JP2009249634A - Anisotropic conductive film with optimized thermal characteristic and curing characteristic, and circuit connection structure using the same - Google Patents

Anisotropic conductive film with optimized thermal characteristic and curing characteristic, and circuit connection structure using the same Download PDF

Info

Publication number
JP2009249634A
JP2009249634A JP2009093631A JP2009093631A JP2009249634A JP 2009249634 A JP2009249634 A JP 2009249634A JP 2009093631 A JP2009093631 A JP 2009093631A JP 2009093631 A JP2009093631 A JP 2009093631A JP 2009249634 A JP2009249634 A JP 2009249634A
Authority
JP
Japan
Prior art keywords
anisotropic conductive
conductive film
curing
glass transition
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009093631A
Other languages
Japanese (ja)
Inventor
June Roh
ノ、ジュン
Yong Seok Han
ハン、ヨン‐ソク
Jeong Beom Park
パク、ジョン‐ボム
Il Rae Cho
チョ、イル‐レ
Jung Sun Kim
キム、ジョン‐ソン
Sang Wook Woo
ウ、サン‐ウク
Kyon-Jun Lee
イ、キョン‐ジュン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LS Mtron Ltd
Original Assignee
LS Mtron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LS Mtron Ltd filed Critical LS Mtron Ltd
Publication of JP2009249634A publication Critical patent/JP2009249634A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3736Metallic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/60Attaching or detaching leads or other conductive members, to be used for carrying current to or from the device in operation
    • H01L21/603Attaching or detaching leads or other conductive members, to be used for carrying current to or from the device in operation involving the application of pressure, e.g. thermo-compression bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • H01L23/3672Foil-like cooling fins or heat sinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Non-Insulated Conductors (AREA)
  • Adhesive Tapes (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Wire Bonding (AREA)
  • Conductive Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a parameter of affecting connection reliability of an anisotropic conductive film, and an optimum value of the parameter. <P>SOLUTION: This anisotropic conductive film connects mechanically and electrically fellow members to be connected, by bonding the members, contains a thermoplastic resin for forming a film, a thermosetting resin as a binder, a curing agent, a conductive particle and a mold release film, and has a value larger than 0.05 and smaller than 0.4 of flow parameter λ=[(Tc-Tg)/Tc] (Tc: curing starting temperature of the anisotropic conductive film). <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本件発明は、回路基板同士又はICチップなどの電子部品と回路基板との接続に用いられる異方性導電フィルム及びこれを用いた回路接続構造体に関し、より詳細には、熱的特性と硬化特性が最適化されて良好な接続信頼性を備える異方性導電フィルムに関する。   The present invention relates to an anisotropic conductive film used for connecting circuit boards to each other or an electronic component such as an IC chip and a circuit board, and a circuit connection structure using the same, and more particularly, thermal characteristics and curing characteristics. The present invention relates to an anisotropic conductive film that is optimized and has good connection reliability.

回路基板同士又はICチップなどの電子部品と回路基板とを電気的に接続するため、接着剤に導電粒子を分散させた異方性導電フィルムが使われている。この異方性導電フィルムは、対向する電極の間に配置して加熱、加圧することによって電極同士を接着すると同時に、加圧方向に導電性を持たせることによって電気的な接続を行なう。このような異方性導電フィルムは、例えばLCDモジュールのLCDパネル、プリント回路基板(PCB)、ドライバーICのパッケージングなどに用いられる。   An anisotropic conductive film in which conductive particles are dispersed in an adhesive is used in order to electrically connect circuit boards to each other or an electronic component such as an IC chip and the circuit board. This anisotropic conductive film is disposed between opposing electrodes, and heats and presses to bond the electrodes together, and at the same time, provides electrical connection by imparting conductivity in the pressing direction. Such an anisotropic conductive film is used for, for example, packaging of LCD panels of LCD modules, printed circuit boards (PCBs), and driver ICs.

近年、LCDはノートパソコン、モニター、及びテレビ向けの大型パネルから携帯電話、PDA(Personal Digital Assistant)、ゲーム機などのモバイル機器向けの中・小型パネルまで多様な用途で適用されており、これらのLCDには異方性導電フィルムを用いてドライバーICが実装されている。LCDにおけるドライバーICの実装には、ドライバーICをテープキャリアパッケージ(TCP:Tape Carrier Package)化するか又はCOF(Chip On Film)化し、これをLCDパネルに接着するOLB(Outer Lead Bonding)方式、あるいは、プリント回路基板(PCB:Printed Circuit Board)に接着するPCB方式が採用されている。また、携帯電話などの中・小型LCDでは、ドライバーICを異方性導電フィルムを用いて直接LCDパネルに実装するCOG(Chip On Glass)方式が採用されている。   In recent years, LCDs have been applied in a variety of applications, from large panels for notebook computers, monitors, and televisions to medium and small panels for mobile devices such as mobile phones, PDAs (Personal Digital Assistants), and game consoles. A driver IC is mounted on the LCD using an anisotropic conductive film. For mounting the driver IC in the LCD, the driver IC is converted into a tape carrier package (TCP) or a COF (Chip On Film) and bonded to the LCD panel, or an OLB (Outer Lead Bonding) method, or A PCB system that adheres to a printed circuit board (PCB) is employed. Further, in medium and small-sized LCDs such as mobile phones, a COG (Chip On Glass) system in which a driver IC is directly mounted on an LCD panel using an anisotropic conductive film is employed.

このように、回路基板同士又はICチップなどの電子部品と回路基板とを異方性導電フィルムを用いて接続する際に、最も問題になるのは接続信頼性である。即ち、異方性導電フィルムに対しては、高い接着性と共に良好な接続信頼性が求められる。   Thus, when connecting electronic components such as circuit boards or IC chips and a circuit board using an anisotropic conductive film, connection reliability is most problematic. That is, the anisotropic conductive film is required to have high connection properties and good connection reliability.

したがって、従来から異方性導電フィルムの接続信頼性を改善するために様々な努力がなされてきた。例えば、異方性導電フィルムを複層に形成するなどの構造の変更や、特許文献1に開示されているように、接着剤の組成物、導電粒子の種類や組成比等の調節がなされていた。   Therefore, various efforts have been made to improve the connection reliability of anisotropic conductive films. For example, structural changes such as forming an anisotropic conductive film in multiple layers, and adjustment of the composition of the adhesive, the type and composition ratio of the conductive particles, etc. are made as disclosed in Patent Document 1. It was.

特開2007‐297636号公報JP 2007-297636 A

上述のように、異方性導電フィルムの接続信頼性は、主に接着剤の組成物、導電粒子の種類や組成比等の調節でなされているが、異方性導電フィルム自身の特性で接続信頼性を評価することは出来ていなかった。そこで、本件発明は、異方性導電フィルムの接続信頼性を左右するパラメーターと、このパラメーターの最適値を提供することを課題としている。   As described above, the connection reliability of the anisotropic conductive film is mainly made by adjusting the composition of the adhesive, the type and composition ratio of the conductive particles, etc., but the connection is made with the characteristics of the anisotropic conductive film itself. Reliability could not be evaluated. Then, this invention makes it a subject to provide the parameter which influences the connection reliability of an anisotropic conductive film, and the optimal value of this parameter.

以下に、本件発明の概要を説明し、実施形態を示してその効果などを明確にする。また、本件発明の目的及び長所は、特許請求の範囲に示した手段及びその組合せによって実現できることが明確である。   Below, the outline | summary of this invention is demonstrated, embodiment is shown and the effect etc. are clarified. Further, it is apparent that the objects and advantages of the present invention can be realized by the means shown in the claims and combinations thereof.

本件発明に係る発明者等は、鋭意研究の結果、異方性導電フィルムの接続信頼性を左右できるパラメーター(流動パラメーター)とその最適値を見出し、本件発明を完成させた。   As a result of intensive studies, the inventors of the present invention have found a parameter (flow parameter) that can affect the connection reliability of the anisotropic conductive film and its optimum value, and have completed the present invention.

異方性導電フィルムは、フィルム形成のための熱可塑性樹脂と、バインダーとして用いる熱硬化性樹脂と、導電粒子と離型フィルムとを含むものであって、対向する回路部材の間に配置した後、加熱、加圧(熱圧着)して対向する回路部材(即ち、被接続部材)同士を接着させて、機械的、且つ、電気的に接続する。   An anisotropic conductive film includes a thermoplastic resin for film formation, a thermosetting resin used as a binder, conductive particles and a release film, and is disposed between opposing circuit members. The circuit members (namely, connected members) facing each other by heating and pressurizing (thermocompression bonding) are bonded to each other mechanically and electrically.

即ち、異方性導電フィルムは、熱を加えて樹脂成分(熱可塑性樹脂及び熱硬化性樹脂)を流動化させ、同時に圧力を印加することで被接続部材同士を、機械的、且つ、電気的に接続させる接着フィルムである。異方性導電フィルムは温度が高くなると流動化して粘度が低くなり、ガラス転移温度(Tg)以上になれば、十分な接続特性を発揮できるほどの流動特性を示す。また、異方性導電フィルムが硬化開始温度(Tc)以上になれば、熱硬化性樹脂が硬化することよって粘度が上昇してゆく。   That is, the anisotropic conductive film applies heat to fluidize the resin components (thermoplastic resin and thermosetting resin) and simultaneously apply pressure to connect the connected members mechanically and electrically. It is an adhesive film to be connected to. An anisotropic conductive film fluidizes and decreases in viscosity as the temperature increases, and exhibits a flow characteristic that can exhibit sufficient connection characteristics when the temperature is equal to or higher than the glass transition temperature (Tg). Moreover, if an anisotropic conductive film becomes more than hardening start temperature (Tc), a viscosity will rise by thermosetting resin hardening | curing.

このとき、ガラス転移温度(Tg)が硬化開始温度(Tc)よりも高過ぎるか又は硬化開始温度(Tc)がガラス転移温度(Tg)よりも低過ぎると、導電粒子が十分圧接する前に硬化反応が完了して接続信頼性が得られない場合がある。また、ガラス転移温度(Tg)が硬化開始温度(Tc)よりも低過ぎるか又は硬化開始温度(Tc)がガラス転移温度(Tg)よりも高過ぎると、樹脂が流動状態にある時間が過剰に長くなり、バブルが発生するなど接着性に問題が生じる。   At this time, if the glass transition temperature (Tg) is too higher than the curing start temperature (Tc) or the curing start temperature (Tc) is too lower than the glass transition temperature (Tg), the conductive particles are cured before being sufficiently pressed. The reaction may be completed and connection reliability may not be obtained. If the glass transition temperature (Tg) is too lower than the curing start temperature (Tc) or the curing start temperature (Tc) is too higher than the glass transition temperature (Tg), the time during which the resin is in a fluid state is excessive. It becomes longer, causing problems in adhesion such as bubbles.

このように、異方性導電フィルムのガラス転移温度(Tg)と硬化開始温度(Tc)は、異方性導電フィルムが良好な接続信頼性を発揮するためには、重要視しなければならないパラメーターである。即ち、良好な接続信頼性を備える異方性導電フィルムのガラス転移温度(Tg)と硬化開始温度(Tc)とは、特定の粘度(n〜n)を示す流動状態となるように、適切な温度差を備える必要がある。 As described above, the glass transition temperature (Tg) and the curing start temperature (Tc) of the anisotropic conductive film are parameters that must be regarded as important in order for the anisotropic conductive film to exhibit good connection reliability. It is. That is, the glass transition temperature (Tg) and the curing start temperature (Tc) of the anisotropic conductive film having good connection reliability are in a fluid state showing a specific viscosity (n 1 to n 2 ). It is necessary to provide an appropriate temperature difference.

そこで、本件発明者らは、異方性導電フィルムのガラス転移温度(Tg)と硬化開始温度(Tc)との関係に着目し、上述の温度差を調節するための新しいパラメーターに想到した。即ち、良好な接続信頼性を備える異方性導電フィルムは、数式[λ=(Tc−Tg)/Tc](λ:流動パラメーター、Tc:異方性導電フィルムの硬化開始温度、Tg:異方性導電フィルムのガラス転移温度)から算出される流動パラメーターλの値が所定の値を備える。   Therefore, the present inventors have focused on the relationship between the glass transition temperature (Tg) and the curing start temperature (Tc) of the anisotropic conductive film, and have come up with a new parameter for adjusting the above-described temperature difference. That is, the anisotropic conductive film having good connection reliability is expressed by the formula [λ = (Tc−Tg) / Tc] (λ: flow parameter, Tc: curing start temperature of the anisotropic conductive film, Tg: anisotropic The value of the flow parameter λ calculated from the glass transition temperature of the conductive conductive film has a predetermined value.

本件発明に係る異方性導電フィルムは、回路基板同士又はICチップなどの電子部品と回路基板とを電気的に接続する際に、高い接着性と良好な接続信頼性を発揮する。   The anisotropic conductive film according to the present invention exhibits high adhesiveness and good connection reliability when electrically connecting circuit boards or electronic components such as IC chips and the circuit board.

対向する回路部材の間に異方性導電フィルムを配置した状態を示す模式図である。It is a schematic diagram which shows the state which has arrange | positioned the anisotropic conductive film between the circuit members which oppose. 異方性導電フィルムの温度上昇に伴う粘度の変化を示すグラフである。It is a graph which shows the change of the viscosity accompanying the temperature rise of an anisotropic conductive film. ガラス転移温度(Tg)が異なる4種の異方性導電フィルムの温度上昇に伴う粘度の変化を示すグラフである。It is a graph which shows the change of the viscosity accompanying the temperature rise of 4 types of anisotropic conductive films from which a glass transition temperature (Tg) differs. 硬化開始温度(Tc)が異なる4種の異方性導電フィルムの温度上昇に伴う粘度の変化を示すグラフである。It is a graph which shows the change of the viscosity accompanying the temperature rise of 4 types of anisotropic conductive films from which hardening start temperature (Tc) differs. 異方性導電フィルムを介してCOF又はTCPをガラス基板又はPCBに熱圧着して回路接続構造体とする接続工程を示す模式図である。It is a schematic diagram which shows the connection process which heat-presses COF or TCP to a glass substrate or PCB via an anisotropic conductive film, and is set as a circuit connection structure.

尚、本明細書に添付した上記図面は、本件発明の好ましい実施形態を例示するものであって、発明の詳細な説明とともに本件発明の技術的な思想をさらに理解させる役割を果たすものであり、本件発明は図面に記載された事項だけに限定されて解釈されてはならないことを断っておく。   The above-mentioned drawings attached to the present specification illustrate preferred embodiments of the present invention, and together with the detailed description of the invention, serve to further understand the technical idea of the present invention. It should be noted that the present invention should not be construed as being limited to the matters described in the drawings.

以下、図面を参照しつつ本件発明を詳細に説明する。各図面において、同一符号は同一又は同等な構成要素を示している。   Hereinafter, the present invention will be described in detail with reference to the drawings. In the drawings, the same reference numerals indicate the same or equivalent components.

図1は、本件発明に係る異方性導電フィルム10を、対向する回路基板20と30との間に配置した状態を示している。   FIG. 1 shows a state in which an anisotropic conductive film 10 according to the present invention is disposed between opposing circuit boards 20 and 30.

前記異方性導電フィルム10は、フィルム形成のための熱可塑性樹脂と、バインダーとしての熱硬化性樹脂と、硬化剤と、導電粒子と、離型フィルムとその他添加剤とを含むことが好ましい。   The anisotropic conductive film 10 preferably includes a thermoplastic resin for film formation, a thermosetting resin as a binder, a curing agent, conductive particles, a release film, and other additives.

前記熱可塑性樹脂としては、ポリビニルブチラール、ポリビニルホルマール、ポリビニルアセタール、ポリアミド、フェノキシ樹脂、ポリスルホン、スチレン‐ブタジエン‐スチレンブロック共重合体、カルボキシル化スチレン‐エチレン‐ブチレン‐スチレンブロック共重合体、ポリアクリレート樹脂などを用い、30〜60重量%配合することが好ましい。   Examples of the thermoplastic resin include polyvinyl butyral, polyvinyl formal, polyvinyl acetal, polyamide, phenoxy resin, polysulfone, styrene-butadiene-styrene block copolymer, carboxylated styrene-ethylene-butylene-styrene block copolymer, and polyacrylate resin. Etc., and preferably 30 to 60% by weight.

前記熱硬化性樹脂としては、エポキシ系樹脂又はアクリレート系樹脂を用いることが好ましい。   As the thermosetting resin, it is preferable to use an epoxy resin or an acrylate resin.

前記エポキシ系樹脂としては、1分子内に2つ以上のグリシジル基を備える多価のエポキシ樹脂を用いることが好ましく、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ナフタレン型エポキシ樹脂などを単独又は混合して用い、5〜45重量%配合することが好ましい。   As the epoxy resin, a polyvalent epoxy resin having two or more glycidyl groups in one molecule is preferably used. For example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenol novolac type epoxy resin, A biphenyl type epoxy resin, a dicyclopentadiene type epoxy resin, a naphthalene type epoxy resin, or the like is preferably used alone or in combination, and is preferably blended in an amount of 5 to 45% by weight.

このとき、前記硬化剤としては、エポキシ樹脂用硬化剤を用いることが好ましく、特に、保存安定性に優れ、硬化速度の速い潜在性硬化剤としてイミダゾール系化合物、アミン系化合物、酸無水物化合物、ポリアミド系化合物、及びイソシアネート系化合物から選択された1種以上を用いることが好ましい。具体的には、ジクミルパーオキサイド(dicumyl peroxide)、t‐ブチル‐クミルパーオキサイド、ビス(α‐t‐ブチルパーオキシイソプロピル)ベンゼン、2,5‐ジ(t‐ブチルパーオキシ)‐2,5‐ジメチルヘキシン‐3、ジテルブチルパーオキサイド(diterbutyl peroxide)、1,1‐ジ(テルブチルパーオキシ)‐3,3,5‐トリメチルシクロヘキサン、n‐ブチル‐4,4‐ジ‐(テルブチルパーオキシ)バレレート、1,1‐ジ‐テルブチルパーオキシシクロヘキサン、イソプロピルクミルテルブチルパーオキサイド、ビス(α‐テルアミルパーオキシイソプロピル)ベンゼン、イミダゾール、2‐エチルイミダゾール、2‐フェニル‐4‐メチルイミダゾール、2‐ドデシルイミダゾール、2‐フェニルイミダゾール、2‐フェニル‐4‐メチルイミダゾール、4‐メチルイミダゾール、三フッ化ホウ素‐アミン錯体、スルホニウム塩、アミンイミド、ポリアミンの塩、ジシアンジアミドなどから選択される組成物を単独又は混合して用い、0.1〜20重量%配合することが好ましい。   At this time, it is preferable to use a curing agent for epoxy resin as the curing agent, and in particular, an imidazole compound, an amine compound, an acid anhydride compound, as a latent curing agent having excellent storage stability and a fast curing rate, It is preferable to use one or more selected from polyamide-based compounds and isocyanate-based compounds. Specifically, dicumyl peroxide, t-butyl-cumyl peroxide, bis (α-tert-butylperoxyisopropyl) benzene, 2,5-di (tert-butylperoxy) -2 5-dimethylhexyne-3, diterbutyl peroxide, 1,1-di (terbutylperoxy) -3,3,5-trimethylcyclohexane, n-butyl-4,4-di- ( Terbutylperoxy) valerate, 1,1-di-terbutylperoxycyclohexane, isopropylcumylterbutylperoxide, bis (α-teramylperoxyisopropyl) benzene, imidazole, 2-ethylimidazole, 2-phenyl-4 -Methylimidazole, 2-dodecylimi Sol, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 4-methylimidazole, boron trifluoride-amine complex, sulfonium salt, amine imide, polyamine salt, dicyandiamide, etc. It is preferable to add 0.1 to 20% by weight.

前記アクリレート系樹脂を構成するアクリレート系モノマとしては、アクリル系モノマ、メタクリル系モノマ、マレイミド化合物、不飽和ポリエステル、アクリル酸、ビニルアセテート、アクリロニトリルのようにラジカルによって重合する官能基を備えるラジカル重合性樹脂を用いることが好ましく、具体的にはメチルアクリレート、エチルアクリレート、ビスフェノールA‐エチレングリコール変性ジアクリレート、イソシアヌール酸エチレングリコール変性ジアクリレート、ペンタエリスリトールトリアクリレート、トリメチロールプロパントリアクリレート、トリメチロールプロパンプロピルレングリコール変性トリアクリレート、イソシアヌール酸エチレングリコール変性トリアクリレート、ジペンタエリスリトールペンタアクリレート、ジペンタエリスリトールヘキサアクリレート、ペンタエリスリトールテトラアクリレート、ジシクロペンテニルアクリレート、トリシクロデカニルアクリレート、エチレンイソアミルアクリレート、ラウリルアクリレート、ステアリルアクリレート、ブトキシエチルアクリレート、エトキシジエチレングリコールアクリレート、メトキシトリエチレングリコールアクリレート、メトキシポリエチレングリコールアクリレート、メトキシジプロピレングリコールアクリレート、フェノキシエチルアクリレート、フェノキシポリエチレングリコールアクリレート、イソボニルアクリレート、2‐ヒドロキシエチルアクリレート、2‐ヒドロキシプロピルアクリレート、メチルメタクリレート、イソブチルメタクリレート、トリデシルメタクリレート、メトキシジエチレングリコールメタクリレート、メトキシポリエチレングリコールメタクリレート、フルフリルメタクリレート(furfuryl metachrylate)、フルフリルアクリレート、イソブチルアクリレート、イソボニルメタクリレート、メトキシトリエチレングリコールメタクリレートなどを単独又は2種以上混合して用い、前記アクリレート系モノマを用いる場合には、30〜70重量%配合することが好ましい。   As the acrylate monomer constituting the acrylate resin, an acrylic monomer, a methacrylic monomer, a maleimide compound, an unsaturated polyester, acrylic acid, vinyl acetate, and a radical polymerizable resin having a functional group that is polymerized by radicals such as acrylonitrile. Specifically, methyl acrylate, ethyl acrylate, bisphenol A-ethylene glycol modified diacrylate, isocyanuric acid ethylene glycol modified diacrylate, pentaerythritol triacrylate, trimethylolpropane triacrylate, trimethylolpropane propylene Glycol-modified triacrylate, isocyanuric acid ethylene glycol-modified triacrylate, dipentaerythritol pentaacrylate , Dipentaerythritol hexaacrylate, pentaerythritol tetraacrylate, dicyclopentenyl acrylate, tricyclodecanyl acrylate, ethylene isoamyl acrylate, lauryl acrylate, stearyl acrylate, butoxyethyl acrylate, ethoxydiethylene glycol acrylate, methoxytriethylene glycol acrylate, methoxy Polyethylene glycol acrylate, methoxydipropylene glycol acrylate, phenoxyethyl acrylate, phenoxy polyethylene glycol acrylate, isobornyl acrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, methyl methacrylate, isobutyl methacrylate, tridecyl meta Relate, methoxydiethylene glycol methacrylate, methoxypolyethylene glycol methacrylate, furfuryl methacrylate (furfuryl methacrylate), furfuryl acrylate, isobutyl acrylate, isobornyl methacrylate, methoxytriethylene glycol methacrylate, etc. are used alone or in combination of two or more of the above acrylates When using a monomer, it is preferable to mix 30 to 70% by weight.

また、前記アクリレート系樹脂を用いる場合の硬化開始剤としては、アゾ系化合物、有機過酸化物を用いることが好ましく、具体的にはデカノイルパーオキサイド(decanoyl peroxide)、ベンゾイルパーオキサイド、ジクミルパーオキサイド、ジブチルパーオキサイド、クメンヒドロパーオキサイド(cumene hydroperoxide)、t‐ブチル‐クミルパーオキサイド(t‐butyl‐cumyl peroxide)、ビス(α‐t‐ブチルパーオキシイソプロピル)ベンゼン、2,5‐ジ(t‐ブチルパーオキシ)‐2,5‐ジメチルヘキサン、2,5‐ジ(t‐ブチルパーオキシ)‐2,5‐ジメチルヘキシン‐3、ジテルブチルパーオキサイド、1,1‐ジ‐テルブチルパーオキシシクロヘキサン、イソプロピルクミルテルブチルパーオキサイド、ビス(α‐テルアミルパーオキシイソプロピル)ベンゼンなどから選択される組成物を単独又は混合して用いることが好ましく、0.1〜30重量%配合することが好ましい。   Further, as the curing initiator in the case of using the acrylate-based resin, it is preferable to use an azo-based compound or an organic peroxide. Specifically, decanoyl peroxide, benzoyl peroxide, dicumyl peroxide is used. Oxide, dibutyl peroxide, cumene hydroperoxide, t-butyl-cumyl peroxide, bis (α-t-butylperoxyisopropyl) benzene, 2,5-di ( t-butylperoxy) -2,5-dimethylhexane, 2,5-di (t-butylperoxy) -2,5-dimethylhexyne-3, diterbutyl peroxide, 1,1-di-ter Butyl peroxycyclohexa , Isopropyl cumyl ether butyl peroxide, it is preferable to use bis (alpha-Tel amyl peroxy-isopropyl) benzene, etc. composition selected from the singly or in admixture, it is preferable to blend 0.1 to 30 wt%.

前記導電粒子は、微細回路電極など被接続体を電気的に接続するためのものであって、融点及び硬度が高く導電性が優れた粒子から幅広く選択して用いることが好ましい。このような導電粒子としては、金(Au)、銀(Ag)、鉄(Fe)、銅(Cu)、ニッケル(Ni)、カドミウム(Cd)、ビスマス(Bi)、インジウム(In)、アルミニウム(Al)、パラジウム(Pd)、プラチナ(Pt)、クロム(Cr)などがコーティングされたポリスチレン、ポリメタアクリレート、ポリメチルメタアクリレート、ポリビニルアセテート、ジビニルベンゼン、ベンゾグアナミンなどが挙げられる。また、本件発明に係る導電粒子としては、銀粉末やニッケル粉末をそのまま使うことも出来る。このとき、導電粒子は、直径が3〜20μmであり、粒度偏差が±0.1μm以内の均一な粒度分布を備える導電粒子を1〜10重量%含有させることが好ましい。   The conductive particles are for electrically connecting a body to be connected such as a fine circuit electrode, and are preferably selected from a wide range of particles having high melting point and hardness and excellent conductivity. Examples of such conductive particles include gold (Au), silver (Ag), iron (Fe), copper (Cu), nickel (Ni), cadmium (Cd), bismuth (Bi), indium (In), aluminum ( Examples thereof include polystyrene coated with Al), palladium (Pd), platinum (Pt), chromium (Cr), and the like, polymethacrylate, polymethyl methacrylate, polyvinyl acetate, divinylbenzene, and benzoguanamine. Moreover, as the conductive particles according to the present invention, silver powder or nickel powder can be used as it is. At this time, the conductive particles preferably contain 1 to 10% by weight of conductive particles having a diameter of 3 to 20 μm and a uniform particle size distribution with a particle size deviation within ± 0.1 μm.

その他、添加剤としてカップリング剤、接着性付与剤などを付加的に用いることも好ましい。   In addition, it is also preferable to additionally use a coupling agent, an adhesion imparting agent, or the like as an additive.

上記のような構成を備える異方性導電フィルムは、熱可塑性樹脂の種類や含有量、熱硬化性樹脂の種類や含有量、硬化剤や硬化開始剤の種類や含有量、及び添加剤の種類などを変更することによって、後述するように、流動パラメーターλの値を自在に調節することが出来る。   The anisotropic conductive film having the above-described configuration is the type and content of thermoplastic resin, the type and content of thermosetting resin, the type and content of curing agent and curing initiator, and the type of additive. As will be described later, the value of the flow parameter λ can be freely adjusted.

以下、異方性導電フィルムの接続信頼性(接着性、導電性)を表す指標である流動パラメーターλについて詳しく説明する。   Hereinafter, the flow parameter λ that is an index representing the connection reliability (adhesiveness, conductivity) of the anisotropic conductive film will be described in detail.

図2に、異方性導電フィルムの温度上昇に伴う粘度の変化を示す。図2に示すように、異方性導電フィルムに熱が加えられると、特定温度に至るまでは粘度が低下し、硬化が始まると粘度が上昇する。このとき、異方性導電フィルムの硬化時の粘度が上限粘度nを超えれば、導電粒子が十分圧接されるだけの流動性を示さなくなる。また、下限粘度nを下回れば、流動性が過剰になってバブルが発生しやすく、接着特性が悪くなる。即ち、異方性導電フィルムは、図2に示す領域Bにおいて、熱圧着によって導電粒子を圧接できるだけの十分な流動性を示す。しかし、領域Cでは流動性が悪化して導電粒子が十分圧接されず、領域Aでは流動性が過剰になってバブルが発生しやすく、接着特性が悪化する。 In FIG. 2, the change of the viscosity accompanying the temperature rise of an anisotropic conductive film is shown. As shown in FIG. 2, when heat is applied to the anisotropic conductive film, the viscosity decreases until reaching a specific temperature, and the viscosity increases when curing starts. At this time, the viscosity at the time of curing of the anisotropic conductive film if it exceeds the upper limit viscosity n 2, the conductive particles showed no only liquidity is fully pressed. Further, falls below the lower limit viscosity n 1, the bubble is liable to occur becomes excessive fluidity, adhesive properties become poor. That is, the anisotropic conductive film exhibits sufficient fluidity to press the conductive particles by thermocompression bonding in the region B shown in FIG. However, in the region C, the fluidity is deteriorated and the conductive particles are not sufficiently pressed, and in the region A, the fluidity is excessive and bubbles are easily generated, and the adhesive property is deteriorated.

したがって、異方性導電フィルムは、導電粒子が十分圧接するまで、図2の領域Bの特性を維持しなければならない。そのためには異方性導電フィルムのガラス転移温度(Tg)と硬化開始温度(Tc)とを所望の値としなければならず、その温度差(△T=Tc−Tg)も適切でなければならない。尚、本件発明ではガラス転移温度(Tg)と硬化開始温度(Tc)の表示単位として絶対温度[°K]を採用している。   Therefore, the anisotropic conductive film must maintain the characteristics of region B in FIG. 2 until the conductive particles are sufficiently pressed. For this purpose, the glass transition temperature (Tg) and the curing start temperature (Tc) of the anisotropic conductive film must be set to desired values, and the temperature difference (ΔT = Tc−Tg) must also be appropriate. . In the present invention, the absolute temperature [° K] is adopted as a display unit of the glass transition temperature (Tg) and the curing start temperature (Tc).

図3に、ガラス転移温度(Tg)が異なる4種の異方性導電フィルムa、b、c、dの温度上昇に伴う粘度の変化をグラフで示す。図3に示すグラフによれば、a、b、c、dはガラス転移温度(Tg)をそれぞれTg(a)、Tg(b)、Tg(c)、Tg(d)[Tg(d)<Tg(a)<Tg(b)<Tg(c)]とした異方性導電フィルムであって、a、bは硬化時の粘度が領域Bにあり、cは硬化時の粘度が領域Cにあり、dは硬化時の粘度が領域Aにある。   In FIG. 3, the change of the viscosity accompanying the temperature rise of four types of anisotropic conductive film a, b, c, d from which glass transition temperature (Tg) differs is shown with a graph. According to the graph shown in FIG. 3, a, b, c, and d are glass transition temperatures (Tg) of Tg (a), Tg (b), Tg (c), Tg (d) [Tg (d) < An anisotropic conductive film having Tg (a) <Tg (b) <Tg (c)], wherein a and b are in the region B when cured, and c is in the region C when cured. Yes, d is the viscosity in the region A when cured.

したがって、異方性導電フィルムが良好な接続信頼性を備えるためには、図3に示すa、bのように、適切なガラス転移温度(Tg)を備えなければならない。もし、異方性導電フィルムのガラス転移温度(Tg)がdのように低過ぎるか又はcのように高過ぎると、十分な導電粒子の圧接特性や接着性能が得られる流動特性を備えることが出来ない。   Therefore, in order for the anisotropic conductive film to have good connection reliability, it must have an appropriate glass transition temperature (Tg) as shown in FIGS. If the anisotropic conductive film has a glass transition temperature (Tg) that is too low, such as d, or too high, such as c, it has flow characteristics that can provide sufficient pressure contact characteristics and adhesion performance of conductive particles. I can't.

図4に、硬化開始温度(Tc)が異なる4種の異方性導電フィルムe、f、g、hの温度上昇に伴う粘度の変化をグラフで示す。図4に示すように、e、f、g、hは硬化開始温度(Tc)をそれぞれTc(e)、Tc(f)、Tc(g)、Tc(h)[Tc(g)<Tc(f)<Tc(e)<Tc(h)]とした異方性導電フィルムであって、e、fは硬化時の粘度が領域Bにあり、gは硬化時の粘度が領域Cにあり、hは硬化時の粘度が領域Aにある。   In FIG. 4, the change of the viscosity accompanying the temperature rise of four types of anisotropic conductive films e, f, g, and h from which hardening start temperature (Tc) differs is shown with a graph. As shown in FIG. 4, e, f, g, and h are curing start temperatures (Tc) of Tc (e), Tc (f), Tc (g), Tc (h) [Tc (g) <Tc ( f) An anisotropic conductive film with <Tc (e) <Tc (h)], wherein e and f have a viscosity at the time of curing in region B, and g has a viscosity at the time of curing in region C, h is the viscosity in the region A when cured.

したがって、異方性導電フィルムが良好な接続信頼性を備えるためには、図4に示すe、fのように、適切な硬化開始温度(Tc)を備えなければならない。もし、異方性導電フィルムの硬化開始温度(Tc)がgのように低過ぎるか又はhのように高過ぎると、十分な導電粒子の圧接特性や接着性能が得られる流動特性を備えることが出来ない。   Therefore, in order for the anisotropic conductive film to have good connection reliability, it is necessary to have an appropriate curing start temperature (Tc) as shown by e and f in FIG. If the curing start temperature (Tc) of the anisotropic conductive film is too low as in g or too high as in h, it has flow characteristics that can provide sufficient pressure contact characteristics and adhesion performance of conductive particles. I can't.

また、異方性導電フィルムは、ガラス転移温度(Tg)に到達してからすぐに硬化が始まるのは好ましくなく、ガラス転移温度(Tg)に到逹してから硬化が開始するまでに長時間を要することも好ましくない。異方性導電フィルムがガラス転移温度(Tg)に到逹してすぐに硬化が始まれば、導電粒子は十分に圧接されないことになる。したがって、異方性導電フィルムの硬化開始温度(Tc)は、ガラス転移温度(Tg)よりも20°K以上高いことが好ましい。   In addition, it is not preferable that the anisotropic conductive film starts curing immediately after reaching the glass transition temperature (Tg), and it takes a long time from the time when the glass transition temperature (Tg) is reached until the curing starts. It is also not preferable to require. If the anisotropic conductive film reaches the glass transition temperature (Tg) and immediately begins to cure, the conductive particles are not sufficiently pressed. Therefore, it is preferable that the curing start temperature (Tc) of the anisotropic conductive film is 20 ° K or higher than the glass transition temperature (Tg).

このように、異方性導電フィルムのガラス転移温度(Tg)と硬化開始温度(Tc)とは、硬化が開始する際の樹脂が流動状態である(図2ないし図4の領域B)粘度範囲となる温度に制御し、また、硬化開始温度(Tc)とガラス転移温度(Tg)とは一定の温度差(△T=Tc−Tg≧20°K)を備えるように制御する。   As described above, the glass transition temperature (Tg) and the curing start temperature (Tc) of the anisotropic conductive film are the viscosity range in which the resin at the time of curing starts (region B in FIGS. 2 to 4). Further, the curing start temperature (Tc) and the glass transition temperature (Tg) are controlled so as to have a certain temperature difference (ΔT = Tc−Tg ≧ 20 ° K).

このような異方性導電フィルムの流動特性は以下の数2に示す流動パラメーターλで表現することが出来る。   The flow characteristics of such an anisotropic conductive film can be expressed by the flow parameter λ shown in the following formula 2.

Figure 2009249634
Figure 2009249634

このように、異方性導電フィルムの流動パラメーターλの値を適切に調節すれば、良好な接続信頼性を備える異方性導電フィルムの製造が可能である。   Thus, if the value of the flow parameter λ of the anisotropic conductive film is appropriately adjusted, it is possible to produce an anisotropic conductive film having good connection reliability.

そして、良好な接続信頼性を備える異方性導電フィルムは流動パラメーターλの値が0.05より大きく0.4より小さくなければならない(即ち、0.05<λ<0.4)。このとき、異方性導電フィルムの硬化開始温度(Tc)は323°K〜393°Kとすることが好ましく、硬化開始温度とガラス転移温度(Tg)の温度差は20°K以上であることが好ましい。   An anisotropic conductive film with good connection reliability must have a flow parameter λ value greater than 0.05 and less than 0.4 (ie, 0.05 <λ <0.4). At this time, the curing start temperature (Tc) of the anisotropic conductive film is preferably 323 ° K to 393 ° K, and the temperature difference between the curing start temperature and the glass transition temperature (Tg) is 20 ° K or more. Is preferred.

異方性導電フィルムの流動パラメーターλの値が0.05より小さい場合、硬化が急激に進行するため、導電粒子を十分圧接する前に硬化が完了して圧接不良が生じる。一方、流動パラメーターλの値が0.4以上になると、流動性が過剰になってバブルが発生しやすく、接着特性が悪くなる。   When the value of the flow parameter λ of the anisotropic conductive film is smaller than 0.05, the curing proceeds rapidly, so that the curing is completed before the conductive particles are sufficiently pressed together, resulting in poor pressure welding. On the other hand, when the value of the flow parameter λ is 0.4 or more, the fluidity becomes excessive and bubbles are likely to be generated, resulting in poor adhesive properties.

流動パラメーターλの値は、異方性導電フィルムを構成する熱可塑性樹脂、熱硬化性樹脂(エポキシ樹脂又はアクリレート系樹脂)、硬化剤(又は硬化開始剤)、添加剤などの種類と量を変更することで調節できる。   The value of the flow parameter λ changes the type and amount of thermoplastic resin, thermosetting resin (epoxy resin or acrylate resin), curing agent (or curing initiator), additive, etc. that make up the anisotropic conductive film. You can adjust it.

異方性導電フィルムの硬化開始温度(Tc)は、用いる硬化剤や硬化開始剤の種類を変更することで調整できる。   The curing start temperature (Tc) of the anisotropic conductive film can be adjusted by changing the type of curing agent or curing initiator used.

以下の表1に、代表的な硬化剤の半減期温度(Half‐life温度:硬化剤が一定時間で半分に減少する温度を示す尺度であって、硬化開始温度(Tc)に比例する)を示す。   Table 1 below shows typical curing agent half-life temperatures (Half-life temperature: a measure of the temperature at which the curing agent decreases in half over a period of time, proportional to the cure start temperature (Tc)). Show.

Figure 2009249634
Figure 2009249634

表1に示すように、硬化剤はそれぞれ半減期温度が異なる。したがって、異なる半減期温度を備える硬化剤を含む異方性導電フィルムの硬化開始温度(Tc)も異なる。即ち、半減期温度が低く硬化速度が速い硬化剤を使った異方性導電フィルムは、硬化開始温度(Tc)が低くなることで流動パラメーターλの値も小さくなる。一方、半減期温度が高く硬化速度が遅い硬化剤を使った異方性導電フィルムは、硬化開始温度(Tc)が高くなることで流動パラメーターλの値も大きくなる。   As shown in Table 1, the curing agents have different half-life temperatures. Therefore, the curing start temperature (Tc) of the anisotropic conductive film containing a curing agent having different half-life temperatures is also different. That is, in the anisotropic conductive film using a curing agent having a low half-life temperature and a fast curing rate, the value of the flow parameter λ decreases as the curing start temperature (Tc) decreases. On the other hand, an anisotropic conductive film using a curing agent having a high half-life temperature and a slow curing rate increases the value of the flow parameter λ as the curing start temperature (Tc) increases.

したがって、半減期温度が異なる硬化剤(又は硬化開始剤)を選択して用いれば、他の条件が同一であっても異方性導電フィルムの流動パラメーターλの値を0.05より大きく0.4より小さく調節することが出来る。   Therefore, if a curing agent (or a curing initiator) having a different half-life temperature is selected and used, the value of the flow parameter λ of the anisotropic conductive film is more than 0.05, even if the other conditions are the same. It can be adjusted to be smaller than 4.

また、半減期温度が同一の硬化剤を用いても、その量を増やせば流動パラメーターλの値は小さくなり、その量を減らせば流動パラメーターλの値は大きくなる。したがって、硬化剤の含有量を調節すれば、他の条件が同一であっても異方性導電フィルムの流動パラメーターλの値を0.05より大きく0.4より小さく調節することが出来る。   Further, even when a curing agent having the same half-life temperature is used, if the amount is increased, the value of the flow parameter λ decreases, and if the amount is decreased, the value of the flow parameter λ increases. Therefore, if the content of the curing agent is adjusted, the value of the flow parameter λ of the anisotropic conductive film can be adjusted to be larger than 0.05 and smaller than 0.4 even if other conditions are the same.

また、流動パラメーターλの値を左右する異方性導電フィルムのガラス転移温度(Tg)は、熱硬化性樹脂の種類、熱可塑性樹脂の種類、又はこれらの成分比によって調節することが出来る。即ち、上述した硬化剤の種類と量、樹脂の種類と配合によって異方性導電フィルムの優れた特性を維持しつつガラス転移温度(Tg)を調整することが出来る。特に、異方性導電フィルムのガラス転移温度(Tg)は、熱可塑性樹脂のガラス転移温度(Tg)に大きく依存する。以下の表2に、代表的な熱可塑性樹脂のガラス転移温度(Tg)を示す。   Further, the glass transition temperature (Tg) of the anisotropic conductive film that affects the value of the flow parameter λ can be adjusted by the type of thermosetting resin, the type of thermoplastic resin, or the ratio of these components. That is, the glass transition temperature (Tg) can be adjusted while maintaining the excellent characteristics of the anisotropic conductive film by the kind and amount of the curing agent and the kind and blending of the resin. In particular, the glass transition temperature (Tg) of the anisotropic conductive film largely depends on the glass transition temperature (Tg) of the thermoplastic resin. Table 2 below shows the glass transition temperature (Tg) of typical thermoplastic resins.

Figure 2009249634
Figure 2009249634

表2に示すように、熱可塑性樹脂のガラス転移温度(Tg)はそれぞれ異なり、これらの熱可塑性樹脂を使った異方性導電フィルムのガラス転移温度(Tg)もそれぞれ異なる。一般に、ガラス転移温度(Tg)が高い熱可塑性樹脂を使った異方性導電フィルムのガラス転移温度(Tg)は高くなり、ガラス転移温度(Tg)が低い熱可塑性樹脂を使った異方性導電フィルムのガラス転移温度(Tg)は低くなる。   As shown in Table 2, the glass transition temperatures (Tg) of the thermoplastic resins are different, and the glass transition temperatures (Tg) of anisotropic conductive films using these thermoplastic resins are also different. In general, an anisotropic conductive film using a thermoplastic resin having a high glass transition temperature (Tg) has a high glass transition temperature (Tg) and an anisotropic conductive film using a thermoplastic resin having a low glass transition temperature (Tg). The glass transition temperature (Tg) of the film is lowered.

したがって、ガラス転移温度(Tg)が異なる熱可塑性樹脂を用いれば、他の条件が同一であっても異方性導電フィルムの流動パラメーターλの値を0.05より大きく0.4より小さく調節することが出来る。   Therefore, if thermoplastic resins having different glass transition temperatures (Tg) are used, the flow parameter λ of the anisotropic conductive film is adjusted to be larger than 0.05 and smaller than 0.4 even if the other conditions are the same. I can do it.

また、ラジカル硬化遅延効果を備える熱可塑性樹脂(例えば、メタクリレート系、マレイミド化合物、不飽和ポリエステル、アクリル酸、ビニルアセテート、アクリロニトリルなどのようなアクリル系多官能性モノマ)を用いれば、硬化速度の調節が可能になって流動パラメーターを調節することが出来る。   Moreover, if a thermoplastic resin having a radical curing delay effect (for example, an acrylic polyfunctional monomer such as methacrylate, maleimide compound, unsaturated polyester, acrylic acid, vinyl acetate, acrylonitrile, etc.) is used, the curing rate can be adjusted. Can be adjusted and flow parameters can be adjusted.

また、用いる熱硬化性モノマ(即ち、アクリレート系モノマ)の種類によっても流動パラメーターを調節できる。即ち、熱硬化性モノマの官能基の数や分子量を調節すれば、反応速度や硬化密度を調節することが出来、結果的に流動パラメーターを調節することが出来る。即ち、一般に官能基が多くなれば、反応速度が速まり、架橋密度が増加して流動パラメーターは小さくなる。逆に、官能基が少なければ、反応速度が遅くなり、架橋密度が低くなって流動パラメーターは大きくなる。   The flow parameter can also be adjusted by the type of thermosetting monomer used (ie, acrylate monomer). That is, by adjusting the number of functional groups and molecular weight of the thermosetting monomer, the reaction rate and the curing density can be adjusted, and as a result, the flow parameter can be adjusted. That is, in general, the more functional groups, the faster the reaction rate, the higher the crosslink density, and the smaller the flow parameter. Conversely, if there are few functional groups, the reaction rate will be slow, the crosslinking density will be low, and the flow parameter will be large.

また、ラジカル硬化促進剤、チェーントランスファー補助剤、分子量調節剤などを用いても流動パラメーターを調節することが出来、異方性導電フィルムを構成する熱可塑性樹脂、熱硬化性樹脂(エポキシ樹脂又はアクリレート系モノマ)及び硬化剤(又は硬化開始剤)の組成比を調節することによっても流動パラメーターλの値を0.05より大きく0.4より小さく調節することが出来る。   The flow parameters can also be adjusted by using radical curing accelerators, chain transfer aids, molecular weight modifiers, etc., and thermoplastic resins and thermosetting resins (epoxy resins or acrylates) that constitute anisotropic conductive films. The value of the flow parameter λ can be adjusted to be larger than 0.05 and smaller than 0.4 by adjusting the composition ratio of the system monomer) and the curing agent (or curing initiator).

実施例では、実験例1〜実験例4として、異なる流動パラメーターλの値を備える異方性導電フィルムを作成し、この異方性導電フィルムに対してフィルム形成性テストと接続信頼性テストとを実施した。   In Examples, as Experimental Examples 1 to 4, anisotropic conductive films having different values of the flow parameter λ were prepared, and film forming tests and connection reliability tests were performed on the anisotropic conductive films. Carried out.

[異方性導電フィルムの作成]
フィルムを形成するための熱可塑性樹脂、バインダーとしてのエポキシ系熱硬化性樹脂(又はアクリレート系モノマ)、硬化剤(又は硬化開始剤)を含む接着剤組成物を有機溶剤に溶解し、導電粒子をさらに分散してフィルム塗工用ワニスを作成した。このとき用いた有機溶剤は、材料の溶解性を向上させるため、芳香族炭化水素系と含酸素系との混合溶剤とした。次いで、この溶液を片面を表面処理した透明PETフィルムに塗工装置を用いて塗布し、70℃、10分の熱風乾燥して、後の表3に示す異なる流動パラメーターを備える実験例1〜実験例4の異方性導電フィルムを得た。
[Creation of anisotropic conductive film]
An adhesive composition containing a thermoplastic resin for forming a film, an epoxy thermosetting resin (or acrylate monomer) as a binder, and a curing agent (or a curing initiator) is dissolved in an organic solvent, and conductive particles are obtained. Furthermore, it disperse | distributed and the varnish for film coating was created. The organic solvent used at this time was a mixed solvent of an aromatic hydrocarbon type and an oxygen-containing type in order to improve the solubility of the material. Next, this solution was applied to a transparent PET film having a surface treated on one side using a coating apparatus, dried with hot air at 70 ° C. for 10 minutes, and experimental examples 1 to 1 having different flow parameters shown in Table 3 below. The anisotropic conductive film of Example 4 was obtained.

[フィルム形成性テスト]
上記フィルム塗工用ワニスを片面を表面処理した透明PETフィルムに塗工装置を用いて塗布して70℃、10分の熱風乾燥によって異方性導電フィルムを得る工程において、最終的に得られたフィルムを目視観察した。このとき、相分離及び不均一混合が観察されず、透明PETフィルムを除去するときに無理なく除去が可能な場合は○と判定し、フィルム自体が形成されないか、相分離及び不均一混合が観察され、透明PETフィルムが混合液の粘着性によって除去し難い場合は×と判定した。
[Film formability test]
In the step of applying the film coating varnish to a transparent PET film having one surface treated by using a coating apparatus and drying with hot air at 70 ° C. for 10 minutes, the film was finally obtained. The film was visually observed. At this time, phase separation and non-uniform mixing are not observed, and when the transparent PET film is removed without difficulty, it is judged as ◯, and the film itself is not formed or phase separation and non-uniform mixing is observed. When the transparent PET film was difficult to remove due to the adhesiveness of the mixed solution, it was determined as x.

[回路接続構造体の作成]
図5に、回路接続構造体を製造するために実施した、異方性導電フィルムを介してCOF又はTCPをガラス基板又はPCBにボンディングする接続工程を模式的に示す。
[Creating a circuit connection structure]
FIG. 5 schematically shows a connection process for bonding COF or TCP to a glass substrate or PCB through an anisotropic conductive film, which was performed to manufacture a circuit connection structure.

図5に示すように、本件発明に係る異方性導電フィルム10は、ガラス基板又はPCB基板31上に仮圧着し、この異方性導電フィルム上にCOF又はTCP22を対向配置した。その後、COF又はTCP22上に厚さ0.15mmのフッ素樹脂シートを緩衝材42として介在させ、ヒーティングバー41を用いて180℃、3MPaの条件で7秒間加熱、加圧して回路接続構造体を作成した。   As shown in FIG. 5, the anisotropic conductive film 10 according to the present invention was temporarily pressure-bonded onto a glass substrate or PCB substrate 31, and COF or TCP 22 was disposed opposite to the anisotropic conductive film. Thereafter, a fluororesin sheet having a thickness of 0.15 mm is interposed on the COF or TCP 22 as a buffer material 42, and heated and pressurized for 7 seconds under the conditions of 180 ° C. and 3 MPa using the heating bar 41 to form a circuit connection structure. Created.

[接続信頼性テスト]
上記にて得られた回路接続構造体を、温度85℃及び相対湿度85%で500時間エイジングした後の抵抗値Ωをマルチメーターを用いて測定した。このとき、エイジングした後の抵抗値Ωが測定不可能な場合には「OPEN」と表示した。
[Connection reliability test]
The circuit connection structure obtained in the above was measured using a multimeter the resistance Omega a after 500 hours aging at a temperature 85 ° C. and 85% relative humidity. In this case, it labeled "OPEN" when the resistance value Ω a after aging is impossible to measure.

前記回路接続構造体に用いた実施例の異方性導電フィルムは、以下のガラス転移温度(Tg)及び硬化開始温度(Tc)を備えるように作成した。   The anisotropic conductive film of the Example used for the said circuit connection structure was created so that the following glass transition temperature (Tg) and hardening start temperature (Tc) might be provided.

[実験例1]
ガラス転移温度(Tg)が236°K、硬化開始温度(Tc)が373°Kの異方性導電フィルム(λ=0.29)を作成し、フィルム形成性テストを実施した。そして、この異方性導電フィルムを用いて回路接続構造体を作成し、接続信頼性テストを実施した。評価結果を後の表3に示す。
[Experiment 1]
An anisotropic conductive film (λ = 0.29) having a glass transition temperature (Tg) of 236 ° K and a curing start temperature (Tc) of 373 ° K was prepared, and a film forming test was performed. And the circuit connection structure was created using this anisotropic conductive film, and the connection reliability test was implemented. The evaluation results are shown in Table 3 below.

[実験例2]
ガラス転移温度(Tg)が283°K、硬化開始温度(Tc)が373°Kの異方性導電フィルム(λ=0.24)を作成し、実験例1と同様にしてフィルム形成性テストと接続信頼性テストとを実施した。結果を後の表3に示す。
[Experimental example 2]
An anisotropic conductive film (λ = 0.24) having a glass transition temperature (Tg) of 283 ° K and a curing start temperature (Tc) of 373 ° K was prepared. A connection reliability test was conducted. The results are shown in Table 3 below.

[実験例3]
ガラス転移温度(Tg)が273°K、硬化開始温度(Tc)が393°Kの異方性導電フィルム(λ=0.31)を作成し、実験例1と同様にしてフィルム形成性テストと接続信頼性テストとを実施した。結果を後の表3に示す。
[Experiment 3]
An anisotropic conductive film (λ = 0.31) having a glass transition temperature (Tg) of 273 ° K and a curing start temperature (Tc) of 393 ° K was prepared. A connection reliability test was conducted. The results are shown in Table 3 below.

[実験例4]
ガラス転移温度(Tg)が278°K、硬化開始温度(Tc)が353°Kの異方性導電フィルム(λ=0.21)を作成し、実験例1と同様にしてフィルム形成性テストと接続信頼性テストとを実施した。結果を後の表3に示す。
[Experimental Example 4]
An anisotropic conductive film (λ = 0.21) having a glass transition temperature (Tg) of 278 ° K and a curing start temperature (Tc) of 353 ° K was prepared. A connection reliability test was conducted. The results are shown in Table 3 below.

比較例Comparative example

[比較例1]
実施例と同様にして、ガラス転移温度(Tg)が357°K、硬化開始温度(Tc)が373°Kの異方性導電フィルム(λ=0.04)を作成し、実施例と同様にしてフィルム形成性テストと接続信頼性テストとを実施した。結果を後の表3に示す。
[Comparative Example 1]
In the same manner as in the example, an anisotropic conductive film (λ = 0.04) having a glass transition temperature (Tg) of 357 ° K and a curing start temperature (Tc) of 373 ° K was prepared. The film formation test and the connection reliability test were conducted. The results are shown in Table 3 below.

[比較例2]
実施例と同様にして、ガラス転移温度(Tg)が213°K、硬化開始温度(Tc)が373°Kの異方性導電フィルム(λ=0.43)を作成し、実施例と同様にしてフィルム形成性テストと接続信頼性テストとを実施した。結果を後の表3に示す。
[Comparative Example 2]
In the same manner as in the example, an anisotropic conductive film (λ = 0.43) having a glass transition temperature (Tg) of 213 ° K and a curing start temperature (Tc) of 373 ° K was prepared. The film formation test and the connection reliability test were conducted. The results are shown in Table 3 below.

[比較例3]
実施例と同様にして、ガラス転移温度(Tg)が282°K、硬化開始温度(Tc)が295°Kの異方性導電フィルム(λ=0.04)を作成し、実施例と同様にしてフィルム形成性テストと接続信頼性テストとを実施した。結果を後の表3に示す。
[Comparative Example 3]
In the same manner as in the example, an anisotropic conductive film (λ = 0.04) having a glass transition temperature (Tg) of 282 ° K and a curing start temperature (Tc) of 295 ° K was prepared. The film formation test and the connection reliability test were conducted. The results are shown in Table 3 below.

[比較例4]
実施例と同様にして、ガラス転移温度(Tg)が274°K、硬化開始温度(Tc)が472°Kの異方性導電フィルム(λ=0.42)を作成し、実施例と同様にしてフィルム形成性テストと接続信頼性テストとを実施した。結果を後の表3に示す。
[Comparative Example 4]
In the same manner as in the example, an anisotropic conductive film (λ = 0.42) having a glass transition temperature (Tg) of 274 ° K and a curing start temperature (Tc) of 472 ° K was prepared. The film formation test and the connection reliability test were conducted. The results are shown in Table 3 below.

[比較例5]
実施例と同様にして、ガラス転移温度(Tg)が275°K、硬化開始温度(Tc)が484°Kの異方性導電フィルム(λ=0.43)を作成し、実施例と同様にしてフィルム形成性テストと接続信頼性テストとを実施した。結果を以下の表3に示す。
[Comparative Example 5]
In the same manner as in the example, an anisotropic conductive film (λ = 0.43) having a glass transition temperature (Tg) of 275 ° K and a curing start temperature (Tc) of 484 ° K was prepared. The film formation test and the connection reliability test were conducted. The results are shown in Table 3 below.

Figure 2009249634
Figure 2009249634

[実施例と比較例との対比]
表3から明らかなように、実験例1〜実験例4の異方性導電フィルムはすべて良好な接続信頼性とフィルム形成性を示している。しかし、比較例1〜比較例5の異方性導電フィルムは、エイジング後の抵抗値Ωがすべて2Ω以上と接続信頼性が不良であり、且つ、フィルム形成性も悪い。したがって、実験例1〜実験例4のように、流動パラメーターλの値が0.05より大きく0.4より小さい値を備える異方性導電フィルムの接着性と接続信頼性が優れることが確認できた。
[Contrast between Example and Comparative Example]
As is apparent from Table 3, all of the anisotropic conductive films of Experimental Examples 1 to 4 show good connection reliability and film formability. However, the anisotropic conductive film of Comparative Example 1 to Comparative Example 5 is a defective connection reliability resistance Omega a is all 2Ω or more after aging, and a film forming property is also inferior. Therefore, it can be confirmed that the adhesiveness and the connection reliability of the anisotropic conductive film having a value of the flow parameter λ larger than 0.05 and smaller than 0.4 as in Experimental Examples 1 to 4 are excellent. It was.

10 異方性導電フィルム
21 半導体チップ
22 COF又はTCP
31 ガラス基板又はプリント回路基板
41 ヒーティングバー
42 緩衝材
A、B、C 領域
下限粘度
上限粘度
10 Anisotropic conductive film 21 Semiconductor chip 22 COF or TCP
31 Glass substrate or printed circuit board 41 Heating bar 42 Buffer materials A, B, C Region n 1 Lower limit viscosity n 2 Upper limit viscosity

本件発明のパラメーターを用いれば、異方性導電フィルムの接続信頼性を、流動パラメーターを用いて判断できる。したがって、従来は主に接着剤の組成物、導電粒子の種類や組成比等で管理している異方性導電フィルムが、管理範囲外のものとなっても、異方性導電フィルム自身の特性で接続信頼性を評価することが出来る。したがって、従来の製造工程では廃棄対象とせざるを得なかった製品も救済することが可能であり、省資源と省エネルギーに貢献できる。   If the parameter of this invention is used, the connection reliability of an anisotropic conductive film can be judged using a flow parameter. Therefore, even if the anisotropic conductive film, which is conventionally managed mainly by the composition of the adhesive, the type and composition ratio of the conductive particles, is outside the control range, the characteristics of the anisotropic conductive film itself Can evaluate connection reliability. Therefore, it is possible to relieve products that had to be discarded in the conventional manufacturing process, which can contribute to resource saving and energy saving.

Claims (8)

被接続部材同士を接着させて、機械的、且つ、電気的に接続する異方性導電フィルムであって、
前記異方性導電フィルムは、フィルム形成のための熱可塑性樹脂と、バインダーとして用いる熱硬化性樹脂と、導電粒子と離型フィルムとを含み、
数式[λ=(Tc−Tg)/Tc](λ:流動パラメーター、Tc:異方性導電フィルムの硬化開始温度、Tg:異方性導電フィルムのガラス転移温度)から算出される流動パラメーターλの値が0.05より大きく0.4より小さいことを特徴とする異方性導電フィルム。
An anisotropic conductive film that bonds mechanically and electrically connected members to be connected,
The anisotropic conductive film includes a thermoplastic resin for film formation, a thermosetting resin used as a binder, conductive particles and a release film,
Of the flow parameter λ calculated from the formula [λ = (Tc−Tg) / Tc] (λ: flow parameter, Tc: curing start temperature of anisotropic conductive film, Tg: glass transition temperature of anisotropic conductive film) An anisotropic conductive film having a value greater than 0.05 and less than 0.4.
前記硬化開始温度(Tc)が323°K〜393°Kであることを特徴とする請求項1に記載の異方性導電フィルム。 The anisotropic conductive film according to claim 1, wherein the curing start temperature (Tc) is 323 ° K to 393 ° K. 前記硬化開始温度(Tc)と前記ガラス転移温度(Tg)との温度差が20°K以上であることを特徴とする請求項1又は請求項2に記載の異方性導電フィルム。 The anisotropic conductive film according to claim 1 or 2, wherein a temperature difference between the curing start temperature (Tc) and the glass transition temperature (Tg) is 20 ° K or more. 前記熱硬化性樹脂がエポキシ系樹脂であることを特徴とする請求項1〜請求項3のいずれかに記載の異方性導電フィルム。 The anisotropic conductive film according to claim 1, wherein the thermosetting resin is an epoxy resin. 前記熱硬化性樹脂がアクリレート系樹脂であることを特徴とする請求項1〜請求項3のいずれかに記載の異方性導電フィルム。 The anisotropic conductive film according to claim 1, wherein the thermosetting resin is an acrylate resin. 前記被接続部材は第1回路部材と第2回路部材とを含み、
前記第1回路部材がテープキャリアパッケージ(TCP)又はチップオンフィルム(COF)のいずれかであり、前記第2回路部材がガラス基板又はプリント回路基板(PCB)のいずれかであることを特徴とする請求項1〜請求項5のいずれかに記載の異方性導電フィルム。
The connected member includes a first circuit member and a second circuit member;
The first circuit member is a tape carrier package (TCP) or a chip on film (COF), and the second circuit member is either a glass substrate or a printed circuit board (PCB). The anisotropic conductive film in any one of Claims 1-5.
前記第1回路部材と前記第2回路部材との間に請求項1〜請求項5のいずれかに記載の異方性導電フィルムを介在して加熱、加圧することで、機械的、且つ、電気的に接続された回路接続構造体。 The anisotropic conductive film according to any one of claims 1 to 5 is interposed between the first circuit member and the second circuit member to heat and pressurize, whereby mechanical and electrical Connected circuit connection structure. 前記第1回路部材はTCP又はCOFのいずれかであり、前記第2回路部材はガラス基板又はPCBのいずれかであることを特徴とする請求項7に記載の回路接続構造体。 8. The circuit connection structure according to claim 7, wherein the first circuit member is either TCP or COF, and the second circuit member is either a glass substrate or PCB.
JP2009093631A 2008-04-08 2009-04-08 Anisotropic conductive film with optimized thermal characteristic and curing characteristic, and circuit connection structure using the same Pending JP2009249634A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080032666A KR100986772B1 (en) 2008-04-08 2008-04-08 Anisotropic Conductive Film Having A Good Thermal And Hardening Property And Circuit Board Using The Same

Publications (1)

Publication Number Publication Date
JP2009249634A true JP2009249634A (en) 2009-10-29

Family

ID=41174991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009093631A Pending JP2009249634A (en) 2008-04-08 2009-04-08 Anisotropic conductive film with optimized thermal characteristic and curing characteristic, and circuit connection structure using the same

Country Status (3)

Country Link
JP (1) JP2009249634A (en)
KR (1) KR100986772B1 (en)
CN (1) CN101556943A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007297636A (en) * 2007-06-14 2007-11-15 Nippon Zeon Co Ltd Resin composition for anisotropic electric conduction

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002217523A (en) 2001-01-23 2002-08-02 Tdk Corp Method of manufacturing electronic device
JP2002314234A (en) 2001-04-13 2002-10-25 Tdk Corp Electronic device and its manufacturing method
KR100777255B1 (en) * 2006-04-18 2007-11-20 중앙대학교 산학협력단 Anisotropic conductive film and packaging method of electronic parts using the same
KR100756799B1 (en) 2006-07-12 2007-09-07 제일모직주식회사 Anisotropic conductive adhesive composition including two or more hardeners having different melting point

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007297636A (en) * 2007-06-14 2007-11-15 Nippon Zeon Co Ltd Resin composition for anisotropic electric conduction

Also Published As

Publication number Publication date
KR100986772B1 (en) 2010-10-12
KR20090107258A (en) 2009-10-13
CN101556943A (en) 2009-10-14

Similar Documents

Publication Publication Date Title
KR101242930B1 (en) Adhesive film for circuit connection, and circuit connection structure
KR100601341B1 (en) Anisotropic conductive adhesive and the adhesive flim using thereof
JP4304508B2 (en) Adhesive composition, adhesive composition for circuit connection, connector and semiconductor device
JP4998468B2 (en) Adhesive composition and circuit member connection structure
JP2009170898A (en) Circuit connecting material and connecting structure of circuit member
CN108702845B (en) Method for manufacturing connection structure
WO2008065997A1 (en) Adhesive and connection structure using the same
JP2009277652A (en) Circuit connection material and connection structure for circuit member
TW201525096A (en) Adhesive composition, film adhesive, circuit connecting material, and connecting body
JP3877090B2 (en) Circuit connection material and circuit board manufacturing method
TWI540195B (en) A circuit connecting material and a connecting method using the same, and a connecting structure
JP2009252748A (en) Anisotropic conductive film excellent in connection reliability, and circuit connecting structure using the same
JP4555943B2 (en) Anisotropic conductive film, method for manufacturing anisotropic conductive film, connection body using the same, and semiconductor device
JP2011204898A (en) Adhesive composition, and connection structure for circuit member
JP2009249634A (en) Anisotropic conductive film with optimized thermal characteristic and curing characteristic, and circuit connection structure using the same
JP2013227420A (en) Circuit connection material, circuit connection structure, adhesion film and wound body
KR100823390B1 (en) Composition for anisotropic conductive film and method for preparing it
CN112543795B (en) Method for producing connection structure and connection film
KR100911476B1 (en) Anisotropic conductive film
TW201829693A (en) Conductive adhesive cured product and electronic component
TW201412932A (en) Coating composition and the use thereof
JP2009289729A (en) Anisotropic conductive film
KR20090114232A (en) Anisotropic Conductive Film Having Property Stability And Circuit Board Using The Same
JP2005226048A (en) Adhesive composition, film-formed adhesive and circuit-joining material by using the same, and joining structure of circuit member and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130308

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131017