JP2012180859A - Hydraulic shock absorber - Google Patents

Hydraulic shock absorber Download PDF

Info

Publication number
JP2012180859A
JP2012180859A JP2011042681A JP2011042681A JP2012180859A JP 2012180859 A JP2012180859 A JP 2012180859A JP 2011042681 A JP2011042681 A JP 2011042681A JP 2011042681 A JP2011042681 A JP 2011042681A JP 2012180859 A JP2012180859 A JP 2012180859A
Authority
JP
Japan
Prior art keywords
cylinder
reservoir
shock absorber
hydraulic shock
communication path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011042681A
Other languages
Japanese (ja)
Other versions
JP5775328B2 (en
Inventor
Kazuaki Shibahara
和晶 柴原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Priority to JP2011042681A priority Critical patent/JP5775328B2/en
Publication of JP2012180859A publication Critical patent/JP2012180859A/en
Application granted granted Critical
Publication of JP5775328B2 publication Critical patent/JP5775328B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a hydraulic shock absorber that effectively prevents bubbles from being formed in oil that flows from a communication passage formed in a cylinder or an outer cylinder to a reservoir, without increasing the cost of manufacture or reducing productivity.SOLUTION: An extension 25 is formed by extending a rod guide 7 in an axial direction so as to allow oil flowing from a communication passage 23 to a reservoir 4 to collide with the extension 25 to be diffused. The flow velocity of the oil flowing from the communication passage 23 to the reservoir 4 is moderately decreased, there by preventing a vortex to be caused by a jet flow and effectively preventing air bubbles from being formed due to the vortex. A component (collision member) such as a baffle plate can be eliminated to reduce manufacturing cost. Moreover, assemblability of a hydraulic shock absorber 1 is improved, and productivity is increased.

Description

本発明は、油圧緩衝器に関する。   The present invention relates to a hydraulic shock absorber.

例えば、減衰力発生機構をシリンダの外側に配置するサスペンションのうち、ユニフロー型油圧緩衝器においては、縮み行程時にピストンロッドがシリンダ内に侵入した分の油液が、第2シリンダから減衰力発生機構を経由してシリンダと外筒との間に形成されたリザーバへ流れるものが知られている。このような油圧緩衝器では、縮み行程時に減衰力発生機構を通過した油液は、外筒に形成された連通路からリザーバへ流入するが、ピストン速度が高速になり連通路からリザーバへ流入する油液の流速が高速になると、その流れが壁面から剥離して噴流になり、その結果、リザーバ内の油液に気泡が発生し、キャビテーションによって安定した減衰力が得られなくおそれがある。   For example, in a suspension in which a damping force generating mechanism is disposed outside a cylinder, in a uniflow type hydraulic shock absorber, the amount of oil liquid that has entered a piston rod into the cylinder during the contracting stroke is supplied from the second cylinder to the damping force generating mechanism. It is known that flows through a reservoir to a reservoir formed between the cylinder and the outer cylinder. In such a hydraulic shock absorber, the oil liquid that has passed through the damping force generation mechanism during the contraction stroke flows into the reservoir from the communication path formed in the outer cylinder, but the piston speed increases and flows into the reservoir from the communication path. When the flow rate of the oil liquid becomes high, the flow is separated from the wall surface and becomes a jet flow. As a result, bubbles are generated in the oil liquid in the reservoir, and a stable damping force may not be obtained due to cavitation.

特開平9−264364号公報JP-A-9-264364

そこで、上記特許文献1記載の発明では、リザーバ内における連通路の上方に設けられたバッフルプレートによって、連通路からリザーバへ流入する油液の流速を緩やかに低下させて、噴流の発生を防ぐことにより、リザーバ内の油液に気泡が発生するのを抑止している。しかしながら、バッフルプレートは独立した部品(シリンダ及び外筒とは別体の部品)であるため、製造コストが増加する。また、バッフルプレートが追加されることで組み付け性が悪化するため、工数が増加して生産性が低下する。   Therefore, in the invention described in Patent Document 1, the baffle plate provided above the communication path in the reservoir gradually reduces the flow rate of the oil liquid flowing into the reservoir from the communication path to prevent the generation of a jet. Thus, the generation of bubbles in the oil liquid in the reservoir is suppressed. However, since the baffle plate is an independent part (part separate from the cylinder and the outer cylinder), the manufacturing cost increases. Moreover, since assembly property deteriorates by adding a baffle plate, a man-hour increases and productivity falls.

そこで本発明は、上記事情に鑑みてなされたもので、製造コストの増加及び生産性の低下を引き起こすことなく、シリンダ又は外筒に形成された連通路からリザーバへ流入する油液に気泡が発生することを効果的に抑止することが可能な油圧緩衝器を提供することを課題としてなされたものである。   Therefore, the present invention has been made in view of the above circumstances, and bubbles are generated in the oil liquid flowing into the reservoir from the communication path formed in the cylinder or the outer cylinder without causing an increase in manufacturing cost and a decrease in productivity. It is an object of the present invention to provide a hydraulic shock absorber capable of effectively suppressing the operation.

上記課題を解決するために、本発明の油圧緩衝器は、内部に油液が充填されるシリンダと、前記シリンダの外周に設けられる外筒と、前記シリンダと前記外筒との間に形成されるリザーバと、前記シリンダ内に摺動可能に挿嵌され、前記シリンダ内を2つのシリンダ室に分画するピストンと、一端が前記ピストンに連結されて他端が前記シリンダ及び前記外筒の外部へ突出されるピストンロッドと、前記シリンダ及び前記外筒の一端に設けられるロッドガイドとを備える油圧緩衝器であって、前記シリンダ又は前記外筒に、前記リザーバへ向けて油液を流すための連通路を設け、前記ロッドガイドは、前記連通路のリザーバ側の開口に対向する位置まで軸線方向へ延ばされた延出部を有することを特徴とする。   In order to solve the above-described problems, a hydraulic shock absorber according to the present invention is formed between a cylinder filled with an oil liquid, an outer cylinder provided on an outer periphery of the cylinder, and the cylinder and the outer cylinder. A reservoir that is slidably fitted into the cylinder and divides the inside of the cylinder into two cylinder chambers, one end connected to the piston and the other end outside the cylinder and the outer cylinder A hydraulic shock absorber provided with a piston rod projecting to the cylinder and a rod guide provided at one end of the cylinder and the outer cylinder, for flowing an oil liquid to the cylinder or the outer cylinder toward the reservoir A communicating path is provided, and the rod guide has an extending portion that extends in the axial direction to a position facing an opening on the reservoir side of the communicating path.

本発明によれば、製造コストの増加及び生産性の低下を引き起こすことなく、シリンダ又は外筒に形成された連通路からリザーバへ流入する油液に気泡が発生することを効果的に抑止することが可能な油圧緩衝器を提供することができる。   According to the present invention, it is possible to effectively suppress the generation of bubbles in the oil liquid flowing into the reservoir from the communication path formed in the cylinder or the outer cylinder without causing an increase in manufacturing cost and a decrease in productivity. It is possible to provide a hydraulic shock absorber capable of.

第1実施形態の油圧緩衝器の軸平面断面図である。It is an axial plane sectional view of the hydraulic shock absorber according to the first embodiment. 図1におけるA−A断面図である。It is AA sectional drawing in FIG. 第2実施形態の油圧緩衝器の軸平面断面図である。It is an axial plane sectional view of a hydraulic shock absorber according to a second embodiment. 図3におけるB−B断面図である。It is BB sectional drawing in FIG. 第3実施形態の油圧緩衝器の軸平面断面図である。It is an axial plane sectional view of a hydraulic shock absorber according to a third embodiment. 図5におけるC−C断面図である。It is CC sectional drawing in FIG. 第4実施形態の油圧緩衝器の軸平面断面図である。It is an axial plane sectional view of a hydraulic shock absorber according to a fourth embodiment. 図7におけるD−D断面図である。It is DD sectional drawing in FIG.

[第1実施形態]
本発明の第1実施形態を添付した図を参照して説明する。なお、第1実施形態では、鉄道車両のセミアクティブサスペンションに使用されるユニフロー型油圧緩衝器1Aに適用した場合を説明するが、適用をこれに限定することを意図していない。
図1及び図2に示されるように、油圧緩衝器1Aは、シリンダ2の外側に外筒3が設けられた二重筒構造になっており、シリンダ2と外筒3との間にはリザーバ4が形成されている。シリンダ2内には、ピストン5が摺動可能に挿嵌されており、このピストン5によってシリンダ2内が図1における左側の第1シリンダ室2Aと図1における右側の第2シリンダ室2Bとの2つのシリンダ室に分画されている。
[First Embodiment]
A first embodiment of the present invention will be described with reference to the accompanying drawings. In addition, although 1st Embodiment demonstrates the case where it applies to the uniflow type hydraulic shock absorber 1A used for the semi-active suspension of a railway vehicle, it does not intend limiting application to this.
As shown in FIGS. 1 and 2, the hydraulic shock absorber 1 </ b> A has a double cylinder structure in which an outer cylinder 3 is provided outside the cylinder 2, and a reservoir is provided between the cylinder 2 and the outer cylinder 3. 4 is formed. A piston 5 is slidably inserted into the cylinder 2, and the piston 5 is formed between the first cylinder chamber 2 </ b> A on the left side in FIG. 1 and the second cylinder chamber 2 </ b> B on the right side in FIG. 1. It is divided into two cylinder chambers.

図1に示されるように、ピストン5には、ピストンロッド6の一端(図1における右側の端部)が連結されており、ピストンロッド6の他端(図1における左側の端部)側は、第1シリンダ室2Aを通って、シリンダ2及び外筒3の開口側(図1における左側)の端部(一端)に装着されたロッドガイド7に挿通されてシリンダ2の外部へ延びている。シリンダ2の他方の端部(図1における右側の端部)には、第2シリンダ室2Bとリザーバ4とを分画するベースバルブ8が設けられている。そして、シリンダ2内には油液が封入されており、リザーバ4内には油液及びガスが封入されている。   As shown in FIG. 1, one end of a piston rod 6 (right end in FIG. 1) is connected to the piston 5, and the other end (left end in FIG. 1) side of the piston rod 6 is Through the first cylinder chamber 2A, the cylinder 2 and the outer cylinder 3 are inserted into a rod guide 7 attached to an end (one end) on the opening side (left side in FIG. 1) and extend to the outside of the cylinder 2. . A base valve 8 for separating the second cylinder chamber 2B and the reservoir 4 is provided at the other end of the cylinder 2 (the right end in FIG. 1). An oil liquid is sealed in the cylinder 2, and an oil liquid and a gas are sealed in the reservoir 4.

ピストン5には、シリンダ室2A,2B間を連通させる油路9及びこの油路9の第2シリンダ室2B側から第1シリンダ室2A側への油液の流通のみを許容する逆止弁10が設けられている。また、ベースバルブ8には、第2シリンダ室2Bとリザーバ4とを連通させる油路11及びこの油路11のリザーバ4側から第2シリンダ室2B側への油液の流通のみを許容する逆止弁12が設けられている。   The piston 5 has an oil passage 9 that allows the cylinder chambers 2A and 2B to communicate with each other, and a check valve 10 that allows only fluid flow from the second cylinder chamber 2B side of the oil passage 9 to the first cylinder chamber 2A side. Is provided. In addition, the base valve 8 has an oil passage 11 that allows the second cylinder chamber 2B and the reservoir 4 to communicate with each other, and a reverse flow that allows only the fluid flow from the reservoir 4 side of the oil passage 11 to the second cylinder chamber 2B side. A stop valve 12 is provided.

シリンダ2の外周には、略円筒状の通路部材13が嵌合されている。通路部材13の内周面13bには、周方向へ延びて軸線方向(図1における左右方向)に間隔をあけて配置された2つの環状溝(符号省略)が形成されている。これにより、図1における左側の環状溝とシリンダ2の外周面2aとの間には、環状油路15が形成される。また、図1における右側の環状溝とシリンダ2の外周面2aとの間には、環状油路18が形成される。環状油路15は、シリンダ2の側壁に設けられた油路16を介して第1シリンダ室2Aに連通されている。また、環状油路18は、シリンダ2の側壁に設けられた油路19を介して第2シリンダ室2Bに連通されている。   A substantially cylindrical passage member 13 is fitted on the outer periphery of the cylinder 2. On the inner peripheral surface 13b of the passage member 13, there are formed two annular grooves (reference numerals omitted) that extend in the circumferential direction and are spaced apart in the axial direction (left-right direction in FIG. 1). Thereby, an annular oil passage 15 is formed between the left annular groove in FIG. 1 and the outer peripheral surface 2 a of the cylinder 2. An annular oil passage 18 is formed between the right annular groove in FIG. 1 and the outer peripheral surface 2 a of the cylinder 2. The annular oil passage 15 communicates with the first cylinder chamber 2 </ b> A via an oil passage 16 provided on the side wall of the cylinder 2. The annular oil passage 18 communicates with the second cylinder chamber 2B via an oil passage 19 provided on the side wall of the cylinder 2.

外筒3と通路部材13とは、各々、環状油路15,18に連通される接続管21,22によって接続されている。外筒3の外周面3aには、減衰力発生機構24が取り付けられている。また、外筒3には、ロッドガイド7が取り付けられている側(図1における左側)に、リザーバ4と減衰力発生機構24とを連通させる連通路23が設けられている。そして、油路16、環状油路15、接続管21、減衰力発生機構24、接続管22、環状油路18及び油路19によって、第1シリンダ室2Aと第2シリンダ室2Bとが連通される第1油液通路が構成されている。また、油路19、環状油路18、接続管22、減衰力発生機構24及び連通路23によって、第2シリンダ室2Bとリザーバ4とが連通される第2油液通路が構成されている。なお、減衰力発生機構24は、伸び側減衰弁及び縮み側減衰弁を内蔵する先行技術(例えば、上記特許文献1参照)がそのまま適用されており、ここでは、説明を簡潔にするため、減衰力発生機構24の詳細な説明を省く。   The outer cylinder 3 and the passage member 13 are connected by connecting pipes 21 and 22 communicated with the annular oil passages 15 and 18, respectively. A damping force generating mechanism 24 is attached to the outer peripheral surface 3 a of the outer cylinder 3. In addition, the outer cylinder 3 is provided with a communication path 23 that allows the reservoir 4 and the damping force generation mechanism 24 to communicate with each other on the side where the rod guide 7 is attached (left side in FIG. 1). The first cylinder chamber 2A and the second cylinder chamber 2B are communicated with each other by the oil passage 16, the annular oil passage 15, the connection pipe 21, the damping force generation mechanism 24, the connection pipe 22, the annular oil passage 18 and the oil passage 19. A first oil / liquid passage is formed. Further, the oil passage 19, the annular oil passage 18, the connecting pipe 22, the damping force generation mechanism 24, and the communication passage 23 constitute a second oil / liquid passage through which the second cylinder chamber 2 </ b> B and the reservoir 4 are communicated. Note that the damping force generation mechanism 24 is applied as it is with the prior art (see, for example, the above-mentioned Patent Document 1) in which an expansion-side damping valve and a contraction-side damping valve are incorporated. A detailed description of the force generation mechanism 24 is omitted.

通常、ロッドガイド7の軸線方向長さは、図1に示されるL0であるが、第1実施形態の油圧緩衝器1Aでは、ロッドガイド7が、軸線方向ベース(図1における右方向)側へL1だけ延ばされている。言い換えると、ロッドガイド7は、外筒3に形成された連通路23のリザーバ4側の開口に対向する位置まで、軸線方向へ延ばされている。なお、ロッドガイド7の軸線方向へ延ばされた図1における軸線方向長さがL1の部分を延出部25、また、図1における軸線方向長さがL0の部分(本来の部分)をロッドガイドの本体部と各々定義する。   Normally, the length of the rod guide 7 in the axial direction is L0 shown in FIG. 1, but in the hydraulic shock absorber 1A of the first embodiment, the rod guide 7 moves toward the axial base (right direction in FIG. 1). Lengthened by L1. In other words, the rod guide 7 extends in the axial direction to a position facing the opening on the reservoir 4 side of the communication path 23 formed in the outer cylinder 3. 1, the portion with the axial length L1 in FIG. 1 extended in the axial direction of the rod guide 7 is the extended portion 25, and the portion with the axial length L0 in FIG. 1 (the original portion) is the rod. Each is defined as the main part of the guide.

ロッドガイド7は、延出部25の半径が本体部の半径に対してR1だけ小さく設定されている。言い換えると、ロッドガイド7は、延出部25の外周面25aと外筒3の内周面3b及び連通路23のリザーバ4側の開口とが、径方向(図1における上下方向)にR1の間隔をあけて対向するように形成されている。これにより、ロッドガイド7には、延出部25を軸線に向けて径方向へ凹ませる(縮径させる)ことで形成された環状の段部26が設けられる。   In the rod guide 7, the radius of the extending portion 25 is set to be smaller by R1 than the radius of the main body portion. In other words, in the rod guide 7, the outer peripheral surface 25a of the extending portion 25, the inner peripheral surface 3b of the outer cylinder 3, and the opening on the reservoir 4 side of the communication passage 23 are R1 in the radial direction (vertical direction in FIG. 1). It is formed to face each other with a gap. Thereby, the rod guide 7 is provided with an annular step portion 26 formed by denting (reducing the diameter of) the extending portion 25 in the radial direction toward the axis.

次に、第1実施形態の作用を説明する。
油圧緩衝器1の伸び行程時には、ピストン5の移動に伴い、ピストン5の逆止弁10が閉じて第1シリンダ室2A内の油液が加圧される。これにより、油液は、油路16、環状油路15、接続管21を通って減衰力発生機構24へ流れ、さらに、接続管22、環状油路18及び油路19を通って第2シリンダ室2Bへ流れる。そして、ピストンロッド6がシリンダ2内から退出した分の油液が、リザーバ4からベースバルブ8の逆止弁12を通過して第2シリンダ室2Bへ流れる。
Next, the operation of the first embodiment will be described.
During the extension stroke of the hydraulic shock absorber 1, the check valve 10 of the piston 5 is closed and the hydraulic fluid in the first cylinder chamber 2 </ b> A is pressurized as the piston 5 moves. Thus, the oil liquid flows through the oil passage 16, the annular oil passage 15, and the connection pipe 21 to the damping force generation mechanism 24, and further passes through the connection pipe 22, the annular oil passage 18, and the oil passage 19 to the second cylinder. Flows to chamber 2B. Then, the amount of oil that the piston rod 6 has withdrawn from the cylinder 2 flows from the reservoir 4 through the check valve 12 of the base valve 8 to the second cylinder chamber 2B.

また、油圧緩衝器1の縮み行程時には、ピストン5の移動に伴いピストン5の逆止弁10が開いて、第2シリンダ室2Bの油液が、油路9を通って第1シリンダ室2Aに直に流れる。その結果、2つのシリンダ室2A,2B間の圧力が略同一となり、接続管21,22間(減衰力発生機構24内部)では油液の流れが生じない。他方、ピストンロッド6のシリンダ2内への侵入によって、ベースバルブ8の逆止弁12が閉じてシリンダ2内の油液が加圧される。これにより、ピストンロッド6が侵入した分の油液が、第2シリンダ室2Bから油路19、環状油路18および接続管22を通って減衰力発生機構24へ流れ、さらに、連通路23を通過してリザーバ4へ流れる。   Further, during the contraction stroke of the hydraulic shock absorber 1, the check valve 10 of the piston 5 opens as the piston 5 moves, and the oil in the second cylinder chamber 2B passes through the oil passage 9 to the first cylinder chamber 2A. It flows directly. As a result, the pressure between the two cylinder chambers 2A and 2B becomes substantially the same, and no fluid flows between the connecting pipes 21 and 22 (inside the damping force generation mechanism 24). On the other hand, when the piston rod 6 enters the cylinder 2, the check valve 12 of the base valve 8 is closed and the hydraulic fluid in the cylinder 2 is pressurized. As a result, the amount of oil that has entered the piston rod 6 flows from the second cylinder chamber 2B to the damping force generation mechanism 24 through the oil passage 19, the annular oil passage 18 and the connecting pipe 22, and further through the communication passage 23. Pass through to the reservoir 4.

そして、第1実施形態では、ロッドガイド7を軸線方向へ延ばして延出部25を形成し、連通路23のリザーバ4側の開口をロッドガイド7の延出部25の外周面25aにR1の間隔をあけて対向させたことにより、延出部25は、噴流を拡散させるバッフル壁(或いはバッフルプレート)と同等に作用する。すなわち、縮み行程において連通路23からリザーバ4へ流入する油液は、連通路23のリザーバ4側の開口正面の壁(延出部25の外周面25a、段部26の壁ともいえる)に衝突し、図1及び図2に示されるように、大別して、延出部25の外周面25aに沿う流れと延出部25の端面25b側に回り込む流れとが生じて、拡散により速度が低下する。さらに、延出部25の外周面25aに沿う流れFL1及び延出部25の端面25b側に回り込む流れFL2は、各々、大別して、図2における時計回り方向(左方向)へ向う方向と反時計回り方向(右方向)へ向う方向に生じる。   In the first embodiment, the rod guide 7 is extended in the axial direction to form the extending portion 25, and the opening on the reservoir 4 side of the communication path 23 is connected to the outer peripheral surface 25 a of the extending portion 25 of the rod guide 7. By facing each other at an interval, the extending portion 25 acts in the same manner as a baffle wall (or baffle plate) that diffuses the jet flow. That is, the oil liquid flowing into the reservoir 4 from the communication path 23 in the contraction stroke collides with the front wall of the opening on the reservoir 4 side of the communication path 23 (also referred to as the outer peripheral surface 25a of the extension 25 and the wall of the step 26). However, as shown in FIG. 1 and FIG. 2, roughly divided, a flow along the outer peripheral surface 25a of the extending portion 25 and a flow wrapping around the end surface 25b side of the extending portion 25 are generated, and the speed decreases due to diffusion. . Further, the flow FL1 along the outer peripheral surface 25a of the extending portion 25 and the flow FL2 that goes around to the end surface 25b side of the extending portion 25 are roughly divided into a clockwise direction (leftward direction) and a counterclockwise direction in FIG. It occurs in the direction toward the turning direction (right direction).

したがって、第1実施形態の油圧緩衝器1Aによれば、噴流を拡散させることで連通路23からリザーバ4へ流入する油液の流速が緩やかに低下し、油液の流れが壁面から剥離し難くくなり、噴流による渦の発生が抑止される。これにより、渦が生じることによる気泡の発生やリザーバ4内気体の巻き込みによる気泡の発生、及び油液中へのガスの溶け込みが抑止され、キャビテーション及びエアレーションを防止して安定した減衰力を得ることが可能になる。
また、バッフルプレート等の、連通路23からリザーバ4へ流入する油液を衝突させるための部品(衝突部材)を廃止することができる。これにより、製造コスト及び当該部品を取り付けるための工数を削減することができる。また、油圧緩衝器1の組み付け性が向上し、生産性を高めることができる。さらに、部品(衝突部材)の破損や脱落に起因する不具合が解消され、装置の信頼性を高めることができる。
Therefore, according to the hydraulic shock absorber 1A of the first embodiment, by diffusing the jet flow, the flow rate of the oil liquid flowing into the reservoir 4 from the communication path 23 is gently reduced, and the oil liquid flow is hardly separated from the wall surface. And the generation of vortices due to the jet is suppressed. As a result, the generation of bubbles due to the generation of vortices, the generation of bubbles due to the entrainment of the gas in the reservoir 4, and the dissolution of gas into the oil liquid are suppressed, and cavitation and aeration are prevented to obtain a stable damping force Is possible.
Moreover, parts (collision member) such as a baffle plate for colliding the oil liquid flowing into the reservoir 4 from the communication path 23 can be eliminated. Thereby, the manufacturing cost and the man-hour for attaching the said part can be reduced. Moreover, the assembly | attachment property of the hydraulic shock absorber 1 improves and productivity can be improved. In addition, problems caused by damage or dropout of components (collision members) are eliminated, and the reliability of the apparatus can be improved.

[第2実施形態]
本発明の第2実施形態を添付した図に基づき説明する。なお、前述した第1実施形態と同一又は相当の構成には、同一の名称及び符号を付与する。また、説明を簡潔にすることを目的に、第1実施形態と重複する説明を省く。
前述したように、第1実施形態では、ロッドガイド7を軸線方向へ延ばして延出部25を形成するとともに、この延出部25を軸線に向けて径方向へ均一に凹ませて(縮径させて)環状の段部26を形成し、縮み行程時に連通路23からリザーバ4へ流入する油液を延出部25の外周面25a(段部26の壁)に衝突させることにより、連通路23からリザーバ4へ流入する油液の流速を低下させるように油圧緩衝器1Aを構成した。これに対し、第2実施形態の油圧緩衝器1Bでは、ロッドガイド7に環状の段部26を形成する代わりに、図3及び図4に示されるように、延長部25に、連通路23のリザーバ4側の開口に臨む溝部28を設けて構成した。
[Second Embodiment]
A second embodiment of the present invention will be described with reference to the accompanying drawings. In addition, the same name and code | symbol are provided to the structure which is the same as that of 1st Embodiment mentioned above, or equivalent. In addition, for the sake of brevity, descriptions overlapping with the first embodiment are omitted.
As described above, in the first embodiment, the rod guide 7 is extended in the axial direction to form the extended portion 25, and the extended portion 25 is uniformly recessed in the radial direction toward the axial line (reduced diameter). By forming the annular step portion 26 and causing the oil liquid flowing into the reservoir 4 from the communication passage 23 to collide with the outer peripheral surface 25a (the wall of the step portion 26) of the extension portion 25 during the contraction stroke, The hydraulic shock absorber 1 </ b> A is configured to reduce the flow rate of the oil liquid flowing into the reservoir 4 from 23. On the other hand, in the hydraulic shock absorber 1B of the second embodiment, instead of forming the annular step portion 26 in the rod guide 7, as shown in FIG. 3 and FIG. A groove 28 facing the opening on the reservoir 4 side is provided.

図4に示されるように、溝部28は、延出部25の端面25bに対して軸線方向(図3における左右方向)へL1の長さを有している。また、溝部28は、連通路23のリザーバ4側の開口に対向する面が、半内円筒面によって形成されている。そして、第2実施形態では、この溝部28が、バッフル壁(或いはバッフルプレート)と同等に作用する。すなわち、縮み行程において連通路23からリザーバ4へ流入する油液は、連通路23のリザーバ4側の開口正面の溝部28の壁に衝突して、図3に示されるように、流れの方向が軸線方向(図3における右方向)へ転換される。   As shown in FIG. 4, the groove 28 has a length L1 in the axial direction (left-right direction in FIG. 3) with respect to the end face 25 b of the extension 25. Further, the groove 28 has a surface facing the opening on the reservoir 4 side of the communication passage 23 formed by a semi-inner cylindrical surface. And in 2nd Embodiment, this groove part 28 acts equivalent to a baffle wall (or baffle plate). That is, the oil liquid that flows into the reservoir 4 from the communication path 23 in the contraction stroke collides with the wall of the groove 28 on the front surface of the opening on the reservoir 4 side of the communication path 23, and the flow direction is changed as shown in FIG. The direction is changed to the axial direction (right direction in FIG. 3).

これにより、連通路23からリザーバ4へ流入した油液の速度が低下し、油液の流れが壁面から剥離し難くくなり、噴流による渦の発生が抑止される。その結果、渦が生じることによる気泡の発生及び油液中へのガスの溶け込みが抑止され、キャビテーション及びエアレーションを防止して安定した減衰力を得ることが可能になる。そして、第2実施形態の油圧緩衝器1Bにおいては、前述した第1実施形態の油圧緩衝器1Aと同等の作用効果を得ることができる。なお、第2実施形態では、延長部25に、連通路23のリザーバ4側の開口に臨む溝部28を設ける構成としたが、それに限らず、ロッドガイド7の延長部の側面から中心側に向けて第1の孔を開け、該第1の孔の中心側と貫通するように、ロッドガイド7の軸線方向に第2の孔を開けるようにしてもよい。さらに、ロッドガイド7の延長部側面からロッドガイド7のリザーバ4との対向面に向けて斜めに通路を加工により形成してもよい。   As a result, the speed of the oil liquid flowing into the reservoir 4 from the communication path 23 decreases, and the flow of the oil liquid becomes difficult to separate from the wall surface, and the generation of vortices due to the jet flow is suppressed. As a result, the generation of bubbles due to the generation of vortices and the dissolution of gas into the oil liquid are suppressed, and cavitation and aeration can be prevented and a stable damping force can be obtained. And in the hydraulic shock absorber 1B of 2nd Embodiment, the effect equivalent to 1 A of hydraulic shock absorbers of 1st Embodiment mentioned above can be acquired. In the second embodiment, the extension portion 25 is provided with the groove portion 28 facing the opening on the reservoir 4 side of the communication passage 23. However, the configuration is not limited thereto, and the side surface of the extension portion of the rod guide 7 is directed toward the center side. Then, the first hole may be opened, and the second hole may be opened in the axial direction of the rod guide 7 so as to penetrate the center side of the first hole. Further, a passage may be formed by machining obliquely from the side surface of the extended portion of the rod guide 7 toward the surface of the rod guide 7 facing the reservoir 4.

[第3実施形態]
本発明の第3実施形態を添付した図に基づき説明する。なお、前述した第1及び第2実施形態と同一又は相当の構成には、同一の名称及び符号を付与する。また、説明を簡潔にすることを目的に、第1及び第2実施形態と重複する説明を省く。
前述したように、第1実施形態では、外筒3に、リザーバ4と減衰力発生機構24とを連通させる連通路23が設けられており、ロッドガイド7を軸線方向へ延ばして延出部25を形成するとともに、この延出部25を軸線に向けて径方向へ均一に凹ませて(縮径させて)環状の段部26を形成し、縮み行程時に連通路23からリザーバ4へ流入する油液を延出部25の外周面25a(段部26の壁)に衝突させることにより、連通路23からリザーバ4へ流入する油液の流速を低下させるように油圧緩衝器1Aが構成されている。
[Third Embodiment]
A third embodiment of the present invention will be described with reference to the accompanying drawings. In addition, the same name and code | symbol are provided to the structure same as the 1st and 2nd embodiment mentioned above or an equivalent. Further, for the sake of brevity, the description overlapping with the first and second embodiments is omitted.
As described above, in the first embodiment, the outer cylinder 3 is provided with the communication passage 23 that allows the reservoir 4 and the damping force generation mechanism 24 to communicate with each other, and the rod guide 7 extends in the axial direction to extend the extension portion 25. And an annular stepped portion 26 is formed by uniformly denting (reducing the diameter of) the extending portion 25 in the radial direction toward the axis, and flows into the reservoir 4 from the communication path 23 during the contraction stroke. The hydraulic shock absorber 1A is configured to reduce the flow velocity of the oil flowing into the reservoir 4 from the communication path 23 by colliding the oil with the outer peripheral surface 25a of the extending portion 25 (the wall of the step portion 26). Yes.

これに対し、第3実施形態は、シリンダ2に、第1シリンダ室2Aとリザーバ4とを連通させる連通路23が設けられており、ロッドガイド7の外周部のみを軸線方向(図5における右方向)へ延ばして環状の延出部25を形成するように油圧緩衝器1Cを構成したものである。言い換えると、第3実施形態では、延出部25が、第1実施形態における段部26が設けられている部分(環状の空間部分)に設けられ、且つ、第1実施形態における延出部25が形成されている部分が空間になっている。そして、第3実施形態における環状の延出部25は、噴流を拡散させるバッフル壁(或いはバッフルプレート)と同等に作用する。   On the other hand, in the third embodiment, the cylinder 2 is provided with a communication passage 23 that allows the first cylinder chamber 2A and the reservoir 4 to communicate with each other, and only the outer peripheral portion of the rod guide 7 is axially moved (rightward in FIG. 5). The hydraulic shock absorber 1 </ b> C is configured to extend in the direction) to form an annular extending portion 25. In other words, in 3rd Embodiment, the extension part 25 is provided in the part (annular space part) in which the step part 26 in 1st Embodiment is provided, and the extension part 25 in 1st Embodiment. The part where is formed is a space. And the cyclic | annular extension part 25 in 3rd Embodiment acts equivalent to the baffle wall (or baffle plate) which diffuses a jet flow.

すなわち、第3実施形態では、伸び行程において連通路23からリザーバ4へ流入する油液は、連通路23のリザーバ4側の開口正面の延出部25の壁(延出部25の内周面25c)に衝突し、図5及び図6に示されるように、大別して、延出部25の内周面25cに沿う流れFL1と延出部25の端面25b側に回り込む流れFL2とが生じて速度が低下する。さらに、延出部25の内周面25cに沿う流れFL1及び延出部25の端面25b側に回り込む流れFL2は、各々、大別して、図6における時計回り方向(左方向)へ向う方向と反時計回り方向(右方向)へ向う方向に生じる。そして、第3実施形態の油圧緩衝器1Cにおいては、前述した第1及び第2実施形態の油圧緩衝器1A及び1Bと同等の作用効果を得ることができる。   That is, in the third embodiment, the oil liquid flowing into the reservoir 4 from the communication path 23 during the extension stroke is caused by the wall of the extension part 25 (the inner peripheral surface of the extension part 25) on the front side of the opening of the communication path 23 on the reservoir 4 side. 25c), as shown in FIG. 5 and FIG. 6, a flow FL1 along the inner peripheral surface 25c of the extension portion 25 and a flow FL2 that wraps around the end surface 25b side of the extension portion 25 are generated. The speed is reduced. Furthermore, the flow FL1 along the inner peripheral surface 25c of the extension part 25 and the flow FL2 that goes around to the end face 25b side of the extension part 25 are roughly divided from the direction toward the clockwise direction (left direction) in FIG. It occurs in a direction toward the clockwise direction (right direction). In the hydraulic shock absorber 1C of the third embodiment, the same operational effects as those of the hydraulic shock absorbers 1A and 1B of the first and second embodiments described above can be obtained.

[第4実施形態]
本発明の第4実施形態を添付した図に基づき説明する。なお、前述した第1乃至第3実施形態と同一又は相当の構成には、同一の名称及び符号を付与する。また、説明を簡潔にすることを目的に、第1乃至第3実施形態と重複する説明を省く。
前述したように、第3実施形態では、ロッドガイド7の外周部のみを軸線方向へ延ばして環状の延出部25を形成し、伸び行程時に連通路23からリザーバ4へ流入する油液を延出部25の内周面25cに衝突させて、連通路23からリザーバ4へ流入する油液の流速を低下させるように油圧緩衝器1Cを構成した。これに対し、第4実施形態では、ロッドガイド7のリザーバ4に臨む部分を軸線方向へ延ばして環状の延出部25を形成し、この延長部25の内周部に、連通路23のリザーバ4側の開口に臨む溝部28を設けて油圧緩衝器1Dを構成した。
[Fourth Embodiment]
A fourth embodiment of the present invention will be described with reference to the accompanying drawings. In addition, the same name and code | symbol are provided to the structure which is the same as that of 1st thru | or 3rd embodiment mentioned above, or equivalent. Further, for the sake of brevity, the description overlapping with the first to third embodiments is omitted.
As described above, in the third embodiment, only the outer peripheral portion of the rod guide 7 extends in the axial direction to form the annular extending portion 25, and the oil liquid flowing into the reservoir 4 from the communication path 23 during the extending stroke is extended. The hydraulic shock absorber 1 </ b> C is configured to reduce the flow rate of the oil liquid flowing into the reservoir 4 from the communication path 23 by colliding with the inner peripheral surface 25 c of the outlet portion 25. On the other hand, in the fourth embodiment, the portion of the rod guide 7 facing the reservoir 4 is extended in the axial direction to form an annular extending portion 25, and the reservoir of the communication passage 23 is formed on the inner peripheral portion of the extending portion 25. The hydraulic shock absorber 1D was configured by providing a groove 28 facing the opening on the 4 side.

そして、第4実施形態では、この溝部28が、バッフル壁(或いはバッフルプレート)と同等に作用する。すなわち、伸び行程において連通路23からリザーバ4へ流入する油液は、連通路23のリザーバ4側の開口正面の溝部28の壁に衝突し、図7に示されるように、流れの方向が軸線方向(図7における右方向)へ転換される。これにより、連通路23からリザーバ4へ流入した油液の速度が低下し、油液の流れが壁面から剥離し難くくなり、噴流による渦の発生が抑止される。その結果、第4実施形態の油圧緩衝器1Dにおいては、前述した第1乃至第3実施形態の油圧緩衝器1A乃至Cと同等の作用効果を得ることができる。   And in 4th Embodiment, this groove part 28 acts equivalent to a baffle wall (or baffle plate). That is, the oil liquid flowing into the reservoir 4 from the communication path 23 during the extension stroke collides with the wall of the groove 28 on the front surface of the opening of the communication path 23 on the reservoir 4 side, and the flow direction is an axis line as shown in FIG. The direction is changed (right direction in FIG. 7). As a result, the speed of the oil liquid flowing into the reservoir 4 from the communication path 23 decreases, and the flow of the oil liquid becomes difficult to separate from the wall surface, and the generation of vortices due to the jet flow is suppressed. As a result, in the hydraulic shock absorber 1D of the fourth embodiment, it is possible to obtain the same effects as the hydraulic shock absorbers 1A to 1C of the first to third embodiments described above.

1A,1B,1C,1D 油圧緩衝器、2 シリンダ(2a 外周面、2b 内周面、2A 第1シリンダ室、2B 第2シリンダ室)、3 外筒(3a 外周面、2b 内周面)、4 リザーバ、5 ピストン、6 ピストンロッド、7 ロッドガイド、23 連通路、24 減衰力発生機構、25 延出部(25a 外周面、25b 端面、25c 内周面)、26 段部、28 溝部 1A, 1B, 1C, 1D Hydraulic shock absorber, 2 cylinders (2a outer peripheral surface, 2b inner peripheral surface, 2A first cylinder chamber, 2B second cylinder chamber), 3 outer cylinder (3a outer peripheral surface, 2b inner peripheral surface), 4 Reservoir, 5 Piston, 6 Piston rod, 7 Rod guide, 23 Communication path, 24 Damping force generation mechanism, 25 Extension part (25a outer peripheral surface, 25b end surface, 25c inner peripheral surface), 26 step part, 28 groove part

Claims (2)

内部に油液が充填されるシリンダと、前記シリンダの外周に設けられる外筒と、前記シリンダと前記外筒との間に形成されるリザーバと、前記シリンダ内に摺動可能に挿嵌され、前記シリンダ内を2つのシリンダ室に分画するピストンと、一端が前記ピストンに連結されて他端が前記シリンダ及び前記外筒の外部へ突出されるピストンロッドと、前記シリンダ及び前記外筒の一端に設けられるロッドガイドとを備える油圧緩衝器であって、前記シリンダ又は前記外筒に、前記リザーバへ向けて油液を流すための連通路を設け、前記ロッドガイドは、前記連通路のリザーバ側の開口に対向する位置まで軸線方向へ延ばされた延出部を有することを特徴とする油圧緩衝器。 A cylinder filled with oil, an outer cylinder provided on the outer periphery of the cylinder, a reservoir formed between the cylinder and the outer cylinder, and slidably inserted into the cylinder; A piston for dividing the inside of the cylinder into two cylinder chambers; a piston rod having one end connected to the piston and the other end protruding outside the cylinder and the outer cylinder; and one end of the cylinder and the outer cylinder A rod guide provided to the cylinder or the outer cylinder, provided with a communication path for flowing an oil liquid toward the reservoir in the cylinder or the outer cylinder, the rod guide being connected to the reservoir side of the communication path A hydraulic shock absorber having an extending portion extending in the axial direction to a position facing the opening of the hydraulic shock absorber. 前記延出部は、前記連通路のリザーバ側の開口に対してシリンダ径方向へ凹ませて形成した段部を有することを特徴とする請求項1記載の油圧緩衝器。 2. The hydraulic shock absorber according to claim 1, wherein the extending portion has a step portion formed by being recessed in a cylinder radial direction with respect to an opening on a reservoir side of the communication path.
JP2011042681A 2011-02-28 2011-02-28 Hydraulic shock absorber Active JP5775328B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011042681A JP5775328B2 (en) 2011-02-28 2011-02-28 Hydraulic shock absorber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011042681A JP5775328B2 (en) 2011-02-28 2011-02-28 Hydraulic shock absorber

Publications (2)

Publication Number Publication Date
JP2012180859A true JP2012180859A (en) 2012-09-20
JP5775328B2 JP5775328B2 (en) 2015-09-09

Family

ID=47012236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011042681A Active JP5775328B2 (en) 2011-02-28 2011-02-28 Hydraulic shock absorber

Country Status (1)

Country Link
JP (1) JP5775328B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111963604A (en) * 2020-08-20 2020-11-20 南京丹枫机械科技有限公司 Adjustable viscous damper

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4830228A (en) * 1971-08-23 1973-04-21
JPS5945339U (en) * 1982-09-20 1984-03-26 株式会社昭和製作所 Emulsion prevention device in square hole for preventing swish noise of hydraulic shock absorber
JPH0861416A (en) * 1994-08-23 1996-03-08 Kayaba Ind Co Ltd Air bleeder structure in oil damper
JPH09264364A (en) * 1996-01-25 1997-10-07 Tokico Ltd Hydraulic buffer
JP2009243634A (en) * 2008-03-31 2009-10-22 Hitachi Ltd Hydraulic shock absorber

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4830228A (en) * 1971-08-23 1973-04-21
JPS5945339U (en) * 1982-09-20 1984-03-26 株式会社昭和製作所 Emulsion prevention device in square hole for preventing swish noise of hydraulic shock absorber
JPH0861416A (en) * 1994-08-23 1996-03-08 Kayaba Ind Co Ltd Air bleeder structure in oil damper
JPH09264364A (en) * 1996-01-25 1997-10-07 Tokico Ltd Hydraulic buffer
US5901820A (en) * 1996-01-25 1999-05-11 Tokico Ltd. Hydraulic shock absorber
JP2009243634A (en) * 2008-03-31 2009-10-22 Hitachi Ltd Hydraulic shock absorber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111963604A (en) * 2020-08-20 2020-11-20 南京丹枫机械科技有限公司 Adjustable viscous damper

Also Published As

Publication number Publication date
JP5775328B2 (en) 2015-09-09

Similar Documents

Publication Publication Date Title
JP6466905B2 (en) 2-position valve with face seal and pressure relief port
JP5961124B2 (en) Suspension device
JP5126509B2 (en) Hydraulic buffer
WO2015178089A1 (en) Cylinder device
WO2014119388A1 (en) Dashpot
JP5775328B2 (en) Hydraulic shock absorber
JP2009108938A (en) Hydraulic shock absorber
JP2009133411A (en) Hydraulic shock absorber
JP2009103284A (en) Double cylinder type shock absorber
JP2013015157A (en) Fluid pressure shock absorber
JP6116267B2 (en) Fluid pressure buffer
CN110998129A (en) Pressurized telescopic front fork leg, front fork and vehicle
WO2016151870A1 (en) Pressure damping device
JP5784809B2 (en) Shock absorber
JP2013113425A (en) Hydraulic shock absorber
JP6462457B2 (en) Fluid pressure buffer
JP6357067B2 (en) Front fork
JP6223072B2 (en) Shock absorber
JP2008309214A (en) Damping force generating structure for hydraulic shock absorber
JP2015197153A (en) Hydraulic buffer
JP6250185B2 (en) Hydraulic buffer
JP2011214585A (en) Front fork
JP7209866B2 (en) buffer
ITRM20070460A1 (en) FRONT FORK.
JP4641948B2 (en) Damper valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141015

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141215

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150414

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150624

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150703

R150 Certificate of patent or registration of utility model

Ref document number: 5775328

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250