JP2009248175A - Tig welding method of high-strength steel using flux-containing wire - Google Patents

Tig welding method of high-strength steel using flux-containing wire Download PDF

Info

Publication number
JP2009248175A
JP2009248175A JP2008102482A JP2008102482A JP2009248175A JP 2009248175 A JP2009248175 A JP 2009248175A JP 2008102482 A JP2008102482 A JP 2008102482A JP 2008102482 A JP2008102482 A JP 2008102482A JP 2009248175 A JP2009248175 A JP 2009248175A
Authority
JP
Japan
Prior art keywords
wire
flux
welding
strength
toughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008102482A
Other languages
Japanese (ja)
Other versions
JP5157606B2 (en
Inventor
Shuichi Nakamura
修一 中村
Toshinaga Hasegawa
俊永 長谷川
Daisuke Omura
大輔 大村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2008102482A priority Critical patent/JP5157606B2/en
Publication of JP2009248175A publication Critical patent/JP2009248175A/en
Application granted granted Critical
Publication of JP5157606B2 publication Critical patent/JP5157606B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a TIG welding method of high-strength steel by using a flux-containing wire, the method capable of advantageously solving the problem of a decrease of tensile strength and toughness of a welding metal due to unevenness of a component in the welding metal. <P>SOLUTION: The flux wire has a steel-made outer skin having a cross sectional thickness of 0.30 to 1.0 mm; contains 0.04 to 0.4% (by mass% based on the whole mass of the wire) of C, 0.2 to 2.0% of Si, 0.3 to 2.0% of Mn and 0.002 to 0.05% of Al, and further contains one or two or more of 0.1 to 12% of Ni, 0.01 to 4.0% of Cr, 0.1 to 4.0% of Mo, 0.1 to 4.0% of W and 0.01 to 1.5% of Cu, the remaining components being iron and an inevitable impurity; and satisfies that a carbon equivalent is 0.40 to 1.5%, and that a difference of the carbon equivalent between the whole wire and the steel-made outer skin is not less than 0.10%. The TIG welding is conducted by using the flux and inputting welding heat of 1.70 to 4.0 kJ/cm×g per g of welding wire. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、鋼製外皮の内部に、少なくとも金属または合金を含有するフラックスが充填されたフラックス入りワイヤを用いた高強度鋼のTIG溶接に関し、特に、TIG溶接のアークによって溶融した鋼製外皮と内部のフラックスの混ざり合い不十分によって発生する溶接金属内の成分むらがなく、成分が均一な溶接金属を得ることで、溶接金属の強度、靭性を安定して確保することができる、フラックス入りワイヤを用いた高強度鋼のTIG溶接方法に関する。   The present invention relates to TIG welding of high-strength steel using a flux-cored wire in which a flux containing at least a metal or an alloy is filled inside the steel outer shell, and in particular, a steel outer shell melted by an arc of TIG welding Flux-cored wire that can ensure the strength and toughness of the weld metal stably by obtaining a weld metal with uniform components, with no component unevenness in the weld metal caused by insufficient mixing of the internal flux. The present invention relates to a TIG welding method for high-strength steel using steel.

近年、建設機械および産業機械などの構造物の大型化や軽量化の要求が多くなるにともない、使用される鋼板の高強度化が進み、最近では引張強さTSが780MPa級の高強度鋼も一般的に使用されるようになり、更なる高強度化の要求も高まっている。   In recent years, as the demands for larger and lighter structures such as construction machinery and industrial machinery have increased, the strength of steel plates used has increased, and recently, high strength steels with a tensile strength TS of 780 MPa are also available. It has come to be used generally, and the demand for higher strength is also increasing.

また、このような高強度鋼が使用される鋼構造物は、強度と同時に低温靭性が要求されることも多い。引張強さが780MPa級の鋼、または、それ以上の引張強さの高強度鋼を用いて溶接継手を作製する場合には、溶接継手の靭性は低下し、高強度・高靭性の溶接金属を得ることは困難となる。高強度・高靭性の溶接継手を得るために、溶接ワイヤの成分設計で合金元素を添加し、焼入れ性を高めることによって溶接金属の組織をベイナイト、または、マルテンサイト化することによって強度を確保しており、また、靭性については強度と共に靭性を維持させるのに効果的なNiを添加することにより、低温靭性を確保している。また、高強度鋼の溶接では、溶接金属中の含有水素による低温割れの発生が懸念される。溶接金属の低温割れを抑制し、高強度・高靭性の溶接継手を得るためのガスシールドアーク溶接としては、Arガスをシールドガスに使用し、溶接金属中の含有水素と酸素を低減できるTIG溶接が好ましい。   In addition, steel structures in which such high strength steel is used often require low temperature toughness as well as strength. When producing a welded joint using steel with a tensile strength of 780 MPa or high strength steel with a tensile strength higher than that, the toughness of the welded joint decreases, and a high strength and high toughness weld metal is required. It will be difficult to obtain. In order to obtain high strength and high toughness welded joints, alloy elements are added in the welding wire composition design, and the strength of the weld metal is ensured by bainite or martensite by improving the hardenability. In addition, with regard to toughness, low temperature toughness is ensured by adding Ni that is effective for maintaining toughness as well as strength. Moreover, in the welding of high-strength steel, there is a concern about the occurrence of low-temperature cracking due to hydrogen contained in the weld metal. TIG welding that can reduce the hydrogen and oxygen contained in the weld metal by using Ar gas as the shield gas for gas shielded arc welding to suppress the low temperature cracking of the weld metal and obtain a weld joint with high strength and toughness Is preferred.

最近、高強度ワイヤの技術開発により、引張強さが950MPa以上、かつ、−40℃での2mmVノッチシャルピー衝撃試験における吸収エネルギーvE−40が良好な溶接金属が得られる、ガスシールドアーク溶接用ソリッドワイヤが実現されている(特許文献1参照。)。 Recently, a high-strength wire technology development has yielded a weld metal that has a tensile strength of 950 MPa or more and a good absorbed energy vE- 40 in a 2 mmV notch Charpy impact test at -40 ° C. A wire is realized (see Patent Document 1).

しかし、このような高強度鋼用のソリッドワイヤは、素材の強度も高く、ソリッドワイヤ製造の伸線工程で、加工硬化も加わることによって断線しやすいため、ワイヤの伸線の一回の減面率を小さく制限し、伸線回数を増やし、さらに、伸線の速度を遅くしている。また、強度の確保のために焼入れ性を高める合金元素が含有されているため、焼鈍による軟化が小さいことから、伸線工程間の焼鈍の回数を増やしている。このようなことから高強度鋼用のソリッドワイヤは、生産性が悪く、また、製造コストが大きい問題がある。   However, such a solid wire for high-strength steel has high material strength and is easily broken by adding work hardening in the wire drawing process of solid wire manufacturing. The rate is limited small, the number of wire drawing is increased, and the wire drawing speed is slowed down. Moreover, since the alloy element which improves hardenability is contained in order to ensure strength, softening due to annealing is small, so the number of annealings during the wire drawing process is increased. For these reasons, the solid wire for high-strength steel has problems of low productivity and high manufacturing cost.

フラックス入りワイヤは、鋼製外皮に軟鋼、または、軟鋼と同等の強度レベルのものを使用し、鋼製外皮の中に入れるフラックスから焼入れ性を高める合金元素を含有させるため、高強度鋼用の溶接ワイヤであっても製造性は一般の軟鋼用の溶接ワイヤと変わらない。ただし、高強度鋼用のフラックス入りワイヤは、MIG溶接用、MAG溶接用(Ar+CO溶接あるいはCO溶接)で実現されているのみである。 Flux-cored wire uses mild steel or a steel steel with a strength level equivalent to that of mild steel, and contains an alloying element that enhances hardenability from the flux contained in the steel shell. Even if it is a welding wire, manufacturability is not different from the welding wire for general mild steel. However, the flux-cored wire for high-strength steel is only realized for MIG welding and MAG welding (Ar + CO 2 welding or CO 2 welding).

従来、MAG溶接では、低スパッタ性、低スラグ性の観点からフラックス入りワイヤが使用されている。一方、TIG溶接では、一般に、スパッタ、スラグが発生することがないことから、フラックス入りワイヤを溶接作業性の向上を目的に使用する例は報告されているが、ソリッドワイヤの代替として、フラックス入りワイヤが使用されることはなかった(例えば、特許文献2、3参照。)。それは、フラックス入りワイヤの内部フラックス中の金属または合金の粉末粒子表面の酸化物、または、フラックス造粒過程で粒子表面に吸着した水分によって、溶接時に溶接金属中の酸素量が増加するため、溶接金属の靭性及び延性が低下するためである。   Conventionally, in MAG welding, a flux-cored wire has been used from the viewpoint of low spattering properties and low slag properties. On the other hand, in TIG welding, since spatter and slag generally do not occur, an example of using a flux-cored wire for the purpose of improving welding workability has been reported. A wire was never used (for example, refer to Patent Documents 2 and 3). This is because the amount of oxygen in the weld metal increases during welding due to the oxide on the powder particle surface of the metal or alloy in the internal flux of the flux-cored wire or the moisture adsorbed on the particle surface during the flux granulation process. This is because the toughness and ductility of the metal are reduced.

一方、高強度鋼用のソリッドワイヤの生産性、製造コストの問題を解決するために、フラックス入りワイヤを使用したTIG溶接が要望されている。   On the other hand, in order to solve the problems of productivity and manufacturing cost of solid wire for high-strength steel, TIG welding using a flux-cored wire is desired.

本発明者らは、フラックス入りワイヤを使用して高強度鋼のTIG溶接を行うための検討に際し、アークによって溶融した鋼製外皮の成分と、内部の溶融したフラックスの金属または合金の成分の混合には、溶融池の攪拌の寄与が大であるところ、TIG溶接では溶融池の攪拌が小さく、また、凝固するまでの時間が短いため、十分に溶融池が攪拌されず、溶接金属内の一部に鋼製外皮の成分のまま残ることによる溶接金属内の成分むらの現象を見出した。高強度鋼用のフラックス入りワイヤでは、フラックスから焼入れ性を高める合金成分を添加することになるが、成分むら部では合金成分が混ざり合っていないため、周りと比較して焼入れ性が低く、ベイナイト、または、マルテンサイトとならずに強度が低い。このような成分むら部が存在した場合、引張試験の際に、強度が低い部分の面積率に応じて強度が低下し、溶接金属の成分から予測される強度を確保できない。また、靭性についても合金元素が混ざっている部分と成分むら部との境界に、強度差が生じているために、応力が集中しやすく、シャルピー衝撃試験での破壊の起点となって靭性劣化の原因となる。   In examining the TIG welding of high-strength steel using a flux-cored wire, the present inventors mixed the components of the steel outer shell melted by the arc and the components of the metal or alloy of the molten flux inside. In the case of TIG welding, the agitation of the molten pool is large and the agitation of the molten pool is small, and the time until solidification is short. We found the phenomenon of uneven component in the weld metal due to the steel outer component remaining in the part. In the flux-cored wire for high-strength steel, an alloy component that enhances hardenability is added from the flux, but the alloy component is not mixed in the uneven component portion, so the hardenability is low compared to the surroundings, and bainite Or, it does not become martensite and has low strength. When such a component uneven part exists, in the tensile test, the strength decreases according to the area ratio of the portion with low strength, and the strength predicted from the component of the weld metal cannot be secured. Also, with regard to toughness, since there is a difference in strength at the boundary between the part where the alloy elements are mixed and the component unevenness part, stress tends to concentrate, and it becomes the starting point of fracture in the Charpy impact test, resulting in deterioration of toughness. Cause.

特開2006−110581号公報JP 2006-110581 A 特開昭61−154793号公報JP 61-154793 A 特開平11−171592号公報Japanese Patent Laid-Open No. 11-171592

そこで、本発明は、上記背景技術の問題点に鑑み、フラックス入りワイヤを用いて高強度鋼をTIG溶接する場合に生じ易い溶接金属内の成分むら、延いては溶接金属の引張強さ、靭性等の特性低下の問題を有利に解決することのできる、フラックス入りワイヤを用いた高強度鋼のTIG溶接方法を提供することを目的とする。   Therefore, in view of the problems of the background art described above, the present invention provides component unevenness in the weld metal that tends to occur when TIG welding is performed on high-strength steel using a flux-cored wire, and consequently the tensile strength and toughness of the weld metal. An object of the present invention is to provide a TIG welding method for high-strength steel using a flux-cored wire, which can advantageously solve the problem of characteristic deterioration such as the above.

本発明は、上記技術的課題を解決するものであり、その発明の要件は下記のとおりである。   The present invention solves the above technical problems, and the requirements of the invention are as follows.

(1) 鋼製外皮の内部に、少なくとも金属または合金を含有するフラックスが充填されたフラックス入りワイヤを用いた高強度鋼のTIG溶接方法において、前記鋼製外皮の断面厚さが0.30〜1.0mmであり、ワイヤ全質量に対する質量%で、C:0.04〜0.4%、Si:0.2〜2.0%、Mn:0.3〜2.0%、P:0.02%以下、S:0.01%以下、Al:0.002〜0.05%を含み、さらに、Ni:0.1〜12%、Cr:0.01〜4.0%、Mo:0.1〜4.0%、W:0.1〜4.0%、Cu:0.01〜1.5%のうちの1種または2種以上を含有し、残部が鉄および不可避的不純物からなり、さらに、下記(式1)で示される炭素当量(Ceq)が0.40〜1.5%を満足するとともに、ワイヤ全体の成分の炭素当量と鋼製外皮の成分の炭素当量との差が0.10%以上を満足する、フラックス入りワイヤを用いて、下記(式2)で示される溶接ワイヤ1g当りの溶接入熱量が1.70〜4.0kJ/cm・gの範囲で、TIG溶接することを特徴とする、フラックス入りワイヤを用いた高強度鋼のTIG溶接方法。   (1) In the TIG welding method for high-strength steel using a flux-cored wire in which a flux containing at least a metal or an alloy is filled inside the steel outer shell, the cross-sectional thickness of the steel outer shell is 0.30 to 0.30. It is 1.0 mm, and is mass% with respect to the total mass of the wire, C: 0.04 to 0.4%, Si: 0.2 to 2.0%, Mn: 0.3 to 2.0%, P: 0 0.02% or less, S: 0.01% or less, Al: 0.002 to 0.05%, Ni: 0.1 to 12%, Cr: 0.01 to 4.0%, Mo: Contains one or more of 0.1 to 4.0%, W: 0.1 to 4.0%, Cu: 0.01 to 1.5%, the balance being iron and inevitable impurities Further, the carbon equivalent (Ceq) represented by the following (formula 1) satisfies 0.40 to 1.5%, and Using a flux-cored wire in which the difference between the carbon equivalent of the whole component and the carbon equivalent of the steel outer shell component satisfies 0.10% or more, welding per 1 g of welding wire represented by the following (formula 2) A TIG welding method for high-strength steel using a flux-cored wire, characterized in that TIG welding is performed in a heat amount range of 1.70 to 4.0 kJ / cm · g.

Ceq=[C]+[Mn]/6+[Si]/24+[Ni]/40+[Mo]/4+[Cr]/5+[W]/8+[Cu]/40+[Ti]/30+[Nb]/3+[V]/5+[Ta]/8+[Co]/40+5×[B] ・・・ (式1)
但し、[]付元素は、それぞれの元素の含有量(質量%)を表す。
Ceq = [C] + [Mn] / 6 + [Si] / 24 + [Ni] / 40 + [Mo] / 4 + [Cr] / 5 + [W] / 8 + [Cu] / 40 + [Ti] / 30 + [Nb] / 3+ [V] / 5 + [Ta] / 8 + [Co] / 40 + 5 × [B] (Formula 1)
However, the element with [] represents the content (% by mass) of each element.

[ワイヤ1g当りの溶接入熱量(kJ/cm・g)]=[溶接電流(A)]×[溶接電圧(V)]×60/[溶接速度(cm/min)]/[溶着量(g/min)]・・・(式2)     [Welding heat input per 1 g of wire (kJ / cm · g)] = [Welding current (A)] × [Welding voltage (V)] × 60 / [Welding speed (cm / min)] / [Welding amount (g / Min)] (Equation 2)

(2) 前記フラックス入りワイヤが、さらに、ワイヤ全質量に対する質量%で、Ti:0.005〜0.3%、Nb:0.005〜0.1%、V:0.005〜0.5%、Ta:0.005〜0.5%、Co:0.01〜6%、B:0.001〜0.015%のうちの1種または2種以上を含有することを特徴とする、上記(1)に記載のフラックス入りワイヤを用いた高強度鋼のTIG溶接方法。   (2) The flux-cored wire is further in mass% with respect to the total mass of the wire, Ti: 0.005-0.3%, Nb: 0.005-0.1%, V: 0.005-0.5. %, Ta: 0.005 to 0.5%, Co: 0.01 to 6%, and B: 0.001 to 0.015%. A TIG welding method for high-strength steel using the flux-cored wire described in (1) above.

(3) 前記フラックス入りワイヤが、さらに、ワイヤ全質量に対する質量%で、Ca:0.0002〜0.01%、REM:0.0002〜0.01%のうちの1種または2種を含有することを特徴とする、上記(1)または(2)に記載のフラックス入りワイヤを用いた高強度鋼のTIG溶接方法。   (3) The flux-cored wire further contains one or two of Ca: 0.0002 to 0.01% and REM: 0.0002 to 0.01% by mass% with respect to the total mass of the wire. A TIG welding method for high-strength steel using the flux-cored wire according to (1) or (2) above.

(4) 前記フラックス入りワイヤが、ホットワイヤであることを特徴とする、上記(1)ないし(3)のいずれか1項に記載のフラックス入りワイヤを用いた高強度鋼のTIG溶接方法。   (4) The TIG welding method for high-strength steel using the flux-cored wire according to any one of (1) to (3), wherein the flux-cored wire is a hot wire.

本発明によれば、フラックス入りワイヤをTIG溶接に適用した際に発生し易い溶接金属内の成分むらをワイヤと溶接条件を規定することで有利に解消して、均一成分の溶接金属が得られ、安定した引張強度と靭性を確保できる。このことで、生産性、製造コストに問題がある高強度鋼用のソリッドワイヤの代替として、フラックス入りワイヤを高強度鋼のTIG溶接に適用できるようになることから、産業上の効果は極めて大きい。   According to the present invention, the uneven component in the weld metal that is likely to occur when the flux-cored wire is applied to TIG welding is advantageously eliminated by defining the wire and the welding conditions, and a uniform component weld metal is obtained. Stable tensile strength and toughness can be secured. As a result, the flux-cored wire can be applied to TIG welding of high-strength steel as an alternative to solid wire for high-strength steel, which has problems in productivity and manufacturing cost. .

以下に本発明の実施の形態について説明をする。   Embodiments of the present invention will be described below.

一般に、溶接金属は基本的に凝固まま組織であり、鋼板のように熱間圧延等による細粒化工程や組織全体の焼き戻し処理工程により組織制御することができないため、溶接金属の高強度化への要求が高くなるにつれて、合金元素を溶接ワイヤに添加することで焼入れ性を高め、溶接金属の組織をベイナイト、または、マルテンサイト化することによって強度を確保している。また、強度と同時に低温靭性も要求されるため、強度と共に靭性を維持するのに有効なNiを溶接ワイヤに添加することによって低温靭性を確保している。   In general, weld metal is basically a solid structure and cannot be controlled by a fine graining process such as hot rolling or a tempering process for the entire structure like steel sheets, so the strength of the weld metal is increased. As demands on the metal alloy become higher, the hardenability is improved by adding alloy elements to the welding wire, and the strength is ensured by making the weld metal structure bainite or martensite. Moreover, since low temperature toughness is also required at the same time as strength, low temperature toughness is ensured by adding Ni effective for maintaining toughness as well as strength to the welding wire.

このような合金組成のソリッドワイヤを製造する場合は、素材中に含有する合金元素に起因して素材強度が高くなり、伸線工程での加工硬化も加わることで、断線しやすい。このため、ワイヤの伸線の一回の減面率を小さく制限し、伸線回数を増やし、さらに、伸線の速度を遅くする工夫が採られている。また、強度の確保のために焼入れ性を高める合金元素が含有されているため、焼鈍による軟化が小さいことから、伸線工程間の焼鈍の回数を増やしている。このようなことから、高強度鋼用のソリッドワイヤは、生産性が悪く、製造コストが増大している。   When a solid wire having such an alloy composition is manufactured, the strength of the material is increased due to the alloying elements contained in the material, and work hardening in the wire drawing process is also added, so that the wire is easily disconnected. For this reason, a device has been devised to limit the single area reduction rate of wire drawing, increase the number of wire drawing, and further reduce the speed of wire drawing. Moreover, since the alloy element which improves hardenability is contained in order to ensure strength, softening due to annealing is small, so the number of annealings during the wire drawing process is increased. For these reasons, the solid wire for high-strength steel has poor productivity and increased manufacturing costs.

そこで、本発明者らは、高強度鋼用のソリッドワイヤの製造上の問題点を鑑みて、フラックス入りワイヤを採用し、その鋼製外皮中の焼入れ性元素を高めずに、焼入れ性元素は外皮内に充填されるフラックス中に金属または合金として多く含有させることで、軟鋼用のフラックス入りワイヤと同等の生産性と製造コストを前提とし、フラックス入りワイヤを使用した高強度鋼のTIG溶接方法の検討を行った。   Therefore, in view of problems in manufacturing a solid wire for high-strength steel, the present inventors adopted a flux-cored wire, and without increasing the hardenability element in the steel outer shell, the hardenability element is TIG welding method for high-strength steel using flux-cored wire on the premise of the same productivity and manufacturing cost as flux-cored wire for mild steel by containing as a metal or alloy in the flux filled in the outer skin Was examined.

ソリッドワイヤ製造で生産性、製造コストに影響を与え始める引張強さは700MPa程度であることから、引張強さTSが700MPa以上、かつ、−40℃での2mmVノッチシャルピー衝撃試験による吸収エネルギーvE−40が27J以上を確保できることを本発明のTIG溶接方法に使用するフラックス入りワイヤの目標機械特性とする。 Since the tensile strength that begins to affect productivity and manufacturing cost in solid wire production is about 700 MPa, the absorbed energy vE by the 2 mmV notch Charpy impact test at −40 ° C. with a tensile strength TS of 700 MPa or more. That 40 can ensure 27J or more is the target mechanical property of the flux-cored wire used in the TIG welding method of the present invention.

TIG溶接はタングステン電極と母材の間に発生したアークの中に溶接ワイヤを挿入しアークの熱によってワイヤを溶かして溶接する。フラックス入りワイヤをTIG溶接に適用した場合、アークの熱で溶融した鋼製外皮の成分と内部のフラックスの合金元素成分が混ざるのは、拡散によって行われるが、TIG溶接では溶融池の攪拌が少なく、また、凝固するまでの時間が短いことから、鋼製外皮の成分と内部のフラックス合金元素成分が十分に混ざらず、鋼製外皮成分のまま残ることによる溶接金属内に成分むらの現象が生じる。図1は、溶接継手の断面であるが、1つのパス内の下部に成分が混ざらずに外皮成分のままに残ってしまった部分1が見られる。成分むら部は、合金成分が混ざっていないため、周りと比較して、焼入れ性が低く、ベイナイト、または、マルテンサイトとならずに強度が低い。このような成分むら部が存在した場合、引張試験の際に、強度が低い部分の面積率に応じて強度が低下し、溶接金属の成分から予測される強度を確保できない。また、靭性についても、成分むら部と焼きが入っている部分との境界に強度差が生じているために、応力が集中しやすく、シャルピー衝撃試験での破壊の起点となって靭性劣化の原因となることを知見した。   In TIG welding, a welding wire is inserted into an arc generated between a tungsten electrode and a base material, and the wire is melted and welded by the heat of the arc. When flux-cored wire is applied to TIG welding, the steel outer shell component melted by the heat of the arc and the alloy element component of the inner flux are mixed by diffusion, but in TIG welding the molten pool is less agitated In addition, since the time until solidification is short, the steel outer shell component and the internal flux alloy element component are not sufficiently mixed, and the phenomenon of uneven component in the weld metal occurs due to the steel outer shell component remaining. . FIG. 1 is a cross-section of a welded joint, and a portion 1 that remains as an outer skin component without being mixed with a component can be seen in a lower portion in one pass. Since the component unevenness part is not mixed with the alloy component, the hardenability is low as compared with the surroundings, and the strength is low without becoming bainite or martensite. When such a component uneven part exists, in the tensile test, the strength decreases according to the area ratio of the portion with low strength, and the strength predicted from the component of the weld metal cannot be secured. In addition, as for toughness, because there is a difference in strength at the boundary between the component unevenness part and the part containing baking, the stress tends to concentrate, causing fracture toughness in the Charpy impact test and causing toughness deterioration. I found out that

本発明は、鋼製外皮またはフラックスに所定範囲内の成分を含むフラックス入りワイヤをTIG溶接した際に、引張強さ及び靭性に影響を与える溶接金属内の成分むらを解消し、均一な成分の溶接金属を得ることで、安定した引張強さと靭性を確保することを課題にし、実験研究を重ねた結果、フラックス入りワイヤ断面の鋼製外皮厚と溶接ワイヤ1g当りの溶接入熱量を所定範囲内にすることによって、成分むらの無い溶接金属を得ることができることを見出した。   The present invention eliminates the unevenness of components in the weld metal that affects the tensile strength and toughness when TIG welding is performed on a steel core or a flux-cored wire containing a component within a predetermined range in the flux. The goal of ensuring stable tensile strength and toughness by obtaining a weld metal is the result of repeated experimental research. As a result, the steel sheath thickness of the cross-section of the flux-cored wire and the welding heat input per gram of welding wire are within the specified range. It was found that a weld metal having no component unevenness can be obtained.

本発明の溶接金属中の成分むらを解消できるワイヤと溶接条件の詳細について説明する。   The details of the wire and welding conditions that can eliminate the component unevenness in the weld metal of the present invention will be described.

下記溶接ワイヤ1g当りの溶接入熱条件を満足する溶接条件にて溶接することを前提として、フラックス入りワイヤ断面の鋼製外皮厚は、0.30〜1.0mmとすると良く、より好ましくは0.40〜0.80mmとするのが良い。ワイヤ外皮厚が0.30mmに満たないとワイヤ伸線工程で断線が生じることがあり、ワイヤの生産性が悪化する。また、1.0mmを超えると鋼製外皮が厚くなるため、内部のフラックスの金属または合金の成分と鋼製外皮の成分が拡散で均一に混ざるのに要する時間が長くなるため、均一に混ざる前に凝固し、溶接金属内に成分むらを発生する場合がある。なお、ここでの外皮厚は最終線径における値であり、伸線前、あるいは、途中においての外皮厚は関係ない。   On the premise that welding is performed under the welding conditions satisfying the welding heat input conditions per 1 g of the welding wire, the steel outer thickness of the cross section of the flux-cored wire may be 0.30 to 1.0 mm, more preferably 0. It is good to set it as 40-0.80 mm. If the wire skin thickness is less than 0.30 mm, wire breakage may occur in the wire drawing process, and wire productivity deteriorates. Also, if the thickness exceeds 1.0 mm, the steel outer shell becomes thicker, so the time required for the components of the metal or alloy of the internal flux and the steel outer shell components to be uniformly mixed by diffusion becomes longer. May solidify to cause unevenness in the weld metal. Here, the skin thickness is a value at the final wire diameter, and the skin thickness before or during drawing is not relevant.

上記条件を満足するワイヤにて溶接することを前提として、下記(式2)で示される溶接ワイヤ1g当りの溶接入熱量は、1.70〜4.0kJ/cm・gの範囲で溶接を行うと良く、より好ましくは1.8〜2.8kJ/cm・gとするのが良い。溶接ワイヤ1g当りの溶接入熱が1.70kJ/cm・gに満たないとTIG溶接の溶融池の攪拌がほとんど無く、溶接金属内に成分むらを発生する。また、4.0kJ/cm・gを超えると、溶接継手全体に与える入熱が高くなるため、溶接金属、または、溶接熱影響部の靭性が劣化する。なお、(2)式は、溶接分野で一般的に使用される単位溶接長さ当りに投入されるアーク熱エネルギーの指標である入熱量を溶着量で割ったものである。TIG溶接は、入熱量と溶着量を別個に制御できる。溶融池の温度、または凝固するまでの時間は、入熱量と溶着量が影響しているため、(2)式は、鋼製外皮の成分とワイヤ内部のフラックスの成分が均一に混ざるのに必要な条件を与える。
[ワイヤ1g当りの溶接入熱量(kJ/cm・g)]=[溶接電流(A)]×[溶接電圧(V)]×60/[溶接速度(cm/min)]/[溶着量(g/min)]・・・(式2)
Assuming that welding is performed with a wire that satisfies the above conditions, the welding heat input per 1 g of welding wire expressed by the following (formula 2) is in the range of 1.70 to 4.0 kJ / cm · g. More preferably, it is good to set it as 1.8-2.8 kJ / cm * g. If the welding heat input per 1 g of welding wire is less than 1.70 kJ / cm · g, there is almost no agitation of the molten pool of TIG welding and component unevenness occurs in the weld metal. On the other hand, if it exceeds 4.0 kJ / cm · g, the heat input to the entire welded joint becomes high, so that the toughness of the weld metal or the weld heat affected zone deteriorates. Equation (2) is obtained by dividing the amount of heat input, which is an index of arc heat energy input per unit weld length generally used in the welding field, by the amount of welding. In TIG welding, the amount of heat input and the amount of welding can be controlled separately. Since the heat input and the amount of welding influence the temperature of the molten pool or the time until solidification, the formula (2) is necessary to uniformly mix the components of the steel sheath and the flux inside the wire. Give the right conditions.
[Welding heat input per 1 g of wire (kJ / cm · g)] = [Welding current (A)] × [Welding voltage (V)] × 60 / [Welding speed (cm / min)] / [Welding amount (g / Min)] (Equation 2)

また、本発明においてホットワイヤを用いると、通常のTIG溶接よりも、溶融した溶接ワイヤの凝固するまでの時間が長くなり、成分むらの解消に効果がある。なお、本発明においては、ホットワイヤそのものについては、特に限定するものではなく、例えば、特開2003−320454号公報に開示されているような公知の技術を用いればよい。   In addition, when a hot wire is used in the present invention, it takes longer to solidify the molten welding wire than normal TIG welding, which is effective in eliminating component unevenness. In the present invention, the hot wire itself is not particularly limited, and for example, a known technique disclosed in Japanese Patent Laid-Open No. 2003-320454 may be used.

次に、本発明に使用されるフラックス入りワイヤの詳細について説明する。   Next, details of the flux-cored wire used in the present invention will be described.

フラックス入りワイヤの鋼製外皮の素材には、通常、強度が軟鋼と同等のものを使用し、強度を高めるのに必要な焼入れ性元素は、フラックス中に金属または合金として含有することで、フラックス入りワイヤの生産性と製造コストを一般の軟鋼用ワイヤと同等にしている。   The material of the steel sheath of the flux-cored wire is usually the same strength as mild steel, and the hardenability elements required to increase the strength are contained as a metal or alloy in the flux. The productivity and manufacturing cost of the cored wire are made equal to those of ordinary mild steel wires.

フラックス入りワイヤの内部のフラックスには、本発明で規定しているだけの他にスラグ形成剤、脱酸剤、Fe粉等の嵩増し剤が含まれていても効果に変わりはない。   Even if the flux inside the flux-cored wire contains a bulking agent such as a slag forming agent, a deoxidizing agent, and Fe powder in addition to those prescribed in the present invention, the effect is not changed.

また、フラックス入りワイヤの鋼製外皮がシームレスパイプ、または、かしめのどちらで製造されても本発明の効果に変わりはない。   In addition, the effect of the present invention does not change even if the steel sheath of the flux-cored wire is manufactured by either a seamless pipe or caulking.

次にフラックス入りワイヤの成分組成の限定理由について説明する。   Next, the reason for limiting the component composition of the flux-cored wire will be described.

先ず、フラックス入りワイヤを構成する鋼製外皮およびフラックス中に含有する成分およびその含有量の限定理由について説明する。   First, the steel outer shell constituting the flux-cored wire, the components contained in the flux, and the reasons for limiting the content thereof will be described.

なお、以下に示す各成分の含有量は、鋼製外皮およびフラックスをそれぞれ成分分析して測定された鋼製外皮中の成分含有量およびフラックス中の成分含有量と、フラックスの充填率(ワイヤ全質量に対するフラックス全質量の質量%)を基に、下記(式3)により求めることができる。
ワイヤ中に成分iの含有量(質量%)=鋼製外皮中の成分iの含有量(質量%)×(1−充填率)+フラックス中の成分iの含有量(質量%)×充填率 ・・・ (式3)
なお、上記フラックス全質量は、金属または合金として添加する元素の他に、スラグ形成剤およびアーク安定剤を含んだフラックス中の成分含有量の合計量を意味する。また、フラックス中の成分含有量とは、フラックス全質量に対する、溶接金属組成に寄与する金属、合金中の元素量の割合を意味する。
In addition, the content of each component shown below includes the component content in the steel sheath and the component content in the flux measured by component analysis of the steel sheath and the flux, and the filling rate of the flux (total wire Based on (mass% of total mass of flux with respect to mass)), it can be obtained by the following (formula 3).
Content of component i in wire (% by mass) = Content of component i in steel outer sheath (% by mass) × (1−filling rate) + Content of component i in flux (% by weight) × Filling rate ... (Formula 3)
In addition, the said flux total mass means the total amount of the component content in the flux containing the slag formation agent and the arc stabilizer other than the element added as a metal or an alloy. Moreover, the component content in a flux means the ratio of the element amount in the metal and alloy which contribute to a weld metal composition with respect to the flux total mass.

なお、以下の説明において「%」は特に説明がない限り、「質量%」を意味するものとする。また、以下のフラックス入りワイヤ中の各成分元素の含有量は、ワイヤ全体に対する割合(質量%)で示し、鋼製外皮およびフラックスの何れかまたは両方に含有する成分の合計量を意味する。   In the following description, “%” means “% by mass” unless otherwise specified. In addition, the content of each component element in the following flux-cored wire is expressed as a ratio (mass%) to the whole wire, and means the total amount of components contained in either or both of the steel outer sheath and the flux.

[C:0.04〜0.4%]
Cは、溶接金属の引張強さを高めるのに必須の元素であり、ソリッドワイヤではその製造性、生産性に悪影響を与えるために殆ど採用されないが、コアドワイヤなら問題ない範囲で、引張強さを確保するために、Cを0.04%以上含有させる。ただし、Cの過度な含有は溶接金属の靭性を著しく劣化させるため、溶接金属の靭性を確保するためには溶接ワイヤ中の上限を0.4%とする。従って、本発明において溶接ワイヤ中のC含有量は0.04〜0.4%とする。なお、ソリッドワイヤでの難製造性が顕著となる0.09%以上で、コアドワイヤ化する効果が顕著となり好ましい。
[C: 0.04 to 0.4%]
C is an element essential for increasing the tensile strength of the weld metal, and is hardly adopted for solid wires because it adversely affects the manufacturability and productivity. In order to ensure, C is contained 0.04% or more. However, since excessive inclusion of C significantly deteriorates the toughness of the weld metal, the upper limit in the welding wire is set to 0.4% in order to ensure the toughness of the weld metal. Therefore, in the present invention, the C content in the welding wire is 0.04 to 0.4%. In addition, at 0.09% or more where the difficulty of manufacturing with a solid wire becomes remarkable, the effect of forming a cored wire becomes remarkable, which is preferable.

[Si:0.2〜2.0%]
Siは、脱酸元素であり、溶接金属中のO量を低減して清浄度を高めるためには溶接ワイヤ中のSi含有量を0.2%以上とする必要がある。一方、溶接ワイヤ中のSi含有量が2.0%を超えて過剰になると、粗大な酸化物を生成し溶接金属の靭性を著しく劣化させる。このため、本発明において溶接ワイヤ中のSi含有量は0.2〜2.0%とする。
[Si: 0.2-2.0%]
Si is a deoxidizing element, and in order to reduce the amount of O in the weld metal and increase the cleanliness, the Si content in the welding wire needs to be 0.2% or more. On the other hand, if the Si content in the welding wire exceeds 2.0% and becomes excessive, a coarse oxide is generated and the toughness of the weld metal is significantly deteriorated. For this reason, in this invention, Si content in a welding wire shall be 0.2 to 2.0%.

[Mn:0.3〜2.0%]
Mnは、溶接金属の焼入性を確保して強度を高める、また、組織を微細化して靭性向上にも有効な元素であり、これらの効果を得るためには0.3%以上溶接ワイヤに含有する必要がある。一方、溶接ワイヤ中のMn含有量が2.0%を超えると、溶接金属中に残留オーステナイトが過剰に生成するため粒界脆化感受性が増加して溶接金属の靭性劣化、耐溶接割れ性劣化の可能性が高くなる。
このため、本発明においては、溶接ワイヤ中のMn含有量は0.3〜2.0%とする。
[Mn: 0.3 to 2.0%]
Mn is an element that ensures the hardenability of the weld metal and enhances the strength, and is also effective for improving the toughness by refining the structure. It is necessary to contain. On the other hand, if the Mn content in the welding wire exceeds 2.0%, residual austenite is excessively generated in the weld metal, so that the susceptibility to intergranular embrittlement increases and the weld metal deteriorates toughness and weld crack resistance. The possibility of is increased.
For this reason, in this invention, Mn content in a welding wire shall be 0.3-2.0%.

[P:0.02%以下]
Pは不純物元素であり、靭性を阻害するため極力低減する必要があるが、溶接ワイヤ中の含有量が0.02%以下では靭性への悪影響が許容できるため、本発明では溶接ワイヤ中のP含有量は0.02%以下とする。
[P: 0.02% or less]
P is an impurity element and needs to be reduced as much as possible in order to inhibit toughness. However, if the content in the welding wire is 0.02% or less, adverse effects on toughness can be tolerated. Therefore, in the present invention, P in the welding wire is acceptable. The content is 0.02% or less.

[S:0.01%以下]
Sも不純物元素であり、溶接金属中に過大に存在すると靭性と延性をともに劣化させるため、極力低減することが好ましい。
[S: 0.01% or less]
S is also an impurity element, and if it is excessively present in the weld metal, it deteriorates both toughness and ductility, so it is preferable to reduce it as much as possible.

溶接ヤイヤ中の含有量0.01%以下では靭性、延性への悪影響が許容できるため、本発明では溶接ワイヤ中のS含有量は0.01%以下とする。   If the content in the welded wire is 0.01% or less, adverse effects on toughness and ductility can be tolerated. Therefore, in the present invention, the S content in the welding wire is set to 0.01% or less.

[Al:0.002〜0.05%]
Alは脱酸元素であり、Siと同様、溶接金属中の酸素量を低減し、清浄度向上に効果がある。効果を発揮するためには溶接ワイヤ中に0.002%以上含有させる必要がある。一方、溶接ワイヤ中に0.05%を超えて過剰に含有させると、溶接金属中に粗大な酸化物を形成して、この粗大酸化物が靭性を著しく劣化させるため、好ましくない。従って、本発明においては、溶接ワイヤ中のAl含有量を0.002〜0.05%以下とする。
[Al: 0.002 to 0.05%]
Al is a deoxidizing element and, like Si, is effective in reducing the amount of oxygen in the weld metal and improving cleanliness. In order to exert the effect, it is necessary to contain 0.002% or more in the welding wire. On the other hand, if the content exceeds 0.05% in the welding wire, a coarse oxide is formed in the weld metal, and this coarse oxide significantly deteriorates the toughness, which is not preferable. Therefore, in this invention, Al content in a welding wire shall be 0.002-0.05% or less.

本発明において、目標とする溶接金属の引張強さと靭性を確保するためには、上記成分に加えて、さらに溶接ワイヤ中に、Ni、Cr、Mo、W、および、Cuのうちの1種、または2種以上を以下の所定範囲で含有される場合である。   In the present invention, in order to ensure the target tensile strength and toughness of the weld metal, in addition to the above components, the welding wire further includes one of Ni, Cr, Mo, W, and Cu, Or it is a case where 2 or more types are contained in the following predetermined ranges.

[Ni:0.1〜12%]
Niは、固溶靭化により溶接金属の他の成分、組織によらず安定して靭性を向上できる唯一の元素であり、特に、高強度の溶接金属で靭性を確保するには必要な元素であり、0.1%以上含有させる必要がある。
[Ni: 0.1 to 12%]
Ni is the only element that can stably improve toughness regardless of the other components and structure of the weld metal by solid solution toughening. In particular, it is an element necessary to ensure toughness with a high-strength weld metal. Yes, it is necessary to contain 0.1% or more.

Ni含有量が多いほど靭性を向上する上で有利ではあるが、溶接ワイヤ中の含有量が12%を超えると、靭性向上効果が飽和する。従って、本発明においては、溶接ワイヤ中のNi含有量を0.1〜12%に限定する。
なお、Niの効果が確実に靭性向上に寄与するためには1.0〜10.0%がより好ましい。さらに、低温での靭性を確実に確保するには、6.0〜10.0%がより好ましい。
A higher Ni content is advantageous in improving toughness, but if the content in the welding wire exceeds 12%, the effect of improving toughness is saturated. Therefore, in the present invention, the Ni content in the welding wire is limited to 0.1 to 12%.
In addition, in order for the effect of Ni to contribute to an improvement in toughness reliably, 1.0 to 10.0% is more preferable. Furthermore, in order to ensure toughness at low temperature, 6.0 to 10.0% is more preferable.

[Cr:0.01〜4.0%]
Crは、焼入れ性を高めることにより高強度化に有効な元素である。そのために溶接ワイヤ中に含有させる場合は、0.01%以上必要である。一方、4.0%を越えて過剰に含有させると、ベイナイトやマルテンサイトを不均一に硬化させ、靭性を著しく劣化させるため、本発明においては、溶接ワイヤ中の含有量の上限を4.0%とする。なお、焼入性を介して確実に高強度化を達成するためには、0.5%以上とするのが好ましい。また、Crの焼入れ性を介した高強度化への寄与は、2.5%を超えると漸減するため、2.5%以下とするのが好ましい。
[Cr: 0.01-4.0%]
Cr is an element effective for increasing the strength by enhancing the hardenability. Therefore, when it contains in a welding wire, 0.01% or more is required. On the other hand, if the content exceeds 4.0%, bainite and martensite are hardened unevenly and the toughness is remarkably deteriorated. Therefore, in the present invention, the upper limit of the content in the welding wire is 4.0. %. In order to surely achieve high strength through hardenability, it is preferably 0.5% or more. Moreover, since the contribution to the strengthening through the hardenability of Cr gradually decreases when it exceeds 2.5%, it is preferable to make it 2.5% or less.

[Mo:0.1〜4.0%]
Moは、溶接金属の引張強さTSを高めるための焼入性向上元素である。また、焼もどし抵抗性を増すことにより強度と靭性を確保することができる。これらの効果を発揮するためには、ワイヤ中にMoを0.1%以上含有させる必要がある。
一方、Moを溶接ワイヤ中に4.0%を超えて含有させると、溶接金属中に粗大な析出物が生じて溶接金属の靭性を劣化させる。このため、本発明において、溶接ワイヤ中のMo含有量は0.1〜4.0%とする。なお、確実に焼もどし抵抗の効果を発揮させるためには、0.3以上とするのが好ましい。また、焼もどし抵抗の効果は、2.0%を超えると漸減するため、2.0%以下とするのが好ましい。
[Mo: 0.1 to 4.0%]
Mo is a hardenability improving element for increasing the tensile strength TS of the weld metal. Moreover, strength and toughness can be ensured by increasing tempering resistance. In order to exert these effects, it is necessary to contain 0.1% or more of Mo in the wire.
On the other hand, if Mo is contained in the welding wire in an amount exceeding 4.0%, coarse precipitates are generated in the weld metal and the toughness of the weld metal is deteriorated. For this reason, in this invention, Mo content in a welding wire shall be 0.1-4.0%. In order to surely exert the effect of tempering resistance, it is preferably set to 0.3 or more. Moreover, since the effect of tempering resistance is gradually reduced when it exceeds 2.0%, it is preferable to make it 2.0% or less.

[W:0.1〜4.0%]
Wは、Moと同様に、焼入れ性向上元素である。また、微細化炭化物を形成して、析出強化により強度確保に有効である。これらの効果を発揮するためには、他の同様の効果を有する元素との複合効果を考慮しても最低限0.1%必要である。一方、4.0%を越えて溶接ワイヤ中に含有させると、靭性劣化が著しくなる。
[W: 0.1-4.0%]
W, like Mo, is a hardenability improving element. Moreover, it is effective for securing strength by forming fine carbides and strengthening the precipitation. In order to exert these effects, at least 0.1% is necessary even in consideration of combined effects with other elements having similar effects. On the other hand, if it exceeds 4.0% and is contained in the welding wire, the toughness deteriorates remarkably.

このため、本発明においては、溶接ワイヤ中にWを含有させる場合の含有量は0.1〜4.0%とする。なお、確実に析出強化により高強度化を達成するためには、0.5%以上とするのが好ましい。また、Wの析出強化による高強度化への寄与は、1.5%を超えると漸減するため、1.5%以下とするのが好ましい。   For this reason, in this invention, content when making W contain in a welding wire shall be 0.1-4.0%. In order to surely achieve high strength by precipitation strengthening, it is preferably 0.5% or more. Moreover, since the contribution to the strengthening by precipitation strengthening of W gradually decreases when it exceeds 1.5%, it is preferable to be 1.5% or less.

[Cu:0.01〜1.5%]
Cuは強度向上には有効な元素であり、溶接金属の強度向上効果を十分に得るためには、ワイヤ中に含有するCuの含有量、さらに表面にCuがメッキされる場合にはワイヤ中に含有するCuとメッキされるCuの合計含有量を0.01%以上とする必要がある。
[Cu: 0.01 to 1.5%]
Cu is an element effective for improving the strength, and in order to sufficiently obtain the effect of improving the strength of the weld metal, the content of Cu contained in the wire, and in the case where Cu is plated on the surface, The total content of Cu to be contained and Cu to be plated needs to be 0.01% or more.

一方、ワイヤ中のCu含有量が1.5%を超えると、ワイヤ表面にメッキされる場合、あるいは、ワイヤ中に含有する場合のいずれも、溶接金属の靭性が劣化するため好ましくない。   On the other hand, if the Cu content in the wire exceeds 1.5%, the case where the wire surface is plated or the case where it is contained in the wire is not preferable because the toughness of the weld metal deteriorates.

したがって、本発明では、ワイヤ中のCu含有量を0.01〜1.5%とするのが好ましい。   Therefore, in this invention, it is preferable that Cu content in a wire shall be 0.01 to 1.5%.

本発明で、目標とする引張強さTSと靭性を確保するには、以上の成分をそれぞれの含有量の規定範囲内で添加する際に、さらに、下記(式1)で示される溶接金属の焼入れ硬さを示す炭素当量(Ceq)が所定範囲内にワイヤ中の各成分の含有量となる場合である。
Ceq=[C]+[Mn]/6+[Si]/24+[Ni]/40+[Mo]/4+[Cr]/5+[W]/8+[Cu]/40+[Ti]/30+[Nb]/3+[V]/5+[Ta]/8+[Co]/40+5×[B] ・・・ (式1)
但し、[]付元素は、それぞれの元素の含有量(質量%)を表す。
In the present invention, in order to ensure the target tensile strength TS and toughness, when the above components are added within the specified ranges of the respective contents, the weld metal represented by the following (formula 1) is further added. This is a case where the carbon equivalent (Ceq) indicating the quenching hardness becomes the content of each component in the wire within a predetermined range.
Ceq = [C] + [Mn] / 6 + [Si] / 24 + [Ni] / 40 + [Mo] / 4 + [Cr] / 5 + [W] / 8 + [Cu] / 40 + [Ti] / 30 + [Nb] / 3+ [V] / 5 + [Ta] / 8 + [Co] / 40 + 5 × [B] (Formula 1)
However, the element with [] represents the content (% by mass) of each element.

目標の引張強さを確保するためには、溶接ワイヤ中に含有するC、Mn、Si、Ni、Mo、Cr、W、Cu、Ti、Nb、V、Ta、Co、及び、Bの含有量を基に上記(式1)で求められる焼入れ硬さの指標である炭素当量Ceqを0.40%以上に限定する必要がある。炭素当量Ceqが0.40%未満では、焼入れ硬さが不足するため目標の引張強さTSが700MPaを満足できない。炭素当量が大きい程焼入れ硬さが高くなるが、1.5%超えて過剰となると、溶接金属の靭性が劣化するため好ましくない。以上の理由により、本発明においては、溶接ワイヤの炭素当量(Ceq)を0.40〜1.5%に限定する。   In order to ensure the target tensile strength, the contents of C, Mn, Si, Ni, Mo, Cr, W, Cu, Ti, Nb, V, Ta, Co, and B contained in the welding wire Therefore, it is necessary to limit the carbon equivalent Ceq, which is an index of the quenching hardness obtained in the above (Equation 1), to 0.40% or more. When the carbon equivalent Ceq is less than 0.40%, the quenching hardness is insufficient and the target tensile strength TS cannot satisfy 700 MPa. The larger the carbon equivalent, the higher the quenching hardness. However, if the carbon equivalent exceeds 1.5%, the toughness of the weld metal deteriorates, which is not preferable. For the above reasons, in the present invention, the carbon equivalent (Ceq) of the welding wire is limited to 0.40 to 1.5%.

さらに、溶接金属内の成分むら部とその周辺部の強度差が引張強さ及び靭性に影響が出るためには、溶接ワイヤ全体の成分の炭素当量と鋼製外皮の成分の炭素当量の差の絶対値が0.10%以上となる場合である。0.10%未満の場合は、成分むら部とその周辺部の硬さの差が小さく、引張強さ、または、靭性への影響は小さい。   Furthermore, in order for the difference in strength between the uneven portion of the weld metal and its peripheral portion to affect the tensile strength and toughness, the difference between the carbon equivalent of the component of the entire welding wire and the carbon equivalent of the component of the steel sheath This is a case where the absolute value is 0.10% or more. If it is less than 0.10%, the difference in hardness between the component unevenness portion and its peripheral portion is small, and the influence on the tensile strength or toughness is small.

以上が本発明のTIG溶接に使用されるフラックス入りワイヤの基本成分元素及び制限すべき不純物の含有量の限定理由である。本発明は、さらに、溶接金属の特定の機械的性質の調整のために、必要に応じて、ワイヤ中に、さらに、Ti、Nb、V、Ta、Co、および、Bのうちの1種または2種以上を以下の含有量の範囲で溶接ワイヤ中に含有させた場合、引張強さ、または、靭性に影響を与える。   The above is the reason for limiting the basic component elements of the flux-cored wire used in the TIG welding of the present invention and the contents of impurities to be restricted. The present invention further provides for the adjustment of specific mechanical properties of the weld metal, optionally in the wire and further with one or more of Ti, Nb, V, Ta, Co and B, or When two or more kinds are contained in the welding wire in the following content range, the tensile strength or toughness is affected.

[Ti:0.005〜0.3%]
Tiは溶接金属において脱酸元素として有効であり、かつ溶接金属中の固溶Nを窒化物として固定して固溶Nの靭性への悪影響を緩和でき、さらにはTiNを形成して多層盛溶接の場合に溶接金属の再加熱領域における過熱オーステナイト粒を微細化する作用もある。これらのTiの作用により溶接金属の靭性向上効果を発揮するためには溶接ワイヤ中にTiを0.005%以上含有させる必要がある。一方、溶接ワイヤ中のTi含有量が0.3%を超えて過剰になると、溶接金属中の粗大な酸化物の形成、および、TiNの過度な析出による靭性劣化が顕著に生じる可能性が大となる。このため、本発明においては、溶接ワイヤ中のTi含有量を0.005〜0.3%とする。
[Ti: 0.005 to 0.3%]
Ti is effective as a deoxidizing element in the weld metal, and can fix the solid solution N in the weld metal as a nitride to alleviate the adverse effect on the toughness of the solid solution N. In this case, there is also an effect of refining superheated austenite grains in the reheat region of the weld metal. In order to exhibit the effect of improving the toughness of the weld metal by the action of Ti, it is necessary to contain 0.005% or more of Ti in the welding wire. On the other hand, if the Ti content in the welding wire exceeds 0.3% and excessive, there is a great possibility that the formation of coarse oxides in the weld metal and the toughness deterioration due to excessive precipitation of TiN will remarkably occur. It becomes. For this reason, in this invention, Ti content in a welding wire shall be 0.005-0.3%.

[Nb:0.005〜0.1%]
Nbもフェライト安定化元素であり、残留オーステナイト低減に有効であり、また、微細炭化物を形成して、析出強化により強度確保に有効である。これらの効果を発揮するために、他の同様の効果を有する元素との複合効果を考慮し、ワイヤ中のNb含有量を0.005%以上とする必要がある。一方、ワイヤ中のNb含有量が0.1%を越えると、溶接金属中に過剰に含有され、粗大な析出物を形成して靭性を劣化させるため好ましくない。
そのため、本発明においては、溶接ワイヤ中にNbを含有させる場合の含有量は0.005〜0.1%とする。
[Nb: 0.005 to 0.1%]
Nb is also a ferrite stabilizing element and is effective in reducing retained austenite, and is effective in securing strength by forming fine carbides and strengthening precipitation. In order to exert these effects, it is necessary to make the Nb content in the wire 0.005% or more in consideration of a composite effect with other elements having similar effects. On the other hand, if the Nb content in the wire exceeds 0.1%, it is not preferable because it is excessively contained in the weld metal and coarse precipitates are formed to deteriorate the toughness.
Therefore, in the present invention, the content when Nb is contained in the welding wire is 0.005 to 0.1%.

[V:0.005〜0.5%]
Vは微細炭化物を形成して、析出強化により強度確保に有効である。この効果を発揮するためには、他の同様の効果を有する元素との複合効果を考慮しても最低限0.005%必要である。一方、0.5%を越えて溶接ワイヤ中に含有させると、溶接金属中に過剰に含有され、粗大な析出物を形成して靭性を劣化させるため好ましくない。
そのため、本発明においては、溶接ワイヤ中にVを含有させる場合の含有量は0.005〜0.5%とする。
[V: 0.005 to 0.5%]
V forms fine carbides and is effective in securing strength by precipitation strengthening. In order to exhibit this effect, at least 0.005% is necessary even in consideration of the combined effect with other elements having similar effects. On the other hand, if it exceeds 0.5%, it is not preferable because it is excessively contained in the weld metal and coarse precipitates are formed to deteriorate the toughness.
Therefore, in the present invention, the content when V is contained in the welding wire is 0.005 to 0.5%.

[Ta:0.005〜0.5%]
Taも微細炭化物を形成して、析出強化により強度確保に有効である。これらの効果を発揮するためには、他の同様の効果を有する元素との複合効果を考慮しても最低限0.005%必要である。一方、0.5%を越えて溶接ワイヤ中に含有させると、溶接金属中に過剰に含有され、粗大な析出物を形成して靭性を劣化させるため好ましくない。そのため、本発明においては、溶接ワイヤ中にTaを含有させる場合の含有量は0.005〜0.5%とする。
[Ta: 0.005 to 0.5%]
Ta also forms fine carbides and is effective in securing strength by precipitation strengthening. In order to exert these effects, a minimum of 0.005% is necessary even in consideration of combined effects with other elements having similar effects. On the other hand, if it exceeds 0.5%, it is not preferable because it is excessively contained in the weld metal and coarse precipitates are formed to deteriorate the toughness. Therefore, in this invention, content in the case of containing Ta in a welding wire shall be 0.005-0.5%.

[Co:0.01〜6%]
Coは、溶接金属のベイナイトおよびマルテンサイトの変態点が極端に低下することを抑制する作用により、溶接金属の強度調整、および、溶接金属中の残留オーステナイトの生成を抑制するのに有効な元素である。これらの効果を確実に発揮するためには、溶接ワイヤ中に0.01%以上含有させる必要がある。一方、6%を越えてワイヤ中に含有させてもこれらの効果が飽和し、ワイヤの製造コストが過大となる。このため、本発明においては、溶接ワイヤ中にCoを含有させる場合はその含有量の範囲を0.01〜6%とするのが好ましい。
[Co: 0.01 to 6%]
Co is an element effective for adjusting the strength of the weld metal and suppressing the formation of retained austenite in the weld metal by suppressing the extremely lowering of the transformation points of the bainite and martensite of the weld metal. is there. In order to exert these effects reliably, it is necessary to contain 0.01% or more in the welding wire. On the other hand, if the content exceeds 6% in the wire, these effects are saturated and the manufacturing cost of the wire becomes excessive. Therefore, in the present invention, when Co is contained in the welding wire, the content range is preferably 0.01 to 6%.

[B:0.001〜0.015%]
Bは、焼入れ性を高めて溶接金属の強度向上に寄与する元素であり、また、溶接金属中の固溶Nと結びついてBNを形成して、溶接金属の靭性を向上する作用も有する。これらの効果を確実に発揮するためには、溶接ワイヤ中のB含有量は0.001%以上必要である。一方、溶接ワイヤ中のB含有量が0.015%超となると、溶接金属中のBが過剰となり、粗大なBNやFe23(C、B)等のB化合物を形成して靭性を逆に劣化させるため、好ましくない。そこで、本発明においては、溶接ワイヤ中にBを含有させる場合は、B含有量を0.001〜0.015%に限定するのがこのましい。
[B: 0.001 to 0.015%]
B is an element that enhances the hardenability and contributes to the improvement of the strength of the weld metal, and also has the effect of improving the toughness of the weld metal by forming BN in combination with the solid solution N in the weld metal. In order to exert these effects reliably, the B content in the welding wire needs to be 0.001% or more. On the other hand, when the B content in the welding wire exceeds 0.015%, the B in the weld metal becomes excessive and forms coarse B compounds such as BN and Fe 23 (C, B) 6 to reverse the toughness. It is not preferable because it deteriorates. Therefore, in the present invention, when B is contained in the welding wire, it is preferable to limit the B content to 0.001 to 0.015%.

[CaおよびREMのうちの1種または2種以上:0.0002〜0.01%]
本発明では、上記成分に加えて、さらに、溶接金属の延性、靭性を調整する目的で、必要に応じて、Ca、および、REMのうちの1種または2種以上を以下の範囲内でワイヤ中に含有させることができる。
[One or more of Ca and REM: 0.0002 to 0.01%]
In the present invention, in addition to the above components, for the purpose of adjusting the ductility and toughness of the weld metal, one or more of Ca and REM may be used within the following ranges as necessary. It can be contained.

Ca、および、REMはいずれも硫化物の構造を変化させ、また溶接金属中での硫化物、酸化物のサイズを微細化して延性及び靭性向上に有効である。これらの効果を十分に発揮するためには、Ca、および、REMの含有量はいずれも0.0002%以上とするのが好ましい。一方、ワイヤ中にCa、および、REMを0.01%を超えて過剰に含有すると、硫化物や酸化物の粗大化を生じ、延性、靭性の劣化を招き、また、溶接ビード形状の劣化、溶接性の劣化の可能性も生じる。このため、ワイヤ中のCa、および、REMの含有量の上限はいずれも0.01%とするのが好ましい。   Both Ca and REM are effective in improving ductility and toughness by changing the structure of sulfides and reducing the size of sulfides and oxides in the weld metal. In order to fully exhibit these effects, it is preferable that the contents of Ca and REM are both 0.0002% or more. On the other hand, if Ca and REM are excessively contained in excess of 0.01% in the wire, sulfide and oxide are coarsened, ductility and toughness are deteriorated, and weld bead shape is deteriorated. There is also the possibility of deterioration of weldability. For this reason, it is preferable that the upper limit of the content of Ca and REM in the wire is 0.01%.

本発明の効果を実施例によりさらに詳細に説明する。表1に示す化学組成を示すフラックス入り溶接ワイヤを用いてTIG溶接を行い、溶接金属特性と溶接金属内の成分むら発生有無について調査した。   The effects of the present invention will be described in more detail with reference to examples. TIG welding was performed using a flux-cored welding wire having the chemical composition shown in Table 1, and the weld metal characteristics and the presence / absence of component unevenness in the weld metal were investigated.

Figure 2009248175
Figure 2009248175

フラックス入りワイヤは、表2に示す鋼製外皮を使用し、表1の化学組成となるようにフラックス中に金属または合金と、充填率の調整の目的でFe粉等の嵩増し剤を所要量添加した後、断面を円形に加工しつつ、繋ぎ目にシーム溶接を行いスリット状の隙間のないワイヤ(以下、シームレスワイヤという。)と、かしめによる機械締結したワイヤを作製した。その後、ワイヤは冷間引き抜き加工により1.2mm〜2.8mmの最終ワイヤ径とした。冷間加工途中に加工硬化したワイヤの軟化を目的に焼鈍を施している。   The flux-cored wire uses the steel outer skin shown in Table 2, and the required amount of metal or alloy in the flux and a bulking agent such as Fe powder for the purpose of adjusting the filling rate so as to have the chemical composition shown in Table 1. After the addition, seam welding was performed at the joint while processing the cross section into a circle, and a slit-free wire (hereinafter referred to as a seamless wire) and a machine-fastened wire by caulking were produced. Thereafter, the wire was cold drawn to a final wire diameter of 1.2 mm to 2.8 mm. Annealing is performed for the purpose of softening the work-hardened wire during the cold working.

Figure 2009248175
Figure 2009248175

ソリッドワイヤ製造で生産性、製造コストに影響を与え始める引張強さTSが700MPa程度であることから、引張強さTSが700MPa以上、かつ、−40℃での2mmVノッチシャルピー衝撃試験による吸収エネルギーvE−40が27J以上を確保できることを本発明のTIG溶接方法に使用するフラックス入りワイヤの目標機械特性とした。   Since the tensile strength TS that begins to affect the productivity and manufacturing cost in solid wire production is about 700 MPa, the absorbed energy vE by the 2 mm V notch Charpy impact test at −40 ° C. with a tensile strength TS of 700 MPa or more. It was made into the target mechanical characteristic of the flux cored wire used for the TIG welding method of this invention that -40 can ensure 27J or more.

図1は本発明が課題とする、フラックス入りワイヤを用いた高強度鋼のTIG溶接方法で生じ易い、溶接金属成分の混合不足のために残留した鋼製外皮成分主体の成分むら部を、溶接部の断面図で模式的に示す図で、図2は実施例に用いた溶接継手の開先形状と2mmVノッチシャルピー衝撃試験片の採取要領とを模式的に示す図である。鋼板はSM490B材を使用し、溶接ワイヤ成分の希釈の影響を極力低減するために試験に使用するのと同じ溶接ワイヤで鋼板2の開先部と裏当材3表面にバタリングを実施した。バタリングを実施した鋼板を図1、図2に示すように開先角度45°、ルートギャップ12mmのV開先で組み立て、シールドガスが100%ArのTIG溶接で多層盛溶接を行い、溶接継手を作製し、丸棒引張試験、2mmVノッチシャルピー衝撃試験により溶接金属の強度、靭性を評価した。図1に成分むら部1を示した。   FIG. 1 is a schematic view of a non-uniform portion of a steel shell component mainly remaining due to insufficient mixing of weld metal components, which is likely to occur in the TIG welding method of high-strength steel using a flux-cored wire, which is an object of the present invention. FIG. 2 is a diagram schematically showing the groove shape of the welded joint used in the example and the sampling procedure for a 2 mm V notch Charpy impact test piece. The steel plate used was SM490B material and was subjected to buttering on the groove portion of the steel plate 2 and the surface of the backing material 3 with the same welding wire used in the test in order to reduce the influence of dilution of the welding wire component as much as possible. As shown in FIGS. 1 and 2, the buttered steel plate is assembled with a groove angle of 45 ° and a V groove with a root gap of 12 mm, multi-layer welding is performed by TIG welding with a shield gas of 100% Ar, and a welded joint is obtained. The strength and toughness of the weld metal were evaluated by a round bar tensile test and a 2 mm V notch Charpy impact test. FIG. 1 shows an uneven component 1.

図2に示すように、裏当材3を用いて溶接した溶接後の継手の溶接金属4から2mmVノッチシャルピー衝撃試験片5および丸棒引張試験片6を採取し、機械的性質を調査した。引張強度の測定は、鋼板2の板厚中心および溶接金属幅中央のそれぞれから、平行部径が6mm、平行部長さが32mmの丸棒引張試験片6を試験片長手方向が溶接ビード長手方向に平行になるように採取し、室温において引張試験を行うことにより測定した。溶接金属によっては、明確な降伏点、降伏伸びを生じなかったものがあり、その場合は、降伏応力YPとして0.2%耐力(0.2%P.S)を採用した。   As shown in FIG. 2, a 2 mm V notch Charpy impact test piece 5 and a round bar tensile test piece 6 were sampled from the weld metal 4 of the welded joint welded with the backing material 3 and examined for mechanical properties. Tensile strength is measured from the center of the thickness of the steel plate 2 and the center of the weld metal width of a round bar tensile test piece 6 having a parallel part diameter of 6 mm and a parallel part length of 32 mm. The samples were taken in parallel and measured by performing a tensile test at room temperature. Some weld metals did not produce a clear yield point or yield elongation. In that case, 0.2% proof stress (0.2% PS) was adopted as the yield stress YP.

靭性は、図2に示すように、試験片の中心が鋼板2の板厚1/4位置7で、ノッチが溶接金属4の幅方向中央にくるような位置から10mm×10mm角で、長辺長さ:55mmの試験片5を採取し、2mmVノッチシャルピー衝撃試験の−40℃における平均吸収エネルギーvE−40(3本の測定値の平均)により評価した。   As shown in FIG. 2, the toughness is 10 mm × 10 mm square from the position where the center of the test piece is at the thickness ¼ position 7 of the steel plate 2 and the notch is at the center in the width direction of the weld metal 4. A test piece 5 having a length of 55 mm was collected and evaluated by an average absorbed energy vE-40 (average of three measured values) at −40 ° C. in a 2 mmV notch Charpy impact test.

成分むらの有無の判定について次のように実施した。溶接ビード断面のマクロ試験片を数箇所切り出し、鏡面研磨、ナイタール腐食を行い、光学顕微鏡観察により成分むらの有無を判定した。成分むら部は鋼製外皮の成分ままであるため合金元素が殆ど入っておらず、周囲と比較して、明らかに組織や腐食のされ方が異なるため、判定は容易である。   Determination of the presence or absence of component unevenness was performed as follows. Several macro test pieces with a weld bead cross section were cut out, subjected to mirror polishing and nital corrosion, and the presence or absence of component unevenness was determined by observation with an optical microscope. Since the component unevenness portion is a component of the steel outer shell, almost no alloy element is contained, and the structure and the manner of corrosion are clearly different as compared with the surroundings, so that the determination is easy.

表3に表1の溶接ワイヤ番号Y1A〜Y7Aの各TIG溶接条件と、表4に各溶接条件で作製した溶接継手の機械試験結果を示す。Y6Aは鋼製外皮の厚さが薄いためワイヤの伸線工程で断線が発生した。   Table 3 shows the TIG welding conditions of welding wire numbers Y1A to Y7A in Table 1, and Table 4 shows the mechanical test results of welded joints produced under the welding conditions. Since the thickness of the steel outer shell of Y6A was thin, breakage occurred in the wire drawing process.

Figure 2009248175
Figure 2009248175

Figure 2009248175
Figure 2009248175

ワイヤ番号Y1Aを使用した継手記号Y1A−1は、本発明を満足しており、成分むらは無く、機械特性も安定している。継手記号Y1A−2はワイヤ1g当りの溶接入熱量が不足しているため、鋼製外皮と内部フラックスの成分が混ざらずに鋼製外皮の成分のまま残ってしまうことにより、溶接金属内に成分むらが確認された。Y1A−2の溶接継手から引張試験片を採取し、試験を実施したところ、同じワイヤ番号Y1Aを使用した継手Y1A−1より引張強さにバラツキが見られた。引張強さが低値だった引張試験後の試験片Y1A−2.1の断面を調査したところ、明らかに合金成分の入っていない成分むらがあり、成分むら部の面積率に応じて引張強さが低くなった。   The joint symbol Y1A-1 using the wire number Y1A satisfies the present invention, has no component unevenness, and has stable mechanical characteristics. Since the joint symbol Y1A-2 has insufficient welding heat input per 1 g of wire, the steel outer sheath and the internal flux components are not mixed and remain in the steel outer sheath, so that the components in the weld metal Unevenness was confirmed. Tensile test specimens were collected from the welded joint of Y1A-2 and tested. As a result, the tensile strength was more varied than the joint Y1A-1 using the same wire number Y1A. When the cross section of the test piece Y1A-2.1 after the tensile test where the tensile strength was low was investigated, there was clearly a component unevenness that did not contain the alloy component, and the tensile strength according to the area ratio of the component uneven portion Became lower.

継手記号Y1A−2をシャルピー試験したところ、シャルピー試験片Y1A−2.3でvE−40が他のものと比較して低値となった。破壊の起点を調査したところ、破壊の起点は成分むらとの境界部であり、成分むら部との周辺部の強度差によって応力が集中し破壊が起こったため、vE−40が低値となった。   When the joint symbol Y1A-2 was subjected to a Charpy test, the value of vE-40 in the Charpy test piece Y1A-2.3 was lower than the other values. As a result of investigating the starting point of the fracture, the starting point of the fracture was the boundary part with the component unevenness, and the stress was concentrated due to the strength difference between the peripheral part of the component uneven part and the fracture occurred, so the vE-40 became low. .

継手記号Y1A−3は、ワイヤ1g当りの溶接入熱量が過大となり、継手全体に与える入熱が過大であるため、靭性が大幅に劣化し、vE−40の目標値を下回っている。   In the joint symbol Y1A-3, the welding heat input per 1 g of the wire is excessive, and the heat input applied to the entire joint is excessive, so that the toughness is significantly deteriorated and is lower than the target value of vE-40.

継手記号Y1A−4は、ホットワイヤを使用し、成分むらは無く、安定した機械特性が得られた。   The joint symbol Y1A-4 used a hot wire, had no component unevenness, and obtained stable mechanical characteristics.

ワイヤ番号Y2Aを使用した継手記号Y2A−1は、本発明を満足しており、成分むらは無く、機械特性も安定している。継手記号Y2A−2は、ワイヤ1g当りの溶接入熱量が低いため成分むらが発生し、機械特性のバラツキも大きい。Y2A−3は、ワイヤ1g当りの溶接入熱量が過大となり、継手全体に与える入熱が過大であるため、靭性が大幅に劣化し、vE−40の目標値を下回った。Y2A−4は、ホットワイヤを使用し、安定した機械特性が得られた。   The joint symbol Y2A-1 using the wire number Y2A satisfies the present invention, has no component unevenness, and has stable mechanical characteristics. The joint symbol Y2A-2 has a low amount of welding heat input per gram of wire, resulting in component unevenness and large variations in mechanical properties. In Y2A-3, the amount of welding heat input per 1 g of wire was excessive, and the heat input applied to the entire joint was excessive, so that the toughness was greatly deteriorated and fell below the target value of vE-40. Y2A-4 used a hot wire, and stable mechanical properties were obtained.

ワイヤ番号Y3Aを使用した継手記号Y3A−1は、本発明を満足しており、成分むらは無く、機械特性も安定している。継手記号Y3A−2は、ワイヤ1g当りの溶接入熱量が低いため成分むらが発生し、機械特性のバラツキも大きい。Y3A−3は、ワイヤ1g当りの溶接入熱量が過大となり、継手全体に与える入熱が過大であるため、靭性が大幅に劣化し、vE−40の目標値を下回った。   The joint symbol Y3A-1 using the wire number Y3A satisfies the present invention, has no component unevenness, and has stable mechanical properties. Since the joint symbol Y3A-2 has a low amount of welding heat input per gram of wire, the component unevenness occurs, and the variation in mechanical characteristics is also large. In Y3A-3, the amount of welding heat input per 1 g of wire was excessive, and the heat input applied to the entire joint was excessive, so that the toughness was greatly deteriorated and fell below the target value of vE-40.

ワイヤ番号Y4Aを使用した継手記号Y4A−1は、本発明を満足しており、成分むらは無く、機械特性も安定している。継手記号Y4A−2は、ワイヤ1g当りの溶接入熱量が低いため成分むらが発生し、機械特性のバラツキも大きい。Y4A−3は、ワイヤ1g当りの溶接入熱量が過大となり、継手全体に与える入熱が過大であるため、靭性が大幅に劣化し、vE−40の目標値を下回った。   The joint symbol Y4A-1 using the wire number Y4A satisfies the present invention, has no component unevenness, and has stable mechanical properties. The joint symbol Y4A-2 has a low amount of welding heat input per gram of wire, so that component unevenness occurs and the mechanical characteristics vary greatly. In Y4A-3, the amount of welding heat input per 1 g of wire was excessive, and the heat input applied to the entire joint was excessive, so that the toughness was significantly deteriorated and fell below the target value of vE-40.

ワイヤ番号Y5Aを使用した継手記号Y5A−1、Y5A−2はワイヤ1g当りの溶接入熱量の条件は満たしているが、ワイヤの鋼製外皮の厚さが1.03mmと厚いため、ワイヤの外皮成分と内部のフラックスの合金成分が拡散で十分に混ざらず、成分むらが発生した。このため、機械特性のバラツキが大きくなった。Y5A−3は、ワイヤ1g当りの溶接入熱量が過大となり、継手全体に与える入熱が過大であるため、靭性が大幅に劣化し、vE−40の目標値を下回った。   The joint symbols Y5A-1 and Y5A-2 using the wire number Y5A satisfy the welding heat input requirements per gram of wire, but because the thickness of the steel outer sheath of the wire is as large as 1.03 mm, the outer sheath of the wire The component and the alloy component of the internal flux were not sufficiently mixed by diffusion, and component unevenness occurred. For this reason, the variation in mechanical characteristics has increased. In Y5A-3, the amount of welding heat input per 1 g of wire was excessive, and the heat input applied to the entire joint was excessive, so that the toughness was greatly deteriorated and fell below the target value of vE-40.

ワイヤ番号Y7Aを使用した継手記号Y7A−1は本発明を満足しており、成分むらは無く、機械特性も安定している。継手記号Y7A−2は、溶接金属内に成分むらが確認されたが、ワイヤ記号Y7Aのワイヤ全体の成分の炭素当量と構成外皮の成分の炭素当量の差が、0.10%以下であるため、成分むら部とその周辺の強度差が小さく、引張強さ、靭性に影響を及ぼさない。   The joint symbol Y7A-1 using the wire number Y7A satisfies the present invention, has no component unevenness, and has stable mechanical characteristics. In the joint symbol Y7A-2, although the component unevenness was confirmed in the weld metal, the difference between the carbon equivalent of the component of the whole wire of the wire symbol Y7A and the carbon equivalent of the component of the constituent sheath is 0.10% or less. The difference in strength between the component unevenness part and its periphery is small, and the tensile strength and toughness are not affected.

表5に表1の溶接ワイヤを用いて溶接継手を作製した溶接条件及び機械試験結果を示す。溶接ワイヤY1B〜Y26Bを使用した継手記号Y1B−1〜Y26B−1は本発明のフラックス入りワイヤのTIG溶接方法において、ソリッドワイヤ製造で生産性、製造コストに影響を与え始める引張強さTSが700MPa以上、かつ、−40℃での2mmVノッチシャルピー衝撃試験による吸収エネルギーvE−40が27J以上を確保できている。   Table 5 shows welding conditions and mechanical test results for producing welded joints using the welding wires in Table 1. The joint symbols Y1B-1 to Y26B-1 using the welding wires Y1B to Y26B are 700 MPa of tensile strength TS that starts to affect productivity and manufacturing cost in the production of solid wires in the TIG welding method for flux cored wires of the present invention. In addition, the absorbed energy vE-40 by the 2 mmV notch Charpy impact test at −40 ° C. is 27 J or more.

Figure 2009248175
Figure 2009248175

一方、溶接ワイヤY1C〜Y12Cを使用した継手記号Y1C−1〜Y12C−1は本発明のTIG溶接方法に使用されるフラックス入りワイヤの組成が本発明を満足していないために、引張強さ、あるいは、靭性が十分でない。   On the other hand, the joint symbols Y1C-1 to Y12C-1 using the welding wires Y1C to Y12C are not suitable for the composition of the flux-cored wire used in the TIG welding method of the present invention. Or toughness is not enough.

ワイヤ番号Y1Cを使用した継手記号Y1C−1は、溶接ワイヤのC含有量が不足のため引張強さが本発明の目標値(TS≧700MPa)を下回っている。   In the joint symbol Y1C-1 using the wire number Y1C, the tensile strength is lower than the target value (TS ≧ 700 MPa) of the present invention because the C content of the welding wire is insufficient.

ワイヤ番号Y2Cを使用した継手記号Y2C−1は、溶接ワイヤのC含有量が過大であるため、溶接金属の靭性vE−40が大幅に劣化している。   In the joint symbol Y2C-1 using the wire number Y2C, since the C content of the welding wire is excessive, the toughness vE-40 of the weld metal is greatly deteriorated.

ワイヤ番号Y3Cを使用した継手記号Y3C−1は、溶接ワイヤのSi含有量が不足のため、脱酸の程度が悪くなり、靭性が劣化した。   In the joint symbol Y3C-1 using the wire number Y3C, the degree of deoxidation deteriorated and the toughness deteriorated because the Si content of the welding wire was insufficient.

ワイヤ番号Y4Cを使用した継手記号Y4C−1は、溶接ワイヤのSi含有量が過大であるため、靭性が著しく劣化した。   The joint symbol Y4C-1 using the wire number Y4C was significantly deteriorated in toughness because the Si content of the welding wire was excessive.

ワイヤ番号Y5Cを使用した継手記号Y5C−1は、溶接ワイヤのMn含有量が不足のため焼き入らず、引張強さの目標値を下回った。   The joint symbol Y5C-1 using the wire number Y5C was not hardened because the Mn content of the welding wire was insufficient, and was below the target value of tensile strength.

ワイヤ番号Y6Cを使用した継手記号Y6C−1は、溶接ワイヤのMn含有量が過大であるため、靭性が著しく劣化した。   In the joint symbol Y6C-1 using the wire number Y6C, since the Mn content of the welding wire is excessive, the toughness is remarkably deteriorated.

ワイヤ番号Y7Cを使用した継手記号Y7C−1は、溶接ワイヤのP含有量が過大であるため、靭性が著しく劣化した。   The joint symbol Y7C-1 using the wire number Y7C was significantly deteriorated in toughness because the P content of the welding wire was excessive.

ワイヤ番号Y8Cを使用した継手記号Y8C−1は、溶接ワイヤのS含有量が過大であるため、靭性が著しく劣化した。   In the joint symbol Y8C-1 using the wire number Y8C, the toughness deteriorated remarkably because the S content of the welding wire was excessive.

ワイヤ番号Y9Cを使用した継手記号Y9C−1は、溶接ワイヤのAl含有量が過大であるため、靭性が著しく劣化した。   In the joint symbol Y9C-1 using the wire number Y9C, the toughness deteriorated remarkably because the Al content of the welding wire was excessive.

ワイヤ番号Y10Cを使用した継手記号Y10C−1は、溶接ワイヤに、Ni、Cr、Mo、W、Cuの何れも所要量含まなかったため、焼入れ性が不足し、引張強さが目標値を下回った。   The joint symbol Y10C-1 using the wire number Y10C did not contain any required amounts of Ni, Cr, Mo, W, and Cu in the welding wire, so the hardenability was insufficient and the tensile strength was below the target value. .

ワイヤ番号Y11Cを使用した継手記号Y11C−1は、溶接ワイヤのCeqが過小であるため、焼入れによる強度向上効果が十分に得られず、引張強さが目標値を下回った。   In the joint symbol Y11C-1 using the wire number Y11C, since the Ceq of the welding wire is too small, the strength improvement effect by quenching cannot be sufficiently obtained, and the tensile strength is lower than the target value.

ワイヤ番号Y12Cを使用した継手記号Y12C−1は溶接ワイヤのCeqが過大であるため、靭性が著しく劣化した。   In joint symbol Y12C-1 using wire number Y12C, the Ceq of the welding wire is excessive, so that the toughness is remarkably deteriorated.

以上の実施例から、本発明によれば、フラックス入りワイヤをTIG溶接に適用した場合に生じる溶接金属内の成分むらを解消し、均一な溶接金属を得ることができることから安定した引張強さと靭性を確保できる。このことで、生産性、製造コストに問題がある高強度鋼用のソリッドワイヤの代替としてフラックス入りワイヤをTIG溶接に適用できるようになることは、明白である。   From the above examples, according to the present invention, it is possible to eliminate the component unevenness in the weld metal when the flux-cored wire is applied to TIG welding, and to obtain a uniform weld metal, so that stable tensile strength and toughness can be obtained. Can be secured. This clearly makes it possible to apply a flux-cored wire to TIG welding as an alternative to a solid wire for high-strength steel, which has problems in productivity and manufacturing cost.

本発明が課題とする、フラックス入りワイヤを用いた高強度鋼のTIG溶接方法で生じ易い、溶接金属成分の混合不足のために残留した鋼製外皮成分主体の成分むら部を、溶接部の断面図で模式的に示す図である。A cross section of a welded portion of a steel shell component mainly remaining due to insufficient mixing of weld metal components, which is likely to occur in the TIG welding method of high-strength steel using a flux-cored wire, which is an object of the present invention. It is a figure typically shown with a figure. 実施例に用いた溶接継手の開先形状と2mmVノッチシャルピー衝撃試験片の採取要領とを模式的に示す図である。It is a figure which shows typically the groove shape of the welded joint used for the Example, and the sampling procedure of a 2mmV notch Charpy impact test piece.

符号の説明Explanation of symbols

1 鋼製外皮成分主体の成分むら部
2 鋼板
3 裏当金
4 溶接金属
5 2mmVノッチシャルピー衝撃試験片
6 丸棒引張試験片
7 鋼板の1/4厚位置
DESCRIPTION OF SYMBOLS 1 Component uneven part of steel outer shell component main body 2 Steel plate 3 Backing metal 4 Weld metal 5 2mmV notch Charpy impact test piece 6 Round bar tensile test piece 7 1/4 thickness position of steel plate

Claims (4)

鋼製外皮の内部に、少なくとも金属または合金を含有するフラックスが充填されたフラックス入りワイヤを用いた高強度鋼のTIG溶接方法において、
前記鋼製外皮の断面厚さが0.30〜1.0mmであり、ワイヤ全質量に対する質量%で、
C :0.04〜0.4%、
Si:0.2〜2.0%、
Mn:0.3〜2.0%、
P :0.02%以下、
S :0.01%以下、
Al:0.002〜0.05%
を含み、さらに、
Ni:0.1〜12%、
Cr:0.01〜4.0%、
Mo:0.1〜4.0%、
W :0.1〜4.0%、
Cu:0.01〜1.5%
のうちの1種または2種以上を含有し、残部が鉄および不可避的不純物からなり、さらに、下記(式1)で示される炭素当量(Ceq)が0.40〜1.5%を満足するとともに、ワイヤ全体の成分の炭素当量と鋼製外皮の成分の炭素当量との差が0.10%以上を満足する、フラックス入りワイヤを用いて、
下記(式2)で示される溶接ワイヤ1g当りの溶接入熱量が1.70〜4.0kJ/cm・gの範囲で、TIG溶接することを特徴とする、フラックス入りワイヤを用いた高強度鋼のTIG溶接方法。
Ceq=[C]+[Mn]/6+[Si]/24+[Ni]/40+[Mo]/4+[Cr]/5+[W]/8+[Cu]/40+[Ti]/30+[Nb]/3+[V]/5+[Ta]/8+[Co]/40+5×[B] ・・・ (式1)
但し、[]付元素は、それぞれの元素の含有量(質量%)を表す。
[ワイヤ1g当りの溶接入熱量(kJ/cm・g)]=[溶接電流(A)]×[溶接電圧(V)]×60/[溶接速度(cm/min)]/[溶着量(g/min)]・・・(式2)
In the TIG welding method of high-strength steel using a flux-cored wire filled with a flux containing at least a metal or an alloy inside the steel outer shell,
The cross-sectional thickness of the steel outer skin is 0.30 to 1.0 mm, and the mass% with respect to the total mass of the wire,
C: 0.04 to 0.4%,
Si: 0.2-2.0%,
Mn: 0.3 to 2.0%,
P: 0.02% or less,
S: 0.01% or less,
Al: 0.002 to 0.05%
Including,
Ni: 0.1 to 12%,
Cr: 0.01 to 4.0%
Mo: 0.1-4.0%,
W: 0.1-4.0%,
Cu: 0.01 to 1.5%
1 or 2 or more of them, the balance consists of iron and inevitable impurities, and the carbon equivalent (Ceq) shown by the following (Formula 1) satisfies 0.40 to 1.5%. In addition, using a flux-cored wire, the difference between the carbon equivalent of the component of the entire wire and the carbon equivalent of the component of the steel outer shell satisfies 0.10% or more,
A high-strength steel using a flux-cored wire, characterized in that TIG welding is performed in the range of 1.70 to 4.0 kJ / cm · g of welding heat input per 1 g of welding wire represented by the following (formula 2). TIG welding method.
Ceq = [C] + [Mn] / 6 + [Si] / 24 + [Ni] / 40 + [Mo] / 4 + [Cr] / 5 + [W] / 8 + [Cu] / 40 + [Ti] / 30 + [Nb] / 3+ [V] / 5 + [Ta] / 8 + [Co] / 40 + 5 × [B] (Formula 1)
However, the element with [] represents the content (% by mass) of each element.
[Welding heat input per 1 g of wire (kJ / cm · g)] = [Welding current (A)] × [Welding voltage (V)] × 60 / [Welding speed (cm / min)] / [Welding amount (g / Min)] (Equation 2)
前記フラックス入りワイヤが、さらに、ワイヤ全質量に対する質量%で、
Ti:0.005〜0.3%、
Nb:0.005〜0.1%、
V :0.005〜0.5%、
Ta:0.005〜0.5%、
Co:0.01〜6%、
B :0.001〜0.015%
のうちの1種または2種以上を含有することを特徴とする、請求項1に記載のフラックス入りワイヤを用いた高強度鋼のTIG溶接方法。
The flux-cored wire is further mass% with respect to the total mass of the wire,
Ti: 0.005 to 0.3%,
Nb: 0.005 to 0.1%,
V: 0.005-0.5%
Ta: 0.005 to 0.5%,
Co: 0.01 to 6%
B: 0.001 to 0.015%
The TIG welding method for high-strength steel using the flux-cored wire according to claim 1, wherein one or more of them are contained.
前記フラックス入りワイヤが、さらに、ワイヤ全質量に対する質量%で、
Ca:0.0002〜0.01%、
REM:0.0002〜0.01%
のうちの1種または2種を含有することを特徴とする、請求項1または2に記載のフラックス入りワイヤを用いた高強度鋼のTIG溶接方法。
The flux-cored wire is further mass% with respect to the total mass of the wire,
Ca: 0.0002 to 0.01%,
REM: 0.0002 to 0.01%
A TIG welding method for high-strength steel using a flux-cored wire according to claim 1 or 2, characterized by containing one or two of them.
前記フラックス入りワイヤが、ホットワイヤであることを特徴とする、請求項1ないし3のいずれか1項に記載のフラックス入りワイヤを用いた高強度鋼のTIG溶接方法。   The TIG welding method for high-strength steel using the flux-cored wire according to any one of claims 1 to 3, wherein the flux-cored wire is a hot wire.
JP2008102482A 2008-04-10 2008-04-10 TIG welding method of high strength steel using flux cored wire Expired - Fee Related JP5157606B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008102482A JP5157606B2 (en) 2008-04-10 2008-04-10 TIG welding method of high strength steel using flux cored wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008102482A JP5157606B2 (en) 2008-04-10 2008-04-10 TIG welding method of high strength steel using flux cored wire

Publications (2)

Publication Number Publication Date
JP2009248175A true JP2009248175A (en) 2009-10-29
JP5157606B2 JP5157606B2 (en) 2013-03-06

Family

ID=41309347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008102482A Expired - Fee Related JP5157606B2 (en) 2008-04-10 2008-04-10 TIG welding method of high strength steel using flux cored wire

Country Status (1)

Country Link
JP (1) JP5157606B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101983827A (en) * 2010-10-19 2011-03-09 成都新大洋焊接材料有限责任公司 Alloy creep resistant heat resistant steel submerged arc welding stick
CN101994076A (en) * 2010-11-26 2011-03-30 北京工业大学 Ferrous chlorine corrosion resistant electric arc spraying powder core wire
JP2011156565A (en) * 2010-02-02 2011-08-18 Kobe Steel Ltd Flux-cored wire
CN102615402A (en) * 2012-04-25 2012-08-01 山东大学 Tungsten electrode argon arc welding method for filler wires of titanium alloy and aluminum alloy
CN103350272A (en) * 2013-06-24 2013-10-16 兰州西固热电有限责任公司 Process for welding T91 and 12Cr1MoV dissimilar steel
CN103357993A (en) * 2013-06-24 2013-10-23 兰州西固热电有限责任公司 Welding technology for dissimilar steels of 12 Cr1Mov and 12X18H12T
WO2014119082A1 (en) * 2013-01-31 2014-08-07 新日鐵住金株式会社 Flux cored wire, welding method using flux cored wire, method for producing welded joint using flux cored wire, and welded joint
JP2015083316A (en) * 2013-10-25 2015-04-30 新日鐵住金株式会社 Box column and production method thereof
JP2015083318A (en) * 2013-10-25 2015-04-30 新日鐵住金株式会社 Box column and production method thereof
CN106624285A (en) * 2016-12-29 2017-05-10 甘肃钢铁职业技术学院 350 MW unit main steam pipeline-P91 welding process
JP2018079506A (en) * 2016-11-16 2018-05-24 リンカーン グローバル,インコーポレイテッド Welding electrode wires having alkaline earth metals
JP2019534382A (en) * 2016-10-11 2019-11-28 ポスコPosco Cold-rolled steel sheet for flux-cored wire and manufacturing method thereof
CN110711921A (en) * 2019-11-06 2020-01-21 中车长春轨道客车股份有限公司 Welding process method for aluminum alloy medium plate of railway vehicle
CN111112876A (en) * 2019-11-28 2020-05-08 邯郸市永固冶金备件有限公司 Flux-cored wire
CN112872651A (en) * 2021-01-26 2021-06-01 华能国际电力股份有限公司 Flux core, preparation method of flux core, flux-cored wire and welding method
CN114669911A (en) * 2022-04-01 2022-06-28 南京钢铁股份有限公司 Flux-cored gas-shielded welding wire for 9% Ni storage tank steel and preparation and use methods thereof
WO2022142286A1 (en) * 2020-12-28 2022-07-07 中铁九桥工程有限公司 Process method for one-sided welding and double-sided molding of alpine region q500qenh weathering steel
CN116100192A (en) * 2023-02-21 2023-05-12 西安热工研究院有限公司 Flux-cored wire and method for manufacturing flux-cored wire

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110666297A (en) * 2019-09-06 2020-01-10 中铁九桥工程有限公司 Single-side welding butt joint method for 810 MPa-grade high-performance weather-resistant bridge steel composite weld joint liner

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08267273A (en) * 1995-03-29 1996-10-15 Nippon Steel Corp Wire for gas metal arc welding for high tensile steel
JPH10280085A (en) * 1997-04-09 1998-10-20 Mitsubishi Heavy Ind Ltd Welding material for low cr ferritic steel, excellent in toughness
JP2001001148A (en) * 1999-04-21 2001-01-09 Kawasaki Steel Corp GAS SHIELD ARC WELDING OF THICK HIGH TENSILE STRENGTH STEEL PLATE OF AT LEAST 900 MPa CLASS
JP2002309339A (en) * 2001-04-16 2002-10-23 Nippon Steel Corp Welded joint having heat affected zone with excellent toughness and fatigue resistance
JP2004211189A (en) * 2003-01-08 2004-07-29 Mitsubishi Heavy Ind Ltd Welding material, welded joint, and high-temperature heat-resistant member for high-strength heat-resistant steel
JP2006110581A (en) * 2004-10-13 2006-04-27 Nippon Steel Corp High strength and high toughness wire for arc welding
JP2006289405A (en) * 2005-04-07 2006-10-26 Nippon Steel Corp Gas shielded arc welding wire for steel for refractory structure
JP2008093715A (en) * 2006-10-13 2008-04-24 Nippon Steel Corp High yield strength and high toughness flux-cored wire for gas-shielded arc welding

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08267273A (en) * 1995-03-29 1996-10-15 Nippon Steel Corp Wire for gas metal arc welding for high tensile steel
JPH10280085A (en) * 1997-04-09 1998-10-20 Mitsubishi Heavy Ind Ltd Welding material for low cr ferritic steel, excellent in toughness
JP2001001148A (en) * 1999-04-21 2001-01-09 Kawasaki Steel Corp GAS SHIELD ARC WELDING OF THICK HIGH TENSILE STRENGTH STEEL PLATE OF AT LEAST 900 MPa CLASS
JP2002309339A (en) * 2001-04-16 2002-10-23 Nippon Steel Corp Welded joint having heat affected zone with excellent toughness and fatigue resistance
JP2004211189A (en) * 2003-01-08 2004-07-29 Mitsubishi Heavy Ind Ltd Welding material, welded joint, and high-temperature heat-resistant member for high-strength heat-resistant steel
JP2006110581A (en) * 2004-10-13 2006-04-27 Nippon Steel Corp High strength and high toughness wire for arc welding
JP2006289405A (en) * 2005-04-07 2006-10-26 Nippon Steel Corp Gas shielded arc welding wire for steel for refractory structure
JP2008093715A (en) * 2006-10-13 2008-04-24 Nippon Steel Corp High yield strength and high toughness flux-cored wire for gas-shielded arc welding

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011156565A (en) * 2010-02-02 2011-08-18 Kobe Steel Ltd Flux-cored wire
CN101983827B (en) * 2010-10-19 2013-07-10 成都新大洋焊接材料有限责任公司 Alloy creep resistant heat resistant steel submerged arc welding stick
CN101983827A (en) * 2010-10-19 2011-03-09 成都新大洋焊接材料有限责任公司 Alloy creep resistant heat resistant steel submerged arc welding stick
CN101994076A (en) * 2010-11-26 2011-03-30 北京工业大学 Ferrous chlorine corrosion resistant electric arc spraying powder core wire
CN102615402A (en) * 2012-04-25 2012-08-01 山东大学 Tungsten electrode argon arc welding method for filler wires of titanium alloy and aluminum alloy
KR20150092348A (en) * 2013-01-31 2015-08-12 신닛테츠스미킨 카부시키카이샤 Flux cored wire, welding method using flux cored wire, method for producing welded joint using flux cored wire, and welded joint
US9505088B2 (en) 2013-01-31 2016-11-29 Nippon Steel & Sumitomo Metal Corporation Flux-cored wire, welding method using flux-cored wire, method for manufacturing weld joint using flux-cored wire, and weld joint
WO2014119082A1 (en) * 2013-01-31 2014-08-07 新日鐵住金株式会社 Flux cored wire, welding method using flux cored wire, method for producing welded joint using flux cored wire, and welded joint
JP5644984B1 (en) * 2013-01-31 2014-12-24 新日鐵住金株式会社 Flux-cored wire, welding method using flux-cored wire, manufacturing method of welded joint using flux-cored wire, and welded joint
KR101616237B1 (en) 2013-01-31 2016-04-27 신닛테츠스미킨 카부시키카이샤 Flux cored wire, welding method using flux cored wire, method for producing welded joint using flux cored wire, and welded joint
CN104955610A (en) * 2013-01-31 2015-09-30 新日铁住金株式会社 Flux cored wire, welding method using flux cored wire, method for producing welded joint using flux cored wire, and welded joint
CN103357993A (en) * 2013-06-24 2013-10-23 兰州西固热电有限责任公司 Welding technology for dissimilar steels of 12 Cr1Mov and 12X18H12T
CN103350272A (en) * 2013-06-24 2013-10-16 兰州西固热电有限责任公司 Process for welding T91 and 12Cr1MoV dissimilar steel
JP2015083316A (en) * 2013-10-25 2015-04-30 新日鐵住金株式会社 Box column and production method thereof
JP2015083318A (en) * 2013-10-25 2015-04-30 新日鐵住金株式会社 Box column and production method thereof
JP2019534382A (en) * 2016-10-11 2019-11-28 ポスコPosco Cold-rolled steel sheet for flux-cored wire and manufacturing method thereof
JP7187137B2 (en) 2016-11-16 2022-12-12 リンカーン グローバル,インコーポレイテッド Welding electrode wire with alkaline earth metal
JP2018079506A (en) * 2016-11-16 2018-05-24 リンカーン グローバル,インコーポレイテッド Welding electrode wires having alkaline earth metals
CN106624285A (en) * 2016-12-29 2017-05-10 甘肃钢铁职业技术学院 350 MW unit main steam pipeline-P91 welding process
CN110711921A (en) * 2019-11-06 2020-01-21 中车长春轨道客车股份有限公司 Welding process method for aluminum alloy medium plate of railway vehicle
CN111112876B (en) * 2019-11-28 2021-10-12 邯郸市永固冶金备件有限公司 Flux-cored wire
CN111112876A (en) * 2019-11-28 2020-05-08 邯郸市永固冶金备件有限公司 Flux-cored wire
WO2022142286A1 (en) * 2020-12-28 2022-07-07 中铁九桥工程有限公司 Process method for one-sided welding and double-sided molding of alpine region q500qenh weathering steel
CN112872651A (en) * 2021-01-26 2021-06-01 华能国际电力股份有限公司 Flux core, preparation method of flux core, flux-cored wire and welding method
CN114669911A (en) * 2022-04-01 2022-06-28 南京钢铁股份有限公司 Flux-cored gas-shielded welding wire for 9% Ni storage tank steel and preparation and use methods thereof
CN116100192A (en) * 2023-02-21 2023-05-12 西安热工研究院有限公司 Flux-cored wire and method for manufacturing flux-cored wire
CN116100192B (en) * 2023-02-21 2023-09-08 西安热工研究院有限公司 Flux-cored wire and method for manufacturing flux-cored wire

Also Published As

Publication number Publication date
JP5157606B2 (en) 2013-03-06

Similar Documents

Publication Publication Date Title
JP5157606B2 (en) TIG welding method of high strength steel using flux cored wire
JP5387168B2 (en) Welding wire for high strength steel with flux and manufacturing method thereof
JP4903918B1 (en) Ultra high strength welded joint and manufacturing method thereof
JP4879696B2 (en) High yield strength, high toughness, flux-cored wire for gas shielded arc welding
JP5387192B2 (en) Flux-cored wire for gas shield welding
JP5202862B2 (en) High-strength welded steel pipe with weld metal having excellent cold cracking resistance and method for producing the same
EP2832487B1 (en) Process for producing welded joint
JP6155810B2 (en) High Ni flux cored wire for gas shielded arc welding
JP4673710B2 (en) Two-electrode single-sided one-pass large heat input submerged arc welding method with excellent weld metal toughness
JP4427416B2 (en) Large heat input submerged arc welding method with excellent weld metal toughness.
WO2015159806A1 (en) Welded metal having excellent strength, toughness and sr cracking resistance
JP5005395B2 (en) Welding wire for high strength and toughness steel
JP4441372B2 (en) High strength and high toughness gas shielded arc welding wire
WO2018047880A1 (en) Flux-cored wire for gas shield arc welding, and weld metal
JP2012101234A (en) SOLID WIRE FOR Ar-CO2 MIXED GAS SHIELDED ARC WELDING
WO2018047881A1 (en) Flux cored wire for gas shield arc welding and welding metal
WO2018047879A1 (en) Flux cored wire for gas shield arc welding and welding metal
JP2011206828A (en) Flux-cored welding wire for fine diameter wire multiple electrode submerged arc welding
JP4774588B2 (en) Manufacturing method of high strength oil well steel pipe joint with excellent corrosion resistance and high strength oil well steel pipe joint
WO2019082945A1 (en) Flux-cored wire for submerged arc welding, and material for submerged arc welding
JP5531514B2 (en) High heat input steel and welded joint
JP3598600B2 (en) Weld metal having high strength and toughness and method of forming the same
JP2009275245A (en) Steel material superior in toughness of weld heat-affected zone
JPH07323392A (en) Low hydrogen type coated arc electrode and welding method
JPH09285891A (en) Electro gas arc welding fluxed core wire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121126

R151 Written notification of patent or utility model registration

Ref document number: 5157606

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151221

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees