WO2014051021A9 - 1, 4-tetralin dicarboxylic acid dialkyl ester and method for producing same - Google Patents

1, 4-tetralin dicarboxylic acid dialkyl ester and method for producing same Download PDF

Info

Publication number
WO2014051021A9
WO2014051021A9 PCT/JP2013/076199 JP2013076199W WO2014051021A9 WO 2014051021 A9 WO2014051021 A9 WO 2014051021A9 JP 2013076199 W JP2013076199 W JP 2013076199W WO 2014051021 A9 WO2014051021 A9 WO 2014051021A9
Authority
WO
WIPO (PCT)
Prior art keywords
dialkyl ester
acid dialkyl
catalyst
mass
dicarboxylic acid
Prior art date
Application number
PCT/JP2013/076199
Other languages
French (fr)
Japanese (ja)
Other versions
WO2014051021A1 (en
Inventor
阿良加 伊藤
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to JP2014538611A priority Critical patent/JPWO2014051021A1/en
Publication of WO2014051021A1 publication Critical patent/WO2014051021A1/en
Publication of WO2014051021A9 publication Critical patent/WO2014051021A9/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/30Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group
    • C07C67/303Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by hydrogenation of unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/76Esters of carboxylic acids having a carboxyl group bound to a carbon atom of a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2602/00Systems containing two condensed rings
    • C07C2602/02Systems containing two condensed rings the rings having only two atoms in common
    • C07C2602/04One of the condensed rings being a six-membered aromatic ring
    • C07C2602/10One of the condensed rings being a six-membered aromatic ring the other ring being six-membered, e.g. tetraline

Definitions

  • the present invention relates to a novel tetralin derivative 1,4-tetralin dicarboxylic acid dialkyl ester and a method for producing the same.
  • Tetraline dicarboxylic acid dialkyl ester has a number of structural isomers depending on the substitution position of the carboxyl group with respect to the tetralin ring.
  • Patent Documents 1 and 2 disclose 1,5-tetralin dicarboxylic acid dialkyl ester, 1,8-tetralin dicarboxylic acid dialkyl ester, and 2,6-tetralin dicarboxylic acid dialkyl ester.
  • Non-Patent Document 1 discloses 5,8-tetralin dicarboxylic acid dialkyl ester and 5,6-tetralin dicarboxylic acid dialkyl ester.
  • Patent Documents 1 and 2 disclose a method for producing a dialkyl ester of tetralin dicarboxylic acid by deriving a naphthalene ring into a tetralin ring by hydrogenation of dimethyl naphthalenedicarboxylate.
  • the starting naphthalene dicarboxylic acid dialkyl ester shown in these documents corresponds to one in which one of the two substituents is bonded to the 1 to 4 position of the naphthalene ring and the other to the 5 to 8 position, Moreover, only specific examples are shown in which two substituents are bonded to the 1,5, 1,8 and 2,6 positions of the naphthalene ring.
  • naphthalene dicarboxylic acid dialkyl esters When these naphthalene dicarboxylic acid dialkyl esters are hydrogenated, the same tetralin dicarboxylic acid dimethyl isomer can be obtained regardless of whether the naphthalene ring is hydrogenated at the 1st to 4th or 5th to 8th positions.
  • JP 2001-278836 A Japanese Patent No. 3210148
  • 1,4-tetralindicarboxylic acid dialkyl ester (hereinafter sometimes referred to as “1,4-TDCE”) in which a substituent is bonded to the 1,4-position of the tetralin ring is not limited to any of the above-mentioned documents, etc. Is also not disclosed.
  • a 1,4-naphthalenedicarboxylic acid dialkyl ester (hereinafter sometimes referred to as “1,4-NDCE”) represented by the following formula (2) is hydrogenated to form a 1,4-tetralindicarboxylic acid dialkyl ester.
  • it is necessary to selectively hydrogenate the 5- to 8-positions of the naphthalene ring but such a hydrogenation method is not yet known.
  • 1,4-tetralindicarboxylic acid dialkyl ester can be efficiently produced, it can be applied to various uses such as raw materials for various resins, liquid crystal compositions, polymer modifiers, pharmaceutical intermediates and the like. Can be expected well.
  • the present invention has been made in view of the above circumstances, and is a novel 1 that is considered to be useful as a raw material for resins such as polyester, polycarbonate, polyimide, and polyamide; a liquid crystal composition; a polymer modifier;
  • An object of the present invention is to provide a 1,4-tetralindicarboxylic acid dialkyl ester and a method for producing the same.
  • 1,4-TDCE can be synthesized by hydrogenating 1,4-NDCE in a solvent in the presence of a noble metal catalyst. It came to be accomplished.
  • 1,4-tetralin dicarboxylic acid dialkyl ester represented by the formula (1).
  • R and R ′ represent an alkyl group having 1 to 10 carbon atoms, and R and R ′ may be the same or different.
  • a process for producing 1,4-tetralindicarboxylic acid dialkyl ester comprising a step of hydrogenating 1,4-naphthalenedicarboxylic acid dialkyl ester in a solvent in the presence of a noble metal catalyst.
  • 1,4-TDCE which is a novel tetralin derivative
  • 1,4-TDCE has great industrial significance because it can be used as a raw material for resins such as polyester, polycarbonate, polyimide, and polyamide, a liquid crystal composition, a polymer modifier, a pharmaceutical intermediate, and the like.
  • FIG. 3 is a result of accurate mass analysis by GC-TOF / MS of a crystal obtained by purifying the product of Example 1 by recrystallization.
  • 1 is a 1 H-NMR chart of a crystal obtained by purifying the product of Example 1 by recrystallization.
  • 2 is a 13 C-NMR chart of a crystal obtained by purifying the product of Example 1 by recrystallization.
  • 2 is a dept135-NMR chart of a crystal obtained by purifying the product of Example 1 by recrystallization.
  • 2 is a 13 C-ig-NMR chart of a crystal obtained by purifying the product of Example 1 by recrystallization.
  • 2 is a HMBC-NMR chart of crystals obtained by recrystallizing the product of Example 1.
  • 2 is an HMQC-NMR chart of crystals obtained by purifying the product of Example 1 by recrystallization.
  • 2 is an INADEQUAT-NMR chart of a crystal obtained by purifying the product of Example 1 by recrystallization.
  • the present embodiment a mode for carrying out the present invention (hereinafter simply referred to as “the present embodiment”) will be described in detail.
  • the following embodiments are examples for explaining the present invention, and are not intended to limit the present invention to the following contents.
  • the present invention can be implemented with appropriate modifications within the scope of the gist thereof.
  • a 1,4-tetralin dicarboxylic acid dialkyl ester represented by the formula (1) is provided.
  • R and R ′ represent an alkyl group having 1 to 10 carbon atoms, and R and R ′ may be the same or different.
  • R and R ′ each independently represents an alkyl group having 1 to 10 carbon atoms.
  • the alkyl group having 1 to 10 carbon atoms is not particularly limited, and examples thereof include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an n-pentyl group, an n-hexyl group, and an n-heptyl group. Group, n-octyl group, n-nonyl group, n-decyl group and the like.
  • both R and R ' are methyl groups.
  • the 1,4-tetralin dicarboxylic acid dialkyl ester of the present embodiment includes, for example, 1,4-tetralin dicarboxylic acid dialkyl ester including a step of hydrogenating 1,4-naphthalenedicarboxylic acid dialkyl ester in a solvent in the presence of a noble metal catalyst. It can be obtained by a method for producing an acid dialkyl ester.
  • ruthenium catalyst for example, a ruthenium catalyst (Ru), a rhodium catalyst (Rh), a palladium catalyst (Pd), a platinum catalyst (Pt), and an iridium catalyst (Ir) are preferable, and a ruthenium catalyst (Ru) and a rhodium catalyst (Rh).
  • Palladium catalyst (Pd) is more preferable, from the viewpoint of high selectivity in the hydrogenation reaction, ruthenium catalyst and rhodium catalyst are more preferable, and from the viewpoint of higher yield, ruthenium catalyst is still more preferable.
  • the noble metal catalyst is preferably a catalyst in which a noble metal is supported on a carrier (supported catalyst).
  • the carrier include carbon, alumina, silica, zeolite, and the like. Among these, carbon such as activated carbon is preferable from the viewpoint of availability and economy.
  • the content of the noble metal in the supported catalyst is preferably 0.1 to 50% by mass, and more preferably 1 to 10% by mass.
  • a carbon-supported catalyst containing 0.1 to 50% by mass of the above-mentioned noble metal catalyst, etc., and any one selected from the group consisting of palladium, ruthenium and rhodium is 0.1 to 50% by mass.
  • Carbon-containing catalyst is more preferable, and a carbon-supported catalyst containing 0.1 to 50% by mass of any one selected from the group consisting of palladium, ruthenium, and rhodium is still more preferable.
  • the catalyst may be dried or hydrated. From the viewpoint of safety and the like, it is preferable to use a water-containing one.
  • the water content in the supported catalyst is preferably 10 to 80% by mass, and more preferably 40 to 60% by mass from the viewpoint of ease of handling.
  • the above-mentioned catalyst may be a commercially available catalyst or a catalyst prepared according to a known method such as an impregnation support method.
  • a catalyst prepared according to a known method such as an impregnation support method.
  • 5% Ru carbon powder A type (water-containing product) “5% Ru carbon powder B type (water-containing product)”
  • 5% Ru carbon powder K type water-containing product
  • Ru carbon powder and Ru alumina powder such as “5% Ru carbon powder R type (water-containing product)”, “Ru alumina powder”, “Ru black”; “5% Rh carbon powder (water-containing product)”, “5% Rh carbon powder such as “Rh alumina powder” and Rh alumina powder; “5% Pd carbon powder PE type (hydrated product)”, “5% Pd carbon powder STD type (hydrated product)”, “5% Pd carbon powder K type” (Water-containing product), “5% Pd carbon powder NXA type (water-containing product)”, “5% Pd carbon powder P-type (water-containing product)”, “5% Pd carbon powder AER type (water-containing product)” "5% Pd carbon powder KER type (hydrated product)”, “5% Pd carbon powder E type (hydrated product)", “5% Pd carbon powder B type (hydrated product)”, “20% Pd carbon powder NX type” (Water-containing product), “20% Pd carbon powder UR type (water-containing product)”, “10% Pd carbon powder NX type (water-containing product)”, “
  • the amount of the catalyst used is preferably 0.05 to 5% by mass, more preferably 0.1 to 3% by mass, based on the mass ratio of the noble metal to the raw material 1,4-NDCE.
  • the solvent is not particularly limited as long as it does not inhibit the hydrogenation reaction.
  • the solvent include aliphatic hydrocarbon solvents such as hexane, heptane, octane, nonane, decane, and dodecane, alcohol solvents such as methanol, ethanol, propanol, isopropanol, tert-butanol, ethylene glycol, and glycerin, diethyl ether. , Ether solvents such as tetrahydrofuran, dioxane and the like.
  • the amount of the solvent used is not particularly limited, but is preferably in the range of 0.5 to 8, more preferably in the range of 0.8 to 5, in terms of mass ratio to 1,4-NDCE. Setting the mass ratio in the above range is preferable because the reaction can be efficiently performed while being easily controlled, and the solvent can be separated and recovered more easily. For example, by setting the mass ratio of the solvent to 1,4-NDCE within the above range, the concentration of the reactant can be increased, so that the reaction efficiency is high and the productivity is excellent. On the other hand, if the concentration is high, the influence of the reaction heat becomes large, and thus the reaction temperature and the like tend to be difficult to control. Reaction control is also easy.
  • the hydrogenation reaction of this embodiment is usually preferably carried out in a pressurized container such as an autoclave.
  • the pressure of hydrogen in the hydrogenation reaction is not particularly limited, but is preferably 1 to 8 MPa, and more preferably 2 to 5 MPa.
  • the reaction temperature of the hydrogenation reaction is usually preferably from 0 to 100 ° C, more preferably from 20 to 70 ° C, still more preferably from 25 to 45 ° C.
  • the catalyst is filtered off from the reaction mixture, and the filtrate is recovered. If necessary, the catalyst is washed with a solvent having good washing efficiency (extraction efficiency) such as water, acetone, methanol, chloroform, etc., and the washing liquid is recovered. Combine the collected washings with the filtrate to make a mixture. 1,4-TDCE can be taken out by distilling off the solvent from the mixture. Further, purification may be performed by means such as recrystallization, distillation, column chromatography and the like.
  • the 1,4-tetralindicarboxylic acid dialkyl ester of the present embodiment can be suitably used as a resin raw material such as polyester, polycarbonate, polyimide, polyamide, etc .; liquid crystal composition; polymer modifier;
  • Example 1 In a 500 mL autoclave (manufactured by SUS316L), 30 g of dimethyl 1,4-naphthalenedicarboxylate (hereinafter referred to as “1,4-NDCM”; manufactured by Wako Pure Chemical Industries, Ltd.), 5% Ru carbon powder A type (5 mass% Ru) / Activated carbon catalyst: manufactured by N.E. Chemcat Co., Ltd., water content 52 mass%) 5.0 g and isopropanol 30 g were charged. At room temperature, the inside of the autoclave was purged with nitrogen twice at a pressure of 1 MPa, and then purged with hydrogen twice at a pressure of 1 MPa.
  • 1,4-NDCM dimethyl 1,4-naphthalenedicarboxylate
  • Ru carbon powder A type (5 mass% Ru) / Activated carbon catalyst manufactured by N.E. Chemcat Co., Ltd., water content 52 mass
  • the pressure was reduced to normal pressure, the temperature was raised to 30 ° C., the pressure was increased to 3 MPa with hydrogen, and the mixture was stirred at the same temperature and the same pressure for 2 hours (rotation speed: 500 rpm).
  • the reaction mixture was cooled to room temperature, hydrogen was released, and the atmosphere was purged with nitrogen twice at a pressure of 1 MPa, and then the catalyst was filtered off to obtain a filtrate.
  • the used catalyst was washed 3 times with 20 g of acetone, and the washing liquid was recovered. The collected washing solution was added to the filtrate to obtain a mixed solution.
  • crude 1,4-TDCM dimethyl 1,4-tetralindicarboxylate
  • 1,4-TDCM dimethyl 5,8-tetralindicarboxylate
  • 5 , 8-TDCM dimethyl 5,8-tetralindicarboxylate
  • FIG. 1 shows an FT-IR (KBr method) chart of the crystals obtained by purifying the product of Example 1 by recrystallization.
  • FIG. 2 shows an FT-IR (KBr method) chart of dimethyl 1,4-naphthalenedicarboxylate used as a raw material in Example 1.
  • FIG. 3 shows the results of accurate mass analysis by GC-TOF / MS of the crystals obtained by purifying the product of Example 1 by recrystallization.
  • FIG. 4 shows a 1 H-NMR chart of the crystals obtained by purifying the product of Example 1 by recrystallization.
  • FIG. 5 shows a 13 C-NMR chart of the crystals obtained by purifying the product of Example 1 by recrystallization.
  • FIG. 1 shows an FT-IR (KBr method) chart of the crystals obtained by purifying the product of Example 1 by recrystallization.
  • FIG. 2 shows an FT-IR (KBr method) chart of dimethyl 1,4-naphthalenedicarboxylate used as a raw
  • FIG. 6 shows a dept135-NMR chart of the crystals obtained by purifying the product of Example 1 by recrystallization.
  • FIG. 7 shows a 13 C-ig-NMR chart of the crystals obtained by purifying the product of Example 1 by recrystallization.
  • FIG. 8 shows an HMBC-NMR chart of the crystals obtained by purifying the product of Example 1 by recrystallization.
  • FIG. 9 shows an HMQC-NMR chart of the crystals obtained by purifying the product of Example 1 by recrystallization.
  • FIG. 10 shows an INADEQUAT-NMR chart of the crystals obtained by purifying the product of Example 1 by recrystallization. The product was identified by the method described later.
  • Example 2 A 500 mL autoclave (manufactured by SUS316L) was charged with 30 g of 1,4-NDCM, 5.0 g of 5% Ru carbon powder A type (manufactured by NE Chemcat Co., Ltd., water content 52 mass%), and 45 g of decane. At room temperature, the inside of the autoclave was purged with nitrogen twice at a pressure of 1 MPa, and then purged with hydrogen twice at a pressure of 1 MPa.
  • the pressure was reduced to normal pressure, the temperature was raised to 40 ° C., the pressure was increased to 3 MPa with hydrogen, and the mixture was stirred at the same temperature and the same pressure for 2 hours (the number of revolutions during stirring was 500 rpm).
  • the reaction mixture was cooled to room temperature, hydrogen was released, and the atmosphere was purged with nitrogen twice at a pressure of 1 MPa, and then the catalyst was filtered off to obtain a filtrate.
  • the used catalyst was washed 3 times with 20 g of acetone, and the washing liquid was recovered. The collected washing solution was added to the filtrate to obtain a mixed solution.
  • the solvent was distilled off from the resulting mixture to obtain 29.0 g of crude 1,4-TDCM.
  • 1,4-NDCM 2.6% by mass
  • 1,4-TDCM 85.9% by mass
  • 5,8-TDCM 3.5% by mass. It was.
  • the yield of 1,4-TDCM was 81.7%.
  • Example 3 A 500 mL autoclave (manufactured by SUS316L) was charged with 30 g of 1,4-NDCM, 3.0 g of 5% Rh carbon powder (5% by mass Rh / activated carbon catalyst; manufactured by N.E. Chemcat, water content 52% by mass), and 30 g of isopropanol. . At room temperature, the inside of the autoclave was purged with nitrogen twice at a pressure of 1 MPa, and then purged with hydrogen twice at a pressure of 1 MPa.
  • the pressure was reduced to normal pressure, the temperature was raised to 70 ° C., the pressure was increased to 3 MPa with hydrogen, and the mixture was stirred at the same temperature and the same pressure for 2 hours (the number of revolutions during stirring was 500 rpm).
  • the reaction mixture was cooled to room temperature, hydrogen was released, and the atmosphere was purged with nitrogen twice at 1 MPa, and then the catalyst was filtered off to obtain a filtrate.
  • the used catalyst was washed 3 times with 20 g of acetone, and the washing liquid was recovered. The collected washing solution was added to the filtrate to obtain a mixed solution.
  • the solvent was distilled off from the resulting mixture to obtain 28.8 g of crude 1,4-TDCM.
  • 1,4-NDCM 2.0 mass%
  • 1,4-TDCM 73.1 mass%
  • 5,8-TDCM 13.7 mass%. It was.
  • the yield of 1,4-TDCM was 69.0%.
  • Example 4 In a 500 mL autoclave (manufactured by SUS316L), 30 g of 1,4-NDCM, 5% Pd carbon powder PE type (5 mass% Pd / activated carbon catalyst; manufactured by N.E. Chemcat, water content 52 mass%), 4.0 g, and isopropanol 100 g Prepared. At room temperature, the inside of the autoclave was purged with nitrogen twice at a pressure of 1 MPa and then purged with hydrogen twice at 1 MPa. Thereafter, the pressure was reduced to normal pressure, the temperature was raised to 90 ° C., the pressure was increased to 3 MPa with hydrogen, and the mixture was stirred at the same temperature and the same pressure for 2 hours (rotation speed: 500 rpm).
  • 1,4-tetralindicarboxylic acid dialkyl ester which is a novel tetralin derivative, can be industrially produced by selectively hydrogenating 1,4-naphthalenedicarboxylic acid dialkyl ester. Since 1,4-tetralindicarboxylic acid dialkyl ester can be used as a liquid crystal composition, a polymer modifier, a pharmaceutical intermediate or the like as a polyester, polycarbonate, polyimide, or polyamide, it has great industrial significance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

Provided is a 1, 4-tetralin dicarboxylic acid dialkyl ester represented by formula (1). (In formula (1), R and R' represent C1-10 alkyl groups, and may be identical to or different from one another.)

Description

1,4-テトラリンジカルボン酸ジアルキルエステルとその製造方法1,4-Tetraline dicarboxylic acid dialkyl ester and process for producing the same
 本発明は、新規なテトラリン誘導体である1,4-テトラリンジカルボン酸ジアルキルエステルとその製造方法に関するものである。 The present invention relates to a novel tetralin derivative 1,4-tetralin dicarboxylic acid dialkyl ester and a method for producing the same.
 テトラリンジカルボン酸ジアルキルエステルには、テトラリン環に対するカルボキシル基の置換位置によって、多数の構造異性体が存在する。例えば、特許文献1,2には、1,5-テトラリンジカルボン酸ジアルキルエステル、1,8-テトラリンジカルボン酸ジアルキルエステル、2,6-テトラリンジカルボン酸ジアルキルエステルが示されている。また、非特許文献1には、5,8-テトラリンジカルボン酸ジアルキルエステル、5,6-テトラリンジカルボン酸ジアルキルエステルが示されている。 Tetraline dicarboxylic acid dialkyl ester has a number of structural isomers depending on the substitution position of the carboxyl group with respect to the tetralin ring. For example, Patent Documents 1 and 2 disclose 1,5-tetralin dicarboxylic acid dialkyl ester, 1,8-tetralin dicarboxylic acid dialkyl ester, and 2,6-tetralin dicarboxylic acid dialkyl ester. Non-Patent Document 1 discloses 5,8-tetralin dicarboxylic acid dialkyl ester and 5,6-tetralin dicarboxylic acid dialkyl ester.
 テトラリンジカルボン酸ジアルキルエステルの製造方法としては、ナフタレンジカルボン酸ジメチルの水素添加によりナフタレン環をテトラリン環へと誘導する方法が、特許文献1,2に示されている。これらの文献に示されている原料のナフタレンジカルボン酸ジアルキルエステルは、2個の置換基の一方がナフタレン環の1~4位に、他方が5~8位に結合しているものに相当し、しかも、具体的な事例として示されているのは2個の置換基がナフタレン環の1,5位、1,8位、及び2,6位に結合しているものだけである。これらのナフタレンジカルボン酸ジアルキルエステルを水素添加した場合、ナフタレン環の1~4位、又は5~8位のいずれが水素添加されても、同一のテトラリンジカルボン酸ジメチル異性体が得られる。 Patent Documents 1 and 2 disclose a method for producing a dialkyl ester of tetralin dicarboxylic acid by deriving a naphthalene ring into a tetralin ring by hydrogenation of dimethyl naphthalenedicarboxylate. The starting naphthalene dicarboxylic acid dialkyl ester shown in these documents corresponds to one in which one of the two substituents is bonded to the 1 to 4 position of the naphthalene ring and the other to the 5 to 8 position, Moreover, only specific examples are shown in which two substituents are bonded to the 1,5, 1,8 and 2,6 positions of the naphthalene ring. When these naphthalene dicarboxylic acid dialkyl esters are hydrogenated, the same tetralin dicarboxylic acid dimethyl isomer can be obtained regardless of whether the naphthalene ring is hydrogenated at the 1st to 4th or 5th to 8th positions.
特開2001-278836号公報JP 2001-278836 A 特許第3210148号公報Japanese Patent No. 3210148
[規則91に基づく訂正 23.05.2014] 
 しかしながら、テトラリン環の1,4位に置換基が結合している1,4-テトラリンジカルボン酸ジアルキルエステル(以下、「1,4-TDCE」という場合がある。)は、上述したいずれの文献等にも開示されていない。また、下記式(2)で表される1,4-ナフタレンジカルボン酸ジアルキルエステル(以下、「1,4-NDCE」という場合がある。)を水素添加して、1,4-テトラリンジカルボン酸ジアルキルエステルを得るためには、ナフタレン環の5~8位を選択的に水素添加することが必要になるが、このような水素添加の方法も未だ知られていない。
Figure JPOXMLDOC01-appb-C000002
[Correction based on Rule 91 23.05.2014]
However, 1,4-tetralindicarboxylic acid dialkyl ester (hereinafter sometimes referred to as “1,4-TDCE”) in which a substituent is bonded to the 1,4-position of the tetralin ring is not limited to any of the above-mentioned documents, etc. Is also not disclosed. Further, a 1,4-naphthalenedicarboxylic acid dialkyl ester (hereinafter sometimes referred to as “1,4-NDCE”) represented by the following formula (2) is hydrogenated to form a 1,4-tetralindicarboxylic acid dialkyl ester. In order to obtain an ester, it is necessary to selectively hydrogenate the 5- to 8-positions of the naphthalene ring, but such a hydrogenation method is not yet known.
Figure JPOXMLDOC01-appb-C000002
 その一方で、上述した1,4-テトラリンジカルボン酸ジアルキルエステルを効率よく製造できるならば、種々の樹脂の原料、液晶組成物、高分子改質剤、医薬中間体等といった種々の用途への応用も十分に期待できる。 On the other hand, if the above-mentioned 1,4-tetralindicarboxylic acid dialkyl ester can be efficiently produced, it can be applied to various uses such as raw materials for various resins, liquid crystal compositions, polymer modifiers, pharmaceutical intermediates and the like. Can be expected well.
 本発明は上記事情に鑑みなされたものであり、ポリエステル、ポリカーボネート、ポリイミド、ポリアミド等の樹脂の原料;液晶組成物;高分子改質剤;医薬中間体等として有用であると考えられる新規な1,4-テトラリンジカルボン酸ジアルキルエステル、及び、その製造方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and is a novel 1 that is considered to be useful as a raw material for resins such as polyester, polycarbonate, polyimide, and polyamide; a liquid crystal composition; a polymer modifier; An object of the present invention is to provide a 1,4-tetralindicarboxylic acid dialkyl ester and a method for producing the same.
 本発明者は、鋭意研究した結果、意外にも、1,4-NDCEを、貴金属触媒の存在下、溶媒中で水素添加させることにより、1,4-TDCEを合成できることを見出し、本発明を成すに至った。 As a result of extensive research, the present inventors have surprisingly found that 1,4-TDCE can be synthesized by hydrogenating 1,4-NDCE in a solvent in the presence of a noble metal catalyst. It came to be accomplished.
 すなわち、本発明は、以下のとおりである。
〔1〕
 式(1)で表される1,4-テトラリンジカルボン酸ジアルキルエステル。
Figure JPOXMLDOC01-appb-C000003
(式(1)中、R及びR’は、炭素数1~10のアルキル基を表し、R及びR’は、同一であってもよいし、異なっていてもよい)
〔2〕
 1,4-ナフタレンジカルボン酸ジアルキルエステルを、貴金属触媒の存在下、溶媒中で水素添加する工程を含む、1,4-テトラリンジカルボン酸ジアルキルエステルの製造方法。
〔3〕
 前記貴金属触媒が、ルテニウム触媒、ロジウム触媒、及びパラジウム触媒からなる群より選ばれる少なくとも1種である、〔2〕に記載の1,4-テトラリンジカルボン酸ジアルキルエステルの製造方法。
〔4〕
 前記貴金属触媒が、ルテニウム触媒及びロジウム触媒からなる群より選ばれる少なくとも1種である、〔2〕に記載の1,4-テトラリンジカルボン酸ジアルキルエステルの製造方法。
〔5〕
 前記水素添加は、反応温度0~100℃の範囲で行われる、〔2〕~〔4〕のいずれか一項に記載の1,4-テトラリンジカルボン酸ジアルキルエステルの製造方法。
〔6〕
 前記水素添加は溶媒存在下で行われ、
 前記溶媒の使用量は、前記1,4-ナフタレンジカルボン酸ジアルキルエステルに対する質量比で0.5~8の範囲である、〔2〕~〔5〕のいずれか一項に記載の1,4-テトラリンジカルボン酸ジアルキルエステルの製造方法。
That is, the present invention is as follows.
[1]
1,4-tetralin dicarboxylic acid dialkyl ester represented by the formula (1).
Figure JPOXMLDOC01-appb-C000003
(In Formula (1), R and R ′ represent an alkyl group having 1 to 10 carbon atoms, and R and R ′ may be the same or different.)
[2]
A process for producing 1,4-tetralindicarboxylic acid dialkyl ester, comprising a step of hydrogenating 1,4-naphthalenedicarboxylic acid dialkyl ester in a solvent in the presence of a noble metal catalyst.
[3]
The method for producing a 1,4-tetralindicarboxylic acid dialkyl ester according to [2], wherein the noble metal catalyst is at least one selected from the group consisting of a ruthenium catalyst, a rhodium catalyst, and a palladium catalyst.
[4]
The method for producing a 1,4-tetralindicarboxylic acid dialkyl ester according to [2], wherein the noble metal catalyst is at least one selected from the group consisting of a ruthenium catalyst and a rhodium catalyst.
[5]
The method for producing a 1,4-tetralindicarboxylic acid dialkyl ester according to any one of [2] to [4], wherein the hydrogenation is performed at a reaction temperature in the range of 0 to 100 ° C.
[6]
The hydrogenation is performed in the presence of a solvent,
The amount of the solvent used is 1,4- according to any one of [2] to [5], which is in a range of 0.5 to 8 in terms of mass ratio to the 1,4-naphthalenedicarboxylic acid dialkyl ester. A method for producing a tetraalkyl dicarboxylic acid dialkyl ester.
 本発明によれば、新規なテトラリン誘導体である1,4-TDCEを提供することができる。1,4-TDCEは、ポリエステル、ポリカーボネート、ポリイミド、ポリアミド等の樹脂原料、液晶組成物、高分子改質剤、医薬中間体等としての利用が考えられるため、その工業的な意義は大きい。 According to the present invention, 1,4-TDCE, which is a novel tetralin derivative, can be provided. 1,4-TDCE has great industrial significance because it can be used as a raw material for resins such as polyester, polycarbonate, polyimide, and polyamide, a liquid crystal composition, a polymer modifier, a pharmaceutical intermediate, and the like.
実施例1の生成物を再結晶で精製して得られた結晶のFT-IR(KBr法)チャートである。2 is an FT-IR (KBr method) chart of crystals obtained by refining the product of Example 1 by recrystallization. 実施例1で原料として使用した1,4-ナフタレンジカルボン酸ジメチルのFT-IR(KBr法)チャートである。2 is an FT-IR (KBr method) chart of dimethyl 1,4-naphthalenedicarboxylate used as a raw material in Example 1. FIG. 実施例1の生成物を再結晶で精製して得られた結晶のGC-TOF/MSによる精密質量解析結果である。3 is a result of accurate mass analysis by GC-TOF / MS of a crystal obtained by purifying the product of Example 1 by recrystallization. 実施例1の生成物を再結晶で精製して得られた結晶のH-NMRチャートである。1 is a 1 H-NMR chart of a crystal obtained by purifying the product of Example 1 by recrystallization. 実施例1の生成物を再結晶で精製して得られた結晶の13C-NMRチャートである。2 is a 13 C-NMR chart of a crystal obtained by purifying the product of Example 1 by recrystallization. 実施例1の生成物を再結晶で精製して得られた結晶のdept135-NMRチャートである。2 is a dept135-NMR chart of a crystal obtained by purifying the product of Example 1 by recrystallization. 実施例1の生成物を再結晶で精製して得られた結晶の13C-ig-NMRチャートである。2 is a 13 C-ig-NMR chart of a crystal obtained by purifying the product of Example 1 by recrystallization. 実施例1の生成物を再結晶で精製して得られた結晶のHMBC-NMRチャートである。2 is a HMBC-NMR chart of crystals obtained by recrystallizing the product of Example 1. 実施例1の生成物を再結晶で精製して得られた結晶のHMQC-NMRチャートである。2 is an HMQC-NMR chart of crystals obtained by purifying the product of Example 1 by recrystallization. 実施例1の生成物を再結晶で精製して得られた結晶のINADEQUATE-NMRチャートである。2 is an INADEQUAT-NMR chart of a crystal obtained by purifying the product of Example 1 by recrystallization.
 以下、本発明を実施するための形態(以下、単に「本実施形態」という。)について詳細に説明する。以下の本実施形態は、本発明を説明するための例示であり、本発明を以下の内容に限定する趣旨ではない。本発明は、その要旨の範囲内で適宜に変形して実施できる。 Hereinafter, a mode for carrying out the present invention (hereinafter simply referred to as “the present embodiment”) will be described in detail. The following embodiments are examples for explaining the present invention, and are not intended to limit the present invention to the following contents. The present invention can be implemented with appropriate modifications within the scope of the gist thereof.
 本実施形態では、式(1)で表される1,4-テトラリンジカルボン酸ジアルキルエステルを提供する。
Figure JPOXMLDOC01-appb-C000004
(式(1)中、R及びR’は、炭素数1~10のアルキル基を表し、R及びR’は、同一であってもよいし、異なっていてもよい。)
In this embodiment, a 1,4-tetralin dicarboxylic acid dialkyl ester represented by the formula (1) is provided.
Figure JPOXMLDOC01-appb-C000004
(In Formula (1), R and R ′ represent an alkyl group having 1 to 10 carbon atoms, and R and R ′ may be the same or different.)
 式(1)中、R及びR’は、それぞれ独立して、炭素数1~10のアルキル基を表す。炭素数1~10のアルキル基としては、特に限定されず、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基等が挙げられる。 In formula (1), R and R ′ each independently represents an alkyl group having 1 to 10 carbon atoms. The alkyl group having 1 to 10 carbon atoms is not particularly limited, and examples thereof include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an n-pentyl group, an n-hexyl group, and an n-heptyl group. Group, n-octyl group, n-nonyl group, n-decyl group and the like.
 これらの中でも、ポリエステルやポリカーボネートの原料として使用する場合の反応性の観点から、R及びR’のいずれもがメチル基であることが好ましい。 Among these, from the viewpoint of reactivity when used as a raw material for polyester or polycarbonate, it is preferable that both R and R 'are methyl groups.
 本実施形態の1,4-テトラリンジカルボン酸ジアルキルエステルは、例えば、1,4-ナフタレンジカルボン酸ジアルキルエステルを、貴金属触媒の存在下、溶媒中で水素添加する工程を含む、1,4-テトラリンジカルボン酸ジアルキルエステルの製造方法により得ることができる。 The 1,4-tetralin dicarboxylic acid dialkyl ester of the present embodiment includes, for example, 1,4-tetralin dicarboxylic acid dialkyl ester including a step of hydrogenating 1,4-naphthalenedicarboxylic acid dialkyl ester in a solvent in the presence of a noble metal catalyst. It can be obtained by a method for producing an acid dialkyl ester.
 従来では、原料である1,4-ナフタレンジカルボン酸アルキルエステルの5~8位を選択的に水素添加することは困難であった。しかし、本発明者が鋭意研究した結果、意外にも、貴金属触媒の存在下で、溶媒中で水素添加反応を行うと、ナフタレン環の5~8位が選択的に水素添加でき、その結果、1,4-テトラリンジカルボン酸ジアルキルエステルが得られることを見出した。その理由は定かではないが、通常、電子的には電子吸引性置換基であるエステル基を2つ有する環の方が水素添加されやすいと考えられるが、立体障害の観点からは置換基を有さない環の方が、反応性が高くなる。本実施形態では、立体障害の影響が顕著に現れた結果、意外にも、選択的に5~8位が水添できたものと推定される(但し、本実施形態の作用はこれに限定されない。)。 Conventionally, it has been difficult to selectively hydrogenate the 5th to 8th positions of 1,4-naphthalenedicarboxylic acid alkyl ester as a raw material. However, as a result of intensive studies by the present inventors, surprisingly, when a hydrogenation reaction is performed in a solvent in the presence of a noble metal catalyst, the 5- to 8-positions of the naphthalene ring can be selectively hydrogenated. It has been found that 1,4-tetralin dicarboxylic acid dialkyl ester is obtained. The reason for this is not clear, but it is usually considered that a ring having two ester groups which are electron-withdrawing substituents is more likely to be hydrogenated electronically, but from the viewpoint of steric hindrance, it has a substituent. Non-rings are more reactive. In this embodiment, as a result of the remarkable influence of steric hindrance, it is unexpectedly estimated that the 5th to 8th positions can be selectively hydrogenated (however, the operation of this embodiment is not limited to this). .)
[1.反応に用いられる触媒]
 貴金属触媒としては、例えば、ルテニウム触媒(Ru)、ロジウム触媒(Rh)、パラジウム触媒(Pd)、白金触媒(Pt)、イリジウム触媒(Ir)が好ましく、ルテニウム触媒(Ru)、ロジウム触媒(Rh)、パラジウム触媒(Pd)がより好ましく、水素添加反応における選択性が高いという観点から、ルテニウム触媒、ロジウム触媒が更に好ましく、更に高収率であるという観点から、ルテニウム触媒がより更に好ましい。
[1. Catalyst used for reaction]
As the noble metal catalyst, for example, a ruthenium catalyst (Ru), a rhodium catalyst (Rh), a palladium catalyst (Pd), a platinum catalyst (Pt), and an iridium catalyst (Ir) are preferable, and a ruthenium catalyst (Ru) and a rhodium catalyst (Rh). Palladium catalyst (Pd) is more preferable, from the viewpoint of high selectivity in the hydrogenation reaction, ruthenium catalyst and rhodium catalyst are more preferable, and from the viewpoint of higher yield, ruthenium catalyst is still more preferable.
 貴金属触媒としては、貴金属が担体に担持された触媒(担持触媒)であることが好ましい。担体としては、例えば、カーボン、アルミナ、シリカ、ゼオライト等が挙げられる。これらの中でも、入手容易性や経済性の観点から、活性炭素等のカーボンが好ましい。担持触媒を用いることで、表面積の増大により触媒使用量が低減できるといった利点や、入手容易性や安全性の利点等もある。 The noble metal catalyst is preferably a catalyst in which a noble metal is supported on a carrier (supported catalyst). Examples of the carrier include carbon, alumina, silica, zeolite, and the like. Among these, carbon such as activated carbon is preferable from the viewpoint of availability and economy. By using the supported catalyst, there are advantages that the amount of catalyst used can be reduced by increasing the surface area, and there are advantages such as availability and safety.
 担持触媒中の貴金属の含有量は、0.1~50質量%であることが好ましく、1~10質量%であることがより好ましい。具体的には、例えば、上記した貴金属触媒を0.1~50質量%含有したカーボン担持触媒等が挙げられ、パラジウム、ルテニウム、及びロジウムからなる群より選ばれるいずれかを0.1~50質量%含有するカーボン担持触媒が更に好ましく、パラジウム、ルテニウム、及びロジウムからなる群より選ばれるいずれかを0.1~50質量%含有するカーボン担持触媒がより更に好ましい。また、触媒は乾燥したものでもよいし、含水したものでもよい。安全性等の観点から、含水したものを使用することが好ましい。担持触媒中の含水率は、取り扱いやすさの観点から、10~80質量%であることが好ましく、40~60質量%であることがより好ましい。 The content of the noble metal in the supported catalyst is preferably 0.1 to 50% by mass, and more preferably 1 to 10% by mass. Specifically, for example, a carbon-supported catalyst containing 0.1 to 50% by mass of the above-mentioned noble metal catalyst, etc., and any one selected from the group consisting of palladium, ruthenium and rhodium is 0.1 to 50% by mass. % Carbon-containing catalyst is more preferable, and a carbon-supported catalyst containing 0.1 to 50% by mass of any one selected from the group consisting of palladium, ruthenium, and rhodium is still more preferable. Further, the catalyst may be dried or hydrated. From the viewpoint of safety and the like, it is preferable to use a water-containing one. The water content in the supported catalyst is preferably 10 to 80% by mass, and more preferably 40 to 60% by mass from the viewpoint of ease of handling.
 上述した触媒は、市販のものを用いてもよいし、含浸担持法等の公知の方法に従い調製したものを用いてもよい。例えば、エヌ・イーケムキャット社製の「5%Ruカーボン粉末Aタイプ(含水品)」、「5%Ruカーボン粉末Bタイプ(含水品)」、「5%Ruカーボン粉末Kタイプ(含水品)」、「5%Ruカーボン粉末Rタイプ(含水品)」、「Ruアルミナ粉末」、「Ruブラック」等のRuカーボン粉末やRuアルミナ粉末;「5%Rhカーボン粉末(含水品)」、「5%Rhアルミナ粉末」等のRhカーボン粉末やRhアルミナ粉末;「5%Pdカーボン粉末PEタイプ(含水品)」、「5%Pdカーボン粉末STDタイプ(含水品)」、「5%Pdカーボン粉末Kタイプ(含水品)」、「5%Pdカーボン粉末NXAタイプ(含水品)」、「5%Pdカーボン粉末Pタイプ(含水品)」、「5%Pdカーボン粉末AERタイプ(含水品)」、「5%Pdカーボン粉末KERタイプ(含水品)」、「5%Pdカーボン粉末Eタイプ(含水品)」、「5%Pdカーボン粉末Bタイプ(含水品)」、「20%Pdカーボン粉末NXタイプ(含水品)」、「20%Pdカーボン粉末URタイプ(含水品)」「10%Pdカーボン粉末NXタイプ(含水品)」、「10%Pdカーボン粉末Kタイプ(含水品)」、「10%Pdカーボン粉末PEタイプ(含水品)」、「10%Pdカーボン粉末OHタイプ(含水品)」、「10%Pdカーボン粉末AEタイプ(含水品)」、「5%Pdアルミナ粉末」等のPdカーボン粉末やPdアルミナ粉末等が挙げられる。なお、上述したように、乾燥品を使用することも勿論可能である。 The above-mentioned catalyst may be a commercially available catalyst or a catalyst prepared according to a known method such as an impregnation support method. For example, “5% Ru carbon powder A type (water-containing product)”, “5% Ru carbon powder B type (water-containing product)”, “5% Ru carbon powder K type (water-containing product)” manufactured by N.E. Ru carbon powder and Ru alumina powder such as “5% Ru carbon powder R type (water-containing product)”, “Ru alumina powder”, “Ru black”; “5% Rh carbon powder (water-containing product)”, “5% Rh carbon powder such as “Rh alumina powder” and Rh alumina powder; “5% Pd carbon powder PE type (hydrated product)”, “5% Pd carbon powder STD type (hydrated product)”, “5% Pd carbon powder K type” (Water-containing product), “5% Pd carbon powder NXA type (water-containing product)”, “5% Pd carbon powder P-type (water-containing product)”, “5% Pd carbon powder AER type (water-containing product)” "5% Pd carbon powder KER type (hydrated product)", "5% Pd carbon powder E type (hydrated product)", "5% Pd carbon powder B type (hydrated product)", "20% Pd carbon powder NX type" (Water-containing product), “20% Pd carbon powder UR type (water-containing product)”, “10% Pd carbon powder NX type (water-containing product)”, “10% Pd carbon powder K type (water-containing product)”, “10% Pd carbon such as “Pd carbon powder PE type (hydrated product)”, “10% Pd carbon powder OH type (hydrated product)”, “10% Pd carbon powder AE type (hydrated product)”, “5% Pd alumina powder”, etc. Examples thereof include powder and Pd alumina powder. As described above, it is of course possible to use a dried product.
 触媒の使用量は、原料の1,4-NDCEに対する貴金属の質量比で、0.05~5質量%であることが好ましく、0.1~3質量%であることがより好ましい。触媒の使用量を上記範囲とすることで、反応時間を短時間に抑えつつ、少量の触媒使用量でありながら、反応を効率よく促進させることができる。 The amount of the catalyst used is preferably 0.05 to 5% by mass, more preferably 0.1 to 3% by mass, based on the mass ratio of the noble metal to the raw material 1,4-NDCE. By making the usage-amount of a catalyst into the said range, reaction can be promoted efficiently, suppressing reaction time to a short time, although it is a small usage-amount of a catalyst.
[2.反応に用いられる溶媒]
 溶媒としては、水素添加反応を阻害しないものであればよく、特に限定されない。溶媒としては、例えば、ヘキサン、ヘプタン、オクタン、ノナン、デカン、ドデカン等の脂肪族炭化水素系溶媒、メタノール、エタノール、プロパノール、イソプロパノール、tert-ブタノール、エチレングリコール、グリセリン等のアルコール系溶媒、ジエチルエーテル、テトラヒドロフラン、ジオキサン等のエーテル系溶媒等が挙げられる。
[2. Solvent used for reaction]
The solvent is not particularly limited as long as it does not inhibit the hydrogenation reaction. Examples of the solvent include aliphatic hydrocarbon solvents such as hexane, heptane, octane, nonane, decane, and dodecane, alcohol solvents such as methanol, ethanol, propanol, isopropanol, tert-butanol, ethylene glycol, and glycerin, diethyl ether. , Ether solvents such as tetrahydrofuran, dioxane and the like.
 溶媒の使用量は、特に限定されないが、1,4-NDCEに対する質量比で、0.5~8の範囲であることが好ましく、0.8~5の範囲であることがより好ましい。上記質量比を上記範囲とすることで、制御容易でありながら効率的に反応を実施できるとともに、溶媒の分離や回収が一層容易となるため好ましい。例えば、1,4-NDCEに対する溶媒の質量比を上記範囲とすることで、反応物の濃度を高濃度にすることができるため反応効率が高く、生産性に優れる。その一方で、通常であれば、高濃度の場合には反応熱の影響が大きくなるため、反応温度等の制御が難しくなる傾向にあるが、意外にも本実施形態ではそのようなこともなく、反応制御も容易である。 The amount of the solvent used is not particularly limited, but is preferably in the range of 0.5 to 8, more preferably in the range of 0.8 to 5, in terms of mass ratio to 1,4-NDCE. Setting the mass ratio in the above range is preferable because the reaction can be efficiently performed while being easily controlled, and the solvent can be separated and recovered more easily. For example, by setting the mass ratio of the solvent to 1,4-NDCE within the above range, the concentration of the reactant can be increased, so that the reaction efficiency is high and the productivity is excellent. On the other hand, if the concentration is high, the influence of the reaction heat becomes large, and thus the reaction temperature and the like tend to be difficult to control. Reaction control is also easy.
[3.反応条件]
 本実施形態の水素添加反応は、通常、オートクレーブ等の加圧容器中で実施されることが好ましい。水素添加反応における水素の圧力は、特に限定されないが、1~8MPaであることが好ましく、2~5MPaであることがより好ましい。水素の圧力を上記範囲とすることで、水素添加反応における、ナフタレン環の5~8位への位置選択性が一層高くなり、一層効率良く1,4-TDCEを製造できる。
[3. Reaction conditions]
The hydrogenation reaction of this embodiment is usually preferably carried out in a pressurized container such as an autoclave. The pressure of hydrogen in the hydrogenation reaction is not particularly limited, but is preferably 1 to 8 MPa, and more preferably 2 to 5 MPa. By setting the hydrogen pressure within the above range, the position selectivity of the naphthalene ring to the 5th to 8th positions in the hydrogenation reaction is further increased, and 1,4-TDCE can be produced more efficiently.
 水素添加反応の反応温度は、通常、0~100℃であることが好ましく、20~70℃であることがより好ましく、25~45℃であることが更に好ましい。上記の温度範囲で水素添加反応を行なうことで、水素添加反応におけるナフタレン環の5~8位への位置選択性が一層高くなり、また、適度な反応速度となるため、一層効率良く1,4-TDCEを製造できる。 The reaction temperature of the hydrogenation reaction is usually preferably from 0 to 100 ° C, more preferably from 20 to 70 ° C, still more preferably from 25 to 45 ° C. By performing the hydrogenation reaction in the above temperature range, the regioselectivity of the naphthalene ring to the 5th to 8th positions in the hydrogenation reaction is further increased and the reaction rate is moderate, so that 1,4 is more efficiently performed. -TDCE can be manufactured.
[4.精製]
 反応終了後、例えば、反応混合物から触媒をろ別して、ろ液を回収する。そして、必要に応じて、触媒を、水、アセトン、メタノール、クロロホルム等の洗浄効率(抽出効率)がよい溶媒で洗浄し、その洗浄液を回収する。回収した洗浄液を、ろ液と合わせ、混合液とする。この混合液から溶媒を留去することにより、1,4-TDCEを取り出すことができる。さらに、再結晶、蒸留、カラムクロマトグラフィー等の手段により精製を行ってもよい。
[4. Purification]
After completion of the reaction, for example, the catalyst is filtered off from the reaction mixture, and the filtrate is recovered. If necessary, the catalyst is washed with a solvent having good washing efficiency (extraction efficiency) such as water, acetone, methanol, chloroform, etc., and the washing liquid is recovered. Combine the collected washings with the filtrate to make a mixture. 1,4-TDCE can be taken out by distilling off the solvent from the mixture. Further, purification may be performed by means such as recrystallization, distillation, column chromatography and the like.
 本実施形態の1,4-テトラリンジカルボン酸ジアルキルエステルは、ポリエステル、ポリカーボネート、ポリイミド、ポリアミド等の樹脂原料;液晶組成物;高分子改質剤;医薬中間体等として好適に用いることができる。 The 1,4-tetralindicarboxylic acid dialkyl ester of the present embodiment can be suitably used as a resin raw material such as polyester, polycarbonate, polyimide, polyamide, etc .; liquid crystal composition; polymer modifier;
 実施例により本発明の方法を更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。以下の実施例及び比較例において、特に断りがない限り、組成は、ガスクロマトグラフィー分析により得られた面積百分率値に基づく。 EXAMPLES The method of the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples. In the following Examples and Comparative Examples, the composition is based on area percentage values obtained by gas chromatography analysis unless otherwise specified.
<実施例1>
 500mLオートクレーブ(SUS316L製)に、1,4-ナフタレンジカルボン酸ジメチル(以下、「1,4-NDCM」という。;和光純薬工業社製)30g、5%Ruカーボン粉末Aタイプ(5質量%Ru/活性炭触媒;エヌ・イーケムキャット社製、含水率52質量%)5.0g、イソプロパノール30gを仕込んだ。室温で、オートクレーブ内を1MPaの圧力で2回窒素置換し、次いで1MPaの圧力で2回水素置換した。その後、常圧まで落圧した後、内温30℃に昇温させ、水素で3MPaまで加圧し、同温度、同圧力で2時間攪拌した(攪拌時の回転数500rpm)。
 反応終了後、室温まで冷却し、水素を放出し、1MPaの圧力で2回窒素置換した後、触媒をろ別してろ液を得た。一方で、使用した触媒をアセトン20gで3回洗浄し、その洗浄液を回収した。回収した洗浄液をろ液に加えて、混合液とした。得られた混合液から溶媒を留去して、粗1,4-テトラリンジカルボン酸ジメチル(以下、「粗1,4-TDCM」という。)29.8gを得た。これをガスクロマトグラフィーで分析したところ、組成は、1,4-NDCM:2.8質量%、1,4-TDCM:87.2質量%、5,8-テトラリンジカルボン酸ジメチル(以下、「5,8-TDCM」という。):3.6質量%であった。1,4-TDCMの収率は、85.2%であった。
 そして、この粗1,4-TDCM10gに対してアセトン10g、デカン30gを加えて、リフラックスにより全溶解後、0℃に冷却して再結晶することで、精製された1,4-TDCMを単離した。
<Example 1>
In a 500 mL autoclave (manufactured by SUS316L), 30 g of dimethyl 1,4-naphthalenedicarboxylate (hereinafter referred to as “1,4-NDCM”; manufactured by Wako Pure Chemical Industries, Ltd.), 5% Ru carbon powder A type (5 mass% Ru) / Activated carbon catalyst: manufactured by N.E. Chemcat Co., Ltd., water content 52 mass%) 5.0 g and isopropanol 30 g were charged. At room temperature, the inside of the autoclave was purged with nitrogen twice at a pressure of 1 MPa, and then purged with hydrogen twice at a pressure of 1 MPa. Thereafter, the pressure was reduced to normal pressure, the temperature was raised to 30 ° C., the pressure was increased to 3 MPa with hydrogen, and the mixture was stirred at the same temperature and the same pressure for 2 hours (rotation speed: 500 rpm).
After completion of the reaction, the reaction mixture was cooled to room temperature, hydrogen was released, and the atmosphere was purged with nitrogen twice at a pressure of 1 MPa, and then the catalyst was filtered off to obtain a filtrate. On the other hand, the used catalyst was washed 3 times with 20 g of acetone, and the washing liquid was recovered. The collected washing solution was added to the filtrate to obtain a mixed solution. The solvent was distilled off from the resulting mixture to obtain 29.8 g of crude dimethyl 1,4-tetralindicarboxylate (hereinafter referred to as “crude 1,4-TDCM”). When this was analyzed by gas chromatography, the composition was as follows: 1,4-NDCM: 2.8% by mass, 1,4-TDCM: 87.2% by mass, dimethyl 5,8-tetralindicarboxylate (hereinafter referred to as “5 , 8-TDCM ”): 3.6 mass%. The yield of 1,4-TDCM was 85.2%.
Then, 10 g of acetone and 30 g of decane are added to 10 g of this crude 1,4-TDCM, and after complete dissolution by reflux, the mixture is cooled to 0 ° C. and recrystallized to obtain purified 1,4-TDCM. Released.
 図1に、実施例1の生成物を再結晶で精製して得られた結晶のFT-IR(KBr法)チャートを示す。図2に、実施例1で原料として使用した1,4-ナフタレンジカルボン酸ジメチルのFT-IR(KBr法)チャートを示す。図3に、実施例1の生成物を再結晶で精製して得られた結晶のGC-TOF/MSによる精密質量解析結果を示す。図4に、実施例1の生成物を再結晶で精製して得られた結晶のH-NMRチャートを示す。図5に、実施例1の生成物を再結晶で精製して得られた結晶の13C-NMRチャートを示す。図6に、実施例1の生成物を再結晶で精製して得られた結晶のdept135-NMRチャートを示す。図7に、実施例1の生成物を再結晶で精製して得られた結晶の13C-ig-NMRチャートを示す。図8に、実施例1の生成物を再結晶で精製して得られた結晶のHMBC-NMRチャートを示す。図9に、実施例1の生成物を再結晶で精製して得られた結晶のHMQC-NMRチャートを示す。図10に、実施例1の生成物を再結晶で精製して得られた結晶のINADEQUATE-NMRチャートを示す。生成物の同定は、後述する手法によって行った。 FIG. 1 shows an FT-IR (KBr method) chart of the crystals obtained by purifying the product of Example 1 by recrystallization. FIG. 2 shows an FT-IR (KBr method) chart of dimethyl 1,4-naphthalenedicarboxylate used as a raw material in Example 1. FIG. 3 shows the results of accurate mass analysis by GC-TOF / MS of the crystals obtained by purifying the product of Example 1 by recrystallization. FIG. 4 shows a 1 H-NMR chart of the crystals obtained by purifying the product of Example 1 by recrystallization. FIG. 5 shows a 13 C-NMR chart of the crystals obtained by purifying the product of Example 1 by recrystallization. FIG. 6 shows a dept135-NMR chart of the crystals obtained by purifying the product of Example 1 by recrystallization. FIG. 7 shows a 13 C-ig-NMR chart of the crystals obtained by purifying the product of Example 1 by recrystallization. FIG. 8 shows an HMBC-NMR chart of the crystals obtained by purifying the product of Example 1 by recrystallization. FIG. 9 shows an HMQC-NMR chart of the crystals obtained by purifying the product of Example 1 by recrystallization. FIG. 10 shows an INADEQUAT-NMR chart of the crystals obtained by purifying the product of Example 1 by recrystallization. The product was identified by the method described later.
<実施例2>
 500mLオートクレーブ(SUS316L製)に、1,4-NDCM30g、5%Ruカーボン粉末Aタイプ(エヌ・イーケムキャット社製、含水率52質量%)5.0g、デカン45gを仕込んだ。室温で、オートクレーブ内を1MPaの圧力で2回窒素置換し、次いで1MPaの圧力で2回水素置換した。その後、常圧まで落圧した後、内温40℃に昇温させ、水素で3MPaまで加圧し、同温度、同圧力で2時間攪拌した(攪拌時の回転数500rpm)。
 反応終了後、室温まで冷却し、水素を放出し、1MPaの圧力で2回窒素置換した後、触媒をろ別してろ液を得た。一方で、使用した触媒をアセトン20gで3回洗浄し、その洗浄液を回収した。回収した洗浄液をろ液に加えて、混合液とした。得られた混合液から溶媒を留去して、粗1,4-TDCM29.0gを得た。これをガスクロマトグラフィーで分析したところ、組成は、1,4-NDCM:2.6質量%、1,4-TDCM:85.9質量%、5,8-TDCM:3.5質量%であった。1,4-TDCMの収率は、81.7%であった。
<Example 2>
A 500 mL autoclave (manufactured by SUS316L) was charged with 30 g of 1,4-NDCM, 5.0 g of 5% Ru carbon powder A type (manufactured by NE Chemcat Co., Ltd., water content 52 mass%), and 45 g of decane. At room temperature, the inside of the autoclave was purged with nitrogen twice at a pressure of 1 MPa, and then purged with hydrogen twice at a pressure of 1 MPa. Thereafter, the pressure was reduced to normal pressure, the temperature was raised to 40 ° C., the pressure was increased to 3 MPa with hydrogen, and the mixture was stirred at the same temperature and the same pressure for 2 hours (the number of revolutions during stirring was 500 rpm).
After completion of the reaction, the reaction mixture was cooled to room temperature, hydrogen was released, and the atmosphere was purged with nitrogen twice at a pressure of 1 MPa, and then the catalyst was filtered off to obtain a filtrate. On the other hand, the used catalyst was washed 3 times with 20 g of acetone, and the washing liquid was recovered. The collected washing solution was added to the filtrate to obtain a mixed solution. The solvent was distilled off from the resulting mixture to obtain 29.0 g of crude 1,4-TDCM. This was analyzed by gas chromatography. The composition was 1,4-NDCM: 2.6% by mass, 1,4-TDCM: 85.9% by mass, and 5,8-TDCM: 3.5% by mass. It was. The yield of 1,4-TDCM was 81.7%.
<実施例3>
 500mLオートクレーブ(SUS316L製)に、1,4-NDCM30g、5%Rhカーボン粉末(5質量%Rh/活性炭触媒;エヌ・イーケムキャット社製、含水率52質量%)3.0g、イソプロパノール30gを仕込んだ。室温で、オートクレーブ内を1MPaの圧力で2回窒素置換し、次いで1MPaの圧力で2回水素置換した。その後、常圧まで落圧した後、内温70℃に昇温させ、水素で3MPaまで加圧し、同温度、同圧力で2時間攪拌した(攪拌時の回転数500rpm)。
 反応終了後、室温まで冷却し、水素を放出し、1MPaで2回窒素置換した後、触媒をろ別してろ液を得た。一方で、使用した触媒をアセトン20gで3回洗浄し、その洗浄液を回収した。回収した洗浄液をろ液に加えて、混合液とした。得られた混合液から溶媒を留去して、粗1,4-TDCM28.8gを得た。これをガスクロマトグラフィーで分析したところ、組成は、1,4-NDCM:2.0質量%、1,4-TDCM:73.1質量%、5,8-TDCM:13.7質量%であった。1,4-TDCMの収率は、69.0%であった。
<Example 3>
A 500 mL autoclave (manufactured by SUS316L) was charged with 30 g of 1,4-NDCM, 3.0 g of 5% Rh carbon powder (5% by mass Rh / activated carbon catalyst; manufactured by N.E. Chemcat, water content 52% by mass), and 30 g of isopropanol. . At room temperature, the inside of the autoclave was purged with nitrogen twice at a pressure of 1 MPa, and then purged with hydrogen twice at a pressure of 1 MPa. Thereafter, the pressure was reduced to normal pressure, the temperature was raised to 70 ° C., the pressure was increased to 3 MPa with hydrogen, and the mixture was stirred at the same temperature and the same pressure for 2 hours (the number of revolutions during stirring was 500 rpm).
After completion of the reaction, the reaction mixture was cooled to room temperature, hydrogen was released, and the atmosphere was purged with nitrogen twice at 1 MPa, and then the catalyst was filtered off to obtain a filtrate. On the other hand, the used catalyst was washed 3 times with 20 g of acetone, and the washing liquid was recovered. The collected washing solution was added to the filtrate to obtain a mixed solution. The solvent was distilled off from the resulting mixture to obtain 28.8 g of crude 1,4-TDCM. When this was analyzed by gas chromatography, the composition was 1,4-NDCM: 2.0 mass%, 1,4-TDCM: 73.1 mass%, and 5,8-TDCM: 13.7 mass%. It was. The yield of 1,4-TDCM was 69.0%.
<実施例4>
 500mLオートクレーブ(SUS316L製)に、1,4-NDCM30g、5%Pdカーボン粉末PEタイプ(5質量%Pd/活性炭触媒;エヌ・イーケムキャット社製、含水率52質量%)4.0g、イソプロパノール100gを仕込んだ。室温で、オートクレーブ内を1MPaの圧力で2回窒素置換し、次いで1MPaで2回水素置換した。その後、常圧まで落圧した後、内温90℃に昇温させ、水素で3MPaまで加圧し、同温度、同圧力で2時間攪拌した(攪拌時の回転数500rpm)。
 反応終了後、室温まで冷却し、水素を放出し、1MPaで2回窒素置換した後、触媒をろ別してろ液を得た。一方で、使用した触媒をアセトン20gで3回洗浄し、その洗浄液を回収した。回収した洗浄液をろ液に加えて、混合液とした。得られた混合液から溶媒を除去して、粗1,4-TDCM29.9gを得た。これをガスクロマトグラフィーで分析したところ、組成は、1,4-NDCM:0.3質量%、1,4-TDCM:49.8質量%、5,8-TDCM:47.2質量%であった。1,4-TDCMの収率は、48.8%であった。
<Example 4>
In a 500 mL autoclave (manufactured by SUS316L), 30 g of 1,4-NDCM, 5% Pd carbon powder PE type (5 mass% Pd / activated carbon catalyst; manufactured by N.E. Chemcat, water content 52 mass%), 4.0 g, and isopropanol 100 g Prepared. At room temperature, the inside of the autoclave was purged with nitrogen twice at a pressure of 1 MPa and then purged with hydrogen twice at 1 MPa. Thereafter, the pressure was reduced to normal pressure, the temperature was raised to 90 ° C., the pressure was increased to 3 MPa with hydrogen, and the mixture was stirred at the same temperature and the same pressure for 2 hours (rotation speed: 500 rpm).
After completion of the reaction, the reaction mixture was cooled to room temperature, hydrogen was released, and the atmosphere was purged with nitrogen twice at 1 MPa, and then the catalyst was filtered off to obtain a filtrate. On the other hand, the used catalyst was washed 3 times with 20 g of acetone, and the washing liquid was recovered. The collected washing solution was added to the filtrate to obtain a mixed solution. The solvent was removed from the resulting mixture to obtain 29.9 g of crude 1,4-TDCM. This was analyzed by gas chromatography. The composition was 1,4-NDCM: 0.3% by mass, 1,4-TDCM: 49.8% by mass, and 5,8-TDCM: 47.2% by mass. It was. The yield of 1,4-TDCM was 48.8%.
<生成物の同定>
 各実施例で得られた反応生成物を再結晶で精製して得られた結晶について、構造同定を行った。FT-IR、NMR、及び、GC-TOF/MS等による分析を行い、その結果に基づいて構造同定を行った。
<Identification of product>
Structure identification was performed on the crystals obtained by recrystallizing the reaction products obtained in each Example. Analysis by FT-IR, NMR, GC-TOF / MS, etc. was performed, and structure identification was performed based on the results.
[FT-IR測定条件]
 装置:JASCO製、「FT-IR410」
 測定法:透過法(KBr法)
 スキャン範囲:500~4000cm-1
 積算回数:64
 分解能:4cm-1
 試料調製:KBrに混ぜて、錠剤成型した。
[FT-IR measurement conditions]
Equipment: “FT-IR410” manufactured by JASCO
Measurement method: Transmission method (KBr method)
Scan range: 500 to 4000 cm -1
Integration count: 64
Resolution: 4cm -1
Sample preparation: mixed with KBr and molded into tablets.
[NMR測定条件]
装置:Bruker AvanceII 600MHz-NMR
プローブ:DCH CryoProbe
モード:H、13C、13C-ig、dept135、HSQC、HMBC、INADEQUATE(測定時間12時間)
試料調製:結晶100mgを重クロロホルム500μLに溶解させた。
[NMR measurement conditions]
Apparatus: Bruker Avance II 600MHz-NMR
Probe: DCH CryoProbe
Mode: 1 H, 13 C, 13 C-ig, depth 135, HSQC, HMBC, INADEQUATE (measurement time 12 hours)
Sample preparation: 100 mg of crystals were dissolved in 500 μL of deuterated chloroform.
[GC-TOF/MS測定条件]
装置:Agilent7890A/WatersGCTpremier
カラム:「DB-5MS UI」30m×0.25mmI.D. 膜圧0.5μm
昇温条件:200℃(0min)-10℃/min-320℃(0min)
スプリット比:1:100
注入口温度:300℃
打ちこみ量:1.0μL
キャリアーガス:He、1.0mL/min
イオン化法:70eV、EI+測定
質量スキャン範囲:33~800(0.2sec)
DRE:ON
Trap Current:200μA
Sourceo温度:300℃
Interface温度:320℃
Low Mass Cut OFF:47Da
内部標準物質(質量補正):Heptacosa(m/z=218.9856)
試料調製:結晶をクロロホルムに溶解したものを測定し、測定後ピーク強度が飽和しない濃度まで希釈して得たデータを精密質量解析に用いた。
[GC-TOF / MS measurement conditions]
Equipment: Agilent 7890A / Waters GCT Premier
Column: “DB-5MS UI” 30 m × 0.25 mmI. D. Film pressure 0.5μm
Temperature rising conditions: 200 ° C. (0 min) −10 ° C./min−320° C. (0 min)
Split ratio: 1: 100
Inlet temperature: 300 ° C
Amount of implantation: 1.0 μL
Carrier gas: He, 1.0 mL / min
Ionization method: 70 eV, EI + measured mass scan range: 33 to 800 (0.2 sec)
DRE: ON
Trap Current: 200μA
Source temperature: 300 ° C
Interface temperature: 320 ° C
Low Mass Cut OFF: 47 Da
Internal standard substance (mass correction): Heptocasa (m / z = 218.9856)
Sample preparation: Crystals dissolved in chloroform were measured, and data obtained by dilution to a concentration at which the peak intensity was not saturated after measurement was used for accurate mass analysis.
 本出願は、2012年09月28日に日本国特許庁へ出願された日本特許出願(特願2012-216369)に基づくものであり、その内容はここに参照として組み込まれる。 This application is based on a Japanese patent application (Japanese Patent Application No. 2012-216369) filed with the Japan Patent Office on September 28, 2012, the contents of which are incorporated herein by reference.
 本発明によれば、1,4-ナフタレンジカルボン酸ジアルキルエステルを選択的に水素添加することにより新規テトラリン誘導体である1,4-テトラリンジカルボン酸ジアルキルエステルを工業的に作り出すことができる。1,4-テトラリンジカルボン酸ジアルキルエステルはポリエステルやポリカーボネート、ポリイミド、ポリアミドとして、液晶組成物、高分子改質剤、医薬中間体等としての利用が考えられるため、その工業的な意義は大きい。 According to the present invention, 1,4-tetralindicarboxylic acid dialkyl ester, which is a novel tetralin derivative, can be industrially produced by selectively hydrogenating 1,4-naphthalenedicarboxylic acid dialkyl ester. Since 1,4-tetralindicarboxylic acid dialkyl ester can be used as a liquid crystal composition, a polymer modifier, a pharmaceutical intermediate or the like as a polyester, polycarbonate, polyimide, or polyamide, it has great industrial significance.

Claims (6)

  1.  式(1)で表される1,4-テトラリンジカルボン酸ジアルキルエステル。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、R及びR’は、炭素数1~10のアルキル基を表し、R及びR’は、同一であってもよいし、異なっていてもよい)
    1,4-tetralin dicarboxylic acid dialkyl ester represented by the formula (1).
    Figure JPOXMLDOC01-appb-C000001
    (In Formula (1), R and R ′ represent an alkyl group having 1 to 10 carbon atoms, and R and R ′ may be the same or different.)
  2.  1,4-ナフタレンジカルボン酸ジアルキルエステルを、貴金属触媒の存在下、溶媒中で水素添加する工程を含む、1,4-テトラリンジカルボン酸ジアルキルエステルの製造方法。 A process for producing 1,4-tetralindicarboxylic acid dialkyl ester, comprising a step of hydrogenating 1,4-naphthalenedicarboxylic acid dialkyl ester in a solvent in the presence of a noble metal catalyst.
  3.  前記貴金属触媒が、ルテニウム触媒、ロジウム触媒、及びパラジウム触媒からなる群より選ばれる少なくとも1種である、請求項2に記載の1,4-テトラリンジカルボン酸ジアルキルエステルの製造方法。 The method for producing a 1,4-tetralindicarboxylic acid dialkyl ester according to claim 2, wherein the noble metal catalyst is at least one selected from the group consisting of a ruthenium catalyst, a rhodium catalyst, and a palladium catalyst.
  4.  前記貴金属触媒が、ルテニウム触媒及びロジウム触媒からなる群より選ばれる少なくとも1種である、請求項2に記載の1,4-テトラリンジカルボン酸ジアルキルエステルの製造方法。 The method for producing a 1,4-tetralindicarboxylic acid dialkyl ester according to claim 2, wherein the noble metal catalyst is at least one selected from the group consisting of a ruthenium catalyst and a rhodium catalyst.
  5.  前記水素添加は、反応温度0~100℃の範囲で行われる、請求項2~4のいずれか一項に記載の1,4-テトラリンジカルボン酸ジアルキルエステルの製造方法。 The method for producing a 1,4-tetralindicarboxylic acid dialkyl ester according to any one of claims 2 to 4, wherein the hydrogenation is performed in a reaction temperature range of 0 to 100 ° C.
  6.  前記水素添加は溶媒存在下で行われ、
     前記溶媒の使用量は、前記1,4-ナフタレンジカルボン酸ジアルキルエステルに対する質量比で0.5~8の範囲である、請求項2~5のいずれか一項に記載の1,4-テトラリンジカルボン酸ジアルキルエステルの製造方法。
    The hydrogenation is performed in the presence of a solvent,
    The 1,4-tetralin dicarboxylic acid according to any one of claims 2 to 5, wherein an amount of the solvent used is in a range of 0.5 to 8 in terms of a mass ratio with respect to the 1,4-naphthalenedicarboxylic acid dialkyl ester. Method for producing acid dialkyl ester.
PCT/JP2013/076199 2012-09-28 2013-09-27 1, 4-tetralin dicarboxylic acid dialkyl ester and method for producing same WO2014051021A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014538611A JPWO2014051021A1 (en) 2012-09-28 2013-09-27 1,4-Tetralindicarboxylic acid dialkyl ester and process for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012216369 2012-09-28
JP2012-216369 2012-09-28

Publications (2)

Publication Number Publication Date
WO2014051021A1 WO2014051021A1 (en) 2014-04-03
WO2014051021A9 true WO2014051021A9 (en) 2014-08-07

Family

ID=50388415

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/076199 WO2014051021A1 (en) 2012-09-28 2013-09-27 1, 4-tetralin dicarboxylic acid dialkyl ester and method for producing same

Country Status (3)

Country Link
JP (1) JPWO2014051021A1 (en)
TW (1) TW201418211A (en)
WO (1) WO2014051021A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6206659B2 (en) * 2013-09-20 2017-10-04 三菱瓦斯化学株式会社 Method for producing 2,6-tetralindicarboxylic acid dialkyl ester

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2503377B2 (en) * 1975-01-28 1976-11-11 Hoechst Ag, 6000 Frankfurt PROCESS FOR THE PRODUCTION OF 1,4-NAPHTHALINDICARBONIC ACID ESTERS
JP2941143B2 (en) * 1993-04-07 1999-08-25 三井化学株式会社 Method for producing tetralin derivative
JPH06298919A (en) * 1993-04-13 1994-10-25 Mitsubishi Rayon Co Ltd Stretch film made of polyester
JP3210148B2 (en) * 1993-08-11 2001-09-17 帝人株式会社 Method for hydrogenating dialkyl naphthalenedicarboxylate
CN103764259B (en) * 2011-09-01 2017-07-11 三菱瓦斯化学株式会社 Oxygen absorbent composition and use its oxygen absorbent package body

Also Published As

Publication number Publication date
JPWO2014051021A1 (en) 2016-08-22
WO2014051021A1 (en) 2014-04-03
TW201418211A (en) 2014-05-16

Similar Documents

Publication Publication Date Title
US10266469B2 (en) Process for preparing terpinene-4-ol
WO2015146294A1 (en) Transesterification reaction by means of iron catalyst
WO2014051021A9 (en) 1, 4-tetralin dicarboxylic acid dialkyl ester and method for producing same
MX2011006918A (en) Process for the preparation of optically active compounds using transfer hydrogenation.
JP6028606B2 (en) Method for producing amine compound
JP2004300131A (en) Method for producing alcohol by hydrogenation of ester
CN102186835B (en) Prepare the method for nebivolol
JPWO2013153957A1 (en) Method for producing hydrogenated biphenol
JP3244816B2 (en) Method for producing 4-hydroxymethyl-tetrahydropyran
JP2009242357A (en) Method for producing dicyclohexane derivative
WO2011131027A1 (en) Preparation methods of l-phenylephrine hydrochloride
JP5645494B2 (en) Method for producing amine body
JP2016124868A (en) ω-HYDROXY FATTY ACID ESTER AND METHOD FOR PRODUCING PRECURSOR COMPOUND THEREOF
JP2015137279A (en) Method for producing cyclohexane-1,4-dicarboxylic acid bis[4-(6-acryloyloxy hexyl)phenyl]
JP6206659B2 (en) Method for producing 2,6-tetralindicarboxylic acid dialkyl ester
JP4389683B2 (en) Process for producing trans-4-aminocyclohexanecarboxylic acid alkyl ester hydrochloride
CN107445879B (en) Preparation method of Latricinib intermediate
WO2009098935A1 (en) Method for purifying optically active 1-(2-trifluoromethylphenyl)ethanol
JP7140347B2 (en) Method for producing 4-(piperidin-4-yl)morpholine
JPH06279339A (en) Hydrogenation of bisphenol a
WO2024091517A1 (en) Process for preparing 3-amino-1-butanol
JP4314602B2 (en) Process for producing optically active 3-hydroxypyrrolidine derivative
US8674120B2 (en) Process for manufacturing zeranol
JP2009137905A (en) Method for producing tertiary amine
JP2007210936A (en) Method for producing alicyclic diamine compound

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13842445

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase in:

Ref document number: 2014538611

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13842445

Country of ref document: EP

Kind code of ref document: A1