JP2009247932A - Method for removing carbon dioxide using exhaust gas heat source - Google Patents

Method for removing carbon dioxide using exhaust gas heat source Download PDF

Info

Publication number
JP2009247932A
JP2009247932A JP2008095718A JP2008095718A JP2009247932A JP 2009247932 A JP2009247932 A JP 2009247932A JP 2008095718 A JP2008095718 A JP 2008095718A JP 2008095718 A JP2008095718 A JP 2008095718A JP 2009247932 A JP2009247932 A JP 2009247932A
Authority
JP
Japan
Prior art keywords
exhaust gas
carbon dioxide
combustion exhaust
heat
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008095718A
Other languages
Japanese (ja)
Inventor
Teruo Sugitani
照雄 杉谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiyoda Corp
Chiyoda Chemical Engineering and Construction Co Ltd
Original Assignee
Chiyoda Corp
Chiyoda Chemical Engineering and Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiyoda Corp, Chiyoda Chemical Engineering and Construction Co Ltd filed Critical Chiyoda Corp
Priority to JP2008095718A priority Critical patent/JP2009247932A/en
Publication of JP2009247932A publication Critical patent/JP2009247932A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Landscapes

  • Treating Waste Gases (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for removing carbon dioxide of combustion exhaust gas coming out of a coal-burning boiler, while suppressing the undermining of power generation output. <P>SOLUTION: This method for removing carbon dioxide is to remove carbon dioxide of at least, a part of combustion exhaust gas by chemically absorbing the carbon dioxide with the help of an absorption liquid through the contact between at least, a part of the wet-treated combustion exhaust gas and the absorption liquid. In the method, the absorption liquid which has chemically absorbed the carbon dioxide, is regenerated using the heat of the combustion exhaust gas before wet treatment, and at the same time, the combustion exhaust gas after wet treatment is reheated using the heat of the regenerated absorption liquid. Besides, it is possible to use the heat of the combustion exhaust gas before wet treatment for the purpose of heating up the absorption liquid through the chemical absorption of the carbon dioxide, or possible to use the heat for generating stripping steam for regenerating the absorption liquid through the chemical absorption of the carbon dioxide. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、石炭焚きボイラーなどの燃焼装置の排ガスに含まれている二酸化炭素を除去する方法に関する。   The present invention relates to a method for removing carbon dioxide contained in exhaust gas from a combustion apparatus such as a coal fired boiler.

近年、二酸化炭素などの温室効果ガスによる地球温暖化が大きな問題となっている。火力発電所では、ボイラーなどの燃焼工程から大量の二酸化炭素が排出しているため、その燃料を石炭から二酸化炭素の生成量の少ない天然ガスに切り替える燃料転換の必要性が叫ばれている。しかしながら、石炭は可採埋蔵量が豊富なうえ安価に調達できることから依然として大量に使用されており、二酸化炭素排出量の削減が十分に進んでいないのが現状である。   In recent years, global warming due to greenhouse gases such as carbon dioxide has become a major problem. In thermal power plants, since a large amount of carbon dioxide is emitted from combustion processes such as boilers, the need to switch fuel from coal to natural gas, which produces less carbon dioxide, has been called out. However, coal is still used in large quantities because it has abundant recoverable reserves and can be procured at low cost, and the current situation is that carbon dioxide emissions have not been sufficiently reduced.

そこで、燃焼工程で生成された二酸化炭素を選択的に除去することによって、発電所からの二酸化炭素排出量を削減する方法が検討されている。例えば、特許文献1には、アミン水溶液などの化学吸収液を燃焼排ガスに接触させて二酸化炭素を除去する方法が提案されている。この方法は、天然ガスや石油精製などのガス処理分野において古くから実用化されており、火力発電所の燃焼排ガス処理においても実用化されることが期待されている。   Therefore, a method for reducing carbon dioxide emission from the power plant by selectively removing carbon dioxide generated in the combustion process has been studied. For example, Patent Document 1 proposes a method of removing carbon dioxide by bringing a chemical absorption liquid such as an aqueous amine solution into contact with combustion exhaust gas. This method has been put into practical use for a long time in the field of gas treatment such as natural gas and petroleum refining, and is expected to be put to practical use in the treatment of flue gas from thermal power plants.

また、非特許文献1には、アミノ酸系の化学吸収液を用いて燃焼排ガス中の二酸化炭素を除去する方法が提案されている。この方法は、アミン水溶液に比べて腐食性が少ないアミノ酸系の化学吸収液を使用しており、より低いコストで二酸化炭素を除去し得る方法として期待されている。   Non-Patent Document 1 proposes a method for removing carbon dioxide in combustion exhaust gas using an amino acid-based chemical absorption solution. This method uses an amino acid-based chemical absorbing solution that is less corrosive than an aqueous amine solution, and is expected as a method that can remove carbon dioxide at a lower cost.

特開2007−325996号公報JP 2007-325996 A Jacco van Holst, et al.,“CO2 capture from flue gas using amino acid salt solutions,” 8th International Conference on Greenhouse Gas Control Technologies (GHGT-8), 19-22 June 2006, Trondheim, NorwayJacco van Holst, et al., “CO2 capture from flue gas using amino acid salt solutions,” 8th International Conference on Greenhouse Gas Control Technologies (GHGT-8), 19-22 June 2006, Trondheim, Norway

一般的に、二酸化炭素を化学吸収した吸収液から二酸化炭素を放散して吸収液を再生するには多くの熱量を必要とし、例えば、28重量%モノエタノールアミン(MEA)水溶液の場合は、約1200kcal/kg−COの熱量、即ち、吸収液に吸収されている1kgの二酸化炭素の放散に約1200kcalの熱量が必要である。このため、ボイラーから排出される燃焼排ガス中の二酸化炭素を吸収液に吸収させることにより所定のレベルまで除去できたとしても、当該吸収液の再生にボイラーで生成した蒸気を大量に消費してしまうため、結果的に発電出力が著しく低下するという問題があった。 In general, a large amount of heat is required to regenerate the absorbing solution by releasing carbon dioxide from the absorbing solution in which carbon dioxide is chemically absorbed. For example, in the case of a 28 wt% monoethanolamine (MEA) aqueous solution, The amount of heat of 1200 kcal / kg-CO 2 , that is, the amount of heat of about 1200 kcal is required to dissipate 1 kg of carbon dioxide absorbed in the absorption liquid. For this reason, even if carbon dioxide in the combustion exhaust gas discharged from the boiler can be removed to a predetermined level by absorbing it in the absorption liquid, a large amount of steam generated in the boiler is consumed to regenerate the absorption liquid. As a result, there is a problem that the power generation output is significantly reduced.

本発明は、このような事情に鑑み、発電出力の低下を抑えつつボイラーから排出される燃焼排ガス中の二酸化炭素を除去する方法を提供することを目的とする。   In view of such circumstances, an object of the present invention is to provide a method of removing carbon dioxide in combustion exhaust gas discharged from a boiler while suppressing a decrease in power generation output.

上記目的を達成するため、本発明が提供する二酸化炭素の除去方法は、湿式処理された燃焼排ガスの少なくとも一部を吸収液に接触させることによって、当該少なくとも一部の燃焼排ガス中の二酸化炭素を吸収液に化学吸収させて除去する方法であって、湿式処理前の燃焼排ガスの熱を利用して二酸化炭素を化学吸収した吸収液を再生すると共に、再生された吸収液の熱を利用して湿式処理後の燃焼排ガスを再加熱することを特徴としている。   In order to achieve the above object, a method for removing carbon dioxide provided by the present invention comprises bringing at least a part of wet-treated combustion exhaust gas into contact with an absorbent, thereby removing carbon dioxide in the at least part of the combustion exhaust gas. This is a method of removing the chemical by absorbing it in the absorption liquid, regenerating the absorption liquid that chemically absorbed carbon dioxide using the heat of the combustion exhaust gas before the wet treatment, and using the heat of the regenerated absorption liquid. It is characterized by reheating the combustion exhaust gas after wet processing.

また、上記本発明が提供する二酸化炭素の除去方法においては、湿式処理前の燃焼排ガスの熱を、化学吸収した吸収液の昇温に利用しても良い。更に、上記本発明が提供する二酸化炭素の除去方法においては、湿式処理前の燃焼排ガスの熱を、化学吸収した吸収液の再生用ストリッピングスチームの生成に利用しても良い。また、上記本発明が提供する二酸化炭素の除去方法においては、燃焼排ガスからの二酸化炭素の除去量を、前記湿式処理前の燃焼排ガスが有する熱量に応じて定めることが好ましい。   In the method for removing carbon dioxide provided by the present invention, the heat of the combustion exhaust gas before the wet treatment may be used for raising the temperature of the chemically absorbed absorbent. Furthermore, in the method for removing carbon dioxide provided by the present invention, the heat of the combustion exhaust gas before the wet treatment may be used to generate stripping steam for regeneration of the chemically absorbed absorbent. In the method for removing carbon dioxide provided by the present invention, it is preferable that the amount of carbon dioxide removed from the combustion exhaust gas is determined according to the amount of heat of the combustion exhaust gas before the wet treatment.

本発明によれば、湿式処理前の燃焼排ガスの熱を利用して二酸化炭素を化学吸収した吸収液を再生すると共に、再生された吸収液の熱を利用して湿式処理後の燃焼排ガスを再加熱するため、湿式処理前後での燃焼排ガスのガスガス熱交換を良好に行いつつ、発電出力の低下を抑えながら燃焼排ガス中の二酸化炭素を除去することが可能となる。   According to the present invention, the absorption liquid that has chemically absorbed carbon dioxide is regenerated using the heat of the flue gas before wet treatment, and the flue gas after wet treatment is regenerated using the heat of the regenerated absorption liquid. Since heating is performed, it is possible to remove carbon dioxide in the combustion exhaust gas while suppressing a decrease in power generation output while performing good gas gas heat exchange of the combustion exhaust gas before and after the wet treatment.

以下、本発明による二酸化炭素の除去装置の一具体例を、図1を参照しながら説明する。図1に示すように、石炭などの化石燃料を利用するボイラー2から排出された高温の燃焼排ガスは、煙道を介して排ガス冷却器12に導かれ、ここで所定の温度まで冷却される。冷却された燃焼排ガスは湿式処理装置3に導かれ、ここで湿式処理により亜硫酸ガスや煤塵が除去される。湿式処理装置3で湿式処理された燃焼排ガスは、煙道を介して排ガス再加熱器16に導かれ、ここで白煙化を防止するために過熱された後、煙突4から排出される。   Hereinafter, a specific example of the carbon dioxide removing apparatus according to the present invention will be described with reference to FIG. As shown in FIG. 1, high-temperature combustion exhaust gas discharged from a boiler 2 that uses fossil fuel such as coal is led to an exhaust gas cooler 12 through a flue and cooled to a predetermined temperature. The cooled combustion exhaust gas is guided to the wet processing apparatus 3, where sulfurous acid gas and soot are removed by the wet processing. The combustion exhaust gas wet-processed by the wet processing apparatus 3 is guided to the exhaust gas reheater 16 through the flue, where it is overheated to prevent white smoke, and then discharged from the chimney 4.

湿式処理装置3から排ガス再加熱器16に至る煙道にはバイパスが設けられており、湿式処理装置3で処理された燃焼排ガスの少なくとも一部は、ここでバイパスガスとして抜き出されて除去装置1の吸収塔10の塔底部に供給される。吸収塔10の塔底部から塔内に入った該バイパスガスは、吸収塔10の塔頂部から供給される吸収液(以降においてリーン溶液とも称する)と向流接触しながら塔内を上昇していく。塔内には充填物や棚段が設けられており、ここで効率良く気液接触が行われてバイパスガス中の二酸化炭素がリーン溶液に化学吸収される。   A bypass is provided in the flue from the wet treatment device 3 to the exhaust gas reheater 16, and at least a part of the combustion exhaust gas treated by the wet treatment device 3 is extracted here as a bypass gas and removed. 1 is supplied to the bottom of the absorption tower 10. The bypass gas that has entered the tower from the bottom of the absorption tower 10 rises in the tower in countercurrent contact with an absorption liquid (hereinafter also referred to as a lean solution) supplied from the top of the absorption tower 10. . The tower is provided with packings and shelves, where gas-liquid contact is efficiently performed, and carbon dioxide in the bypass gas is chemically absorbed by the lean solution.

吸収液の種類は、特に限定するものではないが、モノエタノールアミン(MEA)、ジエタノールアミン(DEA)、トリエタノールアミン(TEA)、ジイソプロパノールアミン(DIPA)、メチルジエタノールアミン(MDEA)などのアミンの水溶液またはその混合物や、アミノ酸系の水溶液などの化学吸収液を用いるのが好ましい。   The type of the absorbing solution is not particularly limited, but an aqueous solution of an amine such as monoethanolamine (MEA), diethanolamine (DEA), triethanolamine (TEA), diisopropanolamine (DIPA), methyldiethanolamine (MDEA), etc. Alternatively, it is preferable to use a chemical absorption solution such as a mixture thereof or an amino acid-based aqueous solution.

煙道の燃焼排ガスからバイパスガスとして抜き出すガス抜出量は、吸収塔10での二酸化炭素除去率を一定とした場合、燃焼排ガスからの二酸化炭素の除去量に比例する。このガス抜出量は任意に定めても良いが、高温の燃焼排ガスが有する熱量に基づいて適宜定めることが好ましい。なぜなら、ガス抜出量に応じて吸収塔10に供給するリーン溶液の供給量が定まるため、ガス抜出量が多くなりすぎると、吸収液の再生に必要な熱量が著しく増加し、後述する吸収液の再生に利用する高温の燃焼排ガスの有する熱量に制限があるので、リボイラーで消費される蒸気量が増大し、発電出力が大きく低下するからである。   The amount of gas extracted from the flue combustion exhaust gas as a bypass gas is proportional to the amount of carbon dioxide removed from the combustion exhaust gas when the carbon dioxide removal rate in the absorption tower 10 is constant. The amount of extracted gas may be arbitrarily determined, but is preferably determined as appropriate based on the amount of heat of the high-temperature combustion exhaust gas. This is because the amount of lean solution supplied to the absorption tower 10 is determined according to the amount of gas extracted, so that if the amount of gas extracted is too large, the amount of heat required to regenerate the absorbing solution increases significantly, and the absorption described later. This is because the amount of heat that the high-temperature combustion exhaust gas used for liquid regeneration has is limited, so that the amount of steam consumed by the reboiler increases and the power generation output is greatly reduced.

吸収塔10内で所定のレベルまで二酸化炭素が除去されたバイパスガスは、吸収塔10の塔頂部を出た後、再び煙道に戻り、バイパスガスとして取り出されなかった他のガスと合流する。尚、吸収塔10内の塔頂部分若しくは塔頂を出て煙道に至るまでの位置に、二酸化炭素が除去されたバイパスガスに同伴する吸収液を回収するための水洗処理装置を設けても良い。   The bypass gas from which carbon dioxide has been removed to a predetermined level in the absorption tower 10 exits the top of the absorption tower 10 and then returns to the flue to join other gases that have not been taken out as bypass gas. Note that a water washing treatment device for recovering the absorbent accompanying the bypass gas from which carbon dioxide has been removed may be provided at the top of the absorption tower 10 or the position from the top of the tower to the flue. good.

吸収塔10の塔内を下降するリーン溶液は、バイパスガス中の二酸化炭素を化学吸収していくに従って、吸収熱によって徐々に昇温し、塔頂部に供給されるときの温度に比べて数十℃高い温度となって塔底部から抜き出される。塔底部から抜き出された吸収液(以降においてリッチ溶液とも称する)は、リーン・リッチ熱交換器11及び排ガス冷却器12に順次送られて加熱される。   The lean solution descending the absorption tower 10 gradually rises in temperature by absorption heat as the carbon dioxide in the bypass gas is chemically absorbed, and is several tens compared with the temperature when supplied to the top of the tower. The temperature rises to ℃ and is extracted from the bottom of the tower. The absorbing liquid extracted from the bottom of the column (hereinafter also referred to as rich solution) is sequentially sent to the lean / rich heat exchanger 11 and the exhaust gas cooler 12 to be heated.

排ガス冷却器12を出たリッチ溶液は再生塔13の上部に送られる。再生塔13の上部から塔内に入ったリッチ溶液は、塔底から上昇するストリッピングスチームと向流接触しながら下降する。塔内には充填物や棚段が設けられており、ここでリッチ溶液とストリッピングスチームが効率良く気液接触して、リッチ溶液から二酸化炭素が徐々に放散していく。   The rich solution exiting the exhaust gas cooler 12 is sent to the upper part of the regeneration tower 13. The rich solution that has entered the tower from the top of the regeneration tower 13 descends in countercurrent contact with stripping steam that rises from the bottom of the tower. The tower is provided with packings and shelves, where the rich solution and stripping steam are efficiently brought into gas-liquid contact, and carbon dioxide is gradually released from the rich solution.

再生がほぼ完了した吸収液は、再生塔13の塔底部から抜き出されてリボイラー14に送られる。リボイラー14において、当該吸収液は、蒸気などの加熱媒体によって加熱され、一部がストリッピングスチームとなって再生塔13の塔底部に導かれ、残りはリーン溶液としてリボイラー14から抜き出される。   The absorbing solution that has been almost completely regenerated is extracted from the bottom of the regeneration tower 13 and sent to the reboiler 14. In the reboiler 14, the absorption liquid is heated by a heating medium such as steam, a part thereof is stripped steam, led to the bottom of the regeneration tower 13, and the rest is extracted as a lean solution from the reboiler 14.

一方、リッチ液から放散した二酸化炭素は、再生塔13の塔頂部に設けられた凝縮器15にストリッピングスチームと共に送られる。ここでストリッピングスチームは凝縮されて還流液となる一方、二酸化炭素は冷却されるものの凝縮されることなく気相のまま凝縮器15を出る。還流液は、再生塔13の上部で前述したリッチ溶液と合流し、再生塔13の塔内を下降する。   On the other hand, the carbon dioxide released from the rich liquid is sent to the condenser 15 provided at the top of the regeneration tower 13 together with the stripping steam. Here, the stripping steam is condensed to be a reflux liquid, while carbon dioxide is cooled but exits the condenser 15 in a gas phase without being condensed. The reflux liquid merges with the rich solution described above at the top of the regeneration tower 13 and descends in the tower of the regeneration tower 13.

凝縮器15を出た二酸化炭素は、図示しない液化設備やEOR(Enhanced Oil Recovery)等によって固定化される。尚、図1では、再生塔13の塔頂部に凝縮器15を設けたが、再生塔13の塔頂部を出た位置に凝縮器15を設けても良い。また、リフラックスドラムやリフラックスポンプを凝縮器15の後段に設けても良い。   The carbon dioxide that exits the condenser 15 is fixed by a liquefaction facility (not shown), enhanced oil recovery (EOR), or the like. In FIG. 1, the condenser 15 is provided at the top of the regeneration tower 13, but the condenser 15 may be provided at a position that exits the top of the regeneration tower 13. Further, a reflux drum or a reflux pump may be provided at the rear stage of the condenser 15.

リボイラー14を出たリーン溶液は、排ガス再加熱器16及びリーン・リッチ熱交換器11に順次送られて冷却され、更にリーン冷却器17で冷却水などの冷媒によって所定の温度に冷却された後、吸収塔10の塔頂部に送られる。尚、上記具体例ではリーン・リッチ熱交換器11を設けてリッチ溶液とリーン溶液との熱交換を行ったが、排ガス冷却器12及び排ガス再加熱器16の各入口出口温度を適切に設定することによってリーン・リッチ熱交換器11を省くことも可能である。   The lean solution exiting the reboiler 14 is sequentially sent to the exhaust gas reheater 16 and the lean rich heat exchanger 11 to be cooled, and further cooled to a predetermined temperature by a refrigerant such as cooling water in the lean cooler 17. , And sent to the top of the absorption tower 10. In the above specific example, the lean / rich heat exchanger 11 is provided to perform heat exchange between the rich solution and the lean solution, but the inlet / outlet temperatures of the exhaust gas cooler 12 and the exhaust gas reheater 16 are appropriately set. Accordingly, the lean / rich heat exchanger 11 can be omitted.

このように、本発明の除去装置1の一具体例においては、再生塔13に供給される前のリッチ溶液を、ボイラー2を出た高温の燃焼排ガスと熱交換して昇温することによって、リッチ溶液の再生に必要な熱量を削減することができる。これにより、リボイラー14の蒸気消費量を削減することが可能となり、発電所の出力低下を抑制することができる。   Thus, in one specific example of the removal apparatus 1 of the present invention, by heating the rich solution before being supplied to the regeneration tower 13 by heat exchange with the high-temperature combustion exhaust gas exiting the boiler 2, The amount of heat required for regenerating the rich solution can be reduced. Thereby, it becomes possible to reduce the steam consumption of the reboiler 14, and can suppress the output fall of a power plant.

即ち、リボイラー14の熱源には、ボイラー2において生成した蒸気タービン用の蒸気を抽気した蒸気を用いているため、リボイラー14での所要蒸気量を削減することによって、発電所の出力低下を抑制することができる。また、蒸気タービン用の蒸気からの抽気量が減ることによって、蒸気タービンの運転への影響を少なくすることが可能となる。   That is, since the steam extracted from the steam turbine steam generated in the boiler 2 is used as the heat source of the reboiler 14, the reduction in the output of the power plant is suppressed by reducing the required steam volume in the reboiler 14. be able to. Further, since the amount of extraction from the steam for the steam turbine is reduced, the influence on the operation of the steam turbine can be reduced.

ところで、燃焼排ガスの湿式処理設備には、前述したように湿式処理前の燃焼排ガスと湿式処理後の燃焼排ガスとを互いに熱交換させるガスガス熱交換器が設けられおり、このガスガス熱交換器では、ガス同士の直接的な熱交換を行う場合と、水などの熱交換媒体を介して熱交換を行う場合がある。   By the way, as described above, the wet treatment facility for combustion exhaust gas is provided with a gas gas heat exchanger that exchanges heat between the combustion exhaust gas before the wet treatment and the combustion exhaust gas after the wet treatment. In this gas gas heat exchanger, There are cases where direct heat exchange is performed between gases and heat exchange is performed via a heat exchange medium such as water.

この内、水などの熱交換媒体を介したガスガス熱交換器を有する既設の火力発電所に本発明の二酸化炭素除去装置を適用する場合は、煙道の一部にバイパスを設けたうえ、ガスガス熱交換器に沿って除去装置1を設置し、ガスガス熱交換器の熱交換媒体を水から吸収液に代えるだけで良い。これにより、既存のガスガス熱交換器の機能を維持させたまま、発電所の出力低下を抑えつつ燃焼排ガス中の二酸化炭素を除去することが可能となり、工期及びコストの面において極めて有利になる。   Among these, when applying the carbon dioxide removal device of the present invention to an existing thermal power plant having a gas gas heat exchanger via a heat exchange medium such as water, a gas gas is provided after providing a bypass in a part of the flue. It is only necessary to install the removing device 1 along the heat exchanger and change the heat exchange medium of the gas gas heat exchanger from water to an absorbing liquid. As a result, it is possible to remove carbon dioxide in the combustion exhaust gas while suppressing a decrease in output of the power plant while maintaining the function of the existing gas gas heat exchanger, which is extremely advantageous in terms of construction period and cost.

次に、本発明による二酸化炭素の除去装置の他の具体例を、図2を参照しながら説明する。図2においては、図1に示す機器と同様のものには同じ符号を付している。図2から分かるように、この具体例においても、図1と同様に、湿式処理装置3から排出される燃焼排ガスの少なくとも一部に含まれる二酸化炭素を吸収塔10で吸収して除去し、二酸化炭素を吸収した吸収液を再生塔13で再生しているが、この具体例においては、排ガス冷却器12で加熱する吸収液を取り出す位置が図1と異なっている。   Next, another specific example of the carbon dioxide removing apparatus according to the present invention will be described with reference to FIG. In FIG. 2, the same components as those shown in FIG. As can be seen from FIG. 2, also in this specific example, as in FIG. 1, carbon dioxide contained in at least a part of the combustion exhaust gas discharged from the wet treatment apparatus 3 is absorbed and removed by the absorption tower 10, and carbon dioxide is removed. The absorption liquid that has absorbed carbon is regenerated in the regeneration tower 13, but in this specific example, the position where the absorption liquid heated by the exhaust gas cooler 12 is taken out is different from that in FIG.

具体的には、この具体例では、吸収塔10の塔底部を出たリッチ溶液は、リーン・リッチ熱交換器11に送られて熱交換した後、図1の除去装置と異なって排ガス冷却器12を通ることなく、そのまま再生塔13に送られる。   Specifically, in this specific example, the rich solution exiting the bottom of the absorption tower 10 is sent to the lean rich heat exchanger 11 for heat exchange, and then the exhaust gas cooler, unlike the removal apparatus of FIG. Without passing through 12, it is sent to the regeneration tower 13 as it is.

再生のほぼ完了した吸収液は、再生塔13の塔底部から抜き出されて気液分離ドラム14aに送られる。気液分離ドラム14aに送られた当該吸収液は、更に排ガス冷却器12に導かれ、ここで高温の燃焼排ガスによって加熱されて一部が蒸発して二相流となる。この二相流は気液分離ドラム14aに戻されて気液分離し、気相側はストリッピングスチームとなって再生塔13の塔底部に導かれる。一方、気液分離した液相側は、排ガス冷却器12に導かれなかった気液分離ドラム14a内の吸収液と合流してリーン溶液となって気液分離ドラム14aから抜き出される。   The almost completely regenerated absorption liquid is extracted from the bottom of the regeneration tower 13 and sent to the gas-liquid separation drum 14a. The absorption liquid sent to the gas-liquid separation drum 14a is further guided to the exhaust gas cooler 12, where it is heated by the high-temperature combustion exhaust gas and partly evaporates into a two-phase flow. This two-phase flow is returned to the gas-liquid separation drum 14a for gas-liquid separation, and the gas phase side becomes stripping steam and is led to the bottom of the regeneration tower 13. On the other hand, the liquid phase side after the gas-liquid separation is merged with the absorption liquid in the gas-liquid separation drum 14 a that has not been led to the exhaust gas cooler 12 to become a lean solution and is extracted from the gas-liquid separation drum 14 a.

このように、本発明の除去装置1の他の具体例においては、リボイラー14用の熱源にボイラー2を出た高温の燃焼排ガスを利用しているため、蒸気タービン用の蒸気から抽気してリボイラー14に供給する必要がなくなる。よって、発電所の出力低下を抑制することができるうえ、蒸気タービンの運転をより安定化させることが可能となる。   Thus, in another specific example of the removal apparatus 1 of the present invention, since the high-temperature combustion exhaust gas discharged from the boiler 2 is used as the heat source for the reboiler 14, the reboiler is extracted from the steam for the steam turbine. 14 need not be supplied. Therefore, it is possible to suppress a decrease in the output of the power plant and further stabilize the operation of the steam turbine.

尚、図1に示す除去装置と同様、煙道の燃焼排ガスからのガス抜出量は、高温の燃焼排ガスが有する熱量に基づいて適宜定めることが好ましい。なぜなら、ガス抜出量に応じて吸収塔10に供給するリーン溶液の供給量が定まるため、ガス抜出量が多くなりすぎると、ストリッピングスチームの生成に必要な熱量が高温の燃焼排ガスが有する熱量を超過し、蒸気タービン用の蒸気から抽気して利用する必要が生じるからである。   As in the removal device shown in FIG. 1, the amount of gas extracted from the flue combustion exhaust gas is preferably determined as appropriate based on the amount of heat of the high-temperature combustion exhaust gas. Because the supply amount of the lean solution supplied to the absorption tower 10 is determined according to the gas extraction amount, if the gas extraction amount increases too much, the high-temperature combustion exhaust gas has the amount of heat necessary for generating stripping steam. This is because the amount of heat is exceeded and it is necessary to extract and use steam from steam for the steam turbine.

[実施例]
出力1000MWの火力発電所における石炭焚きボイラーから排出される燃焼排ガス中の二酸化炭素の一部を、図1に示す二酸化炭素の除去装置によって除去する場合のプロセス設計を行った。吸収液は30重量%MEAとし、その再生に必要な熱量は1100kcal/kg−COとした。再生に必要な熱量のうち、リッチ溶液の昇温に湿式処理前の燃焼排ガスの有する熱量の50%を利用し、リボイラーでのストリッピングスチーム生成用に、石炭焚きボイラーで生成する蒸気を利用した。また、吸収塔では、煙道から抜き出したバイパスガスに含まれる二酸化炭素の90%を除去することにした。
[Example]
A process design for removing a part of carbon dioxide in combustion exhaust gas discharged from a coal-fired boiler in a thermal power plant with an output of 1000 MW by the carbon dioxide removal apparatus shown in FIG. 1 was performed. The absorbing solution was 30 wt% MEA, and the amount of heat required for the regeneration was 1100 kcal / kg-CO 2 . Of the amount of heat required for regeneration, 50% of the amount of heat of the combustion exhaust gas before wet processing is used to raise the rich solution, and steam generated by a coal-fired boiler is used to generate stripping steam in the reboiler. . In the absorption tower, it was decided to remove 90% of the carbon dioxide contained in the bypass gas extracted from the flue.

これらの条件の下、先ず、排ガス冷却器でのリッチ溶液の昇温を35℃として吸収液の循環量を求め、この循環量の吸収液で処理可能なバイパスガス流量(煙道の燃焼排ガスからのガス抜出量)を計算した。これら循環量及びバイパスガス流量に基づいて、その他のストリームの熱収支及び物質収支計算を行った。   Under these conditions, first, the temperature of the rich solution in the exhaust gas cooler is set to 35 ° C., the amount of circulation of the absorption liquid is obtained, and the bypass gas flow rate (from flue combustion exhaust gas that can be treated with this circulation amount of absorption liquid is obtained. Gas extraction amount). Based on these circulation amounts and bypass gas flow rates, the heat balance and mass balance calculation of other streams were performed.

このようにして計算した結果を、下記の表1及び表2に示す。尚、表1は燃焼排ガスについての熱収支及び物質収支をまとめたものであり、表2は吸収液についての熱収支及び物質収支をまとめたものである。また、ストリーム番号は図1に示した符号に対応している。   The results calculated in this way are shown in Tables 1 and 2 below. Table 1 summarizes the heat balance and material balance of the combustion exhaust gas, and Table 2 summarizes the heat balance and material balance of the absorbent. The stream number corresponds to the code shown in FIG.

Figure 2009247932
Figure 2009247932

Figure 2009247932
Figure 2009247932

この結果から、吸収液を熱交換媒体として湿式処理前後の燃焼排ガスのガスガス熱交換を行いつつ、湿式処理後の燃焼排ガス中の二酸化炭素の8.0%を除去できることが分かった。また、このときの電力の出力低下は、1.1%であることが分かった。この出力低下は、電力単価を15円/kWとすると、年間(7000時間)で約11億円の電力販売損失に相当する。   From this result, it was found that 8.0% of carbon dioxide in the combustion exhaust gas after the wet treatment could be removed while performing gas gas heat exchange of the combustion exhaust gas before and after the wet treatment using the absorbing liquid as a heat exchange medium. Moreover, it turned out that the output fall of the electric power at this time is 1.1%. This reduction in output corresponds to a power sales loss of about 1.1 billion yen per year (7000 hours) when the unit price of electricity is 15 yen / kW.

[比較例]
ボイラーから排出される高温の燃焼排ガスの有する熱量を吸収液の再生に使用しなかった以外は実施例と同様にして、電力の出力低下を計算した。尚、湿式処理前後の燃焼排ガスのガスガス熱交換には、水を熱交換媒体とする従来の方式を採用した。
[Comparative example]
The power output reduction was calculated in the same manner as in the example except that the amount of heat of the high-temperature combustion exhaust gas discharged from the boiler was not used for regeneration of the absorbent. In addition, the conventional system which uses water as the heat exchange medium was adopted for the gas gas heat exchange of the combustion exhaust gas before and after the wet treatment.

その結果、実施例と同様に湿式処理後の燃焼排ガス中の二酸化炭素の8.0%を除去するためには、出力低下が実施例の約2倍の2.1%となることが分かった。この出力低下は、電力単価を15円/kWとすると、年間(7000時間)で約22億円の電力販売損失に相当し、実施例に比べて損失が約11億円多くなることが分かった。   As a result, in order to remove 8.0% of the carbon dioxide in the combustion exhaust gas after the wet treatment as in the example, it was found that the output decrease was 2.1%, which is about twice that of the example. . This reduction in output is equivalent to a loss in power sales of approximately 2.2 billion yen per year (7000 hours) when the unit price of electricity is 15 yen / kW, and it was found that the loss was increased by approximately 1.1 billion yen compared to the example. .

本発明による二酸化炭素の除去装置の一具体例を示す概要図である。It is a schematic diagram which shows one specific example of the carbon dioxide removal apparatus by this invention. 本発明による二酸化炭素の除去装置の他の具体例を示す概要図である。It is a schematic diagram which shows the other specific example of the carbon dioxide removal apparatus by this invention.

符号の説明Explanation of symbols

1 除去装置
2 石炭焚きボイラー
3 排煙脱硫装置
4 煙突
10 吸収塔
11 リーン・リッチ熱交換器
12 排ガス冷却器
13 再生塔
14 リボイラー
14a 気液分離ドラム
15 凝縮器
16 排ガス再加熱器
17 リーン冷却器
DESCRIPTION OF SYMBOLS 1 Removal apparatus 2 Coal-fired boiler 3 Flue gas desulfurization apparatus 4 Chimney 10 Absorption tower 11 Lean rich heat exchanger 12 Exhaust gas cooler 13 Regeneration tower 14 Reboiler 14a Gas-liquid separation drum 15 Condenser 16 Exhaust gas reheater 17 Lean cooler

Claims (4)

湿式処理された燃焼排ガスの少なくとも一部を吸収液に接触させることによって、当該少なくとも一部の燃焼排ガス中の二酸化炭素を吸収液に化学吸収させて除去する方法であって、湿式処理前の燃焼排ガスの熱を利用して二酸化炭素を化学吸収した吸収液を再生すると共に、再生された吸収液の熱を利用して湿式処理後の燃焼排ガスを再加熱することを特徴とする二酸化炭素の除去方法。   A method for removing carbon dioxide in at least a part of the combustion exhaust gas by absorbing it into the absorption liquid by contacting at least part of the combustion exhaust gas that has been wet-treated with the absorption liquid. Removal of carbon dioxide, characterized by regenerating the absorption liquid that chemically absorbed carbon dioxide using the heat of exhaust gas and reheating the combustion exhaust gas after wet treatment using the heat of the regenerated absorption liquid Method. 前記湿式処理前の燃焼排ガスの熱を、化学吸収した吸収液の昇温に利用することを特徴とする、請求項1に記載の二酸化炭素の除去方法。   The method for removing carbon dioxide according to claim 1, wherein the heat of the combustion exhaust gas before the wet treatment is used for raising the temperature of the chemically absorbed absorbent. 前記湿式処理前の燃焼排ガスの熱を、化学吸収した吸収液の再生用ストリッピングスチームの生成に利用することを特徴とする、請求項1に記載の二酸化炭素の除去方法。   The method for removing carbon dioxide according to claim 1, wherein heat of the combustion exhaust gas before the wet treatment is used to generate stripping steam for regeneration of the chemically absorbed absorbent. 前記燃焼排ガスからの二酸化炭素の除去量を、前記湿式処理前の燃焼排ガスが有する熱量に応じて定めることを特徴とする、請求項1〜3のいずれかに記載の二酸化炭素の除去方法。   The method for removing carbon dioxide according to any one of claims 1 to 3, wherein an amount of carbon dioxide removed from the combustion exhaust gas is determined according to a heat amount of the combustion exhaust gas before the wet treatment.
JP2008095718A 2008-04-02 2008-04-02 Method for removing carbon dioxide using exhaust gas heat source Pending JP2009247932A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008095718A JP2009247932A (en) 2008-04-02 2008-04-02 Method for removing carbon dioxide using exhaust gas heat source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008095718A JP2009247932A (en) 2008-04-02 2008-04-02 Method for removing carbon dioxide using exhaust gas heat source

Publications (1)

Publication Number Publication Date
JP2009247932A true JP2009247932A (en) 2009-10-29

Family

ID=41309118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008095718A Pending JP2009247932A (en) 2008-04-02 2008-04-02 Method for removing carbon dioxide using exhaust gas heat source

Country Status (1)

Country Link
JP (1) JP2009247932A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011105120A1 (en) * 2010-02-23 2011-09-01 三菱重工業株式会社 Co2 recovery device and method for recovering co2
WO2011108086A1 (en) * 2010-03-03 2011-09-09 バブコック日立株式会社 Exhaust gas treatment system having carbon dioxide removal device
JP2011208846A (en) * 2010-03-29 2011-10-20 Hitachi Ltd Boiler apparatus
WO2011132659A1 (en) * 2010-04-20 2011-10-27 バブコック日立株式会社 Exhaust gas treatment system provided with carbon dioxide chemisorption equipment
WO2012073552A1 (en) * 2010-12-01 2012-06-07 三菱重工業株式会社 Co2 recovery system
WO2012176430A1 (en) * 2011-06-20 2012-12-27 バブコック日立株式会社 Combustion exhaust gas treatment system and combustion exhaust gas treatment method
US8420037B2 (en) 2011-06-22 2013-04-16 Mitsubishi Heavy Industries, Ltd. Air pollution control system and air pollution control method
KR101377635B1 (en) 2012-09-27 2014-03-25 현대제철 주식회사 Carbon dioxide collecting apparatus
CN110787594A (en) * 2019-11-25 2020-02-14 中冶京诚工程技术有限公司 CO in flue gas2Method and system for capturing and utilizing coupled LNG decompression cycle
WO2021131459A1 (en) 2019-12-27 2021-07-01 三菱パワー株式会社 Exhaust gas processing equipment and gas turbine plant
CN113828120A (en) * 2021-11-01 2021-12-24 中国船舶重工集团公司第七一一研究所 Low-energy-consumption marine diesel engine flue gas CO2Trapping system
WO2022019295A1 (en) 2020-07-20 2022-01-27 三菱パワー株式会社 Gas turbine plant
US11555429B2 (en) 2019-02-28 2023-01-17 Mitsubishi Heavy Industries, Ltd. Gas turbine plant and exhaust carbon dioxide recovery method therefor
WO2023068281A1 (en) * 2021-10-21 2023-04-27 三菱重工業株式会社 Co2 recovery system, and co2 recovery method

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2011219266B2 (en) * 2010-02-23 2014-01-09 Mitsubishi Heavy Industries, Ltd. CO2 recovery device and method for recovering CO2
US9662607B2 (en) 2010-02-23 2017-05-30 Mitsubishi Heavy Industries, Ltd. CO2 recovery unit and CO2 recovery method
US9383101B2 (en) 2010-02-23 2016-07-05 Mitsubishi Heavy Industries, Ltd. CO2 recovery unit and CO2 recovery method
WO2011105120A1 (en) * 2010-02-23 2011-09-01 三菱重工業株式会社 Co2 recovery device and method for recovering co2
WO2011108086A1 (en) * 2010-03-03 2011-09-09 バブコック日立株式会社 Exhaust gas treatment system having carbon dioxide removal device
US8828130B2 (en) 2010-03-03 2014-09-09 Babcock-Hitachi Kabushiki Kaisha Exhaust gas treatment system equipped with carbon dioxide removal device
JP5457543B2 (en) * 2010-03-03 2014-04-02 バブコック日立株式会社 Exhaust gas treatment system with carbon dioxide removal device
US20120325092A1 (en) * 2010-03-03 2012-12-27 Jun Shimamura Exhaust gas treatment system equipped with carbon dioxide removal device
JP2011208846A (en) * 2010-03-29 2011-10-20 Hitachi Ltd Boiler apparatus
US8741034B2 (en) 2010-04-20 2014-06-03 Babcock-Hitachi Kabushiki Kaisha Exhaust gas treatment system with carbon dioxide chemical absorption equipment
US20130052096A1 (en) * 2010-04-20 2013-02-28 Babcock-Hitachi Kabushiki Kaisha Exhaust gas treatment system with carbon dioxide chemical absorption equipment
WO2011132659A1 (en) * 2010-04-20 2011-10-27 バブコック日立株式会社 Exhaust gas treatment system provided with carbon dioxide chemisorption equipment
JP2011224472A (en) * 2010-04-20 2011-11-10 Babcock Hitachi Kk Exhaust gas treatment system provided with carbon dioxide chemical absorption facility
EP2561919A1 (en) * 2010-04-20 2013-02-27 Babcock-Hitachi Kabushiki Kaisha Exhaust gas treatment system provided with carbon dioxide chemisorption equipment
EP2561919A4 (en) * 2010-04-20 2014-08-27 Babcock Hitachi Kk Exhaust gas treatment system provided with carbon dioxide chemisorption equipment
AU2011338126B2 (en) * 2010-12-01 2015-09-17 Mitsubishi Heavy Industries, Ltd. CO2 recovery system
AU2011338126A8 (en) * 2010-12-01 2015-10-08 Mitsubishi Heavy Industries, Ltd. CO2 recovery system
JP2012115779A (en) * 2010-12-01 2012-06-21 Mitsubishi Heavy Ind Ltd Co2 recovery system
WO2012073552A1 (en) * 2010-12-01 2012-06-07 三菱重工業株式会社 Co2 recovery system
WO2012176430A1 (en) * 2011-06-20 2012-12-27 バブコック日立株式会社 Combustion exhaust gas treatment system and combustion exhaust gas treatment method
JP2013000694A (en) * 2011-06-20 2013-01-07 Babcock Hitachi Kk Co2 recovery equipment
US9399939B2 (en) 2011-06-20 2016-07-26 Mitsubishi Hitachi Power Systems, Ltd. Combustion exhaust gas treatment system and method of treating combustion exhaust gas
US8420037B2 (en) 2011-06-22 2013-04-16 Mitsubishi Heavy Industries, Ltd. Air pollution control system and air pollution control method
KR101377635B1 (en) 2012-09-27 2014-03-25 현대제철 주식회사 Carbon dioxide collecting apparatus
US11555429B2 (en) 2019-02-28 2023-01-17 Mitsubishi Heavy Industries, Ltd. Gas turbine plant and exhaust carbon dioxide recovery method therefor
CN110787594A (en) * 2019-11-25 2020-02-14 中冶京诚工程技术有限公司 CO in flue gas2Method and system for capturing and utilizing coupled LNG decompression cycle
CN110787594B (en) * 2019-11-25 2023-09-01 中冶京诚工程技术有限公司 CO in flue gas 2 Method and system for capturing and utilizing coupled LNG depressurization cycle
WO2021131459A1 (en) 2019-12-27 2021-07-01 三菱パワー株式会社 Exhaust gas processing equipment and gas turbine plant
JP2021107054A (en) * 2019-12-27 2021-07-29 三菱パワー株式会社 Exhaust gas treatment facility and gas turbine plant
JP7356345B2 (en) 2019-12-27 2023-10-04 三菱重工業株式会社 Exhaust gas treatment equipment and gas turbine plants
WO2022019295A1 (en) 2020-07-20 2022-01-27 三菱パワー株式会社 Gas turbine plant
WO2023068281A1 (en) * 2021-10-21 2023-04-27 三菱重工業株式会社 Co2 recovery system, and co2 recovery method
CN113828120A (en) * 2021-11-01 2021-12-24 中国船舶重工集团公司第七一一研究所 Low-energy-consumption marine diesel engine flue gas CO2Trapping system

Similar Documents

Publication Publication Date Title
JP2009247932A (en) Method for removing carbon dioxide using exhaust gas heat source
JP5230088B2 (en) CO2 recovery apparatus and method
JP4745682B2 (en) CO2 recovery apparatus and method
JP4875303B2 (en) Carbon dioxide recovery system, power generation system using the same, and methods thereof
JP5559067B2 (en) Method for removing carbon dioxide from gas
CA2557454C (en) System and method for recovering co2
EP2722097B1 (en) Combustion exhaust gas treatment system and combustion exhaust gas treatment method
JP5465246B2 (en) Method and apparatus for separating carbon dioxide from exhaust gas from fossil fuel power plant equipment
JP5976812B2 (en) Exhaust gas treatment system
NO332812B1 (en) Amine emission control
US9138677B2 (en) Ammonia stripper for a carbon capture system for reduction of energy consumption
JP2011020090A (en) Carbon dioxide recovery system and method
JP2010190214A (en) Post-combustion processing in power plant
KR20130023484A (en) Energy saving method and apparatus for carbon dioxide capture in power plant
JP2012217903A (en) System and method for recovering carbon dioxide
JP2021021332A (en) Gas turbine plant
JP6088240B2 (en) Carbon dioxide recovery device and method of operating the recovery device
JP5738045B2 (en) Carbon dioxide recovery system and method
AU2013201825B2 (en) Exhaust gas treatment system
JP5237204B2 (en) CO2 recovery apparatus and method
JP2011000528A (en) Co2 recovering device and co2 recovering method
WO2014129391A1 (en) Co2 recovery system and co2 recovery method
Molina et al. Comparison of different CO2 recovery processes in their optimum operating conditions from a pulverized coal power plant
JP2014531969A (en) Method and system for removing carbon dioxide from flue gas
Iijima et al. System and method for recovering CO2