検出面の軸方向両半部のうち、何れか一方の半部の境界のみを軸方向に対して傾斜させ、他方の半部の境界を軸方向と平行にする事もできる。   The inner end of the hub 2 in the axial direction ("inside" in the axial direction means the center side in the width direction of the vehicle when assembled to the automobile, and is the right side of Fig. 2. Conversely, the outer side in the width direction of the vehicle. The left side of FIG. 2 is referred to as “outside” in the axial direction. The same applies throughout the present specification.) The cylindrical encoder 4 is supported and fixed concentrically with the hub 2. The encoder 4 includes a cylindrical metal core 5 made of a magnetic metal plate, and a cylindrical magnet body 6 made of a permanent magnet fixedly attached to the inner half of the outer peripheral surface of the metal core 5 in the axial direction. The encoder body 6 has a cylindrical magnetic member (permanent magnet material, high coercive force material), which is a material, attached and fixed to the inner half in the axial direction of the outer peripheral surface of the core metal 5 (adhesion fixing, fixing by mold, etc.). After that, the magnetic member is magnetized. On the outer peripheral surface of the encoder body 6 that is the detection surface, the S poles and the N poles are alternately arranged at equal intervals in the circumferential direction. The boundary between these S poles and N poles has a "<" shape with the central portion in the axial direction (width direction) of the detected surface protruding most in the circumferential direction. Although the measurement accuracy is inferior, only one of the half halves of the detected surface is inclined with respect to the axial direction, and the other half is parallel to the axial direction. It can also be made.

又、上記外輪1の軸方向内端開口を塞ぐ、金属板製で有底円筒状のカバー7の内側に、合成樹脂製のセンサホルダ8を介して、1対のセンサ9a、9bを支持固定している。そして、この状態で、これら両センサ9a、9bの検出部を、上記エンコーダ4の被検出面の軸方向両半部に、それぞれ1つずつ近接対向させている。尚、上記両センサ9a、9bの検出部には、ホールIC、ホール素子、MR素子、GMR素子等の磁気検知素子を組み込んでいる。   Further, a pair of sensors 9a and 9b are supported and fixed inside a cover 7 made of a metal plate and having a bottomed cylindrical shape that closes the axial inner end opening of the outer ring 1 through a sensor holder 8 made of synthetic resin. is doing. In this state, the detection portions of both the sensors 9a and 9b are respectively placed close to and opposed to both halves in the axial direction of the detected surface of the encoder 4. In addition, magnetic detection elements such as a Hall IC, a Hall element, an MR element, and a GMR element are incorporated in the detection portions of both the sensors 9a and 9b.

上述の様に構成する転がり軸受ユニットの状態量測定装置の場合、外輪1とハブ2との間にアキシアル荷重が作用する事により、これら外輪1とハブ2とがアキシアル方向に相対変位すると、これに伴って、上記両センサ9a、9bの出力信号同士の間に存在する位相差比(=位相差/1周期)が変化する。この位相差比は、上記アキシアル荷重の作用方向及び大きさ(上記相対変位の方向及び大きさ)に見合った値をとる。従って、この位相差比に基づいて、上記アキシアル荷重の作用方向及び大きさ(上記相対変位の方向及び大きさ)を求める事ができる。尚、これらを求める処理は、図示しない演算器により行う。この為、この演算器のメモリ中には、予め理論計算や実験により調べておいた、上記位相差比と、上記アキシアル方向の相対変位又は荷重との関係(零点及びゲイン)を表す、式やマップを記憶させておく。   In the state measuring device for a rolling bearing unit configured as described above, when an axial load acts between the outer ring 1 and the hub 2, the outer ring 1 and the hub 2 are displaced relative to each other in the axial direction. Accordingly, the phase difference ratio (= phase difference / 1 period) existing between the output signals of the sensors 9a and 9b changes. This phase difference ratio takes a value commensurate with the action direction and magnitude of the axial load (the direction and magnitude of the relative displacement). Therefore, based on this phase difference ratio, the direction and magnitude of the axial load (the direction and magnitude of the relative displacement) can be determined. Note that the processing for obtaining these is performed by an arithmetic unit (not shown). For this reason, in the memory of this computing unit, an equation or a formula representing the relationship (zero point and gain) between the phase difference ratio and the relative displacement or load in the axial direction, which has been examined in advance by theoretical calculation or experiment. Remember the map.

尚、上述した従来構造の場合には、エンコーダの被検出面にその検出部を対向させるセンサの数を、2個としている。これに対し、図示は省略するが、特許文献2〜4には、当該センサの数を3個以上とする事で、多方向の変位や外力を求められる構造が記載されている。   In the case of the above-described conventional structure, the number of sensors that make the detection portion face the detection surface of the encoder is two. On the other hand, although not shown in the drawings, Patent Documents 2 to 4 describe structures in which multidirectional displacement and external force are obtained by setting the number of sensors to three or more.

次に、特許文献5に記載されて従来から提案されている、上述した状態量測定装置を構成するエンコーダ4の着磁方法の2例に就いて、図3〜5を参照しつつ説明する。尚、このうちの図3は、これら両例に関する共通の図を、図4は第1例に関する図を、図5は第2例に関する図を、それぞれ示している。これら両例の場合とも、着磁作業を行うのに先立って、図4〜5に示す様なエンコーダ素材10を造っておく。このエンコーダ素材10は、芯金5の外周面に円筒状の磁性部材11{エンコーダ本体6(図2)の素材}を添着固定して成るものである。又、着磁作業を行う際には、1対の着磁ヘッド12a、12a(12a、12b)を使用する。図4〜5に示す様に、これら両着磁ヘッド12a、12bの先端面13a、13bは、被検出面となるべき面である、上記エンコーダ素材10の外周面と同心の部分円筒面としている。又、図3の(A)は、上記各着磁ヘッド12a(12b)の先端面13a(13b)の平面形状{これら各着磁ヘッド12a(12b)の軸方向から見た形状で、これら各着磁ヘッド12a(12b)の断面形状と同じ形状}を、同図の(B)は、完成させるべきエンコーダ4の被検出面の円周方向一部分の展開図(平面に展開したと仮定した状態を示す図)を、それぞれ示している。この図3の(A)(B)に示す様に、上記各着磁ヘッド12a(12b)の先端面13a(13b)の円周方向(図3の左右方向)両側縁の平面形状は、それぞれ上記被検出面の展開図に現れる、S極とN極との境界の形状と同じ「く」字形状としている。   Next, two examples of the magnetizing method of the encoder 4 constituting the state quantity measuring apparatus described above and described in Patent Document 5 will be described with reference to FIGS. Of these figures, FIG. 3 shows a diagram common to both examples, FIG. 4 shows a diagram related to the first example, and FIG. 5 shows a diagram related to the second example. In both cases, the encoder material 10 as shown in FIGS. 4 to 5 is made prior to performing the magnetizing operation. The encoder material 10 is formed by attaching and fixing a cylindrical magnetic member 11 {the material of the encoder body 6 (FIG. 2)} to the outer peripheral surface of the metal core 5. Further, when performing the magnetizing operation, a pair of magnetizing heads 12a and 12a (12a and 12b) are used. As shown in FIGS. 4 to 5, the tip surfaces 13 a and 13 b of both the magnetized heads 12 a and 12 b are partial cylindrical surfaces concentric with the outer peripheral surface of the encoder material 10, which are surfaces to be detected. . 3A shows the planar shape of the tip surface 13a (13b) of each of the magnetized heads 12a (12b) {the shape seen from the axial direction of each of the magnetized heads 12a (12b). The same shape as the cross-sectional shape of the magnetized head 12a (12b)}, (B) in the figure is a developed view of a part of the circumference of the detected surface of the encoder 4 to be completed (assumed developed in a plane) The figure which shows) is each shown. As shown in FIGS. 3A and 3B, the planar shapes of both side edges of the tip surface 13a (13b) of each of the magnetized heads 12a (12b) in the circumferential direction (left and right direction in FIG. 3) are respectively It has a “<” shape that is the same as the shape of the boundary between the S pole and the N pole that appears in the developed view of the detected surface.

先ず、図4に示した着磁方法の第1例の場合、着磁作業を行う際には、図示の様に、上記磁性部材11の外周面のうち、円周方向に関して互いに隣接する2個所部分に、それぞれ上記両着磁ヘッド12a、12aの先端面13a、13aを近接対向させる。この状態で、これら両着磁ヘッド12a、12aの周囲に巻回した図示しないコイルに電流を流すと、これら両着磁ヘッド12a、12aの先端面13a、13a同士の間に磁気回路が形成され、この磁気回路を構成する磁束が、上記2個所部分を貫通する。この結果、これら2個所部分に、「く」字形のS極とN極とが1対、着磁形成される。そこで、本例の場合には、上記磁性部材11及び芯金5を連続的に(或は所定角度毎間欠的に)回転させながら、この回転速度に(或は回転、停止に)見合った適切なタイミングで、上記コイルへの通電のON・OFFを交互に切り替える。これにより、上記磁性部材11の外周面の全周に、「く」字形のS極及びN極を1対ずつ、円周方向に関して順次着磁形成し、上記エンコーダ本体6を完成させる。
尚、図示の例では、円周方向に並べて使用する着磁ヘッド12aを2個としたが、3個以上(例えば3〜5個)として実施する事もできる。
First, in the case of the first example of the magnetizing method shown in FIG. 4, when performing the magnetizing operation, as shown in the drawing, two locations adjacent to each other in the circumferential direction on the outer peripheral surface of the magnetic member 11 are shown. The tip surfaces 13a and 13a of the two magnetized heads 12a and 12a are made to face each other in close proximity to each other. In this state, when a current is passed through a coil (not shown) wound around the two magnetized heads 12a and 12a, a magnetic circuit is formed between the front end surfaces 13a and 13a of the two magnetized heads 12a and 12a. The magnetic flux constituting this magnetic circuit penetrates the two portions. As a result, a pair of “<”-shaped S poles and N poles is magnetized at these two portions. Therefore, in the case of this example, the magnetic member 11 and the core metal 5 are rotated continuously (or intermittently at every predetermined angle), and the rotation speed is appropriate (or is rotated or stopped). At appropriate timing, the energization of the coil is alternately switched on and off. Thus, a pair of “<”-shaped S poles and N poles are sequentially magnetized and formed in the circumferential direction on the entire outer circumference of the magnetic member 11 to complete the encoder body 6.
In the example shown in the figure, the number of the magnetizing heads 12a used side by side in the circumferential direction is two, but the number may be three or more (for example, 3 to 5).

次に、図5に示した着磁方法の第2例の場合、着磁作業を行う際には、図示の様に、上記磁性部材11及び芯金5の円周方向一部分を径方向両側から非接触に挟む状態で、上記両着磁ヘッド12a、12bの先端面13a、13b同士を対向させる。この状態で、これら両着磁ヘッド12a、12bの周囲に巻回した図示しないコイルに電流を流すと、これら両着磁ヘッド12a、12bの先端面13a、13b同士の間に磁気回路が形成され、この磁気回路を構成する磁束が、上記磁性部材11の外周面のうち、径方向外側の着磁ヘッド12aの先端面が対向する部分を貫通する。この結果、この貫通した部分に、「く」字形のS極又はN極が1つ、着磁形成される。そこで、本例の場合には、上記磁性部材11を連続的に(或は所定角度毎間欠的に)回転させながら、この回転速度に(或は回転、停止に)見合った適切なタイミングで、上記コイルへの通電のON・OFF、並びに、このコイルへの通電の向きを、それぞれ交互に切り替える。これにより、上記磁性部材11の外周面の全周に、「く」字形のS極とN極とを、円周方向に関して1つずつ交互に着磁形成し、上記エンコーダ本体6を完成させる。
尚、図示の例では、使用する着磁ヘッド12a、12bの対の数を1としたが、この対の数を2以上(例えば2〜5)として実施する事もできる。
Next, in the case of the second example of the magnetizing method shown in FIG. 5, when performing the magnetizing work, as shown in the drawing, a part in the circumferential direction of the magnetic member 11 and the cored bar 5 from both sides in the radial direction. The front end surfaces 13a and 13b of the two magnetized heads 12a and 12b are opposed to each other in a non-contact state. In this state, when a current is passed through a coil (not shown) wound around the two magnetized heads 12a and 12b, a magnetic circuit is formed between the front end surfaces 13a and 13b of the two magnetized heads 12a and 12b. The magnetic flux constituting this magnetic circuit penetrates through the portion of the outer peripheral surface of the magnetic member 11 facing the distal end surface of the radially outer magnetized head 12a. As a result, one "<"-shaped S-pole or N-pole is magnetized in this penetrating portion. Therefore, in the case of this example, while rotating the magnetic member 11 continuously (or intermittently every predetermined angle), at an appropriate timing commensurate with this rotational speed (or rotation and stop), The ON / OFF of the energization to the coil and the direction of energization to the coil are alternately switched. As a result, "<"-shaped S poles and N poles are alternately magnetized one by one in the circumferential direction on the entire outer peripheral surface of the magnetic member 11 to complete the encoder body 6.
In the illustrated example, the number of pairs of magnetizing heads 12a and 12b to be used is 1, but the number of pairs can be 2 or more (for example, 2 to 5).

ところが、上述した各着磁方法の場合には、着磁後のエンコーダ4の被検出面のうちで、検出に利用するS極とN極との境界の形状が、目的とする形状から少しずれた形状になる。この点に就いて、上述の図3〜5に加え、図6〜9を参照しつつ、以下に説明する。   However, in the case of each of the magnetization methods described above, the shape of the boundary between the S pole and the N pole used for detection in the detected surface of the encoder 4 after magnetization is slightly shifted from the target shape. Shape. This point will be described below with reference to FIGS. 6 to 9 in addition to FIGS.

図6は、上述した各着磁方法を実施する際の、エンコーダ素材10と着磁ヘッド12aとの位置関係を示している。実際には図4〜5に示した様に、着磁ヘッドは2つ使用するが、図6では、このうちの1つの着磁ヘッド12aのみを図示している。今、説明の便宜上、上記エンコーダ素材10と上記着磁ヘッド12aとの寸法関係を、図7に示す様に極端に変える。この図7に示した着磁ヘッド12aの先端面13aの円周方向両側縁の平面形状(図7の真上から見た形状)はそれぞれ、図8の上半部に示す様な「く」字形状になっている。前述した様に、この「く」字形状は、図3の(B)に示した、完成させるべきエンコーダ4の被検出面の展開図に現れる境界の形状(目的とする「く」字形状)と、同じ形状になっている。ところが、上記先端面13aを展開図で見た場合、即ち、この先端面13aを、図9に示す様な平面座標{この先端面13aの円周方向θ(図8の点P、Qの位置を零点とする。)を横軸に取り、上記エンコーダ素材10の軸方向Yを縦軸に取った平面座標}で見た場合には、上記先端面13aの円周方向両側縁の形状はそれぞれ、図9に破線Jで示す様な、上記目的とする「く」字形状にはならず、同図に実線Kで示す様な、この目的とする「く」字形状から多少ずれた形状になる。   FIG. 6 shows the positional relationship between the encoder material 10 and the magnetizing head 12a when the above-described magnetization methods are performed. Actually, as shown in FIGS. 4 to 5, two magnetizing heads are used. In FIG. 6, only one of the magnetizing heads 12a is shown. For convenience of explanation, the dimensional relationship between the encoder material 10 and the magnetized head 12a is extremely changed as shown in FIG. The planar shape (the shape seen from right above in FIG. 7) of both circumferential edges of the front end surface 13a of the magnetized head 12a shown in FIG. 7 is “ku” as shown in the upper half of FIG. It has a letter shape. As described above, this "<" shape is the shape of the boundary that appears in the developed view of the detected surface of the encoder 4 to be completed shown in FIG. 3B (the desired "<" shape). And the same shape. However, when the front end surface 13a is viewed in a developed view, that is, the front end surface 13a has a plane coordinate {circumferential direction θ of the front end surface 13a (positions of points P and Q in FIG. 8). Is taken as the zero point.), And the shape of the both side edges in the circumferential direction of the tip surface 13a is respectively 9 does not have the above-mentioned target “<” shape as indicated by a broken line J in FIG. 9, and is slightly deviated from this target “<” shape as indicated by a solid line K in FIG. 9. Become.

この理由は、上記目的とする「く」字形状を、上記先端面13aの円周方向両側縁の平面形状として定義した為である。即ち、図8に於いて、上記目的とする「く」字形状を、上記着磁ヘッド12aの軸方向と直交する仮想平面Fに転写すると、この目的とする「く」字形状の各部分(例えば、上記Y軸方向の幅が△Yであり、このY軸方向と直角なX軸方向の幅が△Xである部分)は、そのままの形状及び寸法(△Y、△X)で転写される。尚、図示の例では、△X=△Ytanα(α:上記目的とする「く」字形状の両半部の、上記Y軸方向に対する傾斜角度で、図示の例では45度)=△Y(∵tan45度=1)の関係が成立する。これに対し、上記目的とする「く」字形状を、上記先端面13aと同じ形状の仮想部分円筒面Gに転写すると、上記目的とする「く」字形状の各部分(△Y、△X)は、幅△Yに就いてはそのままの寸法で転写されるが、幅△Xに就いては、上記仮想部分円筒面Gの円周方向に、幅△Xcとなって転写される。尚、図示の例では、△Xc=r・β{r:上記仮想部分円筒面Gの曲率半径(=上記エンコーダ素材10の外周面の半径+この外周面と上記先端面13aとの径方向間隔)、β:上記幅△Xcに対応する中心角度}=r・sin-1(△Ytanα/r)=r・sin-1(△Y/r)(∵tan45度=1)の関係が成立する。この為、この△Xcに関する式と、上記△Xに関する式とを比較すれば明らかな様に、上記仮想部分円筒面Gに転写された「く」字形状は、上記目的とする「く」字形状に比べて、P−Q線(座標原点)よりも左側では+θ方向に長くなり、P−Q線よりも右側では−θ方向に長くなる。従って、上記仮想部分円筒面Gに転写された「く」字形状に対応する、図9に実線Kで示した、上記先端面13aの円周方向両側縁の形状は、同図に破線Jで示した、上記目的とする「く」字形状から、多少ずれた形状になる。 The reason for this is that the above-mentioned “<” shape is defined as the planar shape of both side edges of the tip surface 13a in the circumferential direction. That is, in FIG. 8, when the target “<” shape is transferred to a virtual plane F orthogonal to the axial direction of the magnetizing head 12 a, each portion of the target “<” shape ( For example, the width in the Y-axis direction is ΔY and the width in the X-axis direction perpendicular to the Y-axis direction is ΔX) is transferred with the same shape and dimensions (ΔY, ΔX). The In the example shown in the figure, ΔX = ΔYtan α (α: the inclination angle of both half portions of the above-mentioned “<” shape with respect to the Y-axis direction, 45 degrees in the example shown) = ΔY ( The relationship of 度 tan 45 degrees = 1) is established. On the other hand, when the desired “<” shape is transferred to the virtual partial cylindrical surface G having the same shape as the tip surface 13 a, each of the desired “<” shape portions (ΔY, ΔX) ) is the concerning the width △ Y is transferred as it dimension, in regard to width △ X, in the circumferential direction of the virtual partially cylindrical surface G, are transferred a width △ X c. In the example shown in the figure, ΔX c = r · β {r: radius of curvature of the virtual partial cylindrical surface G (= radius of the outer peripheral surface of the encoder material 10 + radial direction of the outer peripheral surface and the tip end surface 13a. (Interval), β: center angle corresponding to the width ΔX c } = r · sin −1 (ΔYtan α / r) = r · sin −1 (ΔY / r) (∵tan 45 degrees = 1) To establish. For this reason, as apparent from a comparison between the expression related to ΔX c and the expression related to ΔX, the “<” shape transferred to the virtual partial cylindrical surface G is the target “<”. Compared to the letter shape, it is longer in the + θ direction on the left side than the PQ line (coordinate origin) and longer in the −θ direction on the right side than the PQ line. Therefore, the shape of both side edges in the circumferential direction of the tip end surface 13a shown by the solid line K in FIG. 9 corresponding to the “<” shape transferred to the virtual partial cylindrical surface G is indicated by a broken line J in FIG. The shape is slightly deviated from the above-described “<” shape.

この結果、着磁後の被検出面の展開図に現れる境界の形状も、図9に実線Kで示す様に、同図に破線Jで示した目的とする「く」字形状から多少ずれた形状になる。尚、この様にして生じる形状のずれは、上記エンコーダ素材10の直径寸法と比較した上記着磁ヘッド12aの先端面13aの幅寸法(図6〜7の左右方向寸法)が、図7に示す様に大きくなる程大きくなり、図6に示す様に小さくなる程小さくなる。従って、この図6に示す様な実際の寸法関係の場合には、上述の様にして生じる形状のずれは、比較的小さくなる。但し、この様な形状のずれは、状態量の測定精度を低下させる原因となる為、極力なくせる様にする事が望ましい。   As a result, the shape of the boundary appearing in the developed view of the detected surface after magnetization is slightly deviated from the intended “<” shape indicated by the broken line J in FIG. 9 as indicated by the solid line K in FIG. Become a shape. Incidentally, the shape deviation caused in this way is shown in FIG. 7 in which the width dimension (the lateral dimension in FIGS. 6 to 7) of the tip surface 13a of the magnetized head 12a compared with the diameter dimension of the encoder material 10 is shown. As shown in FIG. 6, the value increases as the value increases, and the value decreases as the value decreases. Therefore, in the case of the actual dimensional relationship as shown in FIG. 6, the shape deviation generated as described above is relatively small. However, such a deviation in shape causes a decrease in the measurement accuracy of the state quantity, so it is desirable to eliminate it as much as possible.

尚、状態量測定装置を構成する永久磁石製のエンコーダとしては、上述の図2及び図3の(B)に示したエンコーダ4の他、展開図で見た場合に、図10〜11に示す様な境界形状を有するエンコーダ4a〜4b(特願2007−181605参照)や、図12に示す様な境界形状を有するエンコーダ4c(特願2007−69749参照)や、図13に示す様な境界形状を有するエンコーダ4d(特許文献3参照)等が存在する。そして、これら各エンコーダ4a〜4dの場合も、上記エンコーダ4の場合と同様の理由で、着磁後の被検出面に形成される境界の形状が、目的とする形状から少しずれると言った不具合が生じる。この為、上記各エンコーダ4a〜4dに就いても、上記形状のずれを極力なくせる様にする事が望まれる。   In addition, as an encoder made from a permanent magnet which comprises a state quantity measuring apparatus, when it sees with an expanded view other than the encoder 4 shown to the above-mentioned FIG.2 and FIG.3 (B), it shows in FIGS. Encoders 4a to 4b having various boundary shapes (see Japanese Patent Application No. 2007-181605), encoders 4c having boundary shapes as shown in FIG. 12 (see Japanese Patent Application No. 2007-69749), and boundary shapes as shown in FIG. There is an encoder 4d (see Patent Document 3) having In each of the encoders 4a to 4d, the boundary shape formed on the detected surface after magnetization is slightly deviated from the target shape for the same reason as in the encoder 4. Occurs. For this reason, it is desired that the above-described encoders 4a to 4d have the above-described shape shift as little as possible.

特開2006−317420号公報JP 2006-317420 A 特開2006−322928号公報JP 2006-322928 A 特開2007−93580号公報JP 2007-93580 A 特開2008−64731号公報JP 2008-64731 A 特開2007−85761号公報JP 2007-85761 A

本発明は、上述の様な事情に鑑み、着磁ヘッドによる着磁後のエンコーダの被検出面に形成される境界の形状を、この被検出面を平面状に展開したと仮定した状態で、目的とする形状にできるエンコーダの着磁方法を実現すべく発明したものである。   In view of the circumstances as described above, the present invention assumes that the shape of the boundary formed on the detected surface of the encoder after being magnetized by the magnetizing head is developed in a planar shape. The present invention was invented to realize a method of magnetizing an encoder that can have a desired shape.

本発明の着磁方法により着磁すべきエンコーダは、永久磁石製で円筒状の被検出面を有し、この被検出面にS極とN極とを円周方向に関して交互に配置すると共に、これらS極とN極との境界の少なくとも一部を軸方向に対し傾斜させている。
本発明の着磁方法は、上記エンコーダを造る為、未着磁の磁性材であるエンコーダ素材のうちで上記被検出面となるべき周面に着磁ヘッドの先端面を対向させた状態で、この着磁ヘッドから上記エンコーダ素材に磁束を流す事により、このエンコーダ素材に着磁する。
特に、本発明のエンコーダの着磁方法に於いては、上記着磁ヘッドによる着磁後の上記被検出面のうちで、検出に利用する、上記傾斜させた部分の境界の形状が、この被検出面を平面状に展開したと仮定した状態で目的とする形状となる様に、上記着磁ヘッドとして、先端面が上記被検出面と同心の部分円筒面であると共に、この先端面の円周方向両側縁のうちで上記目的とする形状を形成すべき部分の形状がそれぞれ、この先端面を上記着磁ヘッドの軸方向から見た状態で上記目的とする形状と異なるものを使用する。
The encoder to be magnetized by the magnetizing method of the present invention has a cylindrical detection surface made of a permanent magnet, and S poles and N poles are alternately arranged on the detection surface in the circumferential direction, At least a part of the boundary between the S pole and the N pole is inclined with respect to the axial direction.
In the magnetizing method of the present invention, in order to build the encoder, in a state where the tip surface of the magnetizing head is opposed to the peripheral surface to be the detected surface among the encoder materials that are unmagnetized magnetic materials, The encoder material is magnetized by causing a magnetic flux to flow from the magnetizing head to the encoder material.
In particular, in the method of magnetizing the encoder according to the present invention, the shape of the boundary of the inclined portion used for detection in the detected surface after the magnetization by the magnetizing head is defined by this shape. The tip surface of the magnetized head is a partial cylindrical surface concentric with the surface to be detected so that the detection surface is assumed to be flattened. The shape of the part which should form the said target shape in the circumferential direction both sides is different from the said target shape in the state which looked at this front end surface from the axial direction of the said magnetic head.

上述した様な本発明を実施する場合で、例えば前述の図3の(B)及び図13に示したエンコーダ4、4dの被検出面の全体や、前述の図10〜11に示したエンコーダ4a、4bの被検出面の幅方向(図10〜11の上下方向)中央部分を除く部分に示した様に、上記目的とする形状を直線とする場合には、請求項2に記載した発明の様に、上記着磁ヘッドの先端面の円周方向両側縁のうちで、上記目的とする形状を形成すべき部分の形状をそれぞれ、上記先端面を上記着磁ヘッドの軸方向から見た状態で、曲線とする。
又、この様に上記目的とする形状が直線であり、且つ、上記被検出面のうちで上記エンコーダの軸方向に対するこの直線の傾斜角度がαであり、且つ、上記着磁ヘッドの先端面の曲率半径がrである場合に、具体的には、請求項3に記載した発明の様に、上記先端面を上記着磁ヘッドの軸方向から見た状態での、この先端面のうちで上記エンコーダの回転方向に対応する方向の軸をX軸とし、同じく、この先端面のうちでこのエンコーダの軸方向に対応する方向の軸をY軸とする、XY平面座標(この先端面を軸方向から見た平面座標)内で、この先端面の円周方向両側縁のうちで上記目的とする形状を形成すべき部分の形状をそれぞれ、X軸方向の幅△Xと、Y軸方向の幅△Yとの間に、△X=r・sin-1(△Ytanα/r)の関係が成立する曲線にする。尚、この関係式は、前述した△Xに関する式と、前述した△Xcに関する式との関係を考慮して、上記目的とする形状を形成できる様に導いたものである。
When the present invention as described above is implemented, for example, the entire detected surface of the encoders 4 and 4d shown in FIG. 3B and FIG. 13 or the encoder 4a shown in FIGS. 4b, when the target shape is a straight line as shown in the portion excluding the central portion in the width direction of the detected surface (vertical direction in FIGS. 10 to 11), Similarly, the shape of the portion where the target shape should be formed among the circumferential side edges of the front end surface of the magnetized head is a state in which the front end surface is viewed from the axial direction of the magnetized head. And let's assume a curve.
In addition, the target shape is a straight line, the inclination angle of the straight line with respect to the axial direction of the encoder is α among the detected surfaces, and the tip surface of the magnetized head is When the radius of curvature is r, specifically, as in the invention described in claim 3, the tip surface of the tip surface when the tip surface is viewed from the axial direction of the magnetizing head is used. An XY plane coordinate (this tip surface is defined as an axial direction) in which the axis in the direction corresponding to the rotation direction of the encoder is the X axis, and the axis in the direction corresponding to the axial direction of this encoder is the Y axis. The shape of the portion where the above-mentioned target shape is to be formed among the circumferential side edges of the tip surface within the plane coordinates as viewed from the X axis direction width X and the Y axis direction width respectively. △ between the Y, △ relationship X = r · sin -1 (△ Ytanα / r) is satisfied To the line. Incidentally, this relation is a formula relating △ X described above, by considering the relationship between the expression for △ X c described above are those derived so as to form a shape with the above-mentioned object.

又、例えば前述の図10に示したエンコーダ4aの被検出面の幅方向中央部分や、前述の図12に示したエンコーダ4cの被検出面の全体に示した様に、上記目的とする形状が曲線である場合には、請求項4に記載した発明の様に、上記着磁ヘッドの先端面の円周方向両側縁のうちで、上記目的とする形状を形成すべき部分の形状をそれぞれ、上記先端面を上記着磁ヘッドの軸方向から見た状態で、上記曲線(上記目的とする形状)とは曲率が異なる曲線とする。   Further, for example, as shown in the center portion in the width direction of the detected surface of the encoder 4a shown in FIG. 10 and the entire detected surface of the encoder 4c shown in FIG. In the case of a curved line, as in the invention described in claim 4, the shape of the portion where the target shape should be formed among the circumferential side edges of the tip surface of the magnetized head, In a state where the front end surface is viewed from the axial direction of the magnetizing head, a curve having a curvature different from that of the curve (the target shape) is used.

即ち、以上に述べた様な本発明のエンコーダの着磁方法を、表現を変えて説明すれば、本発明のエンコーダの着磁方法に於いては、上記着磁ヘッドによる着磁後の上記被検出面に形成された上記境界の形状が、この被検出面を平面状に展開したと仮定した状態で目的とする形状となる様に、上記着磁ヘッドとして、先端面が上記被検出面と同心の部分円筒面であると共に、この先端面を平面状に展開したと仮定した状態での、この先端面の円周方向両側縁の形状が、上記目的とする形状と同じものを使用する。例えば、前述の図3の(B)及び図10〜13に示した様な各エンコーダ4、4a〜4dの着磁を行う場合には、着磁ヘッドとして、先端面がこれら各エンコーダ4、4a〜4dの被検出面と同心の部分円筒面であると共に、この先端面を平面状に展開したと仮定した状態での、この先端面の円周方向両側縁の形状がそれぞれ、前述の図3の(B)及び図10〜13に示した各境界の形状と同じものを使用する。   That is, the magnetizing method of the encoder of the present invention as described above will be described by changing the expression. In the magnetizing method of the encoder of the present invention, the magnetized method after the magnetizing by the magnetizing head is used. As the magnetizing head, the front end surface is connected to the detected surface so that the boundary shape formed on the detection surface becomes a target shape assuming that the detected surface is developed in a flat shape. A concentric partial cylindrical surface is used, and the shape of both side edges in the circumferential direction of the tip surface, assuming that the tip surface is flattened, is the same as the target shape. For example, when magnetizing the encoders 4, 4a to 4d as shown in FIG. 3B and FIGS. 10 to 13, the tip surface of each encoder 4, 4a serves as a magnetizing head. The shapes of the circumferential side edges of the tip surface in a state where the tip surface is assumed to have been developed in a flat shape are the partial cylindrical surfaces concentric with the surface to be detected of 4d. (B) and the same shape as each boundary shape shown in FIGS.

上述した様な本発明のエンコーダの着磁方法によれば、着磁ヘッドによる着磁後のエンコーダの被検出面に形成される境界の形状を、この被検出面を平面状に展開したと仮定した状態で、目的とする形状にする事ができる。   According to the magnetizing method of the encoder of the present invention as described above, it is assumed that the boundary shape formed on the detected surface of the encoder after magnetization by the magnetizing head is developed into a flat surface. In this state, the desired shape can be obtained.

図1を参照しつつ、本発明の実施の形態の1例に就いて説明する。尚、本例の特徴は、前述の図2及び図3の(B)に示した、S極とN極との境界の形状が「く」字形(V字形)であるエンコーダ4を造るべく、図4〜5に示す様なエンコーダ素材10に着磁する際に使用する、1対の着磁ヘッドの先端面(このエンコーダ素材10の外周面と同心の部分円筒面)の円周方向両側縁の形状を工夫した点にある。その他の部分の構造及び作用は、前述の図4に示した従来の着磁方法の第1例、又は、前述の図5に示した従来の着磁方法の第2例の場合と同様である。この為、重複する図示並びに説明は省略し、以下、本例の特徴部分を中心に説明する。尚、上記図1は、上記各着磁ヘッドの先端面をこれら各着磁ヘッドの軸方向から見た平面座標(これら各着磁ヘッドの先端面をこれら各着磁ヘッドの軸方向から見た状態での、これら各先端面のうちで上記エンコーダ4の回転方向に対応する方向の軸をX軸とし、同じく、これら各先端面の幅方向(上記エンコーダ4の軸方向)に対応する方向の軸をY軸とする、XY平面座標)を示している。   An example of the embodiment of the present invention will be described with reference to FIG. The feature of this example is to make the encoder 4 shown in FIG. 2 and FIG. 3B, in which the shape of the boundary between the S pole and the N pole is a “<” shape (V shape). Both edges in the circumferential direction of the tip surfaces of the pair of magnetizing heads (partial cylindrical surfaces concentric with the outer peripheral surface of the encoder material 10) used when magnetizing the encoder material 10 as shown in FIGS. It is in the point which devised the shape. The structure and operation of the other parts are the same as those of the first example of the conventional magnetizing method shown in FIG. 4 or the second example of the conventional magnetizing method shown in FIG. . For this reason, overlapping illustrations and descriptions will be omitted, and the following description will focus on the features of this example. FIG. 1 is a plane coordinate of the tip surfaces of the magnetized heads viewed from the axial direction of the magnetized heads (the tip surfaces of the magnetized heads are viewed from the axial direction of the magnetized heads). Of these tip surfaces in the state, the axis in the direction corresponding to the rotation direction of the encoder 4 is defined as the X axis, and similarly, the direction corresponding to the width direction of each tip surface (the axial direction of the encoder 4). XY plane coordinates) where the axis is the Y axis.

本例の場合には、上記各着磁ヘッドによる着磁後の被検出面に形成される境界の形状が、この被検出面を平面状に展開したと仮定した状態で、目的とする形状{図3の(B)に示す様な「く」字形状}となる様に、上記各着磁ヘッドの先端面の円周方向両側縁の形状をそれぞれ、次の様な形状としている。即ち、本例の場合には、上記各着磁ヘッドの先端面の円周方向両側縁の形状をそれぞれ、図1のXY平面座標内で、破線Jで示す様な上記目的とする形状とせず、実線Lで示す様な曲線{X軸方向の幅△Xと、Y軸方向の幅△Yとの間に、△X=r・sin-1(△Ytanα/r)(r:上記各着磁ヘッドの先端面の曲率半径、α:上記被検出面の軸方向に対する上記目的とする形状の傾斜角度)の関係が成立する曲線}としている。又、表現を変えて説明するならば、本例の場合には、上記各着磁ヘッドの先端面の円周方向両側縁の形状をそれぞれ、これら各先端面を平面状に展開したと仮定した状態で、上記目的とする形状にしている。 In the case of this example, it is assumed that the shape of the boundary formed on the detected surface after magnetization by each of the magnetizing heads is the target shape { The shape of both side edges in the circumferential direction of the front end surface of each of the magnetizing heads is set as follows so as to have a “<” shape as shown in FIG. In other words, in the case of this example, the shape of both side edges in the circumferential direction of the tip surface of each of the magnetizing heads is not set to the target shape as indicated by the broken line J in the XY plane coordinates of FIG. , A curve as shown by a solid line L {between the width ΔX in the X-axis direction and the width ΔY in the Y-axis direction, ΔX = r · sin −1 (ΔYtanα / r) (r: A curve that satisfies the relationship of the radius of curvature of the tip surface of the magnetic head, α: the inclination angle of the target shape with respect to the axial direction of the detected surface). In other words, in the case of this example, it is assumed that the shape of both side edges in the circumferential direction of the tip surface of each of the magnetized heads is developed in a flat shape. In the state, the target shape is used.

従って、上述の様な本例のエンコーダの着磁方法によれば、1対の着磁ヘッドによる着磁後のエンコーダ4の被検出面に形成される境界の形状を、この被検出面を平面状に展開したと仮定した状態で、目的とする形状{図3の(B)に示す様な「く」字形状}にする事ができる。その他の構成及び作用は、前述の図4に示した従来の着磁方法の第1例、又は、前述の図5に示した従来の着磁方法の第2例の場合と同様である。   Therefore, according to the magnetizing method of the encoder of this example as described above, the shape of the boundary formed on the detected surface of the encoder 4 after magnetization by the pair of magnetizing heads is flattened. In the state assumed to have developed into a shape, it is possible to make the target shape {a “<” shape as shown in FIG. Other configurations and operations are the same as those of the first example of the conventional magnetizing method shown in FIG. 4 or the second example of the conventional magnetizing method shown in FIG.

着磁後の被検出面の展開図に現れるべき境界の形状(破線)と、本発明の実施の形態の1例で使用する着磁ヘッドの先端面の平面図に現れる、この先端面の円周方向両側縁の形状(実線)とを示す線図。The shape of the boundary (broken line) that should appear in the developed view of the surface to be detected after magnetization, and the circle of this tip surface that appears in the plan view of the tip surface of the magnetizing head used in one example of the embodiment of the present invention The diagram which shows the shape (solid line) of the circumferential direction both-sides edge. 転がり軸受ユニットの状態量測定装置に関する、従来構造の1例を示す断面図。Sectional drawing which shows one example of the conventional structure regarding the state quantity measuring apparatus of a rolling bearing unit. (A)は、従来の着磁方法の2例で使用する着磁ヘッドの先端面の平面形状を示す図、(B)は、完成させるべきエンコーダの被検出面の円周方向一部分の展開図。(A) is a figure which shows the planar shape of the front end surface of the magnetizing head used by two examples of the conventional magnetizing method, (B) is a development view of the circumferential direction part of the detected surface of the encoder to be completed. . 従来の着磁方法の第1例の実施状況を、エンコーダの軸方向から見た図。The figure which looked at the implementation condition of the 1st example of the conventional magnetization method from the axial direction of the encoder. 同第2例の実施状況を、エンコーダの軸方向から見た図。The figure which looked at the implementation condition of the 2nd example from the axial direction of the encoder. 従来の着磁方法を実施する際のエンコーダ素材と着磁ヘッドとの位置関係を、このエンコーダ素材の軸方向から見た図。The figure which looked at the positional relationship of the encoder raw material at the time of implementing the conventional magnetization method and a magnetic head from the axial direction of this encoder raw material. 着磁ヘッドの幅寸法を大きくした、図6と同様の図。FIG. 7 is a view similar to FIG. 6 in which the width of the magnetized head is increased. 着磁後の被検出面の展開図に現れるべき境界の形状(目的とする「く」字形状)を、平面と部分円筒面とに転写した場合の形状の差異を説明する為の線図。The diagram for demonstrating the difference in the shape at the time of transferring the shape of the boundary which should appear in the developed view of the to-be-detected surface after magnetization (the target "<" shape) shape to a plane and a partial cylindrical surface. 着磁後の被検出面の展開図に現れるべき境界の形状(破線)と、従来の着磁方法で使用する着磁ヘッドの先端面の展開図に現れる、この先端面の円周方向両側縁の形状(実線)とを示す線図。The boundary shape (dashed line) that should appear in the developed view of the detected surface after magnetization, and both circumferential edges of this tip surface appearing in the developed view of the tip surface of the magnetizing head used in the conventional magnetizing method The figure which shows the shape (solid line). 本発明の着磁方法の実施の対象となり得る、他のエンコーダの第1例を示す、図3の(B)と同様の図。The figure similar to (B) of Drawing 3 showing the 1st example of other encoders which can become the object of implementation of the magnetization method of the present invention. 同第2例を示す、図10と同様の図。The figure similar to FIG. 10 which shows the 2nd example. 同第3例を示す、図10と同様の図。The figure similar to FIG. 10 which shows the 3rd example. 同第4例を示す、図10と同様の図。The figure similar to FIG. 10 which shows the 4th example.

符号の説明Explanation of symbols

1 外輪
2 ハブ
3 転動体
4、4a〜4d エンコーダ
5 芯金
6 エンコーダ本体
7 カバー
8 センサホルダ
9a、9b センサ
10 エンコーダ素材
11 磁性部材
12a、12b 着磁ヘッド
13a、13b 先端面
DESCRIPTION OF SYMBOLS 1 Outer ring 2 Hub 3 Rolling element 4, 4a-4d Encoder 5 Core metal 6 Encoder main body 7 Cover 8 Sensor holder 9a, 9b Sensor 10 Encoder material 11 Magnetic member 12a, 12b Magnetization head 13a, 13b Tip surface

Claims (4)

永久磁石製で円筒状の被検出面を有し、この被検出面にS極とN極とを円周方向に関して交互に配置すると共に、これらS極とN極との境界の少なくとも一部を軸方向に対し傾斜させたエンコーダを造る為、未着磁の磁性材であるエンコーダ素材のうちで上記被検出面となるべき周面に着磁ヘッドの先端面を対向させた状態で、この着磁ヘッドから上記エンコーダ素材に磁束を流す事により、このエンコーダ素材に着磁するエンコーダの着磁方法に於いて、上記着磁ヘッドによる着磁後の上記被検出面のうちで、検出に利用する、上記傾斜させた部分の境界の形状が、この被検出面を平面状に展開したと仮定した状態で目的とする形状となる様に、上記着磁ヘッドとして、先端面が上記被検出面と同心の部分円筒面であると共に、この先端面の円周方向両側縁のうちで上記目的とする形状を形成すべき部分の形状がそれぞれ、この先端面を上記着磁ヘッドの軸方向から見た状態で上記目的とする形状と異なるものを使用する事を特徴とするエンコーダの着磁方法。   The detection surface is made of a permanent magnet and has a cylindrical detection surface. S poles and N poles are alternately arranged on the detection surface in the circumferential direction, and at least a part of the boundary between these S poles and N poles is provided. In order to build an encoder that is inclined with respect to the axial direction, the magnetic head is positioned in the state where the tip surface of the magnetizing head is opposed to the peripheral surface to be detected among the encoder materials that are unmagnetized magnetic materials. In a method of magnetizing an encoder that magnetizes the encoder material by flowing a magnetic flux from the magnetic head to the encoder material, it is used for detection among the detected surfaces that are magnetized by the magnetized head. The tip surface of the magnetized head is the same as the surface to be detected so that the shape of the boundary of the inclined portion becomes a target shape assuming that the surface to be detected is flattened. This concentric partial cylindrical surface and this tip surface Of the circumferential side edges, the shape of the portion where the target shape should be formed is different from the target shape when the tip surface is viewed from the axial direction of the magnetizing head. An encoder magnetizing method characterized by the above. 目的とする形状が直線であり、着磁ヘッドの先端面の円周方向両側縁のうちでこの目的とする形状を形成すべき部分の形状がそれぞれ、この先端面をこの着磁ヘッドの軸方向から見た状態で曲線である、請求項1に記載したエンコーダの着磁方法。   The target shape is a straight line, and the shape of the portion where the target shape is to be formed among the circumferential side edges of the tip surface of the magnetizing head is the axial direction of the magnetizing head. The method of magnetizing an encoder according to claim 1, wherein the method is a curved line as viewed from above. 目的とする形状が直線であり、被検出面のうちでエンコーダの軸方向に対するこの直線の傾斜角度がαであり、着磁ヘッドの先端面の曲率半径がrである場合に、この先端面を着磁ヘッドの軸方向から見た状態での、この先端面のうちで上記エンコーダの回転方向に対応する方向の軸をX軸とし、同じく、この先端面のうちでこのエンコーダの軸方向に対応する方向の軸をY軸とする、XY平面座標内で、この先端面の円周方向両側縁のうちで上記目的とする形状を形成すべき部分の形状がそれぞれ、X軸方向の幅△XとY軸方向の幅△Yとの間に△X=r・sin-1(△Ytanα/r)の関係が成立する曲線になっている、請求項1〜2のうちの何れか1項に記載したエンコーダの着磁方法。 When the target shape is a straight line, the inclination angle of this straight line with respect to the axial direction of the encoder among the detected surfaces is α, and the radius of curvature of the front end surface of the magnetizing head is r, this front end surface is The X axis is the axis in the direction corresponding to the rotation direction of the encoder in the tip surface when viewed from the axial direction of the magnetizing head, and the axis direction of the encoder is also in the tip surface. In the XY plane coordinates where the axis in the direction to be moved is the Y axis, the shape of the portion that should form the target shape among the circumferential side edges of the tip surface is the width ΔX in the X axis direction. 3. The curve according to claim 1, wherein the curve is such that a relationship of ΔX = r · sin −1 (ΔYtan α / r) is established between Y and the width ΔY in the Y-axis direction. Magnetization method of the described encoder. 目的とする形状が曲線であり、着磁ヘッドの先端面の円周方向両側縁のうちでこの目的とする形状を形成すべき部分の形状がそれぞれ、この先端面をこの着磁ヘッドの軸方向から見た状態で、上記曲線とは曲率が異なる曲線である、請求項1に記載したエンコーダの着磁方法。   The target shape is a curve, and the shape of the portion of the circumferential side edge of the magnetized head that should form the target shape is the tip of the magnetized head in the axial direction of the magnetized head. 2. The method of magnetizing an encoder according to claim 1, wherein the curve has a curvature different from that of the curve as viewed from the above.
JP2008100928A 2008-04-09 2008-04-09 Magnetization method of encoder Expired - Fee Related JP5151634B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008100928A JP5151634B2 (en) 2008-04-09 2008-04-09 Magnetization method of encoder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008100928A JP5151634B2 (en) 2008-04-09 2008-04-09 Magnetization method of encoder

Publications (2)

Publication Number Publication Date
JP2009250851A true JP2009250851A (en) 2009-10-29
JP5151634B2 JP5151634B2 (en) 2013-02-27

Family

ID=41311717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008100928A Expired - Fee Related JP5151634B2 (en) 2008-04-09 2008-04-09 Magnetization method of encoder

Country Status (1)

Country Link
JP (1) JP5151634B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012163412A (en) * 2011-02-04 2012-08-30 Nsk Ltd Physical quantity measurement instrument for rotating member

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006317420A (en) * 2004-05-26 2006-11-24 Nsk Ltd Rolling bearing unit with load measuring unit
JP2006322928A (en) * 2005-04-22 2006-11-30 Nsk Ltd Displacement measuring device and load measuring device for rolling bearing unit
JP2007085761A (en) * 2005-09-20 2007-04-05 Nsk Ltd Magnetization method and magnetizing apparatus for encoder
JP2007093580A (en) * 2005-05-24 2007-04-12 Nsk Ltd Rolling bearing unit with displacement measuring device, and the rolling bearing unit with load measuring device
JP2008064731A (en) * 2006-02-28 2008-03-21 Nsk Ltd Quantity-of-state measuring device for rotary machine
JP2008089392A (en) * 2006-10-02 2008-04-17 Nsk Ltd Magnetizing method for encoder

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006317420A (en) * 2004-05-26 2006-11-24 Nsk Ltd Rolling bearing unit with load measuring unit
JP2006322928A (en) * 2005-04-22 2006-11-30 Nsk Ltd Displacement measuring device and load measuring device for rolling bearing unit
JP2007093580A (en) * 2005-05-24 2007-04-12 Nsk Ltd Rolling bearing unit with displacement measuring device, and the rolling bearing unit with load measuring device
JP2007085761A (en) * 2005-09-20 2007-04-05 Nsk Ltd Magnetization method and magnetizing apparatus for encoder
JP2008064731A (en) * 2006-02-28 2008-03-21 Nsk Ltd Quantity-of-state measuring device for rotary machine
JP2008089392A (en) * 2006-10-02 2008-04-17 Nsk Ltd Magnetizing method for encoder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012163412A (en) * 2011-02-04 2012-08-30 Nsk Ltd Physical quantity measurement instrument for rotating member

Also Published As

Publication number Publication date
JP5151634B2 (en) 2013-02-27

Similar Documents

Publication Publication Date Title
JP2010078366A (en) Angle detecting apparatus
JP5545121B2 (en) Rotation angle / torque sensor
JP2007271443A (en) Device for detecting angle
JP2004077159A (en) Pulser ring and bearing unit having sensor
JP5151634B2 (en) Magnetization method of encoder
JP5045490B2 (en) Magnetizing method and magnetizing apparatus for encoder
JP2009014381A (en) Inspection method for quantity-of-state measuring instrument for rolling bearing unit
JP2006317361A (en) Load measuring apparatus for rolling bearing unit
JP5458498B2 (en) State quantity measuring device for rolling bearing units
JP5092393B2 (en) Method for assembling state quantity measuring device for rolling bearing unit
JP2008292275A (en) Load measuring instrument for rolling bearing unit
JP2007085761A (en) Magnetization method and magnetizing apparatus for encoder
JP2005164253A (en) Load measuring instrument for rolling bearing unit
JP2006292730A (en) Rolling bearing unit with displacement-measuring device, and rolling bearing unit with load-measuring device
JP2007212389A (en) Load measuring device for rolling bearing unit
JP2010060399A (en) Rotation detecting device
JP2008122171A (en) Method of exchanging sensor of bearing unit with state quantity measuring device
JP2009103549A (en) Device for measuring state of quantity of rolling bearing unit
JP2008232960A (en) Magnetizer of encoder
JP2006010366A (en) Rotation detecting apparatus
JP2006226999A (en) Displacement measuring device and load measurement device for rolling bearing unit
JP2005134238A (en) Driving condition stabilizer for car
JP2008089392A (en) Magnetizing method for encoder
JP2000356531A (en) Device and measuring motion state of rolling element for rolling bearing
JP2008224248A (en) Bearing device with sensor

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100318

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151214

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5151634

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees