JP2009250075A - Fuel injection amount control device and fuel injection system - Google Patents

Fuel injection amount control device and fuel injection system Download PDF

Info

Publication number
JP2009250075A
JP2009250075A JP2008096487A JP2008096487A JP2009250075A JP 2009250075 A JP2009250075 A JP 2009250075A JP 2008096487 A JP2008096487 A JP 2008096487A JP 2008096487 A JP2008096487 A JP 2008096487A JP 2009250075 A JP2009250075 A JP 2009250075A
Authority
JP
Japan
Prior art keywords
fuel
temperature
injection amount
detection value
intake air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008096487A
Other languages
Japanese (ja)
Inventor
Masahiko Yamaguchi
正彦 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2008096487A priority Critical patent/JP2009250075A/en
Publication of JP2009250075A publication Critical patent/JP2009250075A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel injection amount control device and a fuel injection system capable of accurately controlling a fuel injection amount so that an air-fuel ratio approximates a target value. <P>SOLUTION: The fuel injection amount control device includes a fuel temperature acquiring means B20 for acquiring a temperature of fuel supplied to an injector (fuel injection valve) mounted to an internal combustion engine for a vehicle as a fuel temperature detection value, and an intake air temperature acquiring means B40 for acquiring a temperature of intake air as an intake air temperature detection value. The control device estimates a temperature of the injector from the acquired fuel temperature detection value and the intake air temperature detection value, and corrects a base injection amount of the fuel calculated from the operating state of the engine based on the estimated injector temperature. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、車両用の内燃機関に搭載された燃料噴射弁に適用され、燃料噴射弁からの燃料の噴射量を制御する燃料噴射量制御装置に関する。   The present invention relates to a fuel injection amount control device that is applied to a fuel injection valve mounted on an internal combustion engine for a vehicle and controls the injection amount of fuel from the fuel injection valve.

内燃機関を高負荷で継続して運転した直後に内燃機関を停止させると、内燃機関の雰囲気温度上昇に伴い燃料噴射弁の温度が上昇し、ひいては燃料噴射弁に供給された燃料が高温化して気泡が発生する場合がある。この気泡発生状態で内燃機関を再始動させると、気泡の分だけ燃料噴射量が少なくなってしまい、所望のトルクが得られない、空燃比がリーン化する等の不具合が生じる。この問題に対し特許文献1記載の制御では、燃料噴射弁に供給される燃料の温度を検出し、検出した燃料温度に基づき前記気泡の発生分を見越して燃料の噴射量指令値を増量補正させている。
特開平1−177438号公報
If the internal combustion engine is stopped immediately after the internal combustion engine is continuously operated at a high load, the temperature of the fuel injection valve rises as the atmospheric temperature of the internal combustion engine rises, and as a result, the fuel supplied to the fuel injection valve becomes hot. Bubbles may be generated. If the internal combustion engine is restarted in the bubble generation state, the amount of fuel injection is reduced by the amount of bubbles, resulting in problems such as failure to obtain a desired torque and lean air-fuel ratio. With respect to this problem, in the control described in Patent Document 1, the temperature of the fuel supplied to the fuel injection valve is detected, and the fuel injection amount command value is corrected to be increased in anticipation of the bubble generation based on the detected fuel temperature. ing.
JP-A-1-177438

しかしながら、上述の如く燃料温度に基づき噴射量指令値を補正する従来制御では、次の問題が生じることが分かった。すなわち、車両を走行発進させることに伴い吸気管に外気が導入されると、吸入空気温度が急激に低くなる場合があり、その場合には燃料噴射弁の温度が急激に低下することとなる。すると、前記気泡の発生量が少なくなるため、前述した燃料の増量補正では過補正となり、空燃比がリッチ側にずれるという問題が生じる。   However, it has been found that the following problems occur in the conventional control in which the injection amount command value is corrected based on the fuel temperature as described above. That is, when outside air is introduced into the intake pipe as the vehicle starts running, the intake air temperature may suddenly decrease, and in this case, the temperature of the fuel injection valve will rapidly decrease. Then, since the amount of generated bubbles is reduced, the above-described fuel increase correction is overcorrected, causing a problem that the air-fuel ratio shifts to the rich side.

特に、内燃機関を高負荷で継続して運転した直後に内燃機関を停止させると、吸気管内の空気(管内空気)は内燃機関により暖められて高温になっているため、この状態で内燃機関を再始動させて車両を発進させると、外気導入により管内空気の温度が急激に低下することとなり、上記過補正が顕著となってしまう。   In particular, if the internal combustion engine is stopped immediately after the internal combustion engine is continuously operated at a high load, the air in the intake pipe (in-pipe air) is warmed to a high temperature by the internal combustion engine. If the vehicle is restarted after restarting, the temperature of the air in the pipe rapidly decreases due to the introduction of outside air, and the overcorrection becomes remarkable.

図4は、このような管内空気の温度変化を示す試験結果であり、内燃機関を停止させてから(図4中のt0時点から)、例えば約20分経過したt1時点で管内空気温度はピーク(例えば約85℃)となる。なお、図4中の一点鎖線は内燃機関の冷却水の温度変化を示しており、車両を発進させなければ、t1時点以降は冷却水温度と管内空気温度とはほぼ一致する。その後、t2時点で内燃機関を始動させてアイドル運転状態とし、t3時点で車両を発進させると、外気導入により管内空気温度は急激に低下する。したがって、外気温度が30℃であったとしても、管内空気温度は85℃から30℃まで急激に低下することとなる。   FIG. 4 is a test result showing such a temperature change in the pipe air. The pipe air temperature peaks at, for example, t1 when about 20 minutes have elapsed since the internal combustion engine was stopped (from time t0 in FIG. 4). (For example, about 85 ° C.). Note that the alternate long and short dash line in FIG. 4 indicates the temperature change of the cooling water of the internal combustion engine. If the vehicle is not started, the cooling water temperature and the pipe air temperature substantially coincide after time t1. Thereafter, when the internal combustion engine is started at the time t2 to be in an idle operation state and the vehicle is started at the time t3, the air temperature in the pipe is rapidly lowered by the introduction of the outside air. Therefore, even if the outside air temperature is 30 ° C., the pipe air temperature rapidly decreases from 85 ° C. to 30 ° C.

本発明は、上記課題を解決するためになされたものであり、その目的は、空燃比を目標値に近づけるよう精度良く燃料噴射量を制御できる、燃料噴射量制御装置及び燃料噴射システムを提供することにある。   The present invention has been made to solve the above problems, and an object of the present invention is to provide a fuel injection amount control device and a fuel injection system capable of accurately controlling the fuel injection amount so that the air-fuel ratio approaches the target value. There is.

以下、上記課題を解決するための手段、及びその作用効果について記載する。   Hereinafter, means for solving the above-described problems and the operation and effects thereof will be described.

請求項1記載の発明では、
車両用の内燃機関に搭載された燃料噴射弁に供給される燃料の温度、又はその温度と相関のある温度を燃温検出値として取得する燃温取得手段と、
前記内燃機関の燃焼室へ吸入される吸入空気の温度を吸気温検出値として取得する吸気温取得手段と、
前記内燃機関の運転状態に加え、取得した前記燃温検出値及び前記吸気温検出値に基づき、前記燃料噴射弁からの燃料の噴射量指令値を算出する噴射量算出手段と、
を備えることを特徴とする。
In invention of Claim 1,
A fuel temperature acquisition means for acquiring, as a fuel temperature detection value, a temperature of fuel supplied to a fuel injection valve mounted on an internal combustion engine for a vehicle or a temperature correlated therewith;
Intake air temperature acquisition means for acquiring the temperature of intake air sucked into the combustion chamber of the internal combustion engine as an intake air temperature detection value;
An injection amount calculating means for calculating a fuel injection amount command value from the fuel injection valve based on the acquired fuel temperature detection value and the intake air temperature detection value in addition to the operating state of the internal combustion engine;
It is characterized by providing.

これによれば、燃温検出値のみならず吸気温検出値にも基づいて燃料の噴射量指令値を算出するので、先述の如く車両発進時における外気導入に伴い吸気管内の空気温度が急激に低下した場合であっても、気泡発生状態に合った噴射量指令値を精度良く算出でき、実空燃比を目標値に近づけることを精度良くできる。   According to this, since the fuel injection amount command value is calculated based not only on the detected fuel temperature value but also on the detected intake air temperature, the air temperature in the intake pipe suddenly increases with the introduction of outside air when the vehicle starts as described above. Even in the case of a decrease, the injection amount command value suitable for the bubble generation state can be calculated with high accuracy, and the actual air-fuel ratio can be brought close to the target value with high accuracy.

ここで、内燃機関の運転状態(例えば吸入空気の流量)によって、燃温検出値が気泡発生に与える影響度合い、及び吸気温検出値が気泡発生に与える影響度合いは異なる。この点に鑑みた請求項2記載の発明では、前記噴射量算出手段は、前記燃温検出値及び前記吸気温検出値のそれぞれに重み付けをした値に基づき、前記噴射量指令値を算出することを特徴とする。よって、内燃機関の運転状態に応じて気泡発生状態に合った噴射量指令値を算出することを、より一層精度良くできる。   Here, the degree of influence of the fuel temperature detection value on bubble generation differs from the degree of influence of the intake temperature detection value on bubble generation depending on the operating state of the internal combustion engine (for example, the flow rate of intake air). In the invention according to claim 2 in view of this point, the injection amount calculation means calculates the injection amount command value based on a value obtained by weighting each of the fuel temperature detection value and the intake air temperature detection value. It is characterized by. Therefore, it is possible to calculate the injection amount command value suitable for the bubble generation state according to the operating state of the internal combustion engine with higher accuracy.

ここで、両検出値が気泡発生に与える影響度合いは吸入空気の流量によって大きく変化する。例えば、発進時における外気導入に伴う燃料噴射弁の冷却度合いは、吸気量が多いほど大きくなるので、気泡発生量も少なくなる。この点に鑑みた請求項3記載の発明では、前記燃温検出値に対する重み付け係数、及び前記吸気温検出値に対する重み付け係数は、前記吸入空気の流量(以下、「吸気量」と呼ぶ)又はその流量と相関のある物理量に基づき可変設定されることを特徴とする。よって、気泡発生状態に合った噴射量指令値を算出することを、より一層精度良くできる。   Here, the degree of influence of both detection values on bubble generation varies greatly depending on the flow rate of the intake air. For example, the degree of cooling of the fuel injection valve that accompanies the introduction of outside air at the time of starting increases as the amount of intake air increases, so the amount of bubble generation also decreases. In view of this point, the weighting coefficient for the fuel temperature detection value and the weighting coefficient for the intake air temperature detection value are the flow rate of the intake air (hereinafter referred to as “intake air amount”) or its It is characterized by being variably set based on a physical quantity correlated with the flow rate. Therefore, it is possible to calculate the injection amount command value suitable for the bubble generation state with higher accuracy.

請求項4記載の発明では、前記燃温取得手段は、前記内燃機関を冷却する冷却水の温度を前記燃温検出値として取得することを特徴とする。内燃機関の温度が高いほどその雰囲気温度上昇に伴い燃料温度も高くなる。そこで、内燃機関の温度と相関の高い冷却水温度を燃温検出値としても噴射量指令値の算出精度はそれほど低下しない。よって、燃料温度を検出する手段を備えていない内燃機関においては、却水温度を燃温検出値として取得することで、専用の燃温検出センサを備えさせることを不要にできる。   According to a fourth aspect of the present invention, the fuel temperature acquisition means acquires the temperature of cooling water for cooling the internal combustion engine as the fuel temperature detection value. The higher the temperature of the internal combustion engine, the higher the temperature of the fuel as the ambient temperature rises. Therefore, even if the coolant temperature having a high correlation with the temperature of the internal combustion engine is used as the fuel temperature detection value, the calculation accuracy of the injection amount command value does not decrease so much. Therefore, in an internal combustion engine that does not include means for detecting the fuel temperature, it is possible to eliminate the need for providing a dedicated fuel temperature detection sensor by acquiring the rejection water temperature as the fuel temperature detection value.

請求項5記載の発明では、前記噴射量算出手段は、前記燃温検出値及び前記吸気温検出値に基づき前記燃料噴射弁の温度を推定する噴射弁温度推定手段を有し、推定した噴射弁温度に基づき前記噴射量指令値を算出することを特徴とする。このように、両検出値に基づき噴射弁温度を一旦推定しておき、その推定した噴射弁温度に基づき噴射量指令値を算出してもよいし、上記請求項1〜4に記載の発明を実施するにあたり、このような噴射弁温度の推定を廃止して、両検出値に基づき噴射量指令値を直接算出してもよい。   According to a fifth aspect of the present invention, the injection amount calculation means has injection valve temperature estimation means for estimating the temperature of the fuel injection valve based on the fuel temperature detection value and the intake air temperature detection value. The injection amount command value is calculated based on temperature. In this way, the injection valve temperature may be once estimated based on both detection values, and the injection amount command value may be calculated based on the estimated injection valve temperature. In the implementation, the estimation of the injection valve temperature may be abolished, and the injection amount command value may be directly calculated based on both detection values.

請求項6記載の発明では、前記噴射量算出手段による前記噴射量指令値の算出に対し、前記噴射量指令値の変化量が所定量以下となるよう制限するフィルタ補正手段を備えることを特徴とする。これによれば、吸気温検出値が急激に低下する等に起因して噴射量指令値が急激に変化することを抑制でき、実空燃比を目標値に近づけるにあたり、実空燃比がハンチングしてしまうことを抑制できる。   According to a sixth aspect of the present invention, there is provided filter correction means for limiting the amount of change in the injection amount command value to a predetermined amount or less with respect to calculation of the injection amount command value by the injection amount calculation means. To do. According to this, it is possible to suppress a sudden change in the injection amount command value due to a sudden decrease in the intake air temperature detection value, and the actual air-fuel ratio is hunted when approaching the actual air-fuel ratio to the target value. Can be suppressed.

ところで、燃料の性状に応じて気泡発生量は変化する。例えば、夏用のガソリンは冬用に比べて揮発性が低い性状であるため、気泡発生量は少なくなる。また、ガソリンにアルコールを混合させた燃料の場合にはアルコール濃度に応じて気泡発生量が異なる。したがって、噴射弁温度が所定値以上の場合であり、気泡発生量を見越して噴射量指令値を増量させる度合いが大きい場合には、燃料性状による噴射量の算出誤差が大きいことが懸念される。   By the way, the amount of generated bubbles varies depending on the properties of the fuel. For example, since the gasoline for summer is less volatile than that for winter, the amount of bubbles generated is reduced. In the case of a fuel in which alcohol is mixed with gasoline, the amount of generated bubbles varies depending on the alcohol concentration. Therefore, when the injection valve temperature is equal to or higher than the predetermined value and the amount of increase in the injection amount command value is increased in anticipation of the bubble generation amount, there is a concern that the injection amount calculation error due to the fuel property is large.

この点を鑑み、請求項7記載の発明では、前記噴射量算出手段により算出した噴射量に基づき前記燃料噴射弁の作動を制御した時の実際の空燃比と、前記目標空燃比との偏差を記憶して学習する学習手段を備え、推定した前記噴射弁温度が所定値以上の場合には、前記偏差に基づく記憶更新量を制限する又は記憶更新を禁止することを特徴とする。よって、算出誤差が大きい時の空燃比偏差に基づく記憶更新量を制限した上記請求項7記載の発明によれば、学習値に基づく噴射量算出の精度悪化を抑制できる。   In view of this point, in the invention according to claim 7, the deviation between the actual air-fuel ratio when the operation of the fuel injection valve is controlled based on the injection amount calculated by the injection amount calculating means and the target air-fuel ratio is calculated. Learning means for storing and learning is provided, and when the estimated injection valve temperature is equal to or higher than a predetermined value, the memory update amount based on the deviation is limited or the memory update is prohibited. Therefore, according to the invention of claim 7 in which the memory update amount based on the air-fuel ratio deviation when the calculation error is large is limited, it is possible to suppress deterioration in the accuracy of the injection amount calculation based on the learning value.

請求項8記載の発明では、前記噴射量算出手段は、前記内燃機関の運転状態に基づき基本噴射量を算出する基本噴射量算出手段と、前記燃温検出値及び前記吸気温検出値に基づき前記基本噴射量を補正する補正手段とを有することを特徴とする。このように、回転速度及び負荷に基づき基本噴射量を一旦算出しておき、その算出した基本噴射量を両検出値に基づき補正することで噴射量指令値を算出してもよいし、上記請求項1〜7に記載の発明を実施するにあたり、このような基本噴射量の算出を廃止して、少なくとも回転速度、負荷及び両検出値に基づき、噴射量指令値を直接算出してもよい。   In the invention according to claim 8, the injection amount calculating means includes basic injection amount calculating means for calculating a basic injection amount based on an operating state of the internal combustion engine, and based on the fuel temperature detection value and the intake air temperature detection value. And correction means for correcting the basic injection amount. In this way, the basic injection amount may be calculated once based on the rotational speed and the load, and the injection amount command value may be calculated by correcting the calculated basic injection amount based on both detection values. In carrying out the inventions described in Items 1 to 7, the calculation of the basic injection amount may be abolished, and the injection amount command value may be directly calculated based on at least the rotational speed, the load, and both detected values.

請求項9記載の発明は、車両用の内燃機関に搭載された燃料噴射弁、吸入空気の温度を検出する吸気温センサ、及び燃料の温度を検出する燃温センサの少なくとも1つと、上記燃料噴射量制御装置と、を備えることを特徴とする燃料噴射システムである。この燃料噴射システムによれば、上述の各種効果を同様に発揮することができる。   According to a ninth aspect of the invention, at least one of a fuel injection valve mounted on an internal combustion engine for a vehicle, an intake air temperature sensor that detects the temperature of intake air, and a fuel temperature sensor that detects the temperature of fuel, and the fuel injection A fuel injection system comprising: a quantity control device. According to this fuel injection system, the various effects described above can be exhibited in the same manner.

以下、本発明を具体化した一実施形態を図面に基づいて説明する。本実施形態では、内燃機関であるガソリンエンジンを走行駆動源とした四輪車両を対象としており、はじめに、エンジン及び電子制御ユニット(以下、ECUという)を中心としたエンジン制御システムの全体概略構成を、図1を用いて説明する。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, an embodiment of the invention will be described with reference to the drawings. The present embodiment is intended for a four-wheeled vehicle that uses a gasoline engine, which is an internal combustion engine, as a travel drive source. First, an overall schematic configuration of an engine control system centered on an engine and an electronic control unit (hereinafter referred to as an ECU) will be described. This will be described with reference to FIG.

図1に示すエンジン10において、吸気管11の最上流部にはエアクリーナ12が設けられ、このエアクリーナ12の下流側には吸入空気量を検出するためのエアフローメータ13が設けられている。このエアフローメータ13は吸入空気の温度を検出する吸気温センサ13aが内蔵されている。エアフローメータ13の下流側には、DCモータ等のアクチュエータによって開度調節されるスロットルバルブ14と、スロットルバルブ開度を検出するためのスロットルバルブ開度センサ15とが設けられている。   In the engine 10 shown in FIG. 1, an air cleaner 12 is provided at the most upstream portion of the intake pipe 11, and an air flow meter 13 for detecting the intake air amount is provided downstream of the air cleaner 12. The air flow meter 13 includes an intake air temperature sensor 13a that detects the temperature of the intake air. A throttle valve 14 whose opening is adjusted by an actuator such as a DC motor and a throttle valve opening sensor 15 for detecting the throttle valve opening are provided on the downstream side of the air flow meter 13.

吸気管11のうちスロットルバルブ14の下流側には、吸気管圧力を検出するための吸気管圧力センサ16が設けられている。エンジン10は多気筒エンジンであり、吸気管11のうち吸気管圧力センサ16の下流側部分には、エンジン10の各気筒に空気を導入する吸気マニホールド17が接続されている。吸気マニホールド17のうち各気筒の吸気ポート近傍部分には、燃料を噴射供給する電磁駆動式のインジェクタ18(燃料噴射弁)が各々取り付けられている。   An intake pipe pressure sensor 16 for detecting an intake pipe pressure is provided on the downstream side of the throttle valve 14 in the intake pipe 11. The engine 10 is a multi-cylinder engine, and an intake manifold 17 that introduces air into each cylinder of the engine 10 is connected to a portion of the intake pipe 11 downstream of the intake pipe pressure sensor 16. An electromagnetically driven injector 18 (fuel injection valve) for injecting and supplying fuel is attached to the vicinity of the intake port of each cylinder in the intake manifold 17.

車両に搭載された燃料タンク19内の燃料は、燃料ポンプ20によりデリバリパイプ21(燃料配管)に供給され、デリバリパイプ21から各インジェクタ18に分配供給される。デリバリパイプ21には、燃料の温度を検出する燃温センサ22が取り付けられている。   The fuel in the fuel tank 19 mounted on the vehicle is supplied to a delivery pipe 21 (fuel pipe) by a fuel pump 20 and distributed and supplied from the delivery pipe 21 to each injector 18. A fuel temperature sensor 22 that detects the temperature of the fuel is attached to the delivery pipe 21.

エンジン10の吸気ポート及び排気ポートにはそれぞれ吸気バルブ23及び排気バルブ24が設けられており、吸気バルブ23の開動作により空気と燃料との混合気が燃焼室内に導入され、排気バルブ24の開動作により燃焼後の排ガスが吸気マニホールド25に排出される。   An intake valve 23 and an exhaust valve 24 are respectively provided in the intake port and the exhaust port of the engine 10, and an air-fuel mixture is introduced into the combustion chamber by opening the intake valve 23, and the exhaust valve 24 is opened. The exhaust gas after combustion is discharged to the intake manifold 25 by the operation.

吸気マニホールド25の下流側に位置して各気筒からの排気が集合する部分には、排ガス中のCO,HC,NOx等を浄化するための三元触媒等の触媒装置26が設けられ、この触媒装置26の上流側には排ガスを検出対象として混合気の空燃比を検出するための空燃比センサ27が設けられている。   A catalyst device 26 such as a three-way catalyst for purifying CO, HC, NOx, etc. in the exhaust gas is provided in a portion where the exhaust gas from each cylinder is gathered on the downstream side of the intake manifold 25, and this catalyst. An air-fuel ratio sensor 27 for detecting the air-fuel ratio of the air-fuel mixture with an exhaust gas as a detection target is provided upstream of the device 26.

エンジン10には、吸気バルブ23と排気バルブ24の開閉タイミングをそれぞれ可変する可変バルブタイミング機構23a,24aが設けられている。更に、エンジン10には、吸気カム軸と排気カム軸の回転に同期してカム角信号を出力する吸気カム角センサ23b及び排気カム角センサ24bが設けられ、エンジン10のクランク軸の回転に同期して所定クランク角毎(例えば30℃A毎)にクランク角信号のパルスを出力するクランク角センサ28が設けられている。また、エンジン10のシリンダブロック10aには、主にエンジン10内を循環する冷却水の温度を検出するための冷却水温センサ29が取り付けられている。   The engine 10 is provided with variable valve timing mechanisms 23a and 24a for changing the opening and closing timings of the intake valve 23 and the exhaust valve 24, respectively. Further, the engine 10 is provided with an intake cam angle sensor 23b and an exhaust cam angle sensor 24b that output cam angle signals in synchronization with the rotation of the intake cam shaft and the exhaust cam shaft, and are synchronized with the rotation of the crank shaft of the engine 10. A crank angle sensor 28 is provided for outputting a pulse of a crank angle signal every predetermined crank angle (for example, every 30 ° C. A). In addition, a cooling water temperature sensor 29 for detecting the temperature of the cooling water mainly circulating in the engine 10 is attached to the cylinder block 10 a of the engine 10.

エンジン10のシリンダヘッドには気筒毎にそれぞれ点火プラグ(図示せず)が取り付けられており、点火プラグには、点火コイル等よりなる点火装置を通じて、所望とする点火時期において高電圧が印加される。この高電圧の印加により、各点火プラグの対向電極間に火花放電が発生し、燃焼室内に導入した混合気が着火され燃焼に供される。   An ignition plug (not shown) is attached to each cylinder head of the engine 10 for each cylinder, and a high voltage is applied to the ignition plug at a desired ignition timing through an ignition device such as an ignition coil. . By applying this high voltage, a spark discharge is generated between the opposing electrodes of each spark plug, and the air-fuel mixture introduced into the combustion chamber is ignited and used for combustion.

ECU40(噴射量算出手段)は、周知の通りCPU、ROM、RAM等よりなるマイクロコンピュータを主体として構成されている。ECU40には、前記各種センサ13a,15,22,23b,24b,27,28,29の他、車両に搭載される各種センサから随時入力される各種の検出信号等に基づいてエンジン運転状態や運転者の要求(アクセル操作量等)を把握し、それに応じた各種制御を制御プログラムに従って実行している。   As is well known, the ECU 40 (injection amount calculation means) is mainly composed of a microcomputer including a CPU, a ROM, a RAM, and the like. In addition to the various sensors 13a, 15, 22, 23b, 24b, 27, 28, and 29, the ECU 40 has an engine operating state and an operating state based on various detection signals that are input as needed from various sensors mounted on the vehicle. The user's request (accelerator operation amount, etc.) is grasped, and various controls according to the request are executed according to the control program.

具体的に、ECU40は、前記空燃比センサ27からの検出信号に基づいて空燃比を検出している。この空燃比の検出に基づいて、ECU40は、通常、目標空燃比がストイキ(理論空燃比)であって、その都度の空燃比と目標空燃比との偏差に応じて空燃比補正係数FAFを算出し、算出した空燃比補正係数FAFを基本噴射量に乗算して次回の燃料噴射量を設定する空燃比フィードバック制御を行っている。すなわち、空燃比がリッチ側にシフトすると、ECU40は、空燃比をストイキに維持しようと空燃比補正係数FAFを小さくし、次回の燃料噴射量を減少させる。空燃比がリーン側にシフトすると、ECU40は、空燃比をストイキに維持しようと空燃比補正係数FAFを大きくし、次回の燃料噴射量を増量させる。   Specifically, the ECU 40 detects the air / fuel ratio based on the detection signal from the air / fuel ratio sensor 27. Based on the detection of the air-fuel ratio, the ECU 40 normally calculates the air-fuel ratio correction coefficient FAF according to the deviation between the target air-fuel ratio and the target air-fuel ratio when the target air-fuel ratio is stoichiometric (theoretical air-fuel ratio). Then, air-fuel ratio feedback control is performed to set the next fuel injection amount by multiplying the calculated air-fuel ratio correction coefficient FAF by the basic injection amount. That is, when the air-fuel ratio shifts to the rich side, the ECU 40 decreases the air-fuel ratio correction coefficient FAF so as to keep the air-fuel ratio stoichiometric, and decreases the next fuel injection amount. When the air-fuel ratio shifts to the lean side, the ECU 40 increases the air-fuel ratio correction coefficient FAF so as to keep the air-fuel ratio stoichiometric, and increases the next fuel injection amount.

ECU40のマイコンが有するEEPROM等のメモリには、空燃比センサ27により検出された実際の空燃比と目標空燃比との偏差と、空燃比補正係数FAFとの関係を特定するマップが記憶されている。そして、マップに記憶された前記偏差を更新することで、学習制御を実行している。但し、後述するインジェクタの推定温度が所定値以上の場合には、前記偏差に基づく記憶更新量を制限する又は記憶更新を禁止させている。   A memory such as an EEPROM included in the microcomputer of the ECU 40 stores a map for specifying the relationship between the deviation between the actual air-fuel ratio detected by the air-fuel ratio sensor 27 and the target air-fuel ratio and the air-fuel ratio correction coefficient FAF. . The learning control is executed by updating the deviation stored in the map. However, when the estimated temperature of an injector, which will be described later, is equal to or higher than a predetermined value, the storage update amount based on the deviation is limited or the storage update is prohibited.

また、ECU40は、以下の如く基本噴射量に各種補正を行って燃料の目標噴射量(噴射量指令値)を算出する。すなわち、クランク角センサ28の検出値から算出されるエンジン回転速度(エンジン運転状態)と、エンジン負荷(エンジン運転状態)に基づいて基本噴射量を算出する。エンジン負荷は、スロットルバルブ開度センサ15の検出値から算出されるスロットルバルブ開度や、エアフローメータ13の検出値から算出される吸入空気量等から算出する。基本噴射量に対する補正には、加速応答性を向上させるための加速増量の他、始動後増量、暖気増量等の他、以下に説明する気泡発生分増量補正が挙げられる。   Further, the ECU 40 performs various corrections on the basic injection amount as follows to calculate the target injection amount (injection amount command value) of fuel. That is, the basic injection amount is calculated based on the engine speed (engine operating state) calculated from the detection value of the crank angle sensor 28 and the engine load (engine operating state). The engine load is calculated from the throttle valve opening calculated from the detection value of the throttle valve opening sensor 15, the intake air amount calculated from the detection value of the air flow meter 13, and the like. In addition to the acceleration increase for improving the acceleration response, the correction for the basic injection amount includes the increase in the amount of bubble generation described below in addition to the increase after start, the increase in warm-up, and the like.

ここで、エンジン10を高負荷で継続して運転した直後にエンジン10を停止させると、エンジン10の雰囲気温度上昇に伴いインジェクタ18のボディの温度やデリバリパイプ21の温度が上昇し、ひいてはインジェクタ18に分配供給された燃料が高温化して気泡が発生する場合がある。そして、この気泡発生状態でエンジン10を再始動させると、気泡の分だけ燃料噴射量が少なくなってしまい、所望のトルクが得られない、空燃比がリーン化する等の不具合が生じる。   Here, if the engine 10 is stopped immediately after the engine 10 is continuously operated at a high load, the temperature of the body of the injector 18 and the temperature of the delivery pipe 21 increase as the ambient temperature of the engine 10 increases. In some cases, the fuel distributed and supplied to the tank becomes hot and bubbles are generated. If the engine 10 is restarted in the bubble generation state, the amount of fuel injection is reduced by the amount of bubbles, resulting in problems such as failure to obtain a desired torque and lean air-fuel ratio.

そこで本実施形態では、インジェクタの温度を推定し、推定したインジェクタ温度が高いほど気泡発生量が多いとみなして基本噴射量を増量補正(気泡発生分増量補正)している。また、インジェクタの温度を推定するにあたり、吸気温センサ13aの検出値である吸気温検出値と、燃温センサ22の検出値である燃温検出値に基づき、インジェクタ温度を推定している。また、当該推定では、燃温検出値及び吸気温検出値のそれぞれに重み付けをしており、エアフローメータ13の検出値である吸気量検出値に応じてそれぞれの重み付け係数A,B(以下、重み係数と呼ぶ)を可変設定している。   Therefore, in the present embodiment, the temperature of the injector is estimated, and the basic injection amount is increased (corrected for increasing the amount of generated bubbles) by assuming that the higher the estimated injector temperature is, the more bubbles are generated. Further, in estimating the injector temperature, the injector temperature is estimated based on the intake air temperature detection value that is the detection value of the intake air temperature sensor 13 a and the fuel temperature detection value that is the detection value of the fuel temperature sensor 22. Further, in this estimation, each of the detected fuel temperature value and the detected intake air temperature is weighted, and each of the weighting coefficients A and B (hereinafter referred to as weights) according to the detected intake air amount that is the detected value of the air flow meter 13. Is called a coefficient).

図2を用いてより詳細に説明すると、図2は、ECU40のマイクロコンピュータが上記気泡発生分増量補正を実行する時の機能ブロック図であり、まずブロックB10において、エアフローメータ13による吸気量検出値を取得し、取得した吸気量検出値に基づき燃温検出値に対する前記重み係数A(0≦A≦1)を算出する。換言すれば、ブロックB10は吸気量検出値を重み係数Aに変換する機能ブロックであり、吸気量検出値が大きい値であるほど、その検出値に比例して重み係数Aを小さくするよう設定する。ブロックB20(燃温取得手段)、燃温センサ22による燃温検出値を取得し、取得した燃温検出値に前記重み係数Aを乗算する。   2 will be described in more detail with reference to FIG. 2. FIG. 2 is a functional block diagram when the microcomputer of the ECU 40 executes the above-described bubble generation increase correction. First, in block B10, the detected intake air amount by the air flow meter 13 is shown. And the weight coefficient A (0 ≦ A ≦ 1) for the detected fuel temperature is calculated based on the acquired detected intake air amount. In other words, the block B10 is a functional block that converts the intake air amount detection value into the weighting coefficient A, and the weighting coefficient A is set to decrease in proportion to the detected value as the intake air amount detection value increases. . The fuel temperature detection value by the block B20 (fuel temperature acquisition means) and the fuel temperature sensor 22 is acquired, and the acquired fuel temperature detection value is multiplied by the weight coefficient A.

ブロックB30では、吸気温検出値に対する前記重み係数B(0≦B≦1)を、両重み係数A,Bの和が1となるよう算出する(A+B=1)。ブロックB40(吸気温取得手段)、吸気温センサ13aによる吸気温検出値を取得し、取得した吸気温検出値に前記重み係数Bを乗算する。ブロックB50(噴射弁温度推定手段)では、ブロックB20,B40の各々で算出した値を加算することで、インジェクタ18の温度を推定する。但し、ここで推定した温度に対してはブロックB70(フィルタ補正手段)によるフィルタリング処理(なまし処理)が為されることで、ブロックB50で推定した温度の変化量を小さくさせるよう、インジェクタ18の推定温度を補正する。   In block B30, the weight coefficient B (0 ≦ B ≦ 1) for the detected intake air temperature is calculated so that the sum of both weight coefficients A and B is 1 (A + B = 1). A block B40 (intake air temperature acquisition means) acquires an intake air temperature detection value by the intake air temperature sensor 13a, and multiplies the acquired intake air temperature detection value by the weight coefficient B. In block B50 (injection valve temperature estimation means), the temperature of injector 18 is estimated by adding the values calculated in each of blocks B20 and B40. However, the temperature estimated here is subjected to the filtering process (smoothing process) by the block B70 (filter correction means), so that the change amount of the temperature estimated in the block B50 is reduced. Correct the estimated temperature.

ブロックB80では、ブロックB70にてフィルタリング処理されたインジェクタ推定温度に基づき、先述した基本噴射量に対する補正量を算出する。換言すれば、ブロックB80はインジェクタ推定温度をインジェクタ補正量に変換する機能ブロックであり、インジェクタ推定温度と補正量との関係は、図3に示す関係となるよう試験等により予め設定されている。そして、例えば前記関係をマップに記憶させ、ブロックB80においてそのマップに基づき補正量を算出すればよい。ちなみに、インジェクタ温度がある程度高温(例えば図3中の符号T10に示す温度)になるまでは、燃料中に気泡は発生しないので、インジェクタ温度上昇に対する補正量の増大量(つまり図3中の曲線の傾き)を小さく設定し、気泡が発生開始する温度T10を超えると、インジェクタ温度上昇に伴い補正量も急激に上昇させるよう(つまり傾きを大きくするよう)マップを設定している。   In block B80, based on the injector estimated temperature filtered in block B70, a correction amount for the basic injection amount described above is calculated. In other words, the block B80 is a functional block that converts the injector estimated temperature into the injector correction amount, and the relationship between the injector estimated temperature and the correction amount is preset by a test or the like so as to be the relationship shown in FIG. For example, the relationship may be stored in a map, and the correction amount may be calculated based on the map in block B80. Incidentally, until the injector temperature reaches a certain high temperature (for example, the temperature indicated by the symbol T10 in FIG. 3), bubbles do not occur in the fuel. Therefore, the amount of increase in the correction amount for the rise in injector temperature (that is, the curve in FIG. 3). The inclination is set small, and when the temperature exceeds the temperature T10 at which bubbles start to be generated, the map is set so that the correction amount increases rapidly (that is, the inclination increases) as the injector temperature rises.

ブロックB90(基本噴射量算出手段)では、先述した通り、エンジン回転速度及び吸気量(エンジン負荷)に基づいて燃料の基本噴射量を算出する。そして、ブロックB90にて算出した基本噴射量は、先述した加速増量、始動後増量及び暖気増量等の補正が為されるとともに、ブロックB100(補正手段)において、ブロックB90で算出したインジェクタ補正量を加算する補正を行うことで、燃料の最終的な目標噴射量を決定する。そして40は、ブロックB100にて決定した最終目標噴射量となるようインジェクタ18の開弁時間を制御することで、1燃焼サイクル中に噴射される燃料噴射量を制御する。   In the block B90 (basic injection amount calculating means), as described above, the basic fuel injection amount is calculated based on the engine speed and the intake air amount (engine load). The basic injection amount calculated in block B90 is corrected for the acceleration increase, post-startup increase, and warm-up increase as described above, and the injector correction amount calculated in block B90 in block B100 (correction means). By performing the correction to be added, the final target injection amount of the fuel is determined. And 40 controls the fuel injection amount injected in one combustion cycle by controlling the valve opening time of the injector 18 so that it may become the final target injection amount determined in block B100.

ここで、図4に示す如く、エンジン10を高負荷で継続して運転した直後にエンジン10を停止させると、吸気管11や吸気マニホールド17内の空気(管内空気)はエンジン10により暖められて高温(例えば約85℃)になる。そして、この状態でエンジン10を再始動させて車両を発進させると、吸気管11や吸気マニホールド17に外気が導入されることに伴い管内空気の温度は急激に低下(例えば約30℃)し、その場合にはインジェクタ18の温度が急激に低下することとなる。すると、燃料中の気泡発生量が少なくなるため、ブロックB50において燃温検出値のみに基づきインジェクタ温度を推定して補正量を算出してしまうと、過補正により空燃比がリッチ側にずれるという問題が生じる。   Here, as shown in FIG. 4, if the engine 10 is stopped immediately after the engine 10 is continuously operated at a high load, the air in the intake pipe 11 and the intake manifold 17 (in-pipe air) is warmed by the engine 10. It becomes high temperature (for example, about 85 ° C.). When the vehicle is started by restarting the engine 10 in this state, the temperature of the air in the pipe rapidly decreases (for example, about 30 ° C.) as the outside air is introduced into the intake pipe 11 and the intake manifold 17. In that case, the temperature of the injector 18 will drop rapidly. Then, since the amount of bubbles generated in the fuel is reduced, if the correction amount is calculated by estimating the injector temperature based only on the detected fuel temperature in block B50, the air-fuel ratio shifts to the rich side due to overcorrection. Occurs.

この問題に対し、以上詳述した本実施形態によれば、燃温検出値のみならず吸気温検出値にも基づいてインジェクタ18の温度を推定し(B50参照)、その推定した温度に基づき基本噴射量を補正する(B80,B100参照)ので、車両発進時における外気導入に伴い管内空気温度が急激に低下した場合であっても、その温度低下を考慮してインジェクタ18の温度を推定するので、気泡発生状態に合った最終的な目標噴射量を精度良く算出でき、実空燃比を目標値に近づけることを精度良くできる。   With respect to this problem, according to the present embodiment described in detail above, the temperature of the injector 18 is estimated based not only on the detected fuel temperature value but also on the detected intake air temperature (see B50), and based on the estimated temperature. Since the injection amount is corrected (see B80 and B100), the temperature of the injector 18 is estimated in consideration of the temperature drop even when the air temperature in the pipe suddenly drops due to the introduction of outside air when the vehicle starts. The final target injection amount that matches the bubble generation state can be calculated with high accuracy, and the actual air-fuel ratio can be brought close to the target value with high accuracy.

また、本実施形態によれば、燃温検出値及び吸気温検出値に基づきインジェクタ温度を推定するにあたり、吸気量検出値が大きい値であるほど、吸気温検出値の重み係数Bを大きくしてその重み付けを大きくする。よって、例えば吸気量が多く、吸気温検出値によるインジェクタ温度の影響が大きい場合には、その影響の大きさがインジェクタ温度推定に反映されるので、インジェクタ温度を精度良く推定できる。よって、気泡発生状態に合った補正量を精度良く算出できるので、実空燃比を目標値に近づけることを精度良くできる。   Further, according to the present embodiment, when the injector temperature is estimated based on the fuel temperature detection value and the intake air temperature detection value, the weight coefficient B of the intake air temperature detection value is increased as the intake air amount detection value increases. Increase the weight. Therefore, for example, when the intake air amount is large and the influence of the injector temperature due to the detected intake air temperature is large, the magnitude of the influence is reflected in the estimation of the injector temperature, so that the injector temperature can be estimated with high accuracy. Therefore, since the correction amount suitable for the bubble generation state can be calculated with high accuracy, the actual air-fuel ratio can be brought close to the target value with high accuracy.

また、本実施形態によれば、燃温検出値及び吸気温検出値に基づきブロックB50にて推定したインジェクタ温度を、ブロックB70によりフィルタリング処理することで推定温度の変化量を小さくさせるので、吸気温検出値が急激に低下する等に起因して目標噴射量が急激に変化することを抑制でき、実空燃比を目標値に近づけるにあたり、実空燃比がハンチングしてしまうことを抑制できる。   Further, according to the present embodiment, the amount of change in the estimated temperature is reduced by filtering the injector temperature estimated in the block B50 based on the detected fuel temperature value and the detected intake air temperature value in the block B70. It is possible to suppress a sudden change in the target injection amount due to a sudden decrease in the detected value, and to suppress the hunting of the actual air / fuel ratio when the actual air / fuel ratio approaches the target value.

ところで、ガソリンの性状やアルコール濃度に応じて気泡発生量は変化する。したがって、インジェクタ温度が高く、気泡発生量を見越して目標噴射量を増量補正させる度合いが大きい場合には、燃料性状による目標噴射量の算出誤差が大きいことが懸念される。この懸念に対し、本実施形態によれば、実際の空燃比と目標空燃比との偏差とその時の空燃比補正係数FAFとの関係を学習するにあたり、インジェクタの推定温度が所定値以上の場合には、前記偏差に基づく記憶更新量を制限する又は記憶更新を禁止させるので、このような燃料性状に起因した学習誤差を抑制できる。   By the way, the amount of generated bubbles varies depending on the properties of gasoline and the alcohol concentration. Accordingly, when the injector temperature is high and the target injection amount is increased and corrected in anticipation of the bubble generation amount, there is a concern that the target injection amount calculation error due to the fuel property is large. In response to this concern, according to the present embodiment, when learning the relationship between the deviation between the actual air-fuel ratio and the target air-fuel ratio and the air-fuel ratio correction coefficient FAF at that time, the estimated temperature of the injector is greater than or equal to a predetermined value. Restricts the memory update amount based on the deviation or prohibits the memory update, so that the learning error due to such fuel properties can be suppressed.

(他の実施形態)
上記実施形態は、以下のように変更して実施してもよい。また、本発明は上記実施形態の記載内容に限定されず、以下の各実施形態の特徴的構成をそれぞれ任意に組み合わせるようにしてもよい。
(Other embodiments)
The above embodiment may be modified as follows. In addition, the present invention is not limited to the description of the above embodiment, and the characteristic configurations of the following embodiments may be arbitrarily combined.

・インジェクタ温度を推定するにあたり、燃温センサ22による燃温検出値を用いて推定することに替え、冷却水温センサ29の検出値を用いて推定するようにしてもよい。エンジンを停止させた後、再始動させる時点t2(図4参照)においては、エンジン冷却水の温度と燃料の温度とは相関が高いため、このような冷却水温度を燃温検出値としても目標噴射量の算出精度はそれほど低下しない。そして、燃温センサ22を不要にできる。   In estimating the injector temperature, it may be estimated using the detected value of the coolant temperature sensor 29 instead of using the detected fuel temperature value of the fuel temperature sensor 22. At the time t2 (see FIG. 4) at which the engine is stopped and restarted, the temperature of the engine coolant and the temperature of the fuel are highly correlated. The calculation accuracy of the injection amount does not decrease so much. And the fuel temperature sensor 22 can be made unnecessary.

・上記実施形態では、燃温センサ22をデリバリパイプ21に取り付けているが、燃料タンク19や燃料ポンプ20、他の配管経路中に取り付けるようにしてもよい。但し、デリバリパイプ21から各気筒に分配されるよりも上流側の部分に取り付けることが望ましい。   In the above embodiment, the fuel temperature sensor 22 is attached to the delivery pipe 21, but it may be attached to the fuel tank 19, the fuel pump 20, or another piping path. However, it is desirable to attach to the part upstream from the delivery pipe 21 to be distributed to each cylinder.

・上記実施形態では、吸気量に応じて重み係数A,Bを可変設定しているが、吸気量に替え、吸気量と相関の高いエンジン回転速度や車速等に応じて重み係数A,Bを可変設定するようにしてもよい。   In the above embodiment, the weighting factors A and B are variably set according to the intake air amount. However, the weighting factors A and B are changed according to the engine rotational speed and the vehicle speed having a high correlation with the intake air amount instead of the intake air amount. It may be variably set.

・上記実施形態では、ブロックB50にて推定したインジェクタ温度に対してブロックB70によるフィルタリング処理を行っているが、ブロックB50にて推定したインジェクタ温度に基づきブロックB80において補正量を算出し、その算出した補正量に対してフィルタリング処理を行うようにしてもよい。   -In the said embodiment, although the filtering process by block B70 is performed with respect to the injector temperature estimated in block B50, based on the injector temperature estimated in block B50, a correction amount is calculated in block B80, and the calculation was performed. A filtering process may be performed on the correction amount.

・上記実施形態では、点火式のガソリンエンジンに搭載されたインジェクタ18に本発明の制御装置を適用させているが、自己着火式のディーゼルエンジンに搭載されたインジェクタに本発明の制御装置を適用させてもよい。   In the above embodiment, the control device of the present invention is applied to the injector 18 mounted on the ignition type gasoline engine. However, the control device of the present invention is applied to the injector mounted on the self-ignition type diesel engine. May be.

本発明の一実施形態にかかる燃料噴射量制御装置が適用された、エンジン制御システムの全体概略構成を示す図。1 is a diagram illustrating an overall schematic configuration of an engine control system to which a fuel injection amount control device according to an embodiment of the present invention is applied. 図1中のECUが気泡発生分増量補正を実行する時の機能ブロック図。FIG. 2 is a functional block diagram when the ECU in FIG. 図2中のブロックB50における補正量を算出するにあたり、インジェクタ推定温度と補正量との関係を示す図。The figure which shows the relationship between injector estimated temperature and correction amount in calculating the correction amount in block B50 in FIG. 車両発進に伴い管内空気が急激に低下する様子を示すタイムチャート。The time chart which shows a mode that the air in a pipe | tube falls rapidly with a vehicle start.

符号の説明Explanation of symbols

10…ガソリンエンジン(内燃機関)、13a…吸気温センサ、18…インジェクタ(燃料噴射弁)、22…燃温センサ、40…ECU(噴射量算出手段)、B20…燃温取得手段、B40…吸気温取得手段、B50…噴射弁温度推定手段、B70…フィルタ補正手段、B90…基本噴射量算出手段、B100…補正手段。   DESCRIPTION OF SYMBOLS 10 ... Gasoline engine (internal combustion engine), 13a ... Intake temperature sensor, 18 ... Injector (fuel injection valve), 22 ... Fuel temperature sensor, 40 ... ECU (injection amount calculation means), B20 ... Fuel temperature acquisition means, B40 ... Suction Air temperature acquisition means, B50 ... injection valve temperature estimation means, B70 ... filter correction means, B90 ... basic injection amount calculation means, B100 ... correction means.

Claims (9)

車両用の内燃機関に搭載された燃料噴射弁に供給される燃料の温度、又はその温度と相関のある温度を燃温検出値として取得する燃温取得手段と、
前記内燃機関の燃焼室へ吸入される吸入空気の温度を吸気温検出値として取得する吸気温取得手段と、
前記内燃機関の運転状態に加え、取得した前記燃温検出値及び前記吸気温検出値に基づき、前記燃料噴射弁からの燃料の噴射量指令値を算出する噴射量算出手段と、
を備えることを特徴とする燃料噴射量制御装置。
A fuel temperature acquisition means for acquiring, as a fuel temperature detection value, a temperature of fuel supplied to a fuel injection valve mounted on an internal combustion engine for a vehicle or a temperature correlated therewith;
Intake air temperature acquisition means for acquiring the temperature of intake air sucked into the combustion chamber of the internal combustion engine as an intake air temperature detection value;
An injection amount calculating means for calculating a fuel injection amount command value from the fuel injection valve based on the acquired fuel temperature detection value and the intake air temperature detection value in addition to the operating state of the internal combustion engine;
A fuel injection amount control apparatus comprising:
前記噴射量算出手段は、前記燃温検出値及び前記吸気温検出値のそれぞれに重み付けをした値に基づき、前記噴射量指令値を算出することを特徴とする請求項1に記載の燃料噴射量制御装置。   2. The fuel injection amount according to claim 1, wherein the injection amount calculation means calculates the injection amount command value based on a value obtained by weighting each of the fuel temperature detection value and the intake air temperature detection value. Control device. 前記燃温検出値に対する重み付け係数、及び前記吸気温検出値に対する重み付け係数は、前記吸入空気の流量又はその流量と相関のある物理量に基づき可変設定されることを特徴とする請求項2に記載の燃料噴射量制御装置。   The weighting coefficient for the fuel temperature detection value and the weighting coefficient for the intake air temperature detection value are variably set based on the flow rate of the intake air or a physical quantity correlated with the flow rate. Fuel injection amount control device. 前記燃温取得手段は、前記内燃機関を冷却する冷却水の温度を前記燃温検出値として取得することを特徴とする請求項1〜3のいずれか1つに記載の燃料噴射量制御装置。   The fuel injection amount control apparatus according to any one of claims 1 to 3, wherein the fuel temperature acquisition means acquires the temperature of cooling water for cooling the internal combustion engine as the fuel temperature detection value. 前記噴射量算出手段は、前記燃温検出値及び前記吸気温検出値に基づき前記燃料噴射弁の温度を推定する噴射弁温度推定手段を有し、推定した噴射弁温度に基づき前記噴射量指令値を算出することを特徴とする請求項1〜4のいずれか1つに記載の燃料噴射量制御装置。   The injection amount calculation means includes injection valve temperature estimation means for estimating the temperature of the fuel injection valve based on the fuel temperature detection value and the intake air temperature detection value, and the injection amount command value based on the estimated injection valve temperature. The fuel injection amount control device according to any one of claims 1 to 4, wherein the fuel injection amount control device is calculated. 前記噴射量算出手段による前記噴射量指令値の算出に対し、前記噴射量指令値の変化量が所定量以下となるよう制限するフィルタ補正手段を備えることを特徴とする請求項5に記載の燃料噴射量制御装置。   6. The fuel according to claim 5, further comprising filter correction means for limiting the amount of change in the injection amount command value to a predetermined amount or less with respect to calculation of the injection amount command value by the injection amount calculation means. Injection quantity control device. 前記噴射量算出手段により算出した噴射量に基づき前記燃料噴射弁の作動を制御した時の実際の空燃比と、前記目標空燃比との偏差を記憶して学習する学習手段を備え、
推定した前記噴射弁温度が所定値以上の場合には、前記偏差に基づく記憶更新量を制限する又は記憶更新を禁止することを特徴とする請求項5又は6に記載の燃料噴射量制御装置。
Learning means for storing and learning the deviation between the actual air-fuel ratio when the operation of the fuel injection valve is controlled based on the injection amount calculated by the injection amount calculating means and the target air-fuel ratio;
7. The fuel injection amount control device according to claim 5, wherein when the estimated injection valve temperature is equal to or higher than a predetermined value, the memory update amount based on the deviation is limited or the memory update is prohibited.
前記噴射量算出手段は、前記内燃機関の運転状態に基づき基本噴射量を算出する基本噴射量算出手段と、前記燃温検出値及び前記吸気温検出値に基づき前記基本噴射量を補正する補正手段とを有することを特徴とする請求項1〜7のいずれか1つに記載の燃料噴射量制御装置。   The injection amount calculating means includes a basic injection amount calculating means for calculating a basic injection amount based on an operating state of the internal combustion engine, and a correcting means for correcting the basic injection amount based on the fuel temperature detection value and the intake air temperature detection value. The fuel injection amount control device according to any one of claims 1 to 7, wherein 車両用の内燃機関に搭載された燃料噴射弁、吸入空気の温度を検出する吸気温センサ、及び燃料の温度を検出する燃温センサの少なくとも1つと、
請求項1〜8のいずれか1つに記載の燃料噴射量制御装置と、
を備えることを特徴とする燃料噴射システム。
At least one of a fuel injection valve mounted on an internal combustion engine for a vehicle, an intake air temperature sensor that detects the temperature of intake air, and a fuel temperature sensor that detects the temperature of fuel;
A fuel injection amount control device according to any one of claims 1 to 8,
A fuel injection system comprising:
JP2008096487A 2008-04-02 2008-04-02 Fuel injection amount control device and fuel injection system Pending JP2009250075A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008096487A JP2009250075A (en) 2008-04-02 2008-04-02 Fuel injection amount control device and fuel injection system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008096487A JP2009250075A (en) 2008-04-02 2008-04-02 Fuel injection amount control device and fuel injection system

Publications (1)

Publication Number Publication Date
JP2009250075A true JP2009250075A (en) 2009-10-29

Family

ID=41311023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008096487A Pending JP2009250075A (en) 2008-04-02 2008-04-02 Fuel injection amount control device and fuel injection system

Country Status (1)

Country Link
JP (1) JP2009250075A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013181490A (en) * 2012-03-02 2013-09-12 Denso Corp Electronic control device
KR101544795B1 (en) * 2014-07-07 2015-08-18 현대오트론 주식회사 Method for compensating fuel injection amount of vehicle engine
JP2017172384A (en) * 2016-03-22 2017-09-28 株式会社豊田中央研究所 Adaptation method for adaptation coefficient used for estimating fuel temperature of engine fuel system, fuel temperature estimating device and pump control device
CN113700567A (en) * 2020-05-21 2021-11-26 丰田自动车株式会社 Fuel type estimation system, data analysis device, and control device for fuel supply device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013181490A (en) * 2012-03-02 2013-09-12 Denso Corp Electronic control device
DE102013203063B4 (en) * 2012-03-02 2020-11-26 Denso Corporation Electronic control system
KR101544795B1 (en) * 2014-07-07 2015-08-18 현대오트론 주식회사 Method for compensating fuel injection amount of vehicle engine
JP2017172384A (en) * 2016-03-22 2017-09-28 株式会社豊田中央研究所 Adaptation method for adaptation coefficient used for estimating fuel temperature of engine fuel system, fuel temperature estimating device and pump control device
CN113700567A (en) * 2020-05-21 2021-11-26 丰田自动车株式会社 Fuel type estimation system, data analysis device, and control device for fuel supply device

Similar Documents

Publication Publication Date Title
JP2008309036A (en) Fuel estimation device
JP5927024B2 (en) Engine start control device
JP2009264281A (en) Post-start controller for diesel engine
JP2009250058A (en) Deterioration determining device and deterioration determining system for oxygen concentration sensor
JPH1061477A (en) Controller for inner-cylinder injection spark ignition type internal combustion engine
JP2009250075A (en) Fuel injection amount control device and fuel injection system
JP4322297B2 (en) Control device for internal combustion engine
JP4387384B2 (en) Control device for internal combustion engine
JP2008082227A (en) Control device for internal combustion engine
JP2005048659A (en) Fuel temperature estimation device
JP2002047983A (en) Abnormality diagnostic device for high pressure fuel supply system of internal combustion engine
JP4052521B2 (en) Control device for internal combustion engine
US20090105931A1 (en) Controller for internal combustion engine
JP2011226350A (en) Air-fuel ratio control device of internal combustion engine
JPH08200166A (en) Air-fuel ratio control device
JP4743090B2 (en) Fuel injection device for multi-cylinder engine
JP5658205B2 (en) Start control device for internal combustion engine
JP5637098B2 (en) Control device for internal combustion engine
JP4371028B2 (en) Engine air-fuel ratio control device
JP2006316655A (en) Control device for internal combustion engine
JP2004308429A (en) Controller for internal combustion engine
JP2003138961A (en) Start control device of internal combustion engine
JP2006183500A (en) Fuel injection control device for internal combustion engine
JP2015140791A (en) Control device of internal combustion engine
JP2005201163A (en) Control device for internal combustion engine