JP2009242357A - Method for producing dicyclohexane derivative - Google Patents

Method for producing dicyclohexane derivative Download PDF

Info

Publication number
JP2009242357A
JP2009242357A JP2008094237A JP2008094237A JP2009242357A JP 2009242357 A JP2009242357 A JP 2009242357A JP 2008094237 A JP2008094237 A JP 2008094237A JP 2008094237 A JP2008094237 A JP 2008094237A JP 2009242357 A JP2009242357 A JP 2009242357A
Authority
JP
Japan
Prior art keywords
group
alkyl group
hydrogen
derivative
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008094237A
Other languages
Japanese (ja)
Other versions
JP5055185B2 (en
Inventor
Satoshi Tanaka
悟史 田中
Takemare Nakamura
剛希 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2008094237A priority Critical patent/JP5055185B2/en
Priority to CN 200910132918 priority patent/CN101550077B/en
Publication of JP2009242357A publication Critical patent/JP2009242357A/en
Application granted granted Critical
Publication of JP5055185B2 publication Critical patent/JP5055185B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing dicyclohexane derivative which can give a trans isomer preferentially. <P>SOLUTION: The method for producing a dicyclohexane derivative is characterized in that the hydrogenation reaction of a compound expressed by general formula (I) is carried out in the presence of a palladium catalyst at 2 MPa or less hydrogen pressure, to thereby produce a dicyclohexane derivative expressed by the general formula (II) containing a trans isomer preferentially. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、ジシクロヘキサン誘導体の製造方法に関する。より詳しくは、ビフェニル誘導体を溶液中で水素化し、トランス体を優先的に得ることができるジシクロヘキサン誘導体の製造方法に関する。   The present invention relates to a method for producing a dicyclohexane derivative. More specifically, the present invention relates to a method for producing a dicyclohexane derivative capable of preferentially obtaining a trans isomer by hydrogenating a biphenyl derivative in a solution.

ジシクロヘキサン誘導体のトランス体は表示用液晶化合物や医薬品中間体等の原料として期待される化合物である。
ジシクロヘキサン誘導体をビフェニル誘導体から得ようとする場合、通常金属触媒を用いてベンゼン環の水素化反応を行うが、ベンゼン環への水素化は、置換基に水酸基を有する場合を除きシス体のシクロヘキサン環を与えるのが一般的である(非特許文献1)。
一方、特許文献1〜3のようにシクロヘキサン環の置換基として−COOHや−COOR、フェニル基を有する場合は、水素化後にトランス体へと異性化させることが可能であることが知られている。
特開平10−237015号公報 特開平10−298144号公報 特開2004−256490号公報 J. Prakt. Chem./ Chem. -Ztg., 334 (1992), 625-629
The trans form of the dicyclohexane derivative is a compound expected as a raw material for liquid crystal compounds for display, pharmaceutical intermediates and the like.
When a dicyclohexane derivative is to be obtained from a biphenyl derivative, a hydrogenation reaction of the benzene ring is usually performed using a metal catalyst. However, the hydrogenation to the benzene ring is performed in a cis form of cyclohexane except when a substituent has a hydroxyl group. It is common to provide a ring (Non-patent Document 1).
On the other hand, when it has -COOH, -COOR, and a phenyl group as a substituent of a cyclohexane ring like patent documents 1-3, it is known that it can isomerize to a trans body after hydrogenation. .
JP-A-10-237015 JP-A-10-298144 JP 2004-256490 A J. Prakt. Chem./ Chem.-Ztg., 334 (1992), 625-629

しかし、シクロヘキサン環の置換基がアルキル基等の場合は、トランス体への異性化は極めて困難である。例えば、下記の4’−エチル−ジシクロヘキシル−4−カルボン酸の場合、B環は上記特許文献に記載の方法によりトランス体へと異性化できるが、A環のトランス体への異性化は極めて困難である。

Figure 2009242357
従って、シクロヘキサン環の置換基がアルキル基等の場合に、トランス体を優先的に与える水素化反応が求められている。
本発明の目的は、トランス体を優先的に得ることができるジシクロヘキサン誘導体を与える製造方法を提供することである。 However, when the substituent on the cyclohexane ring is an alkyl group or the like, isomerization to the trans isomer is extremely difficult. For example, in the case of the following 4′-ethyl-dicyclohexyl-4-carboxylic acid, the B ring can be isomerized to the trans isomer by the method described in the above patent document, but the isomerization of the A ring to the trans isomer is extremely difficult. It is.
Figure 2009242357
Accordingly, there is a need for a hydrogenation reaction that preferentially gives a trans isomer when the substituent on the cyclohexane ring is an alkyl group or the like.
An object of the present invention is to provide a production method for providing a dicyclohexane derivative capable of preferentially obtaining a trans isomer.

上記課題は以下の手段により達成された。
〔1〕下記一般式(I)で表される化合物の水素化反応を、パラジウム触媒存在下、水素圧力2MPa以下で行うことにより、下記一般式(II)で表されるシクロヘキサン誘導体をトランス体優先的に得ることを特徴とするジシクロヘキサン誘導体の製造方法。
The above problems have been achieved by the following means.
[1] Transformation of the cyclohexane derivative represented by the following general formula (II) is preferred by conducting the hydrogenation reaction of the compound represented by the following general formula (I) in the presence of a palladium catalyst at a hydrogen pressure of 2 MPa or less. A process for producing a dicyclohexane derivative, characterized in that it is obtained by a method.

Figure 2009242357
Figure 2009242357

[式中、R、R、R、R、R、R、R、及びR10は、それぞれ独立して水素原子または置換基を表す。Rは−COOR11又は−CONR1213を表す。R11、R12、及びR13はそれぞれ独立して水素原子又はアルキル基を表す。Rはアルキル基、シクロアルキル基、又はアルコキシ基を表す。R14はアルキル基、シクロアルキル基、アルコキシ基、又は−COR15を表す。R15はアルキル基を表す。]
〔2〕前記パラジウム触媒が、担体に1〜30質量%のパラジウムが担持され、その担体がカーボンまたはアルミナであることを特徴とする〔1〕に記載のジシクロヘキサン誘導体の製造方法。
[Wherein, R 1 , R 2 , R 4 , R 5 , R 6 , R 7 , R 9 , and R 10 each independently represent a hydrogen atom or a substituent. R 3 represents —COOR 11 or —CONR 12 R 13 . R 11 , R 12 , and R 13 each independently represent a hydrogen atom or an alkyl group. R 8 represents an alkyl group, a cycloalkyl group, or an alkoxy group. R 14 represents an alkyl group, a cycloalkyl group, an alkoxy group, or —COR 15 . R 15 represents an alkyl group. ]
[2] The process for producing a dicyclohexane derivative according to [1], wherein 1 to 30% by mass of palladium is supported on a support, and the support is carbon or alumina.

本発明に係るジシクロヘキサン誘導体の製造方法によれば、特定のビフェニル誘導体を、パラジウム触媒存在下に、特定の溶媒中低い水素圧(2MPa以下)で水素化することによって、高い選択性、収率で目的とするトランスジシクロヘキサンを得ることができる。   According to the method for producing a dicyclohexane derivative according to the present invention, high selectivity and yield can be obtained by hydrogenating a specific biphenyl derivative in the presence of a palladium catalyst at a low hydrogen pressure (2 MPa or less) in a specific solvent. The desired transdicyclohexane can be obtained.

以下、本発明に係るジシクロヘキサン誘導体の製造方法について具体的に説明する。
[一般式(I)・一般式(II)で表される化合物]
、R、R、R、R、R、R、及びR10は、それぞれ独立して水素原子または置換基を表し、好ましくは、水素原子である。
置換基としては、以下のものが挙げられる。
シアノ基、ニトロ基、カルボキシル基、アルコキシ基(好ましくは、炭素数1〜30の置換または無置換のアルコキシ基、例えば、メトキシ基、エトキシ基、イソプロポキシ基、t−ブトキシ基、n−オクチルオキシ基、2−メトキシエトキシ基)、アリールオキシ基(好ましくは、炭素数6〜30の置換または無置換のアリールオキシ基、例えば、フェノキシ基、2−メチルフェノキシ基、4−tert−ブチルフェノキシ基、3−ニトロフェノキシ基、2−テトラデカノイルアミノフェノキシ基)、ベンジル基、4−メトキシベンジル基。
アルキル基(好ましくは炭素数1〜30のアルキル基、例えばメチル基、エチル基、n−プロピル基、イソプロピル基、t−ブチル基、n−オクチル基、2−エチルヘキシル基)、末端に重合性基を有するアルキル基(好ましくは炭素数1〜30のもの)、末端にカルバミン酸ベンジル基を有するアルキル基(好ましくは炭素数9〜30のもの)、末端にカルバミン酸t−ブチル基を有するアルキル基(好ましくは炭素数6〜30のもの)、末端にベンゼン環を有するアルキル基(好ましくは炭素数1〜10のもの)、エーテル連結を有するアルキル基(好ましくは炭素数1〜30のエーテル連結を有するアルキル基、例えば2−メトキシブチル基、3−メトキシブチル基、4−メトキシブチル基、4−エトキシブチル基)、シクロアルキル基(好ましくは、炭素数3〜30の置換または無置換のシクロアルキル基、例えば、シクロヘキシル基、シクロペンチル基、4−n−ドデシルシクロヘキシル基)、ビシクロアルキル基(好ましくは、炭素数5〜30の置換または無置換のビシクロアルキル基、つまり、炭素数5〜30のビシクロアルカンから水素原子を一個取り去った一価の基である。例えば、ビシクロ[1,2,2]ヘプタン−2−イル、ビシクロ[2,2,2]オクタン−3−イル))等。
Hereinafter, the manufacturing method of the dicyclohexane derivative based on this invention is demonstrated concretely.
[Compounds Represented by General Formula (I) / General Formula (II)]
R 1 , R 2 , R 4 , R 5 , R 6 , R 7 , R 9 , and R 10 each independently represent a hydrogen atom or a substituent, preferably a hydrogen atom.
The following are mentioned as a substituent.
A cyano group, a nitro group, a carboxyl group, an alkoxy group (preferably a substituted or unsubstituted alkoxy group having 1 to 30 carbon atoms such as a methoxy group, an ethoxy group, an isopropoxy group, a t-butoxy group, and an n-octyloxy group. Group, 2-methoxyethoxy group), aryloxy group (preferably a substituted or unsubstituted aryloxy group having 6 to 30 carbon atoms, such as phenoxy group, 2-methylphenoxy group, 4-tert-butylphenoxy group, 3-nitrophenoxy group, 2-tetradecanoylaminophenoxy group), benzyl group, 4-methoxybenzyl group.
An alkyl group (preferably an alkyl group having 1 to 30 carbon atoms, for example, methyl group, ethyl group, n-propyl group, isopropyl group, t-butyl group, n-octyl group, 2-ethylhexyl group), a polymerizable group at the terminal An alkyl group having 1 to 30 carbon atoms (preferably having 1 to 30 carbon atoms), an alkyl group having a benzyl carbamate group (preferably having 9 to 30 carbon atoms), and an alkyl group having a t-butyl carbamate group at the terminal (Preferably having 6 to 30 carbon atoms), an alkyl group having a benzene ring at the end (preferably having 1 to 10 carbon atoms), an alkyl group having an ether linkage (preferably having an ether linkage having 1 to 30 carbon atoms). Alkyl group having, for example, 2-methoxybutyl group, 3-methoxybutyl group, 4-methoxybutyl group, 4-ethoxybutyl group), cycloalkyl (Preferably, a substituted or unsubstituted cycloalkyl group having 3 to 30 carbon atoms, such as a cyclohexyl group, a cyclopentyl group, or 4-n-dodecylcyclohexyl group), a bicycloalkyl group (preferably a substituent having 5 to 30 carbon atoms) Or an unsubstituted bicycloalkyl group, that is, a monovalent group obtained by removing one hydrogen atom from a C 5-30 bicycloalkane, for example, bicyclo [1,2,2] heptan-2-yl, bicyclo [ 2,2,2] octane-3-yl))) and the like.

は−COOR11又は−CONR1213を表す。R11、R12、及びR13はそれぞれ独立して水素原子又はアルキル基を表す。R11、R12、及びR13がアルキル基の場合は、炭素数は例えば1〜30である。
は好ましくは−COOR11であり、より好ましくは−COOHである。
R 3 represents —COOR 11 or —CONR 12 R 13 . R 11 , R 12 , and R 13 each independently represent a hydrogen atom or an alkyl group. When R 11 , R 12 , and R 13 are alkyl groups, the carbon number is, for example, 1 to 30.
R 3 is preferably —COOR 11 and more preferably —COOH.

はアルキル基、シクロアルキル基、又はアルコキシ基を表す。これらは、無置換でもよいし、置換基を有するものであってもよい。置換基としては、前記R等の説明で例示した置換基が挙げられる。
は、好ましくは、炭素数1〜30のアルキル基、炭素数1〜30のアルコキシ基であり、より好ましくは、炭素数1〜10のアルキル基、炭素数1〜10のアルコキシ基である。
R 8 represents an alkyl group, a cycloalkyl group, or an alkoxy group. These may be unsubstituted or may have a substituent. Examples of the substituent include the substituents exemplified in the description of R 1 and the like.
R 8 is preferably an alkyl group having 1 to 30 carbon atoms and an alkoxy group having 1 to 30 carbon atoms, more preferably an alkyl group having 1 to 10 carbon atoms and an alkoxy group having 1 to 10 carbon atoms. .

14はアルキル基、シクロアルキル基、アルコキシ基、又は−COR15を表す。R15はアルキル基を表す。これらは、無置換でもよいし、置換基を有するものであってもよい。置換基としては、前記R等の説明で例示した置換基が挙げられる。R15がアルキル基の場合は、炭素数は例えば1〜30である。 R 14 represents an alkyl group, a cycloalkyl group, an alkoxy group, or —COR 15 . R 15 represents an alkyl group. These may be unsubstituted or may have a substituent. Examples of the substituent include the substituents exemplified in the description of R 1 and the like. When R 15 is an alkyl group, the carbon number is, for example, 1 to 30.

[触媒]
本発明に係る水素化反応は、パラジウム触媒を使用する。パラジウム触媒は、触媒金属活性成分としてのパラジウム成分を担体に担持させたものである。担体としては、例えば、カーボン、アルミナ、シリカアルミナ、酸化ジルコニウム、酸化チタン、活性白土などが挙げられる。特にカーボンおよびアルミナが好ましい。パラジウム触媒を形成するパラジウム化合物としては、具体的には、金属パラジウム、パラジウム酸化物またはパラジウム水酸化物などが挙げられる。
担体に担持されるパラジウム成分の量は、金属パラジウムの量として、好ましくは1〜30質量%、より好ましくは5〜30質量%、特に好ましくは10〜30重質量%である。
パラジウム触媒の使用量は、原料のビフェニル誘導体100質量部に対して、好ましくは0.5〜30質量部、より好ましくは1〜20質量部の割合である。
[catalyst]
The hydrogenation reaction according to the present invention uses a palladium catalyst. The palladium catalyst is obtained by supporting a palladium component as a catalytic metal active component on a carrier. Examples of the carrier include carbon, alumina, silica alumina, zirconium oxide, titanium oxide, activated clay, and the like. Carbon and alumina are particularly preferable. Specific examples of the palladium compound that forms the palladium catalyst include metal palladium, palladium oxide, palladium hydroxide, and the like.
The amount of the palladium component supported on the carrier is preferably 1 to 30% by mass, more preferably 5 to 30% by mass, and particularly preferably 10 to 30% by mass as the amount of metallic palladium.
The amount of the palladium catalyst used is preferably 0.5 to 30 parts by mass, more preferably 1 to 20 parts by mass with respect to 100 parts by mass of the starting biphenyl derivative.

[水素圧]
水素化する際の水素圧は、2MPa以下であり、より好ましくは0.1〜1MPaであり、さらに好ましくは0.1〜0.5MPaである。
[Hydrogen pressure]
The hydrogen pressure at the time of hydrogenation is 2 MPa or less, more preferably 0.1 to 1 MPa, and still more preferably 0.1 to 0.5 MPa.

[溶媒]
ビフェニル誘導体の水素化は溶媒中で行われる。溶媒としては、炭素数1〜12の脂肪族飽和アルコール、ヘキサン、水、酢酸エチル、炭素数1〜5のカルボン酸等が挙げられる。特に、酢酸や水が好ましい。
[solvent]
Hydrogenation of the biphenyl derivative is carried out in a solvent. Examples of the solvent include aliphatic saturated alcohols having 1 to 12 carbon atoms, hexane, water, ethyl acetate, carboxylic acids having 1 to 5 carbon atoms, and the like. In particular, acetic acid and water are preferable.

[ビフェニル誘導体の水素化]
本発明に係るジシクロヘキサン誘導体の製造方法の好ましい態様としては、前記パラジウム触媒存在下に溶媒(好ましくは水または酢酸)中で、ビフェニル誘導体の水素化を行う。水素化は、系内を窒素ガス、アルゴンガス等の不活性ガスで置換した後、水素置換して行うことが望ましい。反応温度は80〜230℃が好ましい。反応時間は、プロトンNMR測定やGC測定によりモニターするので、反応時間は特に限定されない。通常は、数10分〜30時間程度である。
シクロヘキサン誘導体からのトランス体の分離・回収は、カラムを用いる方法(例えば、シリカゲルを用いるカラムクロマトグラフィー)、あるいは再結晶化方法などにより行うことができる。
なお、本明細書において「トランス体優先的に得る」とは、シクロヘキサン環のトランス体比率が51%以上、より好ましくは70%以上で得ることを意味する。
[Hydrogenation of biphenyl derivatives]
In a preferred embodiment of the method for producing a dicyclohexane derivative according to the present invention, the biphenyl derivative is hydrogenated in a solvent (preferably water or acetic acid) in the presence of the palladium catalyst. Hydrogenation is preferably performed by replacing the interior of the system with an inert gas such as nitrogen gas or argon gas and then replacing with hydrogen. The reaction temperature is preferably 80 to 230 ° C. Since the reaction time is monitored by proton NMR measurement or GC measurement, the reaction time is not particularly limited. Usually, it is about several tens of minutes to 30 hours.
Separation and recovery of the trans form from the cyclohexane derivative can be performed by a method using a column (for example, column chromatography using silica gel) or a recrystallization method.
In this specification, “obtained preferentially in the trans isomer” means that the trans isomer ratio of the cyclohexane ring is 51% or more, more preferably 70% or more.

(実施例1)
[4’−エチル−ジシクロヘキシル−4−カルボン酸の調製]
内容量50mlのオートクレーブに4’−エチル−ビフェニル−4−カルボン酸0.50g(2.2mmol)と酢酸2mlを仕込み、パラジウム触媒として10%パラジウム/カーボン(川研ファインケミカル社製50%wet品)を100mg添加した。
上記仕込み終了後、窒素でオートクレーブ内を0.5MPaまで昇圧し、その後脱圧する操作を計3回繰り返し、系内の窒素置換を行った。次いで、水素で上記窒素置換と同様の操作で系内を水素置換し、その後系内を昇温し、125℃に達した時点で系内の水素圧力が0.4MPaになるように調整し、水素化に必要な理論水素量の水素を供給した。
水素化反応を125℃で16時間行った後、系内の反応液を室温まで冷却し、反応液から触媒を濾別除去した。反応液に水を加え、酢酸エチルで抽出後、飽和食塩水で洗浄した。有機層を減圧濃縮し目的物である4’−エチル−ジシクロヘキシル−4−カルボン酸を0.52g(>99%)得た。ガスクロマトグラフィーにより分析を行った結果、シクロヘキサン環Aのシス体/トランス体比は18/82であった。(シクロヘキサン環Bに関しては前述のように異性化可能。)
Example 1
[Preparation of 4′-ethyl-dicyclohexyl-4-carboxylic acid]
An autoclave with an internal volume of 50 ml was charged with 0.50 g (2.2 mmol) of 4′-ethyl-biphenyl-4-carboxylic acid and 2 ml of acetic acid, and 10% palladium / carbon (50% wet product manufactured by Kawaken Fine Chemical Co., Ltd.) as a palladium catalyst. 100 mg of was added.
After the completion of the above preparation, the operation of increasing the pressure in the autoclave to 0.5 MPa with nitrogen and then depressurizing was repeated a total of three times to perform nitrogen replacement in the system. Next, the inside of the system is replaced with hydrogen by the same operation as the above nitrogen substitution with hydrogen, and then the temperature in the system is increased, and when the temperature reaches 125 ° C., the hydrogen pressure in the system is adjusted to 0.4 MPa, The theoretical amount of hydrogen required for hydrogenation was supplied.
After the hydrogenation reaction was carried out at 125 ° C. for 16 hours, the reaction solution in the system was cooled to room temperature, and the catalyst was removed by filtration from the reaction solution. Water was added to the reaction mixture, and the mixture was extracted with ethyl acetate and washed with saturated brine. The organic layer was concentrated under reduced pressure to obtain 0.52 g (> 99%) of 4′-ethyl-dicyclohexyl-4-carboxylic acid as a target product. As a result of analysis by gas chromatography, the cis / trans ratio of cyclohexane ring A was 18/82. (The cyclohexane ring B can be isomerized as described above.)

Figure 2009242357
Figure 2009242357

(実施例2)
[4’−プロピル−ジシクロヘキシル−4−カルボン酸の調製]
内容量50mlのオートクレーブに4’−プロピル−ビフェニル−4−カルボン酸0.50g(2.1mmol)と蒸留水2mlを仕込み、パラジウム触媒として10%パラジウム/カーボン(川研ファインケミカル社製50%wet品)を100mg添加した。
上記仕込み終了後、窒素でオートクレーブ内を0.5MPaまで昇圧し、その後脱圧する操作を計3回繰り返し、系内の窒素置換を行った。次いで、水素で上記窒素置換と同様の操作で系内を水素置換し、その後系内を昇温し、125℃に達した時点で系内の水素圧力が0.4MPaになるように調整し、水素化に必要な理論水素量の水素を供給した。
水素化反応を125℃で16時間行った後、系内の反応液を室温まで冷却し、反応液から触媒を濾別除去した。反応液に水を加え、酢酸エチルで抽出後、飽和食塩水で洗浄した。有機層を減圧濃縮し目的物である4’−プロピル−ジシクロヘキシル−4−カルボン酸を0.52g(>99%)得た。ガスクロマトグラフィーにより分析を行った結果、シクロヘキサン環Cのシス体/トランス体比は17/83であった。(シクロヘキサン環Dに関しては前述のように異性化可能。)
(Example 2)
[Preparation of 4′-propyl-dicyclohexyl-4-carboxylic acid]
An autoclave with an internal volume of 50 ml was charged with 0.50 g (2.1 mmol) of 4′-propyl-biphenyl-4-carboxylic acid and 2 ml of distilled water, and 10% palladium / carbon (50% wet product manufactured by Kawaken Fine Chemical Co., Ltd.) as a palladium catalyst. ) Was added 100 mg.
After the completion of the above preparation, the operation of increasing the pressure in the autoclave to 0.5 MPa with nitrogen and then depressurizing was repeated a total of three times to perform nitrogen replacement in the system. Next, the inside of the system is replaced with hydrogen by the same operation as the above nitrogen substitution with hydrogen, and then the temperature in the system is increased, and when the temperature reaches 125 ° C., the hydrogen pressure in the system is adjusted to 0.4 MPa, The theoretical amount of hydrogen required for hydrogenation was supplied.
After the hydrogenation reaction was carried out at 125 ° C. for 16 hours, the reaction solution in the system was cooled to room temperature, and the catalyst was removed by filtration from the reaction solution. Water was added to the reaction mixture, and the mixture was extracted with ethyl acetate and washed with saturated brine. The organic layer was concentrated under reduced pressure to obtain 0.52 g (> 99%) of 4′-propyl-dicyclohexyl-4-carboxylic acid as a target product. As a result of analysis by gas chromatography, the cis / trans ratio of cyclohexane ring C was 17/83. (The cyclohexane ring D can be isomerized as described above.)

Figure 2009242357
Figure 2009242357

(実施例3−1)
[4’−アセチル−ビフェニル−4−カルボン酸の調製]

Figure 2009242357
(Example 3-1)
[Preparation of 4′-acetyl-biphenyl-4-carboxylic acid]
Figure 2009242357

ビフェニル2gをオルトジクロロベンゼン10mlに溶解させ、塩化アルミニウム4.5g、ジエチルカルバモイルクロライド2.14mlを添加後100℃にて4時間攪拌した。反応液を30℃まで冷却し、アセチルクロライドを1.01ml滴下した(内温40℃以下)。40℃にて1時間攪拌後、反応液を室温まで冷却し氷冷水20mlへ滴下した。酢酸エチルで抽出後、飽和食塩水で洗浄し、有機層を減圧濃縮し、カラムクロマトグラフィーにて精製を行い、2を3.5g得た。
23.5gを12N塩酸水32mlに溶解させ、130℃で24時間攪拌した。反応液を室温まで冷却し、結晶をろ過し、水で洗浄した。得られた結晶にメタノールを1L加え煮沸洗浄し、室温にした後ろ過、乾燥し4’−アセチル−ビフェニル−4−カルボン酸3を2.8g得た。
2 g of biphenyl was dissolved in 10 ml of orthodichlorobenzene, and 4.5 g of aluminum chloride and 2.14 ml of diethylcarbamoyl chloride were added, followed by stirring at 100 ° C. for 4 hours. The reaction solution was cooled to 30 ° C., and 1.01 ml of acetyl chloride was added dropwise (internal temperature of 40 ° C. or less). After stirring at 40 ° C. for 1 hour, the reaction solution was cooled to room temperature and added dropwise to 20 ml of ice-cold water. After extraction with ethyl acetate and washing with saturated brine, the organic layer was concentrated under reduced pressure and purified by column chromatography to obtain 3.5 g of 2.
23.5 g was dissolved in 32 ml of 12N hydrochloric acid and stirred at 130 ° C. for 24 hours. The reaction solution was cooled to room temperature, and the crystals were filtered and washed with water. 1 L of methanol was added to the obtained crystals, washed by boiling, brought to room temperature, filtered and dried to obtain 2.8 g of 4′-acetyl-biphenyl-4-carboxylic acid 3.

H−NMR(溶媒:ジメチル-d6スルホキシド、基準:テトラメチルシラン)δ(ppm):
2.61(3H、s)
7.80−7.90(4H、m)
8.00−8.10(4H、m)
1 H-NMR (solvent: dimethyl-d6 sulfoxide, standard: tetramethylsilane) δ (ppm):
2.61 (3H, s)
7.80-7.90 (4H, m)
8.00-8.10 (4H, m)

(実施例3−2)
[4’−エチル−ジシクロヘキシル−4−カルボン酸の調製]
内容量50mlのオートクレーブに4’−アセチル−ビフェニル−4−カルボン酸0.50g(2.1mmol)と酢酸2mlを仕込み、パラジウム触媒として10%パラジウム/カーボン(川研ファインケミカル社製50%wet品)を100mg添加した。
上記仕込み終了後、窒素でオートクレーブ内を0.5MPaまで昇圧し、その後脱圧する操作を計3回繰り返し、系内の窒素置換を行った。次いで、水素で上記窒素置換と同様の操作で系内を水素置換し、その後系内を昇温し、125℃に達した時点で系内の水素圧力が0.4MPaになるように調整し、水素化に必要な理論水素量の水素を供給した。
水素化反応を85℃で5時間行いその後125℃で16時間行った。その後系内の反応液を室温まで冷却し、反応液から触媒を濾別除去した。反応液に水を加え、酢酸エチルで抽出後、飽和食塩水で洗浄した。有機層を減圧濃縮し目的物である4’−エチル−ジシクロヘキシル−4−カルボン酸を0.52g(>99%)得た。ガスクロマトグラフィーにより分析を行った結果、シクロヘキサン環Aのシス体/トランス体比は20/80であった。(シクロヘキサン環Bに関しては前述のように異性化可能。)
(Example 3-2)
[Preparation of 4′-ethyl-dicyclohexyl-4-carboxylic acid]
A 50 ml autoclave was charged with 0.50 g (2.1 mmol) of 4′-acetyl-biphenyl-4-carboxylic acid and 2 ml of acetic acid, and 10% palladium / carbon (50% wet product manufactured by Kawaken Fine Chemical Co., Ltd.) as a palladium catalyst. 100 mg of was added.
After the completion of the above preparation, the operation of increasing the pressure in the autoclave to 0.5 MPa with nitrogen and then depressurizing was repeated a total of three times to perform nitrogen replacement in the system. Next, the inside of the system is replaced with hydrogen by the same operation as the above nitrogen substitution with hydrogen, and then the temperature in the system is increased, and when the temperature reaches 125 ° C., the hydrogen pressure in the system is adjusted to 0.4 MPa, The theoretical amount of hydrogen required for hydrogenation was supplied.
The hydrogenation reaction was carried out at 85 ° C. for 5 hours and then at 125 ° C. for 16 hours. Thereafter, the reaction solution in the system was cooled to room temperature, and the catalyst was removed by filtration from the reaction solution. Water was added to the reaction mixture, and the mixture was extracted with ethyl acetate and washed with saturated brine. The organic layer was concentrated under reduced pressure to obtain 0.52 g (> 99%) of 4′-ethyl-dicyclohexyl-4-carboxylic acid as a target product. As a result of analysis by gas chromatography, the cis / trans ratio of cyclohexane ring A was 20/80. (The cyclohexane ring B can be isomerized as described above.)

Figure 2009242357
Figure 2009242357

(実施例4)
[4’−エチル−ジシクロヘキシル−4−カルボン酸エチルエステルの調製]
内容量50mlのオートクレーブに4’−エチル−ビフェニル−4−カルボン酸エチルエステル0.50g(1.9mmol)と酢酸2mlを仕込み、パラジウム触媒として10%パラジウム/カーボン(川研ファインケミカル社製50%wet品)を100mg添加した。
上記仕込み終了後、窒素でオートクレーブ内を0.5MPaまで昇圧し、その後脱圧する操作を計3回繰り返し、系内の窒素置換を行った。次いで、水素で上記窒素置換と同様の操作で系内を水素置換し、その後系内を昇温し、125℃に達した時点で系内の水素圧力が0.4MPaになるように調整し、水素化に必要な理論水素量の水素を供給した。
水素化反応を160℃で8時間行った後、系内の反応液を室温まで冷却し、反応液から触媒を濾別除去した。反応液に水を加え、酢酸エチルで抽出後、飽和食塩水で洗浄した。有機層を減圧濃縮し目的物である4’−エチル−ジシクロヘキシル−4−カルボン酸エチルエステルを0.52g(>99%)得た。ガスクロマトグラフィーにより分析を行った結果、シクロヘキサン環Eのシス体/トランス体比は24/76であった。(シクロヘキサン環Fに関しては前述のように異性化可能。)
Example 4
[Preparation of 4′-ethyl-dicyclohexyl-4-carboxylic acid ethyl ester]
An autoclave with an internal volume of 50 ml was charged with 0.50 g (1.9 mmol) of 4'-ethyl-biphenyl-4-carboxylic acid ethyl ester and 2 ml of acetic acid, and 10% palladium / carbon (50% wet by Kawaken Fine Chemical Co., Ltd.) as a palladium catalyst. 100 mg) was added.
After the completion of the above preparation, the operation of increasing the pressure in the autoclave to 0.5 MPa with nitrogen and then depressurizing was repeated a total of three times to perform nitrogen replacement in the system. Next, the inside of the system is replaced with hydrogen by the same operation as the above nitrogen substitution with hydrogen, and then the temperature in the system is increased, and when the temperature reaches 125 ° C., the hydrogen pressure in the system is adjusted to 0.4 MPa, The theoretical amount of hydrogen required for hydrogenation was supplied.
After the hydrogenation reaction was performed at 160 ° C. for 8 hours, the reaction solution in the system was cooled to room temperature, and the catalyst was removed by filtration from the reaction solution. Water was added to the reaction mixture, and the mixture was extracted with ethyl acetate and washed with saturated brine. The organic layer was concentrated under reduced pressure to obtain 0.52 g (> 99%) of 4′-ethyl-dicyclohexyl-4-carboxylic acid ethyl ester as a target product. As a result of analysis by gas chromatography, the cis / trans ratio of cyclohexane ring E was 24/76. (The cyclohexane ring F can be isomerized as described above.)

Figure 2009242357
Figure 2009242357

(比較例1)
[4’−エチル−ジシクロヘキシル−4−カルボン酸の調製]
内容量50mlのオートクレーブに4’−エチル−ビフェニル−4−カルボン酸0.50g(2.2mmol)と酢酸2mlを仕込み、触媒として10%パラジウム/カーボン(川研ファインケミカル社製50%wet品)を100mg添加した。
上記仕込み終了後、窒素でオートクレーブ内を0.5MPaまで昇圧し、その後脱圧する操作を計3回繰り返し、系内の窒素置換を行った。次いで、水素で上記窒素置換と同様の操作で系内を水素置換し、その後系内を昇温し、160℃に達した時点で系内の水素圧力が5.5MPaになるように調整し、水素化に必要な理論水素量の水素を供給した。
水素化反応を160℃で16時間行った後、系内の反応液を室温まで冷却し、反応液から触媒を濾別除去した。反応液に水を加え、酢酸エチルで抽出後、飽和食塩水で洗浄した。有機層を減圧濃縮し目的物である4’−エチル−ジシクロヘキシル−4−カルボン酸を0.52g(>99%)得た。ガスクロマトグラフィーにより分析を行った結果、シクロヘキサン環Aのシス体/トランス体比は37/63であった。
(Comparative Example 1)
[Preparation of 4′-ethyl-dicyclohexyl-4-carboxylic acid]
An autoclave with an internal volume of 50 ml was charged with 0.50 g (2.2 mmol) of 4′-ethyl-biphenyl-4-carboxylic acid and 2 ml of acetic acid, and 10% palladium / carbon (50% wet product manufactured by Kawaken Fine Chemical Co., Ltd.) was used as a catalyst. 100 mg was added.
After the completion of the above preparation, the operation of increasing the pressure in the autoclave to 0.5 MPa with nitrogen and then depressurizing was repeated a total of three times to perform nitrogen replacement in the system. Next, the inside of the system is replaced with hydrogen by the same operation as the above-described nitrogen substitution, and then the temperature in the system is increased, and when the temperature reaches 160 ° C., the hydrogen pressure in the system is adjusted to 5.5 MPa, The theoretical amount of hydrogen required for hydrogenation was supplied.
After performing the hydrogenation reaction at 160 ° C. for 16 hours, the reaction solution in the system was cooled to room temperature, and the catalyst was removed by filtration from the reaction solution. Water was added to the reaction mixture, and the mixture was extracted with ethyl acetate and washed with saturated brine. The organic layer was concentrated under reduced pressure to obtain 0.52 g (> 99%) of 4′-ethyl-dicyclohexyl-4-carboxylic acid as a target product. As a result of analysis by gas chromatography, the cis / trans ratio of cyclohexane ring A was 37/63.

Figure 2009242357
Figure 2009242357

(比較例2)
[4’−エチル−ジシクロヘキシル−4−カルボン酸の調製]
内容量50mlのオートクレーブに4’−エチル−ビフェニル−4−カルボン酸0.50g(2.2mmol)と水2mlを仕込み、触媒として5%ルテニウム/カーボン(N.E.CHEMCAT社製50%wet品)を100mg添加した。
上記仕込み終了後、窒素でオートクレーブ内を0.5MPaまで昇圧し、その後脱圧する操作を計3回繰り返し、系内の窒素置換を行った。次いで、水素で上記窒素置換と同様の操作で系内を水素置換し、その後系内を昇温し、160℃に達した時点で系内の水素圧力が5.5MPaになるように調整し、水素化に必要な理論水素量の水素を供給した。
水素化反応を160℃で16時間行った後、系内の反応液を室温まで冷却し、反応液から触媒を濾別除去した。反応液に水を加え、酢酸エチルで抽出後、飽和食塩水で洗浄した。有機層を減圧濃縮し目的物である4’−エチル−ジシクロヘキシル−4−カルボン酸を得た(90%)。ガスクロマトグラフィーにより分析を行った結果、シクロヘキサン環Aのシス体/トランス体比は73/27であった。
(Comparative Example 2)
[Preparation of 4′-ethyl-dicyclohexyl-4-carboxylic acid]
A 50 ml autoclave was charged with 0.50 g (2.2 mmol) of 4′-ethyl-biphenyl-4-carboxylic acid and 2 ml of water, and 100 mg of 5% ruthenium / carbon (50% wet product manufactured by NECHEMCAT) was added as a catalyst. did.
After the completion of the above preparation, the operation of increasing the pressure in the autoclave to 0.5 MPa with nitrogen and then depressurizing was repeated a total of three times to perform nitrogen replacement in the system. Next, the inside of the system is replaced with hydrogen by the same operation as the above-described nitrogen substitution, and then the temperature in the system is increased, and when the temperature reaches 160 ° C., the hydrogen pressure in the system is adjusted to 5.5 MPa, The theoretical amount of hydrogen required for hydrogenation was supplied.
After performing the hydrogenation reaction at 160 ° C. for 16 hours, the reaction solution in the system was cooled to room temperature, and the catalyst was removed by filtration from the reaction solution. Water was added to the reaction mixture, and the mixture was extracted with ethyl acetate and washed with saturated brine. The organic layer was concentrated under reduced pressure to obtain the desired product, 4′-ethyl-dicyclohexyl-4-carboxylic acid (90%). As a result of analysis by gas chromatography, the cis / trans ratio of cyclohexane ring A was 73/27.

Figure 2009242357
Figure 2009242357

これらの結果から、本発明の方法により70%以上の高い選択性でトランス体のシクロヘキサン環が得られることがわかる。   From these results, it is understood that a trans cyclohexane ring can be obtained with a high selectivity of 70% or more by the method of the present invention.

Claims (2)

下記一般式(I)で表される化合物の水素化反応を、パラジウム触媒存在下、水素圧力2MPa以下で行うことにより、下記一般式(II)で表されるシクロヘキサン誘導体をトランス体優先的に得ることを特徴とするジシクロヘキサン誘導体の製造方法。
Figure 2009242357
[式中、R、R、R、R、R、R、R、及びR10は、それぞれ独立して水素原子または置換基を表す。Rは−COOR11又は−CONR1213を表す。R11、R12、及びR13はそれぞれ独立して水素原子又はアルキル基を表す。Rはアルキル基、シクロアルキル基、又はアルコキシ基を表す。R14はアルキル基、シクロアルキル基、アルコキシ基、又は−COR15を表す。R15はアルキル基を表す。]
The cyclohexane derivative represented by the following general formula (II) is preferentially obtained in the trans isomer by conducting a hydrogenation reaction of the compound represented by the following general formula (I) in the presence of a palladium catalyst at a hydrogen pressure of 2 MPa or less. A process for producing a dicyclohexane derivative.
Figure 2009242357
[Wherein, R 1 , R 2 , R 4 , R 5 , R 6 , R 7 , R 9 , and R 10 each independently represent a hydrogen atom or a substituent. R 3 represents —COOR 11 or —CONR 12 R 13 . R 11 , R 12 , and R 13 each independently represent a hydrogen atom or an alkyl group. R 8 represents an alkyl group, a cycloalkyl group, or an alkoxy group. R 14 represents an alkyl group, a cycloalkyl group, an alkoxy group, or —COR 15 . R 15 represents an alkyl group. ]
前記パラジウム触媒が、担体に1〜30質量%のパラジウムが担持され、その担体がカーボンまたはアルミナであることを特徴とする請求項1に記載のジシクロヘキサン誘導体の製造方法。   2. The method for producing a dicyclohexane derivative according to claim 1, wherein 1 to 30% by mass of palladium is supported on the support, and the support is carbon or alumina.
JP2008094237A 2008-03-31 2008-03-31 Method for producing dicyclohexane derivative Active JP5055185B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008094237A JP5055185B2 (en) 2008-03-31 2008-03-31 Method for producing dicyclohexane derivative
CN 200910132918 CN101550077B (en) 2008-03-31 2009-03-31 Manufacturing method of bicyclohexyl derivative

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008094237A JP5055185B2 (en) 2008-03-31 2008-03-31 Method for producing dicyclohexane derivative

Publications (2)

Publication Number Publication Date
JP2009242357A true JP2009242357A (en) 2009-10-22
JP5055185B2 JP5055185B2 (en) 2012-10-24

Family

ID=41154604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008094237A Active JP5055185B2 (en) 2008-03-31 2008-03-31 Method for producing dicyclohexane derivative

Country Status (2)

Country Link
JP (1) JP5055185B2 (en)
CN (1) CN101550077B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104230757B (en) * 2013-07-26 2016-08-10 河北允升精细化工有限公司 A kind of improved method preparing 4-biphenyl nitrile
JP7027541B2 (en) * 2018-06-11 2022-03-01 富士フイルム株式会社 Method for producing dicyclohexanedicarboxylic acid diester and method for producing dicyclohexanedicarboxylic acid
CN112771020B (en) * 2018-09-27 2023-11-07 富士胶片株式会社 Process for producing dicarboxylic acid monoester

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56125318A (en) * 1980-03-07 1981-10-01 Kanto Kagaku Kk Preparation of ee type monosubstituted cycloheaxane-1- carbonyl compound
JPH04279537A (en) * 1991-03-05 1992-10-05 New Japan Chem Co Ltd Production of bicyclohexyldiol
JPH1036320A (en) * 1996-07-18 1998-02-10 Teijin Ltd Production of 4,4'-dicyclohexanedicarboxylic acid dimethyl ester
JP2002255895A (en) * 2000-12-26 2002-09-11 Mitsubishi Gas Chem Co Inc Method for producing hydrogenated aromatic carboxylic acid
JP2004331645A (en) * 2003-04-15 2004-11-25 Mitsubishi Chemicals Corp Method for producing polycyclic alicyclic polycarboxylic acid

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60239286D1 (en) * 2001-10-26 2011-04-07 Mitsubishi Chem Corp PROCESS FOR THE PREPARATION OF TRANS-1,4-CYCLOHEXANDICARBOXYLIC ACID

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56125318A (en) * 1980-03-07 1981-10-01 Kanto Kagaku Kk Preparation of ee type monosubstituted cycloheaxane-1- carbonyl compound
JPH04279537A (en) * 1991-03-05 1992-10-05 New Japan Chem Co Ltd Production of bicyclohexyldiol
JPH1036320A (en) * 1996-07-18 1998-02-10 Teijin Ltd Production of 4,4'-dicyclohexanedicarboxylic acid dimethyl ester
JP2002255895A (en) * 2000-12-26 2002-09-11 Mitsubishi Gas Chem Co Inc Method for producing hydrogenated aromatic carboxylic acid
JP2004331645A (en) * 2003-04-15 2004-11-25 Mitsubishi Chemicals Corp Method for producing polycyclic alicyclic polycarboxylic acid

Also Published As

Publication number Publication date
CN101550077A (en) 2009-10-07
JP5055185B2 (en) 2012-10-24
CN101550077B (en) 2013-09-25

Similar Documents

Publication Publication Date Title
EP1928838B1 (en) Process for the production of amides
JP5667576B2 (en) Preparation of trans 4-amino-cyclohexyl acetate ethyl ester HCl
JP5055185B2 (en) Method for producing dicyclohexane derivative
JP6005064B2 (en) Preparation of 4-acetoxy-2-methylbutanal by catalytic carbon-carbon double bond hydrogenation
BR112016016397B1 (en) PROCESS TO PREPARE 1-ALKYL-3-DIFLUOROMETHYL-5-FLUORO-1H-PYRAZOL-4-CARBALDEHYDES OR ITS ESTERS
AU2017200463A1 (en) The process for the preparation of metaraminol
JPH08291106A (en) Production of optically active 2-propyloctanoic acid
JP2007119501A (en) Production method of dibasic acid
JP6420673B2 (en) Method for producing bis [4- (6-acryloyloxyhexyl) phenyl] cyclohexane-1,4-dicarboxylate
JP5233299B2 (en) Method for purifying optically active 1- (2-trifluoromethylphenyl) ethanol
WO2010038633A1 (en) Process for producing dicyclohexane derivative
JP2018087184A (en) (E)-3-methyl-2-cycloalkenone compound, 3-halo-3-methylcycloalkanone compound and method for producing (R)-3-methylcycloalkanone compound
JP3814881B2 (en) Method for producing cyclohexyl amino acids
Tungle et al. New asymmetric heterogeneous catalytic hydrogenation reactions
JPS61118328A (en) Manufacture of olefinic unsaturated compound
WO2014051021A9 (en) 1, 4-tetralin dicarboxylic acid dialkyl ester and method for producing same
JP2018197218A (en) Manufacturing method of aromatic compound by dehydrogenation reaction of compound having cycloalkadiene or cycloalkene structure using heterogeneous palladium catalyst
JP2018135315A (en) Method of producing 6-amino-2h-1,4-benzoxazine-3(4h)-ones
JP2008260723A (en) Method for producing cis-4-alkylcyclohexylamine
JP4389683B2 (en) Process for producing trans-4-aminocyclohexanecarboxylic acid alkyl ester hydrochloride
Szőllősia et al. Substituent position-driven reaction pathways in the heterogeneous one-pot reduction/asymmetric hydrogenation of nitro-substituted (E)-2, 3-diphenylpropenoic acids over Pd catalyst.
JP2005289981A (en) Method for producing tetralones
WO2023080193A1 (en) Method for producing indole compound
WO2019197326A1 (en) Process for the production of 2-methyl-4-(2,6,6-trimethyl-1-cyclohexen-1-yl)-2-butenal
RU2602501C1 (en) Method of producing 3-furylpropane-1-on

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100713

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20111216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120703

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120730

R150 Certificate of patent or registration of utility model

Ref document number: 5055185

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150803

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250