JP2009250567A - Flooded type shell-and-tube exchanger - Google Patents

Flooded type shell-and-tube exchanger Download PDF

Info

Publication number
JP2009250567A
JP2009250567A JP2008101373A JP2008101373A JP2009250567A JP 2009250567 A JP2009250567 A JP 2009250567A JP 2008101373 A JP2008101373 A JP 2008101373A JP 2008101373 A JP2008101373 A JP 2008101373A JP 2009250567 A JP2009250567 A JP 2009250567A
Authority
JP
Japan
Prior art keywords
refrigerant
liquid
heat exchanger
full
lubricating oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008101373A
Other languages
Japanese (ja)
Inventor
Rikiya Fujiwara
力弥 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2008101373A priority Critical patent/JP2009250567A/en
Publication of JP2009250567A publication Critical patent/JP2009250567A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0017Flooded core heat exchangers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To suppress retention of lubricating oil by a simple structure without requiring cost. <P>SOLUTION: In this flooded type shell-and-tube exchanger, multiple heat-transfer pipes 2 in which cooled fluid W is made to flow are arranged within a body 1 in which a refrigerant is made to flow. A refrigerant passage 4 in which a refrigerant is made to flow toward a refrigerant outlet 3 provided in the body 1 at predetermined speed is formed above a liquid level L within the body 1, and lubricating oil included in a liquid refrigerant X is made to flow out to the refrigerant outlet 3 together with the refrigerant flowing on the refrigerant passage 4 at the predetermined speed. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本願発明は、満液型クーラとして使用されるシェルアンドチューブタイプの満液型多管式熱交換器に関するものである。   The present invention relates to a shell-and-tube type full-tube multi-tube heat exchanger used as a full-cooler.

例えば、シェルアンドチューブタイプの満液型多管式熱交換器は、図2に示すように、液冷媒Xが流通する胴体1内に被冷却流体(例えば、水)が流通する多数の伝熱管2,2・・を配設して構成されており、胴体1内においては、被冷却流体が流通する伝熱管2,2・・は、液冷媒Xに浸漬されている。符号3は冷媒出口(換言すれば、圧縮機吸入管)である。   For example, as shown in FIG. 2, a shell-and-tube type liquid-filled multi-tube heat exchanger has a large number of heat transfer tubes in which a fluid to be cooled (for example, water) flows in a body 1 in which a liquid refrigerant X flows. In the body 1, the heat transfer tubes 2, 2... Through which the fluid to be cooled circulates are immersed in the liquid refrigerant X. Reference numeral 3 denotes a refrigerant outlet (in other words, a compressor suction pipe).

この種の満液型多管式熱交換器は、特許文献1にも開示されているように、従来からよく知られている。   This type of liquid-filled multi-tube heat exchanger has been well known as disclosed in Patent Document 1.

特開平8−254373号公報。JP-A-8-254373.

上記構成の満液型多管式熱交換器を満液型クーラとして使用する場合、図3に示すように、圧縮機11、凝縮器12、膨張機構13および満液型多管式熱交換器14からなる冷凍サイクルに組み込んで使用される。符号11aは圧縮機11の吸入部、11bは圧縮機11の吐出部である。   When the full-liquid multitubular heat exchanger having the above configuration is used as a full-liquid cooler, as shown in FIG. 3, the compressor 11, the condenser 12, the expansion mechanism 13, and the full-liquid multitubular heat exchanger. It is used by being incorporated in a refrigeration cycle consisting of 14. Reference numeral 11 a is a suction portion of the compressor 11, and 11 b is a discharge portion of the compressor 11.

上記冷凍サイクルの場合、圧縮機11で圧縮されたガス冷媒が凝縮器12において凝縮液化されて液冷媒となり、該液冷媒が膨張機構13にて減圧された後、蒸発器として機能する満液型多管式熱交換器14に導かれ、該満液型多管式熱交換器14において蒸発気化する過程で胴体1内を流通する被冷却流体(例えば、水W)を冷却することとなっている。ところで、満液型多管式熱交換器14における胴体中央部では潤滑油を含んだ液冷媒の流速がなくなり、冷媒出口(換言すれば、圧縮機吸入管)にまで潤滑油が到達せず、結果的に胴体内部に潤滑油が溜まり込むという問題があった。この問題に対処するために、従来方式では、図2に示すように、満液型多管式熱交換器の胴体1と圧縮機11の吸入部11aとの間にエゼクタやポンプ等の冷媒圧送手段15を介設した油戻し管16を別途設けて、胴体1内に溜まり込む潤滑油を液冷媒Xとともに圧縮機11の吸入部11aへ戻すことが行われていた。   In the case of the refrigeration cycle, the gas refrigerant compressed by the compressor 11 is condensed and liquefied in the condenser 12 to become liquid refrigerant, and the liquid refrigerant is decompressed by the expansion mechanism 13 and then functions as an evaporator. The fluid to be cooled (for example, water W) flowing through the body 1 is cooled in the process of being led to the multi-tube heat exchanger 14 and evaporating and evaporating in the full-liquid multi-tube heat exchanger 14. Yes. By the way, the flow rate of the liquid refrigerant containing the lubricating oil disappears in the central part of the body of the full-liquid multitubular heat exchanger 14, and the lubricating oil does not reach the refrigerant outlet (in other words, the compressor suction pipe). As a result, there was a problem that the lubricating oil collected inside the fuselage. In order to cope with this problem, in the conventional system, as shown in FIG. 2, a refrigerant pressure feed such as an ejector or a pump is provided between the body 1 of the full-tube type multi-tube heat exchanger and the suction portion 11a of the compressor 11. An oil return pipe 16 provided with a means 15 is separately provided to return the lubricating oil accumulated in the body 1 to the suction portion 11a of the compressor 11 together with the liquid refrigerant X.

しかしながら、上記従来方式では、油戻し管16を別途設ける必要があるとともに、冷媒圧送手段16として、エゼクタやポンプが必要となり、コストアップにつながるという新たな問題が発生する。   However, in the conventional method, it is necessary to separately provide the oil return pipe 16, and an ejector or a pump is required as the refrigerant pressure feeding means 16, which causes a new problem of increasing the cost.

本願発明は、上記の点に鑑みてなされたもので、コストをかけることなく、簡単な構造で潤滑油の溜まり込みを抑制し得るようにすることを目的としている。   The present invention has been made in view of the above points, and an object of the present invention is to prevent accumulation of lubricating oil with a simple structure without cost.

本願発明では、上記課題を解決するための第1の手段として、冷媒が流通する胴体1内に被冷却流体Wが流通する多数の伝熱管2,2・・を配設してなる満液型多管式熱交換器において、前記胴体1内における液面Lの上方に、前記胴体1に設けられる冷媒出口3に向かって冷媒が所定速度で流れる冷媒通路4を形成している。   In the present invention, as a first means for solving the above problem, a full liquid type in which a large number of heat transfer tubes 2, 2.. In the multi-tubular heat exchanger, a refrigerant passage 4 is formed above the liquid level L in the body 1 so that the refrigerant flows at a predetermined speed toward the refrigerant outlet 3 provided in the body 1.

上記のように構成したことにより、冷媒通路4を所定速度で流れる冷媒とともに液冷媒X中に含まれる潤滑油が冷媒出口3に流出することとなり、胴体1内に冷媒通路4を設けるという簡単な構造で、胴体1内への潤滑油の溜まり込みが抑制されることとなる。従って、冷凍サイクルに組み込んだ場合に、圧縮機の吸入部への油戻しが行えることとなり、圧縮機の潤滑油不足が解消する。   With the configuration described above, the lubricating oil contained in the liquid refrigerant X together with the refrigerant flowing through the refrigerant passage 4 at a predetermined speed flows out to the refrigerant outlet 3, and the refrigerant passage 4 is provided in the body 1. With the structure, accumulation of lubricating oil in the body 1 is suppressed. Therefore, when it is incorporated in the refrigeration cycle, oil can be returned to the suction portion of the compressor, and the shortage of lubricating oil in the compressor is solved.

本願発明では、さらに、上記課題を解決するための第2の手段として、上記第1の手段を備えた満液型多管式熱交換器において、前記冷媒通路4を、前記冷媒出口3の入口側を覆うカバー部材5と前記胴体1内面との間に形成することもでき、そのように構成した場合、胴体1内にカバー部材5を配設するという簡単な構造の追加により、胴体1内への潤滑油の溜まり込みが抑制されることとなる。   In the present invention, as a second means for solving the above-mentioned problem, in the full-liquid multitubular heat exchanger provided with the first means, the refrigerant passage 4 is connected to the inlet of the refrigerant outlet 3. It can also be formed between the cover member 5 that covers the side and the inner surface of the fuselage 1, and in such a configuration, by adding a simple structure in which the cover member 5 is disposed in the fuselage 1, This prevents the accumulation of lubricating oil on the surface.

本願発明では、さらに、上記課題を解決するための第3の手段として、上記第2の手段を備えた満液型多管式熱交換器において、前記カバー部材5を、前記胴体1の内面と略同形状の板状部材により構成することもでき、そのように構成した場合、胴体1内に該胴体1の内面と同形状の板状部材を追加するという簡単な構造の追加により、胴体1内への潤滑油の溜まり込みが抑制されることとなる。   In the present invention, as a third means for solving the above-described problem, in the full-liquid multitubular heat exchanger provided with the second means, the cover member 5 is connected to the inner surface of the body 1. A plate-shaped member having substantially the same shape can be used. In such a case, the body 1 is added by adding a simple structure in which a plate-shaped member having the same shape as the inner surface of the body 1 is added to the body 1. The accumulation of lubricating oil in the inside will be suppressed.

本願発明では、さらに、上記課題を解決するための第4の手段として、上記第1、第2又は第3の手段を備えた満液型多管式熱交換器において、前記冷媒通路4の大きさを、該冷媒通路4を流れる冷媒の流速が約0.5m/sとなるように設定することもでき、そのように構成した場合、冷媒通路4を流れる冷媒への潤滑油の混合割合が最適となり、胴体1内への潤滑油の溜まり込みが効果的に抑制されることとなる。   In the present invention, as a fourth means for solving the above-described problems, in the full-tube type multi-tube heat exchanger provided with the first, second or third means, the size of the refrigerant passage 4 is increased. Further, the flow rate of the refrigerant flowing through the refrigerant passage 4 can be set to be about 0.5 m / s. In such a configuration, the mixing ratio of the lubricating oil to the refrigerant flowing through the refrigerant passage 4 is It becomes optimal and the accumulation of lubricating oil in the body 1 is effectively suppressed.

本願発明では、さらに、上記課題を解決するための第5の手段として、上記第2、第3又は第4の手段を備えた満液型多管式熱交換器において、前記カバー部材5を、前記胴体1の全長に亘って設けることもでき、そのように構成した場合、複数の冷媒出口を有する胴体1を備えた満液型多管式熱交換器の場合においても、一つのカバー部材で複数の冷媒出口を覆うことが可能となり、構造の簡略化を図ることができる。   In the present invention, as a fifth means for solving the above problems, in the full-tube type multi-tube heat exchanger provided with the second, third or fourth means, the cover member 5 It can also be provided over the entire length of the body 1, and in such a case, even in the case of a liquid-filled multi-tube heat exchanger provided with the body 1 having a plurality of refrigerant outlets, a single cover member is used. A plurality of refrigerant outlets can be covered, and the structure can be simplified.

本願発明の第1の手段によれば、冷媒が流通する胴体1内に被冷却流体Wが流通する多数の伝熱管2,2・・を配設してなる満液型多管式熱交換器において、前記胴体1内における液面Lの上方に、前記胴体1に設けられる冷媒出口3に向かって冷媒が所定速度で流れる冷媒通路4を形成して、冷媒通路4を所定速度で流れる冷媒とともに液冷媒X中に含まれる潤滑油が冷媒出口3に流出するようにしたので、胴体1内に冷媒通路4を設けるという簡単な構造で、胴体1内への潤滑油の溜まり込みを抑制することができるという効果がある。従って、冷凍サイクルに組み込んだ場合に、圧縮機の吸入部への油戻しが行えることとなり、圧縮機の潤滑油不足が解消するという効果もある。   According to the first means of the present invention, a liquid-filled multi-tube heat exchanger comprising a large number of heat transfer tubes 2, 2.. The refrigerant passage 4 in which the refrigerant flows at a predetermined speed toward the refrigerant outlet 3 provided in the trunk 1 is formed above the liquid level L in the fuselage 1, and together with the refrigerant flowing in the refrigerant passage 4 at a predetermined speed Since the lubricating oil contained in the liquid refrigerant X flows out to the refrigerant outlet 3, it is possible to suppress the accumulation of the lubricating oil in the fuselage 1 with a simple structure in which the refrigerant passage 4 is provided in the fuselage 1. There is an effect that can be. Therefore, when it is incorporated in the refrigeration cycle, oil can be returned to the suction portion of the compressor, and the shortage of lubricating oil in the compressor can be solved.

本願発明の第2の手段におけるように、上記第1の手段を備えた満液型多管式熱交換器において、前記冷媒通路4を、前記冷媒出口3の入口側を覆うカバー部材5と前記胴体1内面との間に形成することもでき、そのように構成した場合、胴体1内にカバー部材5を配設するという簡単な構造の追加により、胴体1内への潤滑油の溜まり込みが抑制されることとなる。   As in the second means of the present invention, in the liquid-filled multi-tubular heat exchanger provided with the first means, the refrigerant passage 4 is covered with the cover member 5 that covers the inlet side of the refrigerant outlet 3 and the cover member 5. It can also be formed between the inner surface of the fuselage 1, and in such a configuration, the addition of a simple structure in which the cover member 5 is disposed in the fuselage 1 causes the accumulation of lubricating oil in the fuselage 1. It will be suppressed.

本願発明の第3の手段におけるように、上記第2の手段を備えた満液型多管式熱交換器において、前記カバー部材5を、前記胴体1の内面と略同形状の板状部材により構成することもでき、そのように構成した場合、胴体1内に該胴体1の内面と同形状の板状部材を追加するという簡単な構造の追加により、胴体1内への潤滑油の溜まり込みが抑制されることとなる。   As in the third means of the present invention, in the full-tube type tube heat exchanger provided with the second means, the cover member 5 is formed by a plate-like member having substantially the same shape as the inner surface of the body 1. In such a case, the addition of a simple structure in which a plate-like member having the same shape as the inner surface of the fuselage 1 is added to the fuselage 1 makes it possible for the lubricating oil to accumulate in the fuselage 1. Will be suppressed.

本願発明の第4の手段におけるように、上記第1、第2又は第3の手段を備えた満液型多管式熱交換器において、前記冷媒通路4の大きさを、該冷媒通路4を流れる冷媒の流速が約0.5m/sとなるように設定することもでき、そのように構成した場合、冷媒通路4を流れる冷媒への潤滑油の混合割合が最適となり、胴体1内への潤滑油の溜まり込みが効果的に抑制されることとなる。   As in the fourth means of the present invention, in the full-tube type multi-tubular heat exchanger provided with the first, second or third means, the size of the refrigerant passage 4 is set so that the refrigerant passage 4 The flow rate of the flowing refrigerant can be set to be about 0.5 m / s. In such a configuration, the mixing ratio of the lubricating oil to the refrigerant flowing through the refrigerant passage 4 is optimal, and the flow rate into the body 1 is increased. The accumulation of lubricating oil is effectively suppressed.

本願発明の第5の手段におけるように、上記第2、第3又は第4の手段を備えた満液型多管式熱交換器において、前記カバー部材5を、前記胴体1の全長に亘って設けることもでき、そのように構成した場合、複数の冷媒出口を有する胴体1を備えた満液型多管式熱交換器の場合においても、一つのカバー部材5で複数の冷媒出口を覆うことが可能となり、構造の簡略化を図ることができる。   As in the fifth means of the present invention, in the full-tube type multi-tube heat exchanger provided with the second, third or fourth means, the cover member 5 is extended over the entire length of the body 1. In such a case, even in the case of a full-liquid multitubular heat exchanger having a body 1 having a plurality of refrigerant outlets, a single cover member 5 covers the plurality of refrigerant outlets. Therefore, the structure can be simplified.

以下、添付の図面を参照して、本願発明の好適な実施の形態について説明する。   Preferred embodiments of the present invention will be described below with reference to the accompanying drawings.

この満液型多管式熱交換器は、図1に示すように、冷媒が流通する胴体1内に被冷却流体Wが流通する多数の伝熱管2,2・・を配設して構成されている。符号3は冷媒出口(換言すれば、圧縮機吸入管)である。   As shown in FIG. 1, this full-liquid multitubular heat exchanger is configured by arranging a large number of heat transfer tubes 2, 2... Through which a fluid W to be cooled flows in a body 1 through which refrigerant flows. ing. Reference numeral 3 denotes a refrigerant outlet (in other words, a compressor suction pipe).

上記構成の満液型多管式熱交換器を満液型クーラとして使用する場合、図3に示すように、圧縮機11、凝縮器12、膨張機構13および満液型多管式熱交換器14からなる冷凍サイクルに組み込んで使用される。   When the full-liquid multitubular heat exchanger having the above configuration is used as a full-liquid cooler, as shown in FIG. 3, the compressor 11, the condenser 12, the expansion mechanism 13, and the full-liquid multitubular heat exchanger. It is used by being incorporated in a refrigeration cycle consisting of 14.

本実施の形態においては、前記胴体1内における液面Lの上方には、前記胴体1に設けられる冷媒出口管3に向かって冷媒が所定速度以上で流れる冷媒通路4が形成されている。該冷媒通路4は、前記冷媒出口管3の入口側を覆うカバー部材5と前記胴体1内面との間に形成されている。このカバー部材5を、前記胴体1の内面と略同形状の板状部材により構成されており、胴体1の全長に亘って設けられている。そして、前記冷媒通路4の大きさは、該冷媒通路4を流れる冷媒の流速が約0.5m/sとなるように設定されている。   In the present embodiment, a refrigerant passage 4 in which the refrigerant flows at a predetermined speed or more toward the refrigerant outlet pipe 3 provided in the trunk 1 is formed above the liquid level L in the trunk 1. The refrigerant passage 4 is formed between a cover member 5 that covers the inlet side of the refrigerant outlet pipe 3 and the inner surface of the body 1. The cover member 5 is configured by a plate-like member having substantially the same shape as the inner surface of the body 1, and is provided over the entire length of the body 1. The size of the refrigerant passage 4 is set so that the flow rate of the refrigerant flowing through the refrigerant passage 4 is about 0.5 m / s.

上記冷凍サイクルの場合、圧縮機11で圧縮されたガス冷媒が凝縮器12において凝縮液化されて液冷媒となり、該液冷媒が膨張機構13にて減圧された後、蒸発器として機能する満液型多管式熱交換器14に導かれ、該満液型多管式熱交換器14において蒸発気化する過程で伝熱管2,2・・内を流通する被冷却流体(例えば、水W)を冷却することとなっている。このとき、満液型多管式熱交換器14における胴体1中央部では潤滑油を含んだ液冷媒の流速がなくなり、冷媒出口3(換言すれば、圧縮機吸入管)にまで潤滑油が到達せず、結果的に胴体1内部に潤滑油が溜まり込むおそれがある。   In the case of the refrigeration cycle, the gas refrigerant compressed by the compressor 11 is condensed and liquefied in the condenser 12 to become liquid refrigerant, and the liquid refrigerant is decompressed by the expansion mechanism 13 and then functions as an evaporator. The fluid to be cooled (for example, water W) flowing through the heat transfer tubes 2, 2... Is cooled in the process of being led to the multi-tube heat exchanger 14 and evaporating and evaporating in the full-liquid multi-tube heat exchanger 14. It is supposed to be. At this time, the flow rate of the liquid refrigerant containing the lubricating oil disappears at the center of the body 1 in the full-liquid multitubular heat exchanger 14, and the lubricating oil reaches the refrigerant outlet 3 (in other words, the compressor suction pipe). As a result, the lubricating oil may accumulate in the body 1.

しかしながら、本実施の形態においては、胴体1内の液冷媒Xの液面Lが、蒸発作用によって波立っているところから、冷媒通路4を所定速度(例えば、約0.5m/s)で流れる冷媒とともに液冷媒X中に含まれる潤滑油が冷媒出口管3に流出することとなり、胴体1内に板状部材からなるカバー部材5を配設して冷媒通路4を設けるという簡単な構造で、胴体1内への潤滑油の溜まり込みが抑制されることとなる。従って、冷凍サイクルに組み込んだ場合に、圧縮機11の吸入部11aへの油戻しが行えることとなり、圧縮機11の潤滑油不足が解消することとなる。しかも、冷媒通路4の大きさを、該冷媒通路4を流れる冷媒の流速が約0.5m/sとなるように設定したことにより、冷媒通路4を流れる冷媒への潤滑油の混合割合が最適となり、胴体1内への潤滑油の溜まり込みが効果的に抑制されることとなる。また、カバー部材5を、前記胴体1の全長に亘って設け、たことにより、複数の冷媒出口を有する胴体1を備えた満液型多管式熱交換器の場合においても、一つのカバー部材5で複数の冷媒出口を覆うことが可能となり、構造の簡略化を図ることができる。   However, in the present embodiment, since the liquid level L of the liquid refrigerant X in the body 1 undulates due to the evaporating action, it flows through the refrigerant passage 4 at a predetermined speed (for example, about 0.5 m / s). Lubricating oil contained in the liquid refrigerant X together with the refrigerant flows out to the refrigerant outlet pipe 3, and a simple structure in which the cover member 5 made of a plate-like member is provided in the body 1 to provide the refrigerant passage 4. The accumulation of lubricating oil in the body 1 is suppressed. Therefore, when incorporated in the refrigeration cycle, the oil can be returned to the suction portion 11a of the compressor 11, and the shortage of lubricating oil in the compressor 11 can be resolved. In addition, since the size of the refrigerant passage 4 is set so that the flow velocity of the refrigerant flowing through the refrigerant passage 4 is about 0.5 m / s, the mixing ratio of the lubricating oil to the refrigerant flowing through the refrigerant passage 4 is optimal. Thus, the accumulation of lubricating oil in the body 1 is effectively suppressed. Further, since the cover member 5 is provided over the entire length of the body 1, one cover member is provided even in the case of a full-liquid multitubular heat exchanger provided with the body 1 having a plurality of refrigerant outlets. 5, it becomes possible to cover a plurality of refrigerant outlets, and the structure can be simplified.

ところで、複数の冷媒出口を有する胴体1を備えた満液型多管式熱交換器の場合、カバー部材5を冷媒出口に対応させて等分に配設することもできる。   By the way, in the case of a full-liquid multitubular heat exchanger provided with the body 1 having a plurality of refrigerant outlets, the cover member 5 can be equally arranged so as to correspond to the refrigerant outlets.

なお、冷媒通路としては、カバー部材と胴体の内面との間に形成されるもの以外に、冷媒出口に連通する偏平管を胴体内に配設し、該偏平管内を冷媒通路とする場合もある。   In addition, as the refrigerant passage, there is a case where a flat tube communicating with the refrigerant outlet is disposed in the body other than that formed between the cover member and the inner surface of the body, and the inside of the flat tube is used as the refrigerant passage. .

本願発明は、上記実施の形態に限定されるものではなく、発明の要旨を逸脱しない範囲において適宜設計変更可能なことは勿論である。   The invention of the present application is not limited to the above-described embodiment, and it is needless to say that the design can be appropriately changed without departing from the gist of the invention.

本願発明の実施の形態にかかる満液型多管式熱交換器の拡大断面図である。It is an expanded sectional view of a full liquid type multi-tube heat exchanger concerning an embodiment of the invention of this application. 従来の満液型多管式熱交換器の拡大断面図である。It is an expanded sectional view of the conventional full liquid type multi-tube heat exchanger. 満液型多管式熱交換器を用いた冷凍サイクルである。This is a refrigeration cycle using a full-liquid multi-tube heat exchanger.

符号の説明Explanation of symbols

1は胴体
2は伝熱管
3は冷媒出口(圧縮機吸入管)
4は冷媒通路
5はカバー部材(板状部材)
Lは液面
Wは被冷却流体(水)
Xは液冷媒
1 is fuselage 2 is heat transfer pipe 3 is refrigerant outlet (compressor suction pipe)
4 is a refrigerant passage 5 is a cover member (plate-shaped member)
L is liquid level W is fluid to be cooled (water)
X is liquid refrigerant

Claims (5)

冷媒が流通する胴体(1)内に被冷却流体(W)が流通する多数の伝熱管(2),(2)・・を配設してなる満液型多管式熱交換器であって、前記胴体(1)内における液面(L)の上方には、前記胴体(1)に設けられる冷媒出口(3)に向かって冷媒が所定速度で流れる冷媒通路(4)を形成したことを特徴とする満液型多管式熱交換器。   A full-liquid multitubular heat exchanger in which a large number of heat transfer tubes (2), (2),... In which a fluid to be cooled (W) flows is disposed in a fuselage (1) in which a refrigerant flows. A refrigerant passage (4) in which the refrigerant flows at a predetermined speed toward the refrigerant outlet (3) provided in the fuselage (1) is formed above the liquid level (L) in the fuselage (1). A full liquid multi-tube heat exchanger. 前記冷媒通路(4)を、前記冷媒出口(3)の入口側を覆うカバー部材(5)と前記胴体(1)内面との間に形成したことを特徴とする請求項1記載の満液型多管式熱交換器。   The full liquid mold according to claim 1, wherein the refrigerant passage (4) is formed between a cover member (5) covering an inlet side of the refrigerant outlet (3) and an inner surface of the body (1). Multi-tube heat exchanger. 前記カバー部材(5)を、前記胴体(1)の内面と略同形状の板状部材により構成したことを特徴とする請求項2記載の満液型多管式熱交換器。 The full-liquid multitubular heat exchanger according to claim 2, wherein the cover member (5) is constituted by a plate-like member having substantially the same shape as the inner surface of the body (1). 前記冷媒通路(4)の大きさを、該冷媒通路(4)を流れる冷媒の流速が約0.5m/sとなるように設定したことを特徴とする請求項1ないし3のいずれか一項記載の満液型多管式熱交換器。 The size of the refrigerant passage (4) is set so that the flow velocity of the refrigerant flowing through the refrigerant passage (4) is about 0.5 m / s. Fully filled multitubular heat exchanger as described. 前記カバー部材(5)を、前記胴体(1)の全長に亘って設けたことを特徴とする請求項2ないし4のいずれか一項記載の満液型多管式熱交換器。 The full-tube type multi-tube heat exchanger according to any one of claims 2 to 4, wherein the cover member (5) is provided over the entire length of the body (1).
JP2008101373A 2008-04-09 2008-04-09 Flooded type shell-and-tube exchanger Pending JP2009250567A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008101373A JP2009250567A (en) 2008-04-09 2008-04-09 Flooded type shell-and-tube exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008101373A JP2009250567A (en) 2008-04-09 2008-04-09 Flooded type shell-and-tube exchanger

Publications (1)

Publication Number Publication Date
JP2009250567A true JP2009250567A (en) 2009-10-29

Family

ID=41311465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008101373A Pending JP2009250567A (en) 2008-04-09 2008-04-09 Flooded type shell-and-tube exchanger

Country Status (1)

Country Link
JP (1) JP2009250567A (en)

Similar Documents

Publication Publication Date Title
JP6701372B2 (en) Heat exchanger
JP5097472B2 (en) Heat exchanger
US20190063801A1 (en) Evaporator and centrifugal chiller provided with the same
JP2008528939A (en) Gas-liquid separator for mini-channel heat exchanger
US20180187932A1 (en) Evaporator and centrifugal chiller provided with the same
CN102455087B (en) Header unit and the heat exchanger with this header unit
EP3087335B1 (en) Distributor for falling film evaporator
JP2016525205A (en) Heat exchanger
CN102563979A (en) Heat exchanger
EP2932162B1 (en) Low pressure chiller
JP2022515614A (en) Heat exchanger
JP2007003101A (en) Shell-and-tube type heat exchanger
JP2022517728A (en) Heat exchanger
EP3042127B1 (en) Integrated separator-distributor for falling film evaporator
US9777964B2 (en) Micro-port shell and tube heat exchanger
JP6313090B2 (en) Turbo refrigerator evaporator and turbo refrigerator equipped with the evaporator
JP2005241237A (en) Condenser and heat exchanger
CN107421168A (en) Condenser
CN105987545B (en) A kind of liquid storage device, compressor and air-conditioning system
JP2008157506A (en) Heat exchanger
KR200259605Y1 (en) Integral Condenser
JP2009250567A (en) Flooded type shell-and-tube exchanger
JP4897464B2 (en) Vapor compression refrigeration cycle
JP2010223464A (en) Evaporator
CN105091432B (en) Oil eliminator and the air-conditioning with the oil eliminator