JP2009243634A - Hydraulic shock absorber - Google Patents

Hydraulic shock absorber Download PDF

Info

Publication number
JP2009243634A
JP2009243634A JP2008093212A JP2008093212A JP2009243634A JP 2009243634 A JP2009243634 A JP 2009243634A JP 2008093212 A JP2008093212 A JP 2008093212A JP 2008093212 A JP2008093212 A JP 2008093212A JP 2009243634 A JP2009243634 A JP 2009243634A
Authority
JP
Japan
Prior art keywords
inner cylinder
cylinder
reservoir
end plate
annular passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008093212A
Other languages
Japanese (ja)
Other versions
JP5126509B2 (en
Inventor
Kazuaki Shibahara
和晶 柴原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2008093212A priority Critical patent/JP5126509B2/en
Publication of JP2009243634A publication Critical patent/JP2009243634A/en
Application granted granted Critical
Publication of JP5126509B2 publication Critical patent/JP5126509B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To smoothly discharge gas into a reservoir from an inner cylinder without loosing a damping force generating effect of an orifice. <P>SOLUTION: In a double tube type transverse hydraulic shock absorber, ends of concentrically arranged outer cylinder 1 and inner cylinder 2 are closed by an end plate 3 to compose a space between the two as the annular reservoir 5, and an annular passage S letting out air A accumulated in an upper side corner part of an oil chamber 10 in the inner cylinder 2 to a lower side area of the reservoir 5 and the orifice 23 for damping force generation are arranged around a fitting part of the end of the inner cylinder 2 and the end plate 3. The annular passage S is communicated with the oil chamber 10 by a cutout 21 (a communication passage T) formed in a bottom of a recessed part 6 of an end plate 4, and hydraulic fluid including the air A is smoothly sent into the annular passage S. The orifice 23 is provided in a plug member 24 attached to a communication hole 22 formed in a lower side portion of the end plate 3 to facilitate its machining and accuracy securement. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、鉄道車両、建物等の水平動を抑える水平動ダンパとして用いられる複筒式横置き液圧緩衝器に関する。   The present invention relates to a double-cylinder horizontal hydraulic shock absorber used as a horizontal motion damper that suppresses horizontal motion of railway vehicles, buildings, and the like.

横置きの液圧緩衝器衝器では、取付姿勢が水平になっていることから、気体(空気)が抜けにくいという制約があり、空気を抜くための特別の工夫が必要になる。たとえば、特許文献1に記載のものでは、外筒内に同心に配置された内筒の両端部の上部側に空気抜き兼減衰力発生用オリフィスを設け、該内筒の両端部が嵌合される端板(前蓋、底板)の凹部内周面に前記オリフィスに通じる環状溝(環状通路)を形成し、前側端板の下部側に前記環状溝を内筒と外筒との間の環状のリザーバの下部側へ連通させる孔(連通孔)を設け、前記内筒内の油室(液室)の上部側隅部に滞留した空気を前記オリフィス、環状通路および連通孔を経てリザーバの下部側へ排出させるようにしている。   In the horizontal hydraulic shock absorber impactor, since the mounting posture is horizontal, there is a restriction that gas (air) is difficult to escape, and a special device for extracting air is required. For example, in the device described in Patent Document 1, an air venting / damping force generating orifice is provided on the upper side of both end portions of the inner tube that are concentrically arranged in the outer tube, and both ends of the inner tube are fitted. An annular groove (annular passage) leading to the orifice is formed on the inner peripheral surface of the concave portion of the end plate (front lid, bottom plate), and the annular groove is formed between the inner cylinder and the outer cylinder on the lower side of the front end plate. A hole (communication hole) for communicating with the lower side of the reservoir is provided, and the air staying in the upper corner of the oil chamber (liquid chamber) in the inner cylinder passes through the orifice, the annular passage and the communication hole, and the lower side of the reservoir. To be discharged.

特開平11−344068号公報JP 11-344068 A

しかしながら、上記した特許文献1に記載の空気抜き機構によれば、オリフィス以外の周辺から環状通路に作動液が流入すると、該オリフィスの減衰力発生効果が失われるため、前記環状通路の両側を完全にシールする必要がある。この場合、環状通路の両側に2つのシール部材が配置されるため、該シール部材の設置スペース分、オリフィスを内筒の先端から離して設けなれければならず、これに伴って内筒内の液室の上部側隅部に滞留する空気が抜けにくい、という問題があった。   However, according to the air vent mechanism described in Patent Document 1 described above, when hydraulic fluid flows from the periphery other than the orifice into the annular passage, the effect of generating the damping force of the orifice is lost. Need to seal. In this case, since two seal members are arranged on both sides of the annular passage, the orifice must be provided away from the tip of the inner cylinder by the installation space of the seal member. There was a problem that the air staying in the upper corner of the liquid chamber was difficult to escape.

本発明は、上記した従来の問題点に鑑みてなされたもので、その課題とするところは、オリフィスの減衰力発生効果を失わせることなく内筒内からリザーバへ円滑に気体を排出させることができるように、もって減衰性能の安定維持に大きく寄与する複筒式横置き液圧緩衝器を提供することにある。   The present invention has been made in view of the above-described conventional problems, and the problem is that the gas can be smoothly discharged from the inner cylinder to the reservoir without losing the effect of generating the damping force of the orifice. Accordingly, it is an object of the present invention to provide a double-cylinder horizontal hydraulic shock absorber that greatly contributes to stable maintenance of damping performance.

上記課題を解決するため、第1の発明は、同心に配置した外筒および内筒の両端を端板により閉鎖して、両者の間を液体と気体を封入した環状のリザーバとして構成し、前記内筒の少なくとも一端部と前記端板との嵌合部の周りに、取付状態で上部側となる前記内筒内の液室の隅部に滞留した気体を前記リザーバへ逃がす環状通路および減衰力発生用オリフィスを配設した複筒式横置き液圧緩衝器において、前記環状通路は、前記内筒の端部の上方側部位と前記端板の嵌合部の凹部底との間に設けた連通路によって該内筒内の液室に連通されており、前記オリフィスは、前記端板の常時液中なる部位に前記環状通路および前記リザーバに連通して配置されることを特徴とする。   In order to solve the above problems, the first invention is configured as an annular reservoir in which both ends of an outer cylinder and an inner cylinder arranged concentrically are closed by an end plate, and a liquid and a gas are enclosed between the two. An annular passage and a damping force for letting the gas staying in the corner of the liquid chamber in the inner cylinder on the upper side around the fitting portion between at least one end of the inner cylinder and the end plate to the reservoir In the multi-cylinder horizontal hydraulic shock absorber provided with the generating orifice, the annular passage is provided between an upper portion of the end portion of the inner cylinder and a concave bottom of the fitting portion of the end plate. The orifice is communicated with a liquid chamber in the inner cylinder by a communication passage, and the orifice is disposed in a portion of the end plate that is always in liquid and is in communication with the annular passage and the reservoir.

また、第2の発明は、第1の発明と同様の複筒式横置き液圧緩衝器において、前記環状通路は、前記内筒の端部の上方側部位で、前記端板の嵌合部の凹部底に配置した板状リングに設けた切欠によって該内筒内の液室に連通されており、前記オリフィスは、前記端板の常時液中となる部位に前記環状通路および前記リザーバに連通して配置されることを特徴とする。   Further, the second invention is the same as the first invention in the double-cylinder horizontal hydraulic shock absorber, wherein the annular passage is an upper portion of the end portion of the inner cylinder, and the fitting portion of the end plate The orifice communicates with the liquid chamber in the inner cylinder by a notch provided in a plate-like ring disposed at the bottom of the recess, and the orifice communicates with the annular passage and the reservoir at a portion of the end plate that is always in liquid. It is characterized by being arranged.

第1の発明によれば、オリフィスの減衰力発生効果を失わせることなく内筒内からリザーバへ円滑に気体を排出させることができるので、減衰性能の安定維持に大きく寄与するものとなる。   According to the first invention, the gas can be smoothly discharged from the inner cylinder to the reservoir without losing the effect of generating the damping force of the orifice, which greatly contributes to the stable maintenance of the damping performance.

また、第2の発明によれば、上記第1の発明の効果に加え、端板および内筒とは別体の板状リングに連通路としての切欠を設けるので、端板または内筒に切欠を形成する面倒な加工が不要になる利点がある。   According to the second invention, in addition to the effects of the first invention, the notch as the communication path is provided in the plate-like ring separate from the end plate and the inner cylinder, so that the notch is formed in the end plate or the inner cylinder. There is an advantage that the troublesome processing to form is unnecessary.

以下、本発明を実施するための最良の形態を添付図面に基づいて説明する。   The best mode for carrying out the present invention will be described below with reference to the accompanying drawings.

図1および2は、本発明の第1の実施形態としての複筒式横置き液圧緩衝器を示したものである。本液圧緩衝器は、鉄道車両用の台車ヨーダンパ(オイルダンパ)として供されるもので、同心に配置した外筒1および内筒2の両端を共通の端板3、4により閉鎖して、両者の間を環状のリザーバ5として構成している。なお、説明の便宜のため、以下では図中左側を前側、右側を後側としてそれぞれ記載する。本実施形態において、後側の端板4は、外筒1の後端を閉鎖する主蓋部材4aと内筒2の後端を閉鎖する副蓋部材4bとの分割構造となっている。前側端板3と後側端板4を構成する副蓋部材4bには凹部6、7が設けられており、内筒2は、その両端部を各凹部6、7に底付きとなるまで嵌入させた状態で該前後端板3、4に嵌合支持されている。   1 and 2 show a multi-cylinder horizontal hydraulic shock absorber as a first embodiment of the present invention. This hydraulic shock absorber is provided as a railway vehicle yaw damper (oil damper), and both ends of the outer cylinder 1 and the inner cylinder 2 arranged concentrically are closed by common end plates 3 and 4. An annular reservoir 5 is formed between the two. For convenience of explanation, the left side in the figure is described as the front side, and the right side is described as the rear side. In the present embodiment, the rear end plate 4 has a divided structure of a main lid member 4 a that closes the rear end of the outer cylinder 1 and a sub lid member 4 b that closes the rear end of the inner cylinder 2. The sub lid member 4b constituting the front end plate 3 and the rear end plate 4 is provided with recesses 6 and 7, and the inner cylinder 2 is fitted into the recesses 6 and 7 until both ends thereof are bottomed. In this state, the front and rear end plates 3 and 4 are fitted and supported.

内筒2には、ピストン8が摺動可能に配設されており、このピストン8に一端が連結されたピストンロッド9の他端部が、前側端板3を液密に挿通して外部へ延ばされている。内筒2内は、前記ピストン8によって2つの油室(液室)10、11に区画されており、両油室10、11には作動油(作動液)が封入されている。なお、この作動油はリザーバ5にも部分的に封入されている。ピストン8には、ピストンロッド9の縮み行程時、伸び行程時にそれぞれ減衰力を発生するリリーフ弁(調圧弁)12、13が配設されている。さらに、後側の端板4(副蓋部材4b)には、後側の油室(反ロッド側油室)11内の圧力に応じて開弁し該油室11内の作動油をリザーバ5の下方側領域へ逃がす高圧リリーフ弁14とリザーバ5から反ロッド側油室11への作動油の流通のみを許容する逆止弁15とが配設されている。   A piston 8 is slidably disposed in the inner cylinder 2, and the other end of a piston rod 9 having one end connected to the piston 8 is inserted in a liquid-tight manner through the front end plate 3 to the outside. It has been extended. The inner cylinder 2 is divided into two oil chambers (liquid chambers) 10 and 11 by the piston 8, and hydraulic oil (hydraulic fluid) is sealed in both the oil chambers 10 and 11. This hydraulic oil is also partially enclosed in the reservoir 5. The piston 8 is provided with relief valves (pressure regulating valves) 12 and 13 that generate a damping force during the contraction stroke and the expansion stroke of the piston rod 9, respectively. Further, the rear end plate 4 (sub lid member 4 b) is opened according to the pressure in the rear oil chamber (anti-rod side oil chamber) 11, and the hydraulic oil in the oil chamber 11 is stored in the reservoir 5. A high-pressure relief valve 14 that escapes to the lower side region and a check valve 15 that allows only the flow of hydraulic oil from the reservoir 5 to the anti-rod side oil chamber 11 are disposed.

このような台車ヨーダンパ(液圧緩衝器)は、そのピストンロッド9の先端部に固設したブラケット16と後側の端板4に固設したブラケット17とを介して台車と車体との間に、図示のように横置き状態で取付けられる。したがって、以下では、図の上側を上方側または上部側、図の下側を下方側または下部側とそれぞれ呼ぶこととする。なお、ピストンロッド9側のブラケット16には、ピストンロッド9の周りを覆う筒状カバー18が取付けられている。   Such a carriage yaw damper (hydraulic shock absorber) is provided between the carriage and the vehicle body via a bracket 16 fixed to the tip of the piston rod 9 and a bracket 17 fixed to the rear end plate 4. As shown in FIG. Therefore, in the following, the upper side of the figure is referred to as the upper side or the upper side, and the lower side of the figure is referred to as the lower side or the lower side. A cylindrical cover 18 that covers the periphery of the piston rod 9 is attached to the bracket 16 on the piston rod 9 side.

上記内筒2の両端部を受入れる前後端板3、4の凹部6、7の内周面には、内筒2の外周面との間に環状通路Sを形成する環状溝20、20´が設けられている。各環状溝20、20´は、対応する凹部6、7の底に近接して設けられている。また、各端板3、4の凹部6、7底の上方側隅部には、前記環状通路Sを内筒2の前側油室(ロッド側油室)10、反ロッド側油室11にそれぞれ連通する連通路Tを形成する切欠21、21´が設けられている。さらに、前側端板3の下方側部位には、環状通路Sを前記リザーバ5の下方側領域に連通する連通孔22が設けられており、この連通孔22の、リザーバ5側の開口端部には軸心部にオリフィス23を有するプラグ部材24が装着されている。一方、後側端板4の下方側部位には、環状通路Sをリザーバ5の下方側領域に連通するオリフィス23´が設けられている。すなわち、内筒2内の各油室10、11の上方側領域とリザーバ5の下方側領域との間は、内筒2の端部と端板3、4との嵌合部の周りに配設した切欠21、21´(連通路T)、環状溝20、20´(環状通路S)およびオリフィス23、23´を通じて相互に連通されている。   On the inner peripheral surface of the recesses 6 and 7 of the front and rear end plates 3 and 4 that receive both ends of the inner cylinder 2, there are annular grooves 20 and 20 ′ that form an annular passage S with the outer peripheral surface of the inner cylinder 2. Is provided. Each annular groove 20, 20 ′ is provided close to the bottom of the corresponding recess 6, 7. In addition, the annular passages S are respectively connected to the front oil chamber (rod side oil chamber) 10 and the anti-rod side oil chamber 11 of the inner cylinder 2 at the upper corners of the bottoms of the recesses 6 and 7 of the end plates 3 and 4, respectively. Notches 21 and 21 ′ that form communication passages T that communicate with each other are provided. Further, a communication hole 22 that communicates the annular passage S with the lower region of the reservoir 5 is provided in the lower part of the front end plate 3, and an opening end of the communication hole 22 on the reservoir 5 side is provided. A plug member 24 having an orifice 23 is attached to the shaft center portion. On the other hand, an orifice 23 ′ that communicates the annular passage S with the lower region of the reservoir 5 is provided in a lower portion of the rear end plate 4. That is, the space between the upper region of each oil chamber 10, 11 in the inner cylinder 2 and the lower region of the reservoir 5 is arranged around the fitting portion between the end of the inner cylinder 2 and the end plates 3, 4. The notches 21, 21 '(communication path T), the annular grooves 20, 20' (annular path S), and the orifices 23, 23 'are in communication with each other.

また、内筒2の両端部を受入れる前後端板3、4の凹部6、7の内周面には、前記環状溝20,20´よりも開口側に位置して他の環状溝25、25´が形成されている。各環状溝25、25´には前後端板3、4の凹部6、7の内周面と内筒2の外周面との間(嵌合隙間)をシールするシール部材26、26´が装着されている。これにより、内筒2と前後端板3、4との嵌合隙間を通じてリザーバ5と環状通路Sとの間で流体移動が起こることが規制される。   Further, on the inner peripheral surfaces of the recesses 6 and 7 of the front and rear end plates 3 and 4 for receiving both end portions of the inner cylinder 2, other annular grooves 25 and 25 are located on the opening side of the annular grooves 20 and 20 '. 'Is formed. Seal members 26 and 26 ′ for sealing the space between the inner peripheral surface of the recesses 6 and 7 of the front and rear end plates 3 and 4 and the outer peripheral surface of the inner cylinder 2 (fitting gap) are mounted in the respective annular grooves 25 and 25 ′. Has been. This restricts fluid movement between the reservoir 5 and the annular passage S through the fitting gap between the inner cylinder 2 and the front and rear end plates 3 and 4.

以下、上記のように構成した第1の実施形態の作用を説明する。
本複筒式液圧緩衝器は、前記したように台車と車体との間にように横置きに取付けられており、台車と車体とが水平方向へ相対移動すると、ピストンロッド9が伸縮動作する。そして、ピストンロッド9の伸び行程時には、ピストン8に設けた一方の調圧弁13を経てロッド側油室10の作動油が反ロッド側油室11へ流動し、これに応じて伸び側の減衰力が発生する。また、ロッド側油室10内の作動油が、連通路T(切欠21)から環状通路S(環状溝20)内に流入し、さらにオリフィス23を通じてリザーバ5内へ排出され、これに応じて伸び側の減衰力が発生する。このとき、ロッド側油室10内の上部側隅部に空気A(図2に点線で囲んで示す)が滞留していると、該空気Aが作動油と一緒に連通路Tから環状通路S内に流入し、さらにオリフィス23を経てリザーバ5の下方領域へ排出される。したがって、連通通路T、環状通路Sおよびオリフィス23は伸び行程の空気抜き機構を構成する。この伸び行程時には、ピストンロッド9の退出分の作動油が後側の端板4に設けた逆止弁(吸込み弁)15を経てリザーバ5から反ロッド側油室11へ補給される。なお、空気Aは、窒素ガス等の他の気体と置換される場合がある。
Hereinafter, the operation of the first embodiment configured as described above will be described.
As described above, the double-cylinder hydraulic shock absorber is mounted horizontally between the carriage and the vehicle body. When the carriage and the vehicle body move relative to each other in the horizontal direction, the piston rod 9 expands and contracts. . During the extension stroke of the piston rod 9, the hydraulic oil in the rod side oil chamber 10 flows to the anti-rod side oil chamber 11 through one pressure regulating valve 13 provided in the piston 8, and the damping force on the extension side accordingly. Will occur. Further, the hydraulic oil in the rod side oil chamber 10 flows into the annular passage S (annular groove 20) from the communication passage T (notch 21), and is further discharged into the reservoir 5 through the orifice 23, and extends accordingly. Side damping force is generated. At this time, if air A (indicated by a dotted line in FIG. 2) stays in the upper-side corner of the rod-side oil chamber 10, the air A and the hydraulic oil are connected to the annular passage S together with the hydraulic oil. It flows into the interior and is further discharged through the orifice 23 to the lower region of the reservoir 5. Therefore, the communication passage T, the annular passage S, and the orifice 23 constitute an air vent mechanism for an extension stroke. During this extension stroke, the hydraulic oil corresponding to the retraction of the piston rod 9 is supplied from the reservoir 5 to the anti-rod side oil chamber 11 via a check valve (suction valve) 15 provided on the rear end plate 4. The air A may be replaced with other gas such as nitrogen gas.

一方、ピストンロッド9の縮み行程時には、ピストン8に設けた他方の調圧弁12を経て反ロッド側油室11の作動油がロッド側油室10へ流動し、これに応じて縮み側の減衰力が発生する。また、反ロッド側油室11内の作動油が、連通路T(切欠21´)から環状通路S(環状溝20´)内に流入し、さらにオリフィス23´を通じてリザーバ5内へ排出され、これに応じて縮み側の減衰力が発生する。このとき、反ロッド側油室11内の上部側隅部に空気(図示略)が滞留していると、該空気が作動油と一緒に連通路Tから環状通路S内に流入し、さらにオリフィス23´を経てリザーバ5の下方領域へ排出される。したがって、連通路T、環状通路Sおよびオリフィス23´は縮み行程の空気抜き機構を構成する。なお、この縮み行程時には、ピストンロッド9の進入分の作動油が後側の端板4に設けた高圧リリーフ弁14を経て反ロッド側油室11からリザーバ5へ排出され、この際も減衰力が発生する。   On the other hand, during the contraction stroke of the piston rod 9, the hydraulic oil in the non-rod side oil chamber 11 flows into the rod side oil chamber 10 through the other pressure regulating valve 12 provided in the piston 8, and the damping force on the contraction side accordingly. Will occur. Further, the hydraulic oil in the anti-rod side oil chamber 11 flows into the annular passage S (annular groove 20 ') from the communication passage T (notch 21'), and is discharged into the reservoir 5 through the orifice 23 '. In response to this, a damping force on the contraction side is generated. At this time, if air (not shown) stays in the upper side corner in the anti-rod side oil chamber 11, the air flows into the annular passage S from the communication passage T together with the hydraulic oil, and further the orifice It is discharged to the lower region of the reservoir 5 through 23 '. Therefore, the communication passage T, the annular passage S, and the orifice 23 'constitute an air vent mechanism for the contraction stroke. During this contraction stroke, the hydraulic oil that has entered the piston rod 9 is discharged from the non-rod-side oil chamber 11 to the reservoir 5 through the high-pressure relief valve 14 provided on the rear end plate 4, and also in this case, the damping force Will occur.

上記のように構成した複筒式横置き液圧緩衝器においては、空気抜き用の各環状通路Sが、前・後側端板3、4の凹部6、7の底に設けた切欠21、21´(連通路T)を経て内筒2内の油室10、11に連通しているので、内筒2内の油室10、11の上部側隅部に滞留する空気は円滑に環状通路Sに流入して、リザーバ5へ排出される。   In the multi-cylinder horizontal hydraulic shock absorber configured as described above, each annular passage S for venting air has notches 21 and 21 provided at the bottoms of the recesses 6 and 7 of the front and rear end plates 3 and 4. ′ (Communication passage T) communicates with the oil chambers 10 and 11 in the inner cylinder 2 so that the air staying in the upper corners of the oil chambers 10 and 11 in the inner cylinder 2 smoothly flows into the annular passage S. And is discharged to the reservoir 5.

また、各環状通路Sを形成する環状溝20、20´が凹部6、7の底に近接して配置され、しかも、用いるシール部材26、26´は1つだけとなっているので、前・後側端板3、4と内筒2との嵌合部の長さは、前記した特許文献1に記載の発明におけるそれよりも短縮可能となる。そして、前・後側端板3、4と内筒2との嵌合長が短縮することにより、前・後側端板3、4の小型軽量化が可能になり、その製造に要する材料費も低減する。   In addition, the annular grooves 20 and 20 'forming the annular passages S are arranged close to the bottoms of the recesses 6 and 7, and only one seal member 26 and 26' is used. The length of the fitting part between the rear side end plates 3 and 4 and the inner cylinder 2 can be made shorter than that in the invention described in Patent Document 1 described above. And by shortening the fitting length between the front and rear side end plates 3 and 4 and the inner cylinder 2, the front and rear side end plates 3 and 4 can be reduced in size and weight, and the material cost required for the manufacture thereof is reduced. Is also reduced.

本第1の実施形態においては特に、オリフィスの1つ23を端板3と別体のプラグ部材24に設けているので、その加工は容易となるばかりか、精度の確保も容易となり、結果として本液圧緩衝器の製造性が向上する。   Particularly in the first embodiment, since one of the orifices 23 is provided in the plug member 24 which is separate from the end plate 3, not only the processing is easy, but also the accuracy can be ensured easily. Manufacturability of the present hydraulic shock absorber is improved.

ところで、この種の複筒式横置き液圧緩衝器は、台車用ブラケット16側がわずか上方傾斜するように台車と車体との間に配置される場合が多い。この場合、内筒2内に残留する空気は、その大部分がピストンロッド9の伸縮動に伴ってロッド側油室10の上部側隅部に滞留するようになる。したがって、このように傾斜配置する場合は、少なくとも連通路T(切欠21)、環状通路S(環状溝20)およびオリフィス23を含む伸び行程の空気抜き機構があればよく、切欠21´、環状溝20´およびオリフィス23´を含む縮み行程の空気抜き機構は省略することができる。   By the way, this type of multi-cylinder horizontal hydraulic shock absorber is often disposed between the carriage and the vehicle body so that the carriage bracket 16 side is slightly inclined upward. In this case, most of the air remaining in the inner cylinder 2 stays in the upper corner of the rod side oil chamber 10 as the piston rod 9 expands and contracts. Therefore, in the case of the inclined arrangement as described above, it is sufficient if there is an air vent mechanism for an extension stroke including at least the communication passage T (notch 21), the annular passage S (annular groove 20), and the orifice 23. The air venting mechanism for the contraction process including 'and the orifice 23' can be omitted.

図3および4は、本発明の第2の実施形態としての複筒式横置き液圧緩衝器を示したものである。本第2の実施形態の特徴とするところは、前記した前後端板3、4の凹部6、7の内周面と内筒2の外周面との間の空気抜き用環状通路Sを、内筒2の端部外周面に設けたテーパ部30を利用して形成した点にある。なお、本複筒式横置き液圧緩衝器の基本構造および作用効果は、上記第1の実施形態と同様であるので、本第2の実施形態を含め、以下の実施形態では、同一構成要素に同一符号を付し、重複する説明は省略する。また、伸び行程および縮み行程の空気抜き機構に対する構造変更は同じであるので、本第2の実施形態を含め、以下の実施形態では、前側の伸び行程の空気抜き機構のみを図示することとする。   3 and 4 show a double-cylinder horizontal hydraulic shock absorber as a second embodiment of the present invention. The feature of the second embodiment is that an air vent annular passage S between the inner peripheral surface of the recesses 6 and 7 of the front and rear end plates 3 and 4 and the outer peripheral surface of the inner cylinder 2 is provided as an inner cylinder. 2 is formed by using a tapered portion 30 provided on the outer peripheral surface of the end portion. In addition, since the basic structure and operational effects of the double-cylinder horizontal hydraulic shock absorber are the same as those in the first embodiment, the same components are used in the following embodiments including the second embodiment. Are given the same reference numerals, and duplicate descriptions are omitted. In addition, since the structural changes to the air release mechanism for the extension stroke and the contraction stroke are the same, only the air release mechanism for the front extension stroke is illustrated in the following embodiments including the second embodiment.

本第2の実施形態においては、環状通路Sを内筒2の端部に設けたテーパ部30を利用して形成しているので、前後端板3、4の凹部6、7の内周面に対する溝加工(環状溝10、10´の加工)が不要になり、加工コストが低減する。   In the second embodiment, since the annular passage S is formed by using the tapered portion 30 provided at the end of the inner cylinder 2, the inner peripheral surfaces of the recesses 6 and 7 of the front and rear end plates 3 and 4. No groove processing (processing of the annular grooves 10, 10 ') is required, and the processing cost is reduced.

図5および6は、本発明の第3の実施形態としての複筒式横置き液圧緩衝器を示したものである。本第3の実施形態の特徴とするところは、前記空気抜き用環状通路Sを内筒2内の油室10、11に連通させる連通路Tを、内筒2の端部の円周方向の一箇所に設けた切欠31内に設定した点にある。本第3の実施形態においては、内筒2に連通路Tとしての切欠31を設けるので、第1の実施形態のように前後端板3、4の凹部6、7の底に切欠21、21´を設ける場合よりも加工は簡単になり、加工コストは低減する。   5 and 6 show a multi-cylinder horizontal hydraulic shock absorber as a third embodiment of the present invention. A feature of the third embodiment is that the communication passage T that communicates the air vent annular passage S with the oil chambers 10 and 11 in the inner cylinder 2 is provided in the circumferential direction at the end of the inner cylinder 2. It exists in the point set in the notch 31 provided in the location. In the third embodiment, since the inner cylinder 2 is provided with the notch 31 as the communication path T, the notches 21 and 21 are formed at the bottoms of the recesses 6 and 7 of the front and rear end plates 3 and 4 as in the first embodiment. Processing is simpler than when 'is provided, and the processing cost is reduced.

図7および8は、本発明の第4の実施形態としての複筒式横置き液圧緩衝器を示したものである。本第4の実施形態の特徴とするところは、前記空気抜き用環状通路Sを内筒2内の油室10、11に連通させる連通路Tを、前後端板3、4の凹部6、7の底に配置した別体の板状リング32に設けたU字状の切欠33内に設定した点にある。本第4の実施形態においては、端板3、4および内筒2とは別体の板状リング32に連通路Tとしての切欠33を設けるので、前後端板3、4の凹部6、7の底に切欠21、21´を設ける場合(第1の実施形態)よりはもちろん、内筒2の端部に切欠31を設ける場合(第2の実施形態)よりも加工は簡単になり、加工コストはより一層低減する。   7 and 8 show a multi-cylinder horizontal hydraulic shock absorber as a fourth embodiment of the present invention. A feature of the fourth embodiment is that the communication passage T for communicating the air vent annular passage S with the oil chambers 10 and 11 in the inner cylinder 2 is formed in the recesses 6 and 7 of the front and rear end plates 3 and 4. It is in the point set in the U-shaped notch 33 provided in the separate plate-shaped ring 32 arrange | positioned at the bottom. In the fourth embodiment, the notches 33 as the communication passages T are provided in the plate-like ring 32 that is separate from the end plates 3 and 4 and the inner cylinder 2, so that the recesses 6 and 7 of the front and rear end plates 3 and 4 are provided. Of course, machining is simpler than the case of providing the notch 31 at the end of the inner cylinder 2 (second embodiment) as well as the case of providing the notches 21 and 21 ′ at the bottom of the inner cylinder (first embodiment). Cost is further reduced.

図9は、本発明の第5の実施形態としての複筒式横置き液圧緩衝器を示したものである。本第5の実施形態の特徴とするところは、前記空気抜き用環状通路Sを内筒2内の油室10、11に連通させる連通路Tを、内筒2の端部に形成した貫通孔34内に設定した点にある。貫通孔34は、できるだけ大きな口径とすると共に、できるだけ内筒2の先端に接近して形成する。本第5の実施形態においては、内筒2に口径の大きい貫通孔34を設けるので、前記した特許文献1に記載の発明におけるように内筒に小口径のオリフィスを設ける場合よりも加工は簡単となる。   FIG. 9 shows a multi-cylinder horizontal hydraulic shock absorber as a fifth embodiment of the present invention. The feature of the fifth embodiment is that a through-hole 34 is formed at the end of the inner cylinder 2 with a communication path T that communicates the air vent annular passage S with the oil chambers 10, 11 in the inner cylinder 2. It is in the point set in. The through hole 34 has a diameter as large as possible and is formed as close to the tip of the inner cylinder 2 as possible. In the fifth embodiment, since the inner cylinder 2 is provided with the through-hole 34 having a large diameter, the processing is easier than the case where the inner cylinder is provided with a small-diameter orifice as in the invention described in Patent Document 1. It becomes.

図10および11は、本発明の第6の実施形態としての複筒式横置き液圧緩衝器を示したものである。本第6の実施形態の特徴とするところは、上記第5の実施形態において、前記した空気抜き用環状通路Sを、内筒2の端部外径を縮径させた縮径部35の外周面と前後端板4、5の凹部6、7の内周面との間に設定した点にある。本第6の実施形態においては、環状通路Sを内筒2の端部に設けた縮径部35を利用して形成しているので、前後端板3、4の凹部6、7の内周面に対する溝加工(環状溝10、10´の加工)が不要になり、第5の実施形態よりも加工コストが低減する。   10 and 11 show a multi-cylinder horizontal hydraulic shock absorber as a sixth embodiment of the present invention. The feature of the sixth embodiment is that in the fifth embodiment, the above-described air vent annular passage S has the outer peripheral surface of the reduced diameter portion 35 in which the outer diameter of the end portion of the inner cylinder 2 is reduced. And the inner peripheral surfaces of the recesses 6 and 7 of the front and rear end plates 4 and 5. In the sixth embodiment, since the annular passage S is formed by using the reduced diameter portion 35 provided at the end of the inner cylinder 2, the inner periphery of the recesses 6 and 7 of the front and rear end plates 3 and 4 is provided. Groove machining on the surface (machining of the annular grooves 10, 10 ′) becomes unnecessary, and the machining cost is reduced as compared with the fifth embodiment.

本発明の第1の実施形態としての横置き液圧緩衝器の全体構造を示す断面図である。It is sectional drawing which shows the whole structure of the horizontal placement hydraulic pressure buffer as the 1st Embodiment of this invention. 図1の一部を拡大して示す断面図である。It is sectional drawing which expands and shows a part of FIG. 本発明の第2の実施形態としての横置き液圧緩衝器の要部構造を示す断面図である。It is sectional drawing which shows the principal part structure of the horizontal placement hydraulic pressure buffer as the 2nd Embodiment of this invention. 図3のX部を拡大して示す断面図である。It is sectional drawing which expands and shows the X section of FIG. 本発明の第3の実施形態としての横置き液圧緩衝器の要部構造を示す断面図である。It is sectional drawing which shows the principal part structure of the horizontal placement hydraulic pressure buffer as the 3rd Embodiment of this invention. 本3の実施形態で用いる内筒の端部構造を示す斜視図である。It is a perspective view which shows the edge part structure of the inner cylinder used in embodiment of this 3. FIG. 本発明の第4の実施形態としての横置き液圧緩衝器の要部構造を示す断面図である。It is sectional drawing which shows the principal part structure of the horizontal placement hydraulic pressure buffer as the 4th Embodiment of this invention. 本4の実施形態で用いる板状リングの形状を示す斜視図である。It is a perspective view which shows the shape of the plate-shaped ring used in embodiment of this 4. FIG. 本発明の第5の実施形態としての横置き液圧緩衝器の要部構造を示す断面図である。It is sectional drawing which shows the principal part structure of the horizontal placement hydraulic pressure buffer as the 5th Embodiment of this invention. 本発明の第6の実施形態としての横置き液圧緩衝器の要部構造を示す断面図である。It is sectional drawing which shows the principal part structure of the horizontal placement hydraulic pressure buffer as the 6th Embodiment of this invention. 図10のY部拡大断面図である。It is the Y section expanded sectional view of FIG.

符号の説明Explanation of symbols

1 外筒、 2 内筒
3、4 端板、 5 リザーバ
6、7 端板の凹部
8 ピストン、 9 ピストンロッド
10、11 内筒内の油室(液室)
12、13、14 リリーフ弁(調圧弁)
20、20´ 環状溝(環状通路)
21、21´ 切欠(連通路)
22 連通孔
23、23´ オリフィス
24 プラグ部材
26、26´ シール部材
30 内筒のテーパ部(環状通路)
31 内筒の切欠(連通路)
32 リング状部材
33 切欠(連通路)
35 内筒の縮径部(環状通路)
34 内筒の貫通孔(連通路)
A 空気(気体)
S 環状通路
T 連通路
DESCRIPTION OF SYMBOLS 1 Outer cylinder, 2 Inner cylinder 3, 4 End plate, 5 Reservoir 6, 7 Recessed part of end plate 8 Piston, 9 Piston rod 10, 11 Oil chamber (liquid chamber) in the inner cylinder
12, 13, 14 Relief valve (pressure regulating valve)
20, 20 'annular groove (annular passage)
21, 21 'Notch (communication path)
22 Communication hole 23, 23 'Orifice 24 Plug member 26, 26' Seal member 30 Tapered portion of inner cylinder (annular passage)
31 Inner tube notch (communication path)
32 Ring-shaped member 33 Notch (communication path)
35 Diameter reduction part of inner cylinder (annular passage)
34 Inner cylinder through hole (communication path)
A Air (gas)
S annular passage T communication passage

Claims (5)

同心に配置した外筒および内筒の両端を端板により閉鎖して、両者の間を液体と気体を封入した環状のリザーバとして構成し、前記内筒の少なくとも一端部と前記端板との嵌合部の周りに、取付状態で上部側となる前記内筒内の液室の隅部に滞留した気体を前記リザーバへ逃がす環状通路および減衰力発生用オリフィスを配設した複筒式横置き液圧緩衝器において、前記環状通路は、前記内筒の端部の上方側部位と前記端板の嵌合部の凹部底との間に設けた連通路によって該内筒内の液室に連通されており、前記オリフィスは、前記端板の常時液中なる部位に前記環状通路および前記リザーバに連通して配置されることを特徴とする複筒式横置き液圧緩衝器。   Both ends of the outer cylinder and the inner cylinder arranged concentrically are closed by end plates, and an annular reservoir in which liquid and gas are sealed is formed between the two, and the fit between at least one end of the inner cylinder and the end plate A multi-cylinder laterally placed liquid in which an annular passage and a damping force generating orifice are provided around the joint portion for escaping the gas accumulated in the corner of the liquid chamber in the inner cylinder, which is the upper side in the attached state, to the reservoir. In the pressure shock absorber, the annular passage communicates with a liquid chamber in the inner cylinder by a communication path provided between an upper portion of the end portion of the inner cylinder and a concave bottom of the fitting portion of the end plate. The multi-cylinder horizontal hydraulic shock absorber is characterized in that the orifice is disposed at a portion of the end plate that is always in liquid and is communicated with the annular passage and the reservoir. 前記連通路が、前記端板の嵌合部の凹部底に形成した切欠内または前記内筒の端部に形成した切欠内に設定されることを特徴とする請求項1に記載の複筒式横置き液圧緩衝器。   2. The multi-cylinder type according to claim 1, wherein the communication path is set in a notch formed in a recess bottom of a fitting portion of the end plate or in a notch formed in an end of the inner cylinder. Horizontal hydraulic buffer. 前記連通路に換えて、前記内筒の端部に貫通孔を設けたことを特徴とする請求項1に記載の複筒式横置き液圧緩衝器。   2. The double-cylinder horizontal hydraulic shock absorber according to claim 1, wherein a through-hole is provided at an end of the inner cylinder instead of the communication path. 同心に配置した外筒および内筒の両端を端板により閉鎖して、両者の間を液体と気体を封入した環状のリザーバとして構成し、前記内筒の少なくとも一端部と前記端板との嵌合部の周りに、取付状態で上部側となる前記内筒内の液室の隅部に滞留した気体を前記リザーバへ逃がす環状通路および減衰力発生用オリフィスを配設した複筒式横置き液圧緩衝器において、前記環状通路は、前記内筒の端部の上方側部位で、前記端板の嵌合部の凹部底に配置した板状リングに設けた切欠によって該内筒内の液室に連通されており、前記オリフィスは、前記端板の常時液中となる部位に前記環状通路および前記リザーバに連通して配置されることを特徴とする複筒式横置き液圧緩衝器。   Both ends of the outer cylinder and the inner cylinder arranged concentrically are closed by end plates, and an annular reservoir in which liquid and gas are sealed is formed between the two, and the fit between at least one end of the inner cylinder and the end plate A multi-cylinder laterally placed liquid in which an annular passage and a damping force generating orifice are provided around the joint portion for escaping the gas accumulated in the corner of the liquid chamber in the inner cylinder, which is the upper side in the attached state, to the reservoir. In the pressure shock absorber, the annular passage is a liquid chamber in the inner cylinder by a notch provided in a plate-like ring disposed on the concave bottom of the fitting portion of the end plate at a position above the end of the inner cylinder. The multi-cylinder horizontal hydraulic shock absorber is characterized in that the orifice is disposed in communication with the annular passage and the reservoir at a portion of the end plate that is always in liquid. 前記オリフィスが、前記環状通路と前記リザーバとに連通して前記端板に形成された連通孔に着脱可能に装着したプラグ部材に設けられていることを特徴とする請求項1乃至4の何れか1項に記載の複筒式横置き液圧緩衝器。   The orifice is provided in a plug member that is detachably mounted in a communication hole formed in the end plate so as to communicate with the annular passage and the reservoir. 2. A double-cylinder horizontal hydraulic shock absorber according to item 1.
JP2008093212A 2008-03-31 2008-03-31 Hydraulic buffer Active JP5126509B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008093212A JP5126509B2 (en) 2008-03-31 2008-03-31 Hydraulic buffer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008093212A JP5126509B2 (en) 2008-03-31 2008-03-31 Hydraulic buffer

Publications (2)

Publication Number Publication Date
JP2009243634A true JP2009243634A (en) 2009-10-22
JP5126509B2 JP5126509B2 (en) 2013-01-23

Family

ID=41305767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008093212A Active JP5126509B2 (en) 2008-03-31 2008-03-31 Hydraulic buffer

Country Status (1)

Country Link
JP (1) JP5126509B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010063897A1 (en) 2009-12-22 2011-06-30 Hitachi Automotive Systems, Ltd., Ibaraki shock absorber
JP2012077808A (en) * 2010-09-30 2012-04-19 Hitachi Automotive Systems Ltd Cylinder device
JP2012180859A (en) * 2011-02-28 2012-09-20 Hitachi Automotive Systems Ltd Hydraulic shock absorber
JP2013015157A (en) * 2011-06-30 2013-01-24 Hitachi Automotive Systems Ltd Fluid pressure shock absorber
WO2015159722A1 (en) * 2014-04-17 2015-10-22 カヤバ工業株式会社 Cylinder device
WO2016052008A1 (en) * 2014-09-30 2016-04-07 日立オートモティブシステムズ株式会社 Hydraulic shock-absorbing device
JP2019144867A (en) * 2018-02-21 2019-08-29 株式会社ケーヒン Pressure reduction valve
WO2019163704A1 (en) * 2018-02-26 2019-08-29 日立オートモティブシステムズ株式会社 Shock absorber

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54126132U (en) * 1978-02-22 1979-09-03
JPH0861416A (en) * 1994-08-23 1996-03-08 Kayaba Ind Co Ltd Air bleeder structure in oil damper
JPH1113815A (en) * 1997-06-19 1999-01-22 Tokico Ltd Hydraulic shock absorber
JPH11344068A (en) * 1998-05-29 1999-12-14 Kayaba Ind Co Ltd Oil damper
JP2009063080A (en) * 2007-09-06 2009-03-26 Kayaba Ind Co Ltd Valve structure for shock absorber

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54126132U (en) * 1978-02-22 1979-09-03
JPH0861416A (en) * 1994-08-23 1996-03-08 Kayaba Ind Co Ltd Air bleeder structure in oil damper
JPH1113815A (en) * 1997-06-19 1999-01-22 Tokico Ltd Hydraulic shock absorber
JPH11344068A (en) * 1998-05-29 1999-12-14 Kayaba Ind Co Ltd Oil damper
JP2009063080A (en) * 2007-09-06 2009-03-26 Kayaba Ind Co Ltd Valve structure for shock absorber

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011132995A (en) * 2009-12-22 2011-07-07 Hitachi Automotive Systems Ltd Shock absorber
US8413774B2 (en) 2009-12-22 2013-04-09 Hitachi Automotive Systems, Ltd. Shock absorber
DE102010063897A1 (en) 2009-12-22 2011-06-30 Hitachi Automotive Systems, Ltd., Ibaraki shock absorber
DE102010063897B4 (en) 2009-12-22 2019-10-17 Hitachi Automotive Systems, Ltd. shock absorber
JP2012077808A (en) * 2010-09-30 2012-04-19 Hitachi Automotive Systems Ltd Cylinder device
JP2012180859A (en) * 2011-02-28 2012-09-20 Hitachi Automotive Systems Ltd Hydraulic shock absorber
JP2013015157A (en) * 2011-06-30 2013-01-24 Hitachi Automotive Systems Ltd Fluid pressure shock absorber
US9995362B2 (en) 2014-04-17 2018-06-12 Kyb Corporation Cylinder device
WO2015159722A1 (en) * 2014-04-17 2015-10-22 カヤバ工業株式会社 Cylinder device
JP2015206374A (en) * 2014-04-17 2015-11-19 カヤバ工業株式会社 cylinder device
CN106133380A (en) * 2014-04-17 2016-11-16 Kyb株式会社 Cylinder device
WO2016052008A1 (en) * 2014-09-30 2016-04-07 日立オートモティブシステムズ株式会社 Hydraulic shock-absorbing device
CN106715953A (en) * 2014-09-30 2017-05-24 日立汽车系统株式会社 Hydraulic shock-absorbing device
GB2544245A (en) * 2014-09-30 2017-05-10 Hitachi Automotive Systems Ltd Hydraulic shock-absorbing device
JPWO2016052008A1 (en) * 2014-09-30 2017-04-27 日立オートモティブシステムズ株式会社 Hydraulic buffer
GB2544245B (en) * 2014-09-30 2020-06-24 Hitachi Automotive Systems Ltd Hydraulic damper
JP2019144867A (en) * 2018-02-21 2019-08-29 株式会社ケーヒン Pressure reduction valve
JP7037955B2 (en) 2018-02-21 2022-03-17 日立Astemo株式会社 Pressure reducing valve
WO2019163704A1 (en) * 2018-02-26 2019-08-29 日立オートモティブシステムズ株式会社 Shock absorber

Also Published As

Publication number Publication date
JP5126509B2 (en) 2013-01-23

Similar Documents

Publication Publication Date Title
JP5126509B2 (en) Hydraulic buffer
JP5152500B2 (en) Fluid pressure buffer
JP5827871B2 (en) Hydraulic shock absorber
JP5424166B2 (en) Horizontal cylinder device
JP2006038098A (en) Hydraulic shock absorber
JP5403755B2 (en) Shock absorber
US9371880B2 (en) Dual-tube shock absorber
JP4895974B2 (en) Double cylinder type shock absorber
JPH1113815A (en) Hydraulic shock absorber
JP4902497B2 (en) Hydraulic shock absorber
JP5809536B2 (en) Vehicle shock absorber
JP2009058081A (en) Magnetic fluid damper
JP2014095454A (en) Shock absorber
JP6116267B2 (en) Fluid pressure buffer
JP5212812B2 (en) Hydraulic buffer
JP5453654B2 (en) Cylinder device
JP6462457B2 (en) Fluid pressure buffer
JP5132266B2 (en) Double cylinder type shock absorber
JP5169028B2 (en) shock absorber
JP5517129B2 (en) Cylinder device
JP5426853B2 (en) Hydraulic buffer
JP6250185B2 (en) Hydraulic buffer
JP5292501B2 (en) Double cylinder type shock absorber
JP2011158016A (en) Shock absorber
JP2008298247A (en) Damper

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090907

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090907

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120919

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121016

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5126509

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151109

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250