JP2009249234A - Method for judging metal contamination in low-resistance silicon single crystal - Google Patents

Method for judging metal contamination in low-resistance silicon single crystal Download PDF

Info

Publication number
JP2009249234A
JP2009249234A JP2008099493A JP2008099493A JP2009249234A JP 2009249234 A JP2009249234 A JP 2009249234A JP 2008099493 A JP2008099493 A JP 2008099493A JP 2008099493 A JP2008099493 A JP 2008099493A JP 2009249234 A JP2009249234 A JP 2009249234A
Authority
JP
Japan
Prior art keywords
single crystal
resistance
silicon single
low
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008099493A
Other languages
Japanese (ja)
Inventor
Toshiyuki Nakao
年幸 中尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Corp
Original Assignee
Sumco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumco Corp filed Critical Sumco Corp
Priority to JP2008099493A priority Critical patent/JP2009249234A/en
Publication of JP2009249234A publication Critical patent/JP2009249234A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for judging whether metal contamination has occurred or not in a low-resistance silicon single crystal that is as in a grown state to be delivered as a product and is difficult to measure the life time. <P>SOLUTION: When a silicon single crystal is pulled up by CZ (Czochralski) method, a single crystal having a high resistance is pulled up in a top side to grow a high resistance portion Lb, then a dopant is supplied to a melt (the dopant is supplied at a time when the crystal is pulled up to a portion indicated by a white arrow in the figure) and a single crystal having a low resistance is pulled up. Whether metal contamination has occurred or not in the low-resistance single crystal is judged by measuring a life time of the high resistance part in the obtained silicon single crystal. The yield of a low-resistance silicon single crystal as a product is effectively improved by employing an embodiment of reducing a diameter of the high-resistance single crystal than a diameter of the low-resistance single crystal or an embodiment including a step of gradually increasing the diameter and a step of gradually decreasing the diameter. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、ライフタイム測定が困難な低抵抗のシリコン単結晶における金属汚染の有無を判定する方法に関する。   The present invention relates to a method for determining the presence or absence of metal contamination in a low-resistance silicon single crystal whose lifetime is difficult to measure.

半導体基板として用いられるシリコンウェーハは、育成されたシリコン単結晶インゴットがブロックに切断され、スライシング(ウェーハ切断)された後、機械研磨(ラッピング)、ゲッタリング処理、熱処理、洗浄等、数多くの工程、ならびに検査を経て、要求品質を満たすウェーハとして出荷される。   A silicon wafer used as a semiconductor substrate is a process in which a grown silicon single crystal ingot is cut into blocks and sliced (wafer cutting), followed by mechanical polishing (lapping), gettering treatment, heat treatment, washing, and many other processes. In addition, after inspection, the wafer is shipped as a wafer that satisfies the required quality.

このシリコンウェーハにおいては、鉄、銅、ニッケルなどの金属による汚染が問題となる。シリコン単結晶中の金属不純物、特に前記重金属は、酸化膜耐圧の劣化やリーク電流の増加を引き起こすなど、半導体デバイスの性能を劣化させるからである。   In this silicon wafer, contamination with metals such as iron, copper and nickel becomes a problem. This is because metal impurities in the silicon single crystal, particularly the heavy metal, deteriorate the performance of the semiconductor device, for example, causing deterioration of the oxide film breakdown voltage and increase of leakage current.

金属汚染を判定する方法の一つとして、シリコンウェーハのキャリアの再結合ライフタイム(以下、単にライフタイムと記す)を測定する方法があり、そのために、非破壊で迅速な測定が可能な光導電(率)減衰法(マイクロ波PCD法)が広く用いられている。しかしながら、マイクロ波PCD法を用いる金属汚染の判定においては、測定原理上、比抵抗(抵抗率)が3Ωcm以下のシリコンウェーハでは、その抵抗率が非常に低いため、マイクロ波の反射率が極めて高くなる。そのため、μ−PCD検出器の出力が飽和したり、マイクロ波ノイズが重畳するため、過剰キャリア注入による反射率の変化を検出することが困難となり、ライフタイムの測定が困難になるという問題がある。   One method of determining metal contamination is to measure the recombination lifetime (hereinafter simply referred to as the lifetime) of the silicon wafer carrier. Therefore, non-destructive and quick measurement is possible. The (rate) attenuation method (microwave PCD method) is widely used. However, in the determination of metal contamination using the microwave PCD method, the resistivity of a silicon wafer having a specific resistance (resistivity) of 3 Ωcm or less is very low because of the measurement principle, and the microwave reflectance is extremely high. Become. Therefore, since the output of the μ-PCD detector is saturated or microwave noise is superimposed, it is difficult to detect a change in reflectance due to excess carrier injection, and it is difficult to measure lifetime. .

そのため、低抵抗シリコンウェーハの金属汚染の有無を判定する場合は、原子吸光分析法や二次イオン質量分析法(SIMS法)を使用しなければならず、コストが嵩み、評価に多大な時間を要することになる。   Therefore, when determining the presence or absence of metal contamination on a low-resistance silicon wafer, atomic absorption spectrometry or secondary ion mass spectrometry (SIMS method) must be used, which is expensive and takes a lot of time for evaluation. Will be required.

ところで、近年、シリコン単結晶をスライスせずに、育成されたままの状態(as−grown)で製品として出荷される場合が増えている。その場合、as−grownの形状のままで抵抗率等の検査をしなければならない。金属汚染についても、as−grownシリコン単結晶の状態で、汚染がないことを保証する必要がある。   By the way, in recent years, there are increasing cases in which silicon single crystals are shipped as products in an as-grown state without being sliced. In that case, the resistivity and the like must be inspected while maintaining the as-grown shape. Regarding metal contamination, it is necessary to ensure that there is no contamination in the state of as-grown silicon single crystal.

as−grownシリコン単結晶の抵抗率については、特許文献1に、製品として出荷されるシリコン等の半導体単結晶を切断することなくその抵抗率を得る方法が開示されている。この方法は、半導体融液から半導体単結晶を引き上げながら成長させる単結晶引上げ方法において、抵抗率測定用のサンプル単結晶を引き上げる第1工程と、前記サンプル単結晶に連続して製品となる製品単結晶を引き上げる第2工程とを含む引上げ方法であり、サンプル単結晶に連続して製品単結晶を形成しているので、サンプル単結晶の抵抗率を測定すれば、製品単結晶を切断することなくその抵抗率を得ることができるとしている。   As for the resistivity of an as-grown silicon single crystal, Patent Document 1 discloses a method for obtaining the resistivity without cutting a semiconductor single crystal such as silicon shipped as a product. This method is a single crystal pulling method in which a semiconductor single crystal is grown while pulling up a semiconductor single crystal from a semiconductor melt, and a first step of pulling up a sample single crystal for resistivity measurement, and a single product that becomes a product continuously with the sample single crystal. A pulling method including a second step of pulling up the crystal. Since the product single crystal is formed continuously with the sample single crystal, if the resistivity of the sample single crystal is measured, the product single crystal is not cut. The resistivity can be obtained.

一方、特許文献2では、1回の引上げにより抵抗率が異なる複数種の単結晶を連続的に引き上げることができる単結晶引上方法が提案されている。この単結晶引上方法は、引き上げ中の任意の時期にドーパントを供給してその後に引き上げる単結晶の抵抗率を変化させる方法で、それ自体は公知であるが、ドーパントの供給に伴い融液表面が波立ち単結晶成長が不安定となり、単結晶の有転移化または多結晶化を生じるという問題を解決するため、原料融液を収容する坩堝内に筒状隔壁を設け、その外側領域にドーパントを供給する方法である。
特開2005−324970号公報 特開平4−21585号公報
On the other hand, Patent Document 2 proposes a single crystal pulling method capable of continuously pulling a plurality of types of single crystals having different resistivity by one pulling. This single crystal pulling method is a method of changing the resistivity of a single crystal that is supplied at any time during pulling and then pulling up, and is known per se. In order to solve the problem that the single crystal growth becomes unstable and the single crystal undergoes transition or polycrystallization, a cylindrical partition is provided in the crucible containing the raw material melt, and a dopant is added to the outer region. It is a supply method.
JP 2005-324970 A JP-A-4-21585

前述のように、シリコン単結晶の金属汚染の評価にはキャリアのライフタイム測定が利用され、マイクロ波PCD法が多用されている。しかし、抵抗率が3Ωcm以下の低抵抗のシリコンウェーハではライフタイムの測定が困難で、金属汚染の評価ができないという問題がある。さらに、シリコン単結晶を育成されたままの状態で製品出荷する場合には、単結晶を切断することなく金属汚染がないことを保証する必要がある。しかし、これらの問題を解決する方法は未だ確立されていない。   As described above, the carrier lifetime measurement is used for evaluating the metal contamination of the silicon single crystal, and the microwave PCD method is frequently used. However, a low-resistance silicon wafer having a resistivity of 3 Ωcm or less has a problem in that it is difficult to measure lifetime and metal contamination cannot be evaluated. Furthermore, when shipping a product with the silicon single crystal grown, it is necessary to ensure that there is no metal contamination without cutting the single crystal. However, a method for solving these problems has not yet been established.

本発明はこのような状況に鑑みなされたもので、育成されたままの状態で製品出荷される、しかもライフタイム測定が困難な低抵抗のシリコン単結晶における金属汚染の有無を判定する方法を提供することを目的としている。   The present invention has been made in view of such circumstances, and provides a method for determining the presence or absence of metal contamination in a low resistance silicon single crystal that is shipped in a grown state and is difficult to measure lifetime. The purpose is to do.

上記の目的を達成するために、本発明者は、シリコン単結晶の引上げを行う際、トップ部で高抵抗単結晶の引上げを行い、引上長が50〜100mm程度になったところで、シリコン溶融液中に追加ドープを行って低抵抗単結晶を育成し、得られた単結晶のトップ側の高抵抗部のライフタイムを測定することにより低抵抗シリコン単結晶における金属汚染の有無を判定することを発案した。   In order to achieve the above object, the present inventor, when pulling up the silicon single crystal, pulls up the high resistance single crystal at the top, and when the pulling length becomes about 50 to 100 mm, Determine the presence or absence of metal contamination in the low-resistance silicon single crystal by growing the low-resistance single crystal by additional doping in the solution and measuring the lifetime of the high-resistance portion on the top side of the obtained single crystal. Was invented.

前掲の特許文献2に、引上げ途中でドーパントを供給して抵抗率が異なる複数種の単結晶を引き上げることが記載されているが、本発明者が発案した方法は、引上げ途中でのドーパントの供給を、上記のタイミングで行い、且つ追加ドープ実施前のトップ側高抵抗部のライフタイムを測定することによって、育成されたままの状態で製品として出荷される、しかもライフタイム測定が困難な低抵抗のシリコン単結晶における金属汚染判定方法である。   In the above-mentioned Patent Document 2, it is described that a plurality of types of single crystals having different resistivities are pulled up by supplying a dopant in the middle of pulling, but the method invented by the present inventor is supplying a dopant in the middle of pulling. Is measured at the above timing and the lifetime of the top-side high resistance portion before the additional doping is measured is shipped as a product as it is grown, and it is difficult to measure the lifetime. This is a method for determining metal contamination in a silicon single crystal.

さらに、この金属汚染判定方法について、実際に低抵抗シリコン単結晶の引上げ、育成を行って、その効果を確認した。   Furthermore, with regard to this metal contamination determination method, the effect was confirmed by actually pulling and growing a low-resistance silicon single crystal.

本発明の要旨は、下記の低抵抗シリコン単結晶の金属汚染判定方法にある。
すなわち、坩堝内にシリコン原料を充填して溶融し、その溶融液からシリコン単結晶を引き上げながら育成する際に、トップ側で高抵抗の単結晶の引上げを行って高抵抗部を育成した後、溶融液にドーパントを供給して低抵抗の単結晶の引上げを行い、得られたシリコン単結晶の高抵抗部のライフタイムを測定することにより、低抵抗の単結晶の金属汚染の判定を行うことを特徴とする金属汚染判定方法である。
The gist of the present invention resides in the following metal contamination determination method for a low resistance silicon single crystal.
That is, when the crucible is filled with a silicon raw material and melted and grown while pulling up the silicon single crystal from the melt, the high resistance portion is pulled on the top side to grow the high resistance portion, To determine the metal contamination of the low resistance single crystal by supplying the dopant to the melt and pulling up the low resistance single crystal and measuring the lifetime of the high resistance portion of the resulting silicon single crystal. This is a method for determining metal contamination.

ここで言う「低抵抗の単結晶」とは、抵抗率が0.001〜3Ωcmのシリコン単結晶をいう。抵抗率の下限を0.001Ωcmとしているのは、製品として出荷している単結晶の比抵抗の下限がこの値であるためである。また、「高抵抗の単結晶」とは、ライフタイム測定を行うことができる、すなわち抵抗率が3Ωcmを超えるシリコン単結晶である。抵抗率が10Ωcm程度以上のものが望ましい。   The term “low resistance single crystal” used herein refers to a silicon single crystal having a resistivity of 0.001 to 3 Ωcm. The lower limit of the resistivity is set to 0.001 Ωcm because the lower limit of the specific resistance of the single crystal shipped as a product is this value. Further, the “high resistance single crystal” is a silicon single crystal capable of performing lifetime measurement, that is, having a resistivity exceeding 3 Ωcm. Those having a resistivity of about 10 Ωcm or more are desirable.

本発明の低抵抗シリコン単結晶の金属汚染判定方法において、前記高抵抗の単結晶の直径を、低抵抗の単結晶の直径よりも小さくすることとすれば、製品としての低抵抗シリコン単結晶の歩留まりを向上させることができる。   In the method for determining metal contamination of a low resistance silicon single crystal according to the present invention, if the diameter of the high resistance single crystal is made smaller than the diameter of the low resistance single crystal, Yield can be improved.

また、本発明の低抵抗シリコン単結晶の金属汚染判定方法においては、前記高抵抗の単結晶を引き上げる工程が、当該単結晶の直径を徐々に増大させる工程と、徐々に減少させる工程とを含む実施形態を採ることができる。   Moreover, in the metal contamination determination method for a low resistance silicon single crystal according to the present invention, the step of pulling up the high resistance single crystal includes a step of gradually increasing the diameter of the single crystal and a step of gradually decreasing the single crystal. Embodiments can be taken.

本発明の低抵抗シリコン単結晶の金属汚染判定方法によれば、育成されたままの状態で製品出荷されるシリコン単結晶、特にライフタイム測定が困難な低抵抗のシリコン単結晶における金属汚染の有無を判定することができる。   According to the method for determining metal contamination of a low-resistance silicon single crystal of the present invention, the presence or absence of metal contamination in a silicon single crystal shipped as a product, especially a low-resistance silicon single crystal whose lifetime is difficult to measure. Can be determined.

本発明の低抵抗シリコン単結晶の金属汚染判定方法は、坩堝内にシリコン原料を充填して溶融し、その溶融液からシリコン単結晶を引き上げながら育成する際に、トップ側で高抵抗の単結晶の引上げを行って高抵抗部を育成した後、溶融液にドーパントを供給して低抵抗の単結晶の引上げを行い、得られたシリコン単結晶の高抵抗部のライフタイムを測定することにより、低抵抗の単結晶の金属汚染の判定を行うことを特徴とする方法である。   The metal contamination determination method of the low resistance silicon single crystal according to the present invention is a method of filling a crucible with a silicon raw material and melting it, and then growing the silicon single crystal from the melt while growing the single crystal with a high resistance on the top side. After raising the high resistance portion by pulling up, by supplying a dopant to the melt to pull up the low resistance single crystal, by measuring the lifetime of the high resistance portion of the obtained silicon single crystal, It is a method characterized by determining metal contamination of a low-resistance single crystal.

半導体基板に用いられるシリコン単結晶を製造する方法には種々の方法があるが、そのなかでもチョクラルスキー法(CZ法)が広く採用されている。CZ法は、石英ルツボ内に高純度のシリコン原料を投入し、不活性ガス雰囲気中でこの原料をルツボの周囲に配設したヒーターで溶融した後、溶融液の表面に種結晶を浸漬し、これを回転させつつ上方に引き上げて種結晶の下端面に単結晶を成長させる方法である。   There are various methods for producing a silicon single crystal used for a semiconductor substrate. Among them, the Czochralski method (CZ method) is widely adopted. In the CZ method, a high-purity silicon raw material is charged into a quartz crucible, and the raw material is melted with a heater disposed around the crucible in an inert gas atmosphere. Then, a seed crystal is immersed in the surface of the melt, This is a method of growing the single crystal on the lower end face of the seed crystal by pulling it upward while rotating it.

引上げの際、その速度を調節し、種結晶の径を減少させてネック部を形成するネッキングプロセス(工程)を経た後、引上げ速度を低下させて結晶径を徐々に増大させ、肩部を形成し、定径部の引上げに移行する。定径部が所定長さに達した後、結晶径を徐々に減少させ、最先端部を溶融液から引き離すことにより1回の引上げが終了して所定形状のシリコン単結晶が得られる。前記のネッキング(シード絞り)は、種結晶をシリコン溶融液と接触させるときのヒートショックにより種結晶内に導入される高密度の転位を除去するために行われる必須の工程である。   When pulling, adjust the speed, reduce the seed crystal diameter and go through the necking process (step) to form the neck, then lower the pulling speed to gradually increase the crystal diameter and form the shoulder Then, the process moves to pulling up the constant diameter part. After the constant-diameter portion reaches a predetermined length, the crystal diameter is gradually decreased, and the pulling-up is completed by separating the foremost portion from the melt, whereby a silicon single crystal having a predetermined shape is obtained. The necking (seed squeezing) is an essential process performed to remove high-density dislocations introduced into the seed crystal by heat shock when the seed crystal is brought into contact with the silicon melt.

本発明の金属汚染判定方法においても、このCZ法によるシリコン単結晶の引上げ、育成を前提としている。以下、図面を参照して本発明の金属汚染判定方法を説明する。   Also in the metal contamination determination method of the present invention, it is assumed that the silicon single crystal is pulled and grown by the CZ method. The metal contamination determination method of the present invention will be described below with reference to the drawings.

図1は、本発明の金属汚染判定方法を適用して得られたシリコン単結晶全体を模式的に例示する図である。図示するように、種結晶1の下端面に形成されたネック部2の下方に、肩部3と、これと同じ直径を有する所定長さの定径部4が形成されている。   FIG. 1 is a diagram schematically illustrating an entire silicon single crystal obtained by applying the metal contamination determination method of the present invention. As shown in the figure, below the neck portion 2 formed on the lower end surface of the seed crystal 1, a shoulder portion 3 and a constant-diameter portion 4 having a predetermined length and the same diameter are formed.

本発明の金属汚染判定方法においては、このCZ法によりシリコン単結晶を引き上げる際に、先ず、トップ側で高抵抗の単結晶の引上げを行って高抵抗部を育成する。その際、図1に示すように、シード絞りを行ってネック部2を形成した後、結晶径を徐々に増大させて肩部3を形成し、定径部4の引き上げに移行する。図中の符号Laを付して示した範囲が高抵抗部である。高抵抗部Laの結晶径は特に限定しない。図1に例示したシリコン単結晶は、高抵抗部Laの結晶径を定径部4の直径と同じにした場合であるが、後述するように、製品である低抵抗部の結晶径よりも小さくするのが望ましい。   In the metal contamination determination method of the present invention, when pulling up a silicon single crystal by the CZ method, first, a high resistance single crystal is pulled on the top side to grow a high resistance portion. At this time, as shown in FIG. 1, seed necking is performed to form the neck portion 2, and then the crystal diameter is gradually increased to form the shoulder portion 3, and the constant diameter portion 4 is lifted. The range indicated by the symbol La in the figure is the high resistance portion. The crystal diameter of the high resistance portion La is not particularly limited. The silicon single crystal illustrated in FIG. 1 is a case where the crystal diameter of the high resistance portion La is the same as the diameter of the constant diameter portion 4, but as will be described later, is smaller than the crystal diameter of the low resistance portion which is a product. It is desirable to do.

高抵抗部Laは、ライフタイム測定を行うことができるように、抵抗率が3Ωcmを超える単結晶であればよいが、高抵抗のものほどライフタイム測定の感度が上がるので、通常の引き上げで得られる抵抗率が10Ωcm程度のシリコン単結晶ないしはドーパントを添加していない高抵抗のシリコン単結晶とするのが望ましい。   The high resistance portion La may be a single crystal having a resistivity exceeding 3 Ωcm so that the lifetime measurement can be performed. However, the higher the resistance, the higher the sensitivity of the lifetime measurement. It is desirable to use a silicon single crystal having a resistivity of about 10 Ωcm or a high resistance silicon single crystal to which no dopant is added.

高抵抗部Laの引上長は50〜100mm程度とすることが望ましい。引上長が長すぎると、この後に引き上げる低抵抗のシリコン単結晶の歩留まりが低下する。   The pull-up length of the high resistance portion La is desirably about 50 to 100 mm. If the pull-up length is too long, the yield of the low-resistance silicon single crystal to be pulled after this will be lowered.

続いて、溶融液にドーパントを供給して低抵抗の単結晶の引き上げを行う。図1の白抜き矢印は、この矢印で示した部位まで単結晶を引き上げた時点でドーパントを供給したことを示す。ドーパントを供給するのは、この部位から下方に向けて、製品として出荷される低抵抗のシリコン単結晶を育成するためである。要求される抵抗率に応じてドーパントの供給量を加減し、溶融液のドーパント濃度を調整すればよい。   Subsequently, the dopant is supplied to the melt to pull up the low-resistance single crystal. The white arrow in FIG. 1 indicates that the dopant was supplied when the single crystal was pulled up to the site indicated by the arrow. The reason why the dopant is supplied is to grow a low-resistance silicon single crystal shipped as a product from this portion downward. What is necessary is just to adjust the dopant concentration of a melt by adjusting the supply amount of a dopant according to the required resistivity.

なお、前掲の特許文献2に、原料融液を収容する坩堝内に筒状隔壁を設け、その外側領域にドーパントを供給する方法が提案されているが、ドーパントの供給量が少量であれば融液表面の波立ちによる単結晶成長への影響も軽微なので、前記筒状隔壁の設置は必ずしも必要ではない。   In the above-mentioned Patent Document 2, a method is proposed in which a cylindrical partition wall is provided in a crucible containing a raw material melt and a dopant is supplied to the outer region. Since the influence on the single crystal growth due to the undulation of the liquid surface is slight, the installation of the cylindrical partition is not necessarily required.

前記高抵抗部Laの結晶径を定径部4の結晶径よりも小さくしている場合は、ドーパントを供給して低抵抗の単結晶を引き上げる際に、結晶径を製品単結晶の結晶径まで徐々に増大させる。   In the case where the crystal diameter of the high resistance portion La is smaller than the crystal diameter of the constant diameter portion 4, when the dopant is supplied to pull up the low resistance single crystal, the crystal diameter is reduced to the crystal diameter of the product single crystal. Increase gradually.

最後に、得られたシリコン単結晶、すなわちトップ側に高抵抗部Laを有するシリコン単結晶の高抵抗部Laのライフタイムを測定することにより、低抵抗シリコン単結晶の金属汚染の判定を行う。   Finally, the metal contamination of the low resistance silicon single crystal is determined by measuring the lifetime of the high resistance portion La of the obtained silicon single crystal, that is, the silicon single crystal having the high resistance portion La on the top side.

低抵抗シリコン単結晶は高抵抗部に連続しているので、仮に低抵抗シリコン単結晶にシリコン原料に由来する金属汚染があるとすれば、高抵抗部もこれと同様に汚染されているとみなすことができる。したがって、高抵抗部のライフタイムを測定することによって、製品である低抵抗シリコン単結晶の金属汚染の有無を判定することが可能となる。   Since the low-resistance silicon single crystal is continuous with the high-resistance portion, if the low-resistance silicon single crystal has metal contamination derived from the silicon raw material, it is considered that the high-resistance portion is also contaminated in the same way. be able to. Therefore, by measuring the lifetime of the high resistance portion, it is possible to determine the presence or absence of metal contamination of the low resistance silicon single crystal that is the product.

ライフタイムの測定方法については特に限定されない。例えば、非破壊で迅速な測定が可能な装置が市販され、ウェーハの品質評価等に広く使用されているマイクロ波PCD法を用いればよい。   The method for measuring the lifetime is not particularly limited. For example, a microwave PCD method that is commercially available for non-destructive and quick measurement and is widely used for quality evaluation of wafers may be used.

本発明の金属汚染判定方法においては、前記高抵抗の単結晶(高抵抗部)の直径を、低抵抗のシリコン単結晶の直径よりも小さくする実施形態(これを、実施形態1と記す)を採ることが望ましい。   In the metal contamination determination method of the present invention, an embodiment in which the diameter of the high-resistance single crystal (high-resistance portion) is made smaller than the diameter of the low-resistance silicon single crystal (this is referred to as Embodiment 1). It is desirable to take.

図2は、実施形態1の金属汚染判定方法を適用して得られたシリコン単結晶全体を模式的に例示する図である。   FIG. 2 is a diagram schematically illustrating the entire silicon single crystal obtained by applying the metal contamination determination method of the first embodiment.

高抵抗部はライフタイム測定を行うのみで、製品とはならないので、図2に示すように、高抵抗部Lbの直径を低抵抗シリコン単結晶(定径部4)の直径よりも小さくして、引き上げた単結晶全体に対する高抵抗部Lbの比率を減少させれば、製品としての低抵抗シリコン単結晶の歩留まりを向上させることができる。   Since the high resistance portion only performs lifetime measurement and does not become a product, the diameter of the high resistance portion Lb is made smaller than the diameter of the low resistance silicon single crystal (constant diameter portion 4) as shown in FIG. If the ratio of the high resistance portion Lb to the whole single crystal pulled is decreased, the yield of the low resistance silicon single crystal as a product can be improved.

また、本発明の金属汚染判定方法においては、前記高抵抗の単結晶(高抵抗部)を引き上げる工程が、当該単結晶の直径を徐々に増大させる工程と、徐々に減少させる工程とを含む実施形態(これを、実施形態2と記す)を採用することが望ましい。   In the metal contamination determination method of the present invention, the step of pulling up the high resistance single crystal (high resistance portion) includes a step of gradually increasing the diameter of the single crystal and a step of gradually decreasing the single crystal. It is desirable to adopt a form (this is referred to as a second embodiment).

図3は、実施形態2の金属汚染判定方法を適用して得られたシリコン単結晶全体を模式的に例示する図で、高抵抗部Lcの直径が徐々に増大する部分5aと、徐々に減少する部分5bを有している。   FIG. 3 is a diagram schematically illustrating the entire silicon single crystal obtained by applying the metal contamination determination method according to the second embodiment. The portion 5a in which the diameter of the high resistance portion Lc gradually increases and gradually decreases. It has the part 5b to do.

この高抵抗部Lcの直径の増大工程および減少工程は、前掲の特許文献1に記載される単結晶引上げ方法で、抵抗率測定用のサンプル単結晶を引き上げる際に採用されている工程であるが、本発明の金属汚染判定方法において、高抵抗部の単結晶引上げにこの工程を適用すれば、高抵抗部Lcの直径を減少させる分だけ高抵抗部の引上げ量を減少させ得るので、製品としての低抵抗シリコン単結晶の歩留まりをより一層向上させることが可能となる。また、高抵抗部の直径を徐々に減少させること、さらには、図3に示すように、ネック部2aを形成する工程を含めることは、結晶の無転位化を確実に達成する上で極めて有効である。   The process of increasing and decreasing the diameter of the high resistance portion Lc is a process employed when pulling up a sample single crystal for resistivity measurement by the single crystal pulling method described in Patent Document 1 described above. In the metal contamination determination method of the present invention, if this step is applied to the single crystal pulling of the high resistance portion, the amount of pulling of the high resistance portion can be reduced by the amount that the diameter of the high resistance portion Lc is reduced. The yield of the low resistance silicon single crystal can be further improved. Further, gradually reducing the diameter of the high resistance portion, and further including the step of forming the neck portion 2a as shown in FIG. 3 is extremely effective in reliably achieving crystal dislocation elimination. It is.

以上説明したように、本発明の低抵抗シリコン単結晶の金属汚染判定方法およびその実施形態によれば、育成されたままの状態で製品出荷されるシリコン単結晶における金属汚染の有無を判定することができる。特に、ライフタイム測定が困難な低抵抗のシリコン単結晶における金属汚染の評価は、その対象がウェーハであっても容易ではなく、評価にコストと時間がかかる原子吸光分析法や二次イオン質量分析法(SIMS法)を使用しなければならないが、本発明の判定方法を適用することにより、金属汚染の判定を容易に行える。   As described above, according to the metal contamination determination method and the embodiment of the low resistance silicon single crystal of the present invention, it is determined whether or not there is metal contamination in the silicon single crystal that is shipped in a grown state. Can do. In particular, evaluation of metal contamination in a low-resistance silicon single crystal, whose lifetime is difficult to measure, is not easy even if the target is a wafer, and is expensive and time-consuming to perform atomic absorption spectrometry and secondary ion mass spectrometry. Although the method (SIMS method) must be used, the metal contamination can be easily determined by applying the determination method of the present invention.

前記の実施形態1の方法を適用して、トップ側に高抵抗部を有する低抵抗シリコン単結晶を育成し、マイクロ波PCD法により高抵抗部のライフタイムを測定した。   The method of the first embodiment was applied to grow a low resistance silicon single crystal having a high resistance portion on the top side, and the lifetime of the high resistance portion was measured by a microwave PCD method.

ドーパントとしてボロン(B)を添加したシリコン溶融液の表面に種結晶を浸漬し、これを回転させつつ上方に引き上げ、ネッキングプロセスを経て、種結晶の下端面に直径4インチのシリコン単結晶(高抵抗部)を形成させた。この部分の抵抗率は10Ωcmとした。   A seed crystal is immersed in the surface of a silicon melt to which boron (B) is added as a dopant, and is rotated upward, and after a necking process, a silicon single crystal having a diameter of 4 inches (high height) is formed on the lower end surface of the seed crystal. Resistance part) was formed. The resistivity of this part was 10 Ωcm.

直径4インチで結晶の高抵抗部の引上長が50mmに達した時点で、シリコン溶融液中にBを追加ドープし、引き上げ速度を低下させて結晶径を徐々に増大させ、直径6インチ、引上長1300mmの低抵抗シリコン単結晶を育成した。抵抗率は0.017Ωcmであった。   When the pull-up length of the high resistance portion of the crystal reaches 4 mm with a diameter of 4 inches, B is additionally doped into the silicon melt, the pulling speed is decreased to gradually increase the crystal diameter, and the diameter of 6 inches, A low resistance silicon single crystal having a pulling length of 1300 mm was grown. The resistivity was 0.017 Ωcm.

同じB添加シリコン溶融液から、同様にして、直径4インチ、引上長が50mmの高抵抗部を形成させ、これに連続して直径8インチ、引上長1700mmの低抵抗シリコン単結晶を育成した。さらに、同じB添加シリコン溶融液から、同様に、直径4インチの高抵抗部を形成させ、これに連続して直径12インチ、引上長500mmの低抵抗シリコン単結晶を育成した。   Similarly, a high resistance portion having a diameter of 4 inches and a pulling length of 50 mm is formed from the same B-added silicon melt, and a low resistance silicon single crystal having a diameter of 8 inches and a pulling length of 1700 mm is continuously grown. did. Further, from the same B-added silicon melt, a high resistance portion having a diameter of 4 inches was similarly formed, and a low resistance silicon single crystal having a diameter of 12 inches and a pulling length of 500 mm was continuously grown.

これら3本のシリコン単結晶(トップ部に高抵抗部を有する低抵抗シリコン単結晶)の高抵抗部のライフタイムをマイクロ波PCD法により測定したところ、いずれも支障なく測定することができ、それぞれの測定結果に差はなかった。これにより、本発明の低抵抗シリコン単結晶の金属汚染判定方法が、育成されたままの状態で製品出荷される低抵抗のシリコン単結晶における金属汚染の評価に適用できることを確認できた。   When the lifetime of the high resistance portion of these three silicon single crystals (low resistance silicon single crystal having a high resistance portion at the top portion) was measured by the microwave PCD method, all could be measured without any problem. There was no difference in the measurement results. As a result, it was confirmed that the metal contamination determination method of the low resistance silicon single crystal according to the present invention can be applied to the evaluation of metal contamination in the low resistance silicon single crystal that is shipped as it is grown.

本発明の低抵抗シリコン単結晶の金属汚染判定方法は、CZ法により、トップ側で高抵抗部を育成した後、溶融液にドーパントを供給して低抵抗の単結晶シリコンの引上げを行い、前記高抵抗部のライフタイムを測定する金属汚染判定方法である。この方法によれば、育成されたままの状態で製品出荷される、しかもライフタイム測定が困難な低抵抗のシリコン単結晶における金属汚染の有無を判定することができる。前記高抵抗部の直径を低抵抗シリコン単結晶の直径よりも小さくする実施形態を採れば、製品としての低抵抗シリコン単結晶の歩留まりを向上させることができ、高抵抗部の直径を徐々に増大させる工程および徐々に減少させる工程を含む実施形態を採れば、前記歩留まりの向上に加え、結晶の無転位化の確実な達成が可能となる。   The method of determining metal contamination of a low-resistance silicon single crystal according to the present invention, after growing a high-resistance portion on the top side by a CZ method, supplying a dopant to the melt and pulling up the low-resistance single-crystal silicon, This is a metal contamination determination method for measuring the lifetime of a high resistance portion. According to this method, it is possible to determine the presence or absence of metal contamination in a low-resistance silicon single crystal that is shipped in a grown state and is difficult to measure lifetime. By adopting an embodiment in which the diameter of the high resistance portion is made smaller than the diameter of the low resistance silicon single crystal, the yield of the low resistance silicon single crystal as a product can be improved, and the diameter of the high resistance portion is gradually increased. By adopting the embodiment including the step of causing and the step of gradually decreasing, in addition to the improvement of the yield, it is possible to reliably achieve dislocation-free crystal.

したがって、本発明の金属汚染判定方法は、シリコン単結晶の育成方法は、半導体基板材料の製造分野において広く利用することができる。   Therefore, the metal contamination determination method of the present invention can be widely used in the field of manufacturing semiconductor substrate materials.

本発明の金属汚染判定方法を適用して得られたシリコン単結晶全体を模式的に例示する図である。It is a figure which illustrates typically the whole silicon single crystal obtained by applying the metal contamination judging method of the present invention. 実施形態1の金属汚染判定方法を適用して得られたシリコン単結晶全体を模式的に例示する図である。It is a figure which illustrates typically the whole silicon single crystal obtained by applying the metal contamination judging method of Embodiment 1. 実施形態2の金属汚染判定方法を適用して得られたシリコン単結晶全体を模式的に例示する図である。It is a figure which illustrates typically the whole silicon single crystal obtained by applying the metal contamination judging method of Embodiment 2.

符号の説明Explanation of symbols

1:種結晶
2、2a:ネック部
3:肩部
4:定径部
5a:直径が徐々に増大する部分
5b:直径が徐々に減少する部分
1: Seed crystal 2, 2a: Neck part 3: Shoulder part 4: Constant diameter part 5a: Part where diameter gradually increases 5b: Part where diameter decreases gradually

Claims (3)

坩堝内にシリコン原料を充填して溶融し、その溶融液からシリコン単結晶を引き上げながら育成する際に、
トップ側で高抵抗の単結晶の引上げを行って高抵抗部を育成した後、
溶融液にドーパントを供給して低抵抗の単結晶の引上げを行い、
得られたシリコン単結晶の高抵抗部のライフタイムを測定することにより、低抵抗の単結晶の金属汚染の判定を行うことを特徴とする低抵抗シリコン単結晶の金属汚染判定方法。
When the silicon raw material is filled in the crucible and melted and grown while pulling up the silicon single crystal from the melt,
After pulling up the high resistance single crystal on the top side and growing the high resistance part,
A dopant is supplied to the melt to pull up a low-resistance single crystal,
A metal contamination determination method for a low resistance silicon single crystal, wherein the metal contamination of a low resistance single crystal is determined by measuring a lifetime of a high resistance portion of the obtained silicon single crystal.
前記高抵抗の単結晶の直径を、低抵抗の単結晶の直径よりも小さくすることを特徴とする請求項1に記載の低抵抗シリコン単結晶の金属汚染判定方法。   2. The method for determining metal contamination of a low resistance silicon single crystal according to claim 1, wherein the diameter of the high resistance single crystal is made smaller than the diameter of the low resistance single crystal. 前記高抵抗の単結晶を引き上げる工程が、当該単結晶の直径を徐々に増大させる工程と、徐々に減少させる工程とを含むことを特徴とする請求項1または2に記載の低抵抗シリコン単結晶の金属汚染判定方法。   3. The low-resistance silicon single crystal according to claim 1, wherein the step of pulling up the high-resistance single crystal includes a step of gradually increasing the diameter of the single crystal and a step of gradually decreasing the diameter. Metal contamination judgment method.
JP2008099493A 2008-04-07 2008-04-07 Method for judging metal contamination in low-resistance silicon single crystal Pending JP2009249234A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008099493A JP2009249234A (en) 2008-04-07 2008-04-07 Method for judging metal contamination in low-resistance silicon single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008099493A JP2009249234A (en) 2008-04-07 2008-04-07 Method for judging metal contamination in low-resistance silicon single crystal

Publications (1)

Publication Number Publication Date
JP2009249234A true JP2009249234A (en) 2009-10-29

Family

ID=41310277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008099493A Pending JP2009249234A (en) 2008-04-07 2008-04-07 Method for judging metal contamination in low-resistance silicon single crystal

Country Status (1)

Country Link
JP (1) JP2009249234A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023025224A1 (en) * 2021-08-25 2023-03-02 Tcl中环新能源科技股份有限公司 Method for automated control of material extraction in czochralski single crystal process

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023025224A1 (en) * 2021-08-25 2023-03-02 Tcl中环新能源科技股份有限公司 Method for automated control of material extraction in czochralski single crystal process

Similar Documents

Publication Publication Date Title
US8920560B2 (en) Method for manufacturing epitaxial wafer
US20120015799A1 (en) Method for producing sapphire single crystal, and sapphire single crystal obtained by the method
KR101330408B1 (en) Apparatus of ingot growing and method of the same
JPH11189495A (en) Silicon single crystal and its production
JP2008308383A (en) Method for manufacturing silicon single crystal
JP5283543B2 (en) Method for growing silicon single crystal
KR20180101586A (en) Manufacturing method of silicon single crystal
JP2022548592A (en) Method for growing nitrogen-doped single-crystal silicon ingots using continuous Czochralski method and single-crystal silicon ingots grown by this method
JP2011162436A (en) Method for pulling single crystal composed of silicon from melt contained in crucible, and single crystal produced thereby
JP5201083B2 (en) Method for growing silicon single crystal and method for manufacturing silicon semiconductor substrate
JP2011105537A (en) Method for producing silicon single crystal
KR102576552B1 (en) Methods for Growing Single Crystal Silicon Ingots Using the Continuous Czochralski Method
US20130269595A1 (en) Method for evaluating metal contamination of silicon single crystal
JP2011054821A (en) Method of producing epitaxial wafer and epitaxial wafer
JP2009249234A (en) Method for judging metal contamination in low-resistance silicon single crystal
JP5477188B2 (en) Silicon wafer PN determination method
JP2009249233A (en) Method for growing silicon single crystal
JP5067301B2 (en) Method for producing silicon single crystal
US20090293801A1 (en) Production method of silicon single crystal
JP5668786B2 (en) Method for growing silicon single crystal and method for producing silicon wafer
JP2004224582A (en) Method of manufacturing single crystal
JP2007210820A (en) Method of manufacturing silicon single crystal
JP5136253B2 (en) Method for growing silicon single crystal
JP2014058414A (en) Method for producing silicon single crystal for evaluation
KR101105509B1 (en) Method for manufacturing single crystal with uniform distribution of micro-defects and Apparatus for implementing the same