JP2009241199A - Surface treatment method and surface treatment device - Google Patents

Surface treatment method and surface treatment device Download PDF

Info

Publication number
JP2009241199A
JP2009241199A JP2008090610A JP2008090610A JP2009241199A JP 2009241199 A JP2009241199 A JP 2009241199A JP 2008090610 A JP2008090610 A JP 2008090610A JP 2008090610 A JP2008090610 A JP 2008090610A JP 2009241199 A JP2009241199 A JP 2009241199A
Authority
JP
Japan
Prior art keywords
processed
cavitation jet
surface treatment
narrowest
cavitation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008090610A
Other languages
Japanese (ja)
Inventor
Noritaka Miyamoto
典孝 宮本
Atsushi Kawabata
敦 川端
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2008090610A priority Critical patent/JP2009241199A/en
Publication of JP2009241199A publication Critical patent/JP2009241199A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To achieve a sufficient surface treatment effect by causing sufficient bubble collapse even in treating a treated surface made of a convex curved surface in surface treatment using cavitation peening. <P>SOLUTION: The treated surface 3a is treated by impact pressure generated in bubble collapse by collapsing cavitation bubbles by making cavitation jet 4 collide against a colliding part P of a treated article 3 having the treated surface 3a made of the convex curved surface. The narrowest part 5 and an extended part 6 are continuously formed between a flowing regulating plate 2 and the treated surface 3a by arranging the flowing regulating plate 2 facing against the treated surface 3a in the neighborhood of the colliding part P. The bubble collapse is promoted by flowing the cavitation jet 4 after colliding against the colliding part P to the extended part 6 from the narrowest part 5. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は表面処理方法及び表面処理装置に関し、詳しくはキャビテーションピーニングを利用して凸曲面よりなる被処理面を処理する表面処理方法及び表面処理装置に関する。   The present invention relates to a surface treatment method and a surface treatment apparatus, and more particularly to a surface treatment method and a surface treatment apparatus for treating a surface to be processed having a convex curved surface using cavitation peening.

従来、金属材料や半導体材料等の表面の強化、洗浄や残留応力の改善等を目的として、キャビテーションピーニングを利用した表面処理が行われている(例えば、特許文献1、2参照)。   Conventionally, surface treatment using cavitation peening has been performed for the purpose of strengthening the surface of a metal material or a semiconductor material, cleaning, improving residual stress, and the like (see, for example, Patent Documents 1 and 2).

キャビテーションは、流動している水などの液体の圧力が局部的に低下して、液体の飽和蒸気圧まで圧力が減少した結果、液体が気泡になる現象である。多くの場合、水中に溶け込んでいる微細な気泡などがキャビテーション核となって、噴流の高速領域(低圧領域)でキャビテーション気泡となる。液体の圧力が低下することで発生したキャビテーション気泡は、流速の低下により液体の圧力が再び高くなれば、液体の表面張力等の影響も受けて、崩壊する。この気泡崩壊は、数マイクロ秒オーダの短時間で起こる。このため、気泡崩壊時には、数百から数千気圧にも達する衝撃圧力が発生する。   Cavitation is a phenomenon in which liquid becomes bubbles as a result of the pressure of a liquid such as flowing water being locally reduced and the pressure decreasing to the saturated vapor pressure of the liquid. In many cases, fine bubbles dissolved in water serve as cavitation nuclei and become cavitation bubbles in a high-speed region (low-pressure region) of the jet. The cavitation bubbles generated by the decrease in the pressure of the liquid will collapse due to the influence of the surface tension of the liquid and the like if the pressure of the liquid is increased again due to the decrease in the flow velocity. This bubble collapse occurs in a short time on the order of several microseconds. For this reason, an impact pressure that reaches several hundred to several thousand atmospheres is generated at the time of bubble collapse.

キャビテーションピーニングによる表面処理では、キャビテーション気泡の崩壊時に発生する衝撃圧力を利用して、被処理物の表面の強化等を行う。すなわち、図9に示されるように、キャビテーション噴流(キャビテーション気泡を含む水等の液体の噴流)80を被処理物81の表面に衝突させる。被処理物81に衝突した後のキャビテーション噴流80は被処理面81aに沿って流れ、その過程でキャビテーション噴流80の速度が低下する。これにより、キャビテーション噴流80の圧力が上昇し、気泡崩壊が起こる。そして、このとき発生する衝撃圧力により被処理面81aの強化等を行う。
特開平10−76467号公報 特許第3464682号公報
In the surface treatment by cavitation peening, the surface of the object to be treated is strengthened by using the impact pressure generated when the cavitation bubbles collapse. That is, as shown in FIG. 9, a cavitation jet (a jet of liquid such as water containing cavitation bubbles) 80 collides with the surface of the workpiece 81. The cavitation jet 80 after colliding with the workpiece 81 flows along the workpiece surface 81a, and the velocity of the cavitation jet 80 decreases in the process. As a result, the pressure of the cavitation jet 80 increases and bubble collapse occurs. And the to-be-processed surface 81a is strengthened by the impact pressure generated at this time.
Japanese Patent Laid-Open No. 10-76467 Japanese Patent No. 3464682

ところで、キャビテーションピーニングによる表面処理において、表面の強化等をより効率的に行うためには、被処理物の被処理面の近傍でより多くのキャビテーション気泡を崩壊させて、そのとき発生する衝撃圧力をより多く被処理面に付与することが重要となる。   By the way, in the surface treatment by cavitation peening, in order to enhance the surface more efficiently, more cavitation bubbles are collapsed in the vicinity of the treated surface of the workpiece, and the impact pressure generated at that time is reduced. It is important to apply more to the surface to be processed.

ところが、図10に示されるように、被処理物82の被処理面82aが凸曲面で、しかもその曲率半径が小さい場合、被処理物82に衝突した後のキャビテーション噴流80の速度が、被処理面82aの近傍で、気泡崩壊が起こる程度まで低下しないことがある。   However, as shown in FIG. 10, when the processing surface 82a of the workpiece 82 is a convex curved surface and its radius of curvature is small, the velocity of the cavitation jet 80 after colliding with the workpiece 82 is In the vicinity of the surface 82a, it may not be reduced to the extent that bubble collapse occurs.

例えば、被処理面82aが5mm程度よりも小さい曲率半径の凸曲面である場合、被処理物82に衝突した後のキャビテーション噴流80の一部は、気泡崩壊が起こる程度まで流速を低下させることなく、被処理面82aから離れて流れ去ってしまう。そうすると、気泡崩壊が十分に起こらず、被処理面82aの強化等の処理が不十分となる。なお、この場合であっても、処理時間を長くすれば、被処理面82aの十分な強化等を図れることもあるが、これでは処理効率の低下を招く。   For example, when the processing surface 82a is a convex curved surface having a curvature radius smaller than about 5 mm, a part of the cavitation jet 80 after colliding with the processing object 82 does not decrease the flow velocity until the bubble collapse occurs. , It will flow away from the surface 82a. If it does so, bubble collapse will not fully occur, but processing, such as reinforcement of processed surface 82a, will become insufficient. Even in this case, if the processing time is lengthened, the surface 82a to be processed may be sufficiently strengthened, but this causes a reduction in processing efficiency.

本発明は上記実情に鑑みてなされたものであり、キャビテーションピーニングを利用した表面処理において、凸曲面よりなる被処理面を処理する場合であっても、十分な気泡崩壊を発生させて、十分な表面処理効果を達成することを解決すべき技術課題とするものである。   The present invention has been made in view of the above circumstances, and in the surface treatment using cavitation peening, even when a surface to be processed having a convex curved surface is processed, sufficient bubble collapse is generated and sufficient. It is a technical problem to be solved to achieve the surface treatment effect.

(1)上記課題を解決する請求項1に記載の表面処理方法は、凸曲面よりなる被処理面を有する被処理物にキャビテーション噴流を衝突させてキャビテーション気泡を崩壊させ、気泡崩壊時に発生する衝撃圧力により該被処理面を処理する方法であって、前記キャビテーション噴流が衝突する前記被処理物の衝突部の近傍に前記被処理面と対向する流れ規制板を配設することにより、該流れ規制板と該被処理面との間に、両者の間隔が最も狭い最狭隘部と、両者の間隔が該最狭隘部よりも広がった拡大部とを、この順で、前記キャビテーション噴流の上流側から下流側に向けて連続して形成し、前記衝突部に衝突した後の前記キャビテーション噴流を前記最狭隘部から前記拡大部に流すことにより前記気泡崩壊を助長することを特徴とする。   (1) In the surface treatment method according to claim 1, which solves the above problem, a cavitation bubble is collided by colliding a cavitation jet against an object to be processed having a convex curved surface, and an impact generated when the bubble collapses. A method of treating the surface to be treated by pressure, wherein a flow restriction plate facing the surface to be treated is disposed in the vicinity of a collision portion of the object to be treated which the cavitation jet collides with. Between the plate and the surface to be processed, the narrowest flange portion where the distance between the two is the narrowest and the enlarged portion where the distance between both is wider than the narrowest flange portion, in this order, from the upstream side of the cavitation jet It is formed continuously toward the downstream side, and the bubble collapse is promoted by flowing the cavitation jet after colliding with the collision part from the narrowest part to the enlarged part.

被処理面が凸曲面よりなる被処理物にキャビテーション噴流が衝突すると、衝突した後のキャビテーション噴流は被処理面に沿って流れる過程でその流速を低下させる。しかし、凸曲面よりなる被処理面の曲率半径が小さいと、キャビテーション噴流の一部は、気泡崩壊が起こる程度まで流速を低下させることなく、被処理面から離れて流れ去ってしまう場合がある。そうすると、十分な気泡崩壊が起こらない。   When a cavitation jet collides with a workpiece whose surface to be processed is a convex curved surface, the velocity of the cavitation jet after the collision decreases in the process of flowing along the surface to be processed. However, if the radius of curvature of the surface to be processed, which is a convex curved surface, is small, a part of the cavitation jet may flow away from the surface to be processed without reducing the flow velocity to the extent that bubble collapse occurs. Then, sufficient bubble collapse does not occur.

この点、請求項1に記載の表面処理方法では、被処理物の衝突部に衝突したキャビテーション噴流が最狭隘部から拡大部に流れることで、キャビテーション噴流の流速が低下して圧力が増加する。これにより、キャビテーション気泡の崩壊が助長される。すなわち、キャビテーション噴流中の気泡が拡大部で確実に崩壊する。   In this regard, in the surface treatment method according to the first aspect, the cavitation jet that collides with the collision portion of the workpiece flows from the narrowest portion to the enlarged portion, so that the flow velocity of the cavitation jet decreases and the pressure increases. This encourages the collapse of cavitation bubbles. That is, the bubbles in the cavitation jet surely collapse at the enlarged portion.

したがって、請求項1に記載の表面処理方法によると、被処理面が凸曲面よりなり、しかもその曲率半径が小さい場合であっても、被処理面の近傍で十分な気泡崩壊を発生させることができる。よって、気泡崩壊時に発生する衝撃力を十分に被処理面に付与することができ、被処理面を確実に処理することが可能となる。   Therefore, according to the surface treatment method of claim 1, even when the surface to be processed is a convex curved surface and the radius of curvature is small, sufficient bubble collapse can occur near the surface to be processed. it can. Therefore, the impact force generated when the bubbles collapse can be sufficiently applied to the surface to be processed, and the surface to be processed can be reliably processed.

(2)請求項2に記載の表面処理方法は、請求項1に記載の表面処理方法において、前記流れ規制板と前記被処理物との間に、両者の間隔が前記最狭隘部よりも広がった導入拡大部を、該最狭隘部の前記キャビテーション噴流の上流側に形成し、前記衝突部に衝突した後の前記キャビテーション噴流を前記導入拡大部から前記最狭隘部に導くことを特徴とする。   (2) A surface treatment method according to a second aspect is the surface treatment method according to the first aspect, wherein an interval between the flow restricting plate and the workpiece is wider than the narrowest flange portion. The introduction expansion portion is formed on the upstream side of the cavitation jet of the narrowest ridge portion, and the cavitation jet after colliding with the collision portion is guided from the introduction expansion portion to the narrowest ridge portion.

この被処理物の表面処理方法では、被処理物の衝突部に衝突した後のキャビテーション噴流を導入拡大部から最狭隘部を介して拡大部により多く導くことができる。   In this surface treatment method for an object to be processed, it is possible to guide more cavitation jets after colliding with the collision part of the object to be processed from the introduction expansion part to the expansion part through the narrowest flange part.

(3)請求項3に記載の表面処理方法は、請求項1〜2のいずれか一つに記載の表面処理方法において、前記最狭隘部と前記被処理面との間隔Dと、前記凸曲面の曲率半径rとの関係において、r/Dの値が0.5〜5であることを特徴とする。   (3) A surface treatment method according to a third aspect is the surface treatment method according to any one of the first to second aspects, wherein an interval D between the narrowest flange portion and the surface to be treated and the convex curved surface. In the relationship with the radius of curvature r, the value of r / D is 0.5-5.

(4)請求項4に記載の表面処理方法は、請求項1〜3のいずれか一つに記載の表面処理方法において、前記凸曲面の曲率半径が1mm〜5mmであることを特徴とする。   (4) The surface treatment method according to claim 4 is the surface treatment method according to any one of claims 1 to 3, wherein the curvature radius of the convex curved surface is 1 mm to 5 mm.

この表面改質方法によると、1mm〜5mmの曲率半径を有し曲率の大きな凸曲面よりなる被処理面であっても、有効にキャビテーションピーニングによる表面処理効果を達成することができる。   According to this surface modification method, the surface treatment effect by cavitation peening can be effectively achieved even on a surface to be processed having a curved surface having a radius of curvature of 1 mm to 5 mm and a large curvature.

(5)請求項5に記載の表面処理方法は、請求項1〜4のいずれか一つに記載の表面処理方法において、前記流れ規制板の法線と、前記衝突部に衝突する前記キャビテーション噴流の噴流中心軸とがなす角度θが、15度〜75度であることを特徴とする。   (5) The surface treatment method according to claim 5 is the surface treatment method according to any one of claims 1 to 4, wherein the cavitation jet collides with the normal line of the flow restricting plate and the collision portion. The angle θ formed by the central axis of the jet is 15 to 75 degrees.

(6)上記課題を解決する請求項6に記載の表面処理装置は、凸曲面よりなる被処理面を有する被処理物にキャビテーション噴流を衝突させてキャビテーション気泡を崩壊させ、気泡崩壊時に発生する衝撃圧力により該被処理面を処理する装置であって、前記キャビテーション噴流を噴射して該キャビテーション噴流を前記被処理物に衝突させる噴射ノズルと、前記キャビテーション噴流が衝突する前記被処理物の衝突部の近傍に前記被処理面と対向して配設される流れ規制板と、を備え、前記流れ規制板は、該流れ規制板と該被処理面との間に、両者の間隔が最も狭い最狭隘部と、両者の間隔が該最狭隘部よりも広がった拡大部とを、この順で、前記キャビテーション噴流の上流側から下流側に向けて連続して形成し、該衝突部に衝突した後の該キャビテーション噴流を該最狭隘部から該拡大部に流すことにより前記気泡崩壊を助長することを特徴とする。   (6) The surface treatment apparatus according to claim 6 that solves the above-described problem causes a cavitation bubble to collide with an object to be processed having a surface to be processed having a convex curved surface to collapse a cavitation bubble, and an impact generated when the bubble collapses An apparatus for treating the surface to be treated by pressure, comprising: an injection nozzle that injects the cavitation jet to collide the cavitation jet with the workpiece; and a collision portion of the workpiece to which the cavitation jet collides. A flow restricting plate disposed near the surface to be processed, and the flow restricting plate has a narrowest distance between the flow restricting plate and the surface to be processed. And an enlarged portion in which the distance between the two is wider than the narrowest ridge, in this order, is formed continuously from the upstream side to the downstream side of the cavitation jet, and collides with the collision portion. Characterized by the said cavitation jet from outermost narrow portion promotes the bubble collapse by flowing into the expansion unit.

(7)請求項7に記載の表面処理装置は、請求項6に記載の被処理物の表面処理装置において、前記流れ規制板が、該流れ規制板と前記被処理物との間に、両者の間隔が前記最狭隘部よりも広がった導入拡大部を、該最狭隘部の前記キャビテーション噴流の上流側に形成し、前記衝突部に衝突した後の前記キャビテーション噴流を該導入拡大部から該最狭隘部に導くことを特徴とする。   (7) The surface treatment apparatus according to claim 7 is the surface treatment apparatus for an object to be processed according to claim 6, wherein the flow restriction plate is disposed between the flow restriction plate and the object to be treated. An introduction enlarged portion having an interval larger than the narrowest flange portion is formed on the upstream side of the cavitation jet of the narrowest flange portion, and the cavitation jet after colliding with the collision portion is transferred from the introduction enlarged portion to the It is characterized by being guided to a narrow part.

したがって、本発明の表面処理方法及び表面処理装置によると、凸曲面よりなる被処理面を処理する場合であっても、十分な気泡崩壊を発生させて、十分な表面処理効果を達成することができる。   Therefore, according to the surface treatment method and the surface treatment apparatus of the present invention, even when a surface to be processed having a convex curved surface is processed, sufficient bubble collapse can be generated to achieve a sufficient surface treatment effect. it can.

よって、例えば5mm程度以下の曲率半径の凸曲面よりなる被処理面に対しても、十分な表面処理効果を達成することができる。   Therefore, for example, a sufficient surface treatment effect can be achieved even for a surface to be processed which is a convex curved surface having a radius of curvature of about 5 mm or less.

本発明の表面処理装置は、
以下、本発明の表面処理方法及び表面処理装置の具体的な実施形態について詳しく説明する。なお、説明する実施形態は一実施形態にすぎず、本発明の表面処理方法及び表面処理装置は、下記実施形態に限定されるものではない。本発明の表面処理方法及び表面処理装置は、本発明の要旨を逸脱しない範囲において、当業者が行い得る変更、改良等を施した種々の形態にて実施することができる。
The surface treatment apparatus of the present invention is
Hereinafter, specific embodiments of the surface treatment method and the surface treatment apparatus of the present invention will be described in detail. In addition, embodiment described is only one Embodiment, The surface treatment method and surface treatment apparatus of this invention are not limited to the following embodiment. The surface treatment method and the surface treatment apparatus of the present invention can be carried out in various forms that have been modified or improved by those skilled in the art without departing from the scope of the present invention.

(実施形態1)
図1に示される実施形態1に係る表面処理装置は、噴射ノズル1と、流れ規制板2とを備えている。これら噴射ノズル1及び流れ規制板2は、被処理物3と共に図示しない処理槽(水槽)内に満たされた水中に没入されている。
(Embodiment 1)
The surface treatment apparatus according to the first embodiment shown in FIG. 1 includes an injection nozzle 1 and a flow restriction plate 2. The spray nozzle 1 and the flow restricting plate 2 are immersed in water filled in a processing tank (water tank) (not shown) together with the workpiece 3.

噴射ノズル1は、被処理物3の衝突部(衝突中心部)Pを目がけて、所定の圧力でキャビテーション噴流4を噴射する。ノズル1は、図示しないノズル移動装置により、噴射ノズル1から噴射されるキャビテーション噴流4の噴流中心軸Cと垂直方向(図1において、紙面と垂直方向)に往復移動可能とされている。   The injection nozzle 1 injects the cavitation jet 4 with a predetermined pressure aiming at the collision part (collision center part) P of the workpiece 3. The nozzle 1 can be reciprocated in a direction perpendicular to the jet central axis C of the cavitation jet 4 ejected from the ejection nozzle 1 (in the direction perpendicular to the paper surface in FIG. 1) by a nozzle moving device (not shown).

流れ規制板2は、ステンレス等の金属材料よりなる平板治具であり、図示しない支持具により、被処理物3の衝突部Pの近傍に被処理面3aと対向して配設されている。本実施形態では、被処理物3の衝突部Pよりも下側に流れ規制板2が配設されている。流れ規制板2は、平坦面21と、流れ規制板2の一端側(被処理物3の衝突部Pに近いキャビテーション噴流4の上流側)に、先端に向かうに連れて被処理物3からの距離が長くなるように形成された湾曲面22とを有している。   The flow restricting plate 2 is a flat plate jig made of a metal material such as stainless steel, and is disposed near the collision surface P of the workpiece 3 by a support (not shown) so as to face the processing surface 3a. In the present embodiment, the flow restricting plate 2 is disposed below the collision portion P of the workpiece 3. The flow restricting plate 2 has a flat surface 21 and an end of the flow restricting plate 2 (on the upstream side of the cavitation jet 4 close to the collision portion P of the object to be processed 3) from the object to be processed 3 toward the tip. And a curved surface 22 formed to increase the distance.

被処理物3は、アルミ合金等の金属材料よりなり、半径rの丸棒(円柱)である。被処理物3の外周側面(円柱側面)が被処理面3aとなる。被処理面3aは、曲率半径rの凸曲面(円柱側面)よりなる。被処理物3は、図示しない回転駆動装置により、被処理物3の軸O回りに、正方向及び逆方向(図1において、時計回り方向及び反時計回り方向)に回転可能とされている。   The workpiece 3 is a round bar (column) made of a metal material such as an aluminum alloy and having a radius r. The outer peripheral side surface (cylindrical side surface) of the workpiece 3 is the processing surface 3a. The surface to be processed 3a is formed by a convex curved surface (cylindrical side surface) having a curvature radius r. The workpiece 3 can be rotated in the forward and reverse directions (clockwise and counterclockwise in FIG. 1) around the axis O of the workpiece 3 by a rotation driving device (not shown).

流れ規制板2と被処理物3の被処理面3aとの間には、両者(流れ規制板2及び被処理物3)の間隔が最も狭い最狭隘部5と、両者の間隔が最狭隘部5よりも広がった拡大部6とが、この順で、キャビテーション噴流4の上流側から下流側に向けて連続して形成されている。なお、これら最狭隘部5及び拡大部6は、流れ規制板2の平坦面21と被処理物3の被処理面3aとの間に形成されている。   Between the flow regulating plate 2 and the surface to be treated 3a of the object 3 to be treated, the narrowest flange 5 having the smallest distance between the two (the flow regulating plate 2 and the object to be treated 3) and the narrowest flange having the smallest distance therebetween. An enlarged portion 6 that is wider than 5 is continuously formed in this order from the upstream side to the downstream side of the cavitation jet 4. The narrowest flange portion 5 and the enlarged portion 6 are formed between the flat surface 21 of the flow restricting plate 2 and the processing surface 3 a of the processing object 3.

また、流れ規制板2と被処理物3の被処理面3aとの間には、両者(流れ規制板2及び被処理物3)の間隔が最狭隘部5よりも広がった導入拡大部7が、最狭隘部5のキャビテーション噴流4の上流側に形成されている。これにより、流れ規制板2と被処理物3の被処理面3aとの間には、導入拡大部7、最狭隘部5及び拡大部6が、この順で、キャビテーション噴流4の上流側から下流側に向けて連続して形成されている。   Further, between the flow regulating plate 2 and the treated surface 3 a of the workpiece 3, there is an introduction enlarged portion 7 in which the distance between the two (the flow regulating plate 2 and the workpiece 3) is wider than the narrowest flange portion 5. It is formed on the upstream side of the cavitation jet 4 in the narrowest flange 5. Thereby, between the flow restricting plate 2 and the surface 3 a to be processed 3, the introduction expansion portion 7, the narrowest flange portion 5 and the expansion portion 6 are arranged in this order from the upstream side of the cavitation jet 4 to the downstream side. It is formed continuously toward the side.

導入拡大部7は、流れ規制板2の湾曲面22と被処理物3の被処理面3aとの間に形成された第1導入拡大部7aと、流れ規制板2の平坦面21と被処理物3の被処理面3aとの間に形成された第2導入拡大部7bとからなる。第1導入拡大部7a及び第2導入拡大部7bは、この順で、キャビテーション噴流4の上流側から下流側に向けて連続して形成されている。   The introduction expansion unit 7 includes a first introduction expansion unit 7 a formed between the curved surface 22 of the flow restricting plate 2 and the processing target surface 3 a of the workpiece 3, the flat surface 21 of the flow restricting plate 2, and the processing target. It consists of the 2nd introduction expansion part 7b formed between the to-be-processed surfaces 3a of the thing 3. FIG. The 1st introduction expansion part 7a and the 2nd introduction expansion part 7b are continuously formed from the upstream side of the cavitation jet 4 toward the downstream side in this order.

ここに、被処理物3の形状や大きさとしては、所定の凸曲面よりなる被処理面3aを有するものであれば、特に限定されない。被処理面3aを構成する凸曲面の曲率半径rは、1mm〜5mmであることが好ましく、2mm〜4mmであることがより好ましい。被処理面3aを構成する凸曲面の曲率半径rが小さすぎると、キャビテーション噴流4が最狭隘部5から拡大部6へ流れたときに、流速を十分に低下させることができなくなり、被処理面3a近傍でのキャビテーション崩壊が少なくなる。一方、凸曲面の曲率半径rが大きすぎると、流れ規制板2による効果の増分が小さくなる。   Here, the shape and size of the object to be processed 3 are not particularly limited as long as the object 3 has a surface 3a to be processed having a predetermined convex curved surface. The radius of curvature r of the convex curved surface that constitutes the surface to be processed 3a is preferably 1 mm to 5 mm, and more preferably 2 mm to 4 mm. If the radius of curvature r of the convex curved surface constituting the surface to be processed 3a is too small, when the cavitation jet 4 flows from the narrowest flange 5 to the enlarged portion 6, the flow velocity cannot be sufficiently reduced, and the surface to be processed Cavitation collapse near 3a is reduced. On the other hand, if the curvature radius r of the convex curved surface is too large, the increment of the effect by the flow restricting plate 2 becomes small.

また、最狭隘部5における流れ規制板2と被処理物3の被処理面3aとの間隔(すなわち、流れ規制板2と被処理物3との最短距離)Dと、凸曲面よりなる被処理面3aの曲率半径rとの関係において、r/Dの値が0.5〜5であることが好ましく、1〜3であることがより好ましい。r/Dの値が小さすぎると、キャビテーション噴流4が最狭隘部5から拡大部6へ流れたときに、流速を十分に低下させることができなくなる。一方、r/Dの値が大きすぎると、最狭隘部5を通過するキャビテーション噴流4の流量が不足し、その結果処理効率が低下する。   Further, the distance D between the flow restricting plate 2 and the treated surface 3a of the workpiece 3 in the narrowest flange portion 5 (that is, the shortest distance between the flow restricting plate 2 and the treated object 3) D and the treatment target comprising a convex curve In relation to the radius of curvature r of the surface 3a, the value of r / D is preferably 0.5 to 5, and more preferably 1 to 3. If the value of r / D is too small, the flow velocity cannot be sufficiently reduced when the cavitation jet 4 flows from the narrowest ridge portion 5 to the enlarged portion 6. On the other hand, if the value of r / D is too large, the flow rate of the cavitation jet 4 that passes through the narrowest flange 5 becomes insufficient, and as a result, the processing efficiency decreases.

さらに、流れ規制板2の平坦面21における法線と、衝突部Pに衝突する前のキャビテーション噴流4の噴流中心軸Cとがなす角度(流れ規制板2の傾斜角度)θは、15度〜75度であることが好ましく、30度〜60度であることがより好ましい。この角度θが小さすぎると、衝突部Pに衝突する前のキャビテーション噴流4の流れが流れ規制板2によって乱される。衝突部Pに衝突前のキャビテーション噴流4に乱流が発生すると、その乱流が、衝突部Pに衝突後のキャビテーション噴流4が最狭隘部5から拡大部6へ流れ込むことを妨げる。その結果、最狭隘部5から拡大部6へ流れ込むキャビテーション噴流4の量が少なくなり、処理効率が低下する。一方、被処理物3の衝突部Pから被処理面3aに沿って流れてきた衝突後のキャビテーション噴流4の一部は被処理面3aから離れるが、角度θが大きすぎると、このキャビテーション噴流4の剥離量が多くなる。その結果、最狭隘部5から拡大部6へ流れ込むキャビテーション噴流4の量が少なくなり、処理効率が低下する。なお、衝突部Pに衝突する前のキャビテーション噴流4の噴流中心軸Cと、噴射ノズル1のノズル軸とは一致する。   Furthermore, the angle (inclination angle of the flow restricting plate 2) θ formed by the normal line on the flat surface 21 of the flow restricting plate 2 and the jet central axis C of the cavitation jet 4 before colliding with the collision portion P is 15 degrees or more. It is preferably 75 degrees, more preferably 30 to 60 degrees. If the angle θ is too small, the flow of the cavitation jet 4 before colliding with the collision part P is disturbed by the flow restricting plate 2. When a turbulent flow is generated in the cavitation jet 4 before the collision in the collision part P, the turbulent flow prevents the cavitation jet 4 after the collision from flowing into the enlarged part 6 from the narrowest part 5 to the collision part P. As a result, the amount of the cavitation jet 4 flowing from the narrowest ridge portion 5 to the enlarged portion 6 is reduced, and the processing efficiency is lowered. On the other hand, a part of the cavitation jet 4 after the collision flowing from the collision part P of the workpiece 3 along the treated surface 3a is separated from the treated surface 3a, but if the angle θ is too large, the cavitation jet 4 The amount of peeling increases. As a result, the amount of the cavitation jet 4 flowing from the narrowest ridge portion 5 to the enlarged portion 6 is reduced, and the processing efficiency is lowered. The jet central axis C of the cavitation jet 4 before colliding with the collision part P and the nozzle axis of the injection nozzle 1 coincide.

上記構成を有する表面処理装置を用いた本実施形態に係る表面処理方法について、以下説明する。   A surface treatment method according to this embodiment using the surface treatment apparatus having the above configuration will be described below.

水中において、被処理物3の衝突部Pから距離Lだけ離れた噴射ノズル1から衝突部(衝突中心部)Pを目がけて、所定の圧力で所定時間、キャビテーション噴流4を噴射させる。このとき、被処理物3を回転させながらキャビテーション噴流4を噴射させてもよいし、また、噴射ノズル1から噴射されるキャビテーション噴流4の噴流中心軸Cと垂直方向(被処理物3の軸芯Oと平行方向)に噴射ノズル1を移動させながらキャビテーション噴流4を噴射させてもよい。   In the water, the cavitation jet 4 is jetted at a predetermined pressure for a predetermined time, aiming at the collision portion (collision center portion) P from the injection nozzle 1 separated by a distance L from the collision portion P of the workpiece 3. At this time, the cavitation jet 4 may be jetted while rotating the workpiece 3, and the direction perpendicular to the jet central axis C of the cavitation jet 4 jetted from the jet nozzle 1 (the axis of the workpiece 3 The cavitation jet 4 may be jetted while moving the jet nozzle 1 in a direction parallel to O).

噴射ノズル1から噴射させるキャビテーション噴流4の圧力、噴射ノズル1の噴射口から被処理物3の衝突部Pまでの距離Lや処理時間等は、被処理物3の材料や被処理面3aに対する処理の種類等に応じて適宜設定可能である。例えば、被処理物3がアルミ合金よりなり、被処理面3aの強化を目的として処理する場合は、キャビテーション噴流4の圧力:10MPa〜30MPa程度、噴射ノズル1の噴射口から被処理物3の衝突部Pまでの距離L:10mm〜50mmmm程度、被処理物3の長さ1mm当たりの処理時間:5秒〜30秒程度とすることができる。   The pressure of the cavitation jet 4 jetted from the jet nozzle 1, the distance L from the jet port of the jet nozzle 1 to the collision part P of the workpiece 3 and the processing time are the treatments for the material of the workpiece 3 and the processing surface 3a. It can be set as appropriate according to the type of the item. For example, when the workpiece 3 is made of an aluminum alloy and is treated for the purpose of strengthening the treated surface 3a, the pressure of the cavitation jet 4 is about 10 MPa to 30 MPa, and the collision of the workpiece 3 from the jet nozzle 1 is performed. The distance L to the portion P can be set to about 10 mm to 50 mm mm, and the processing time per 1 mm length of the workpiece 3 can be set to about 5 seconds to 30 seconds.

被処理面3aが凸曲面よりなる被処理物3にキャビテーション噴流4が衝突すると、衝突した後のキャビテーション噴流4は被処理面3aに沿って流れる過程でその流速を低下させる。しかし、凸曲面よりなる被処理面3aの曲率半径rが小さいと、キャビテーション噴流4の一部は、気泡崩壊が起こる程度まで流速を低下させることなく、被処理面3aから離れて流れ去ってしまう場合がある。そうすると、十分な気泡崩壊が起こらない。   When the cavitation jet 4 collides with the workpiece 3 having the convex surface 3a to be processed, the cavitation jet 4 after the collision reduces the flow velocity in the process of flowing along the processed surface 3a. However, if the radius of curvature r of the processing surface 3a made of a convex curved surface is small, a part of the cavitation jet 4 flows away from the processing surface 3a without reducing the flow velocity to the extent that bubble collapse occurs. There is a case. Then, sufficient bubble collapse does not occur.

この点、本実施形態に係る表面処理方法では、被処理物3の衝突部Pに衝突した後のキャビテーション噴流4の多くが、導入拡大部7から最狭隘部5を通って拡大部6に流れる。このキャビテーション噴流4は、最狭隘部5から拡大部6に流れるときに、流速を大きく低下させる。このため、拡大部6においてキャビテーション噴流4の圧力は大きく増加し、十分なキャビテーション気泡の崩壊が発生する。   In this regard, in the surface treatment method according to the present embodiment, most of the cavitation jet 4 after colliding with the collision part P of the workpiece 3 flows from the introduction expansion part 7 through the narrowest flange part 5 to the expansion part 6. . The cavitation jet 4 greatly reduces the flow velocity when flowing from the narrowest ridge portion 5 to the enlarged portion 6. For this reason, the pressure of the cavitation jet 4 greatly increases in the enlarged portion 6, and sufficient collapse of the cavitation bubbles occurs.

したがって、本実施形態に係る表面処理方法によると、被処理面3aが凸曲面よりなり、しかもその曲率半径rが小さい場合であっても、被処理面3aの近傍で十分な気泡崩壊を発生させることができる。よって、気泡崩壊時に発生する衝撃力を拡大部5近傍の被処理面3aに十分に付与することができ、被処理面3aを確実に処理することが可能となる。   Therefore, according to the surface treatment method according to the present embodiment, sufficient bubble collapse occurs in the vicinity of the surface to be processed 3a even when the surface to be processed 3a is a convex curved surface and the radius of curvature r is small. be able to. Therefore, the impact force generated when the bubble collapses can be sufficiently applied to the surface to be processed 3a in the vicinity of the enlarged portion 5, and the surface to be processed 3a can be reliably processed.

特に本実施形態では、最狭隘部5の上流側に導入拡大部7が設けられているので、被処理物3の衝突部Pに衝突した後のキャビテーション噴流4をより多く導入拡大部7に導くことができる。このため、最狭隘部5から拡大部6へ供給されるキャビテーション噴流4の流量が増大するので、処理効率を向上させることが可能となる。   In particular, in the present embodiment, since the introduction expansion portion 7 is provided on the upstream side of the narrowest flange portion 5, more cavitation jets 4 after colliding with the collision portion P of the workpiece 3 are guided to the introduction expansion portion 7. be able to. For this reason, since the flow rate of the cavitation jet 4 supplied from the narrowest flange portion 5 to the enlarged portion 6 is increased, it is possible to improve the processing efficiency.

(実施形態2)
図2に示される実施形態2に係る表面処理装置では、実施形態1における流れ規制板2の形状を変更した。
(Embodiment 2)
In the surface treatment apparatus according to the second embodiment shown in FIG. 2, the shape of the flow restricting plate 2 in the first embodiment is changed.

すなわち、実施形態2に係る表面処理装置における流れ規制板2は、湾曲面22の代わりに、被処理物3に向かって凹となった凹湾曲面23を有している。   That is, the flow restricting plate 2 in the surface treatment apparatus according to the second embodiment has a concave curved surface 23 that is concave toward the workpiece 3 instead of the curved surface 22.

実施形態2に係る表面処理装置におけるその他の構成は実施形態1と同様であり、したがって実施形態1と同様の表面処理方法を実施することにより、実施形態1と同様の作用効果を奏する。   Other configurations of the surface treatment apparatus according to the second embodiment are the same as those of the first embodiment. Therefore, by performing the same surface treatment method as that of the first embodiment, the same effects as those of the first embodiment can be obtained.

(実施形態3)
図3に示される実施形態3に係る表面処理装置では、実施形態1における流れ規制板2の形状を変更した。
(Embodiment 3)
In the surface treatment apparatus according to the third embodiment shown in FIG. 3, the shape of the flow restricting plate 2 in the first embodiment is changed.

すなわち、実施形態3に係る表面処理装置における流れ規制板2は、湾曲面22を有しておらず、平坦面21のみを有している。   That is, the flow restricting plate 2 in the surface treatment apparatus according to the third embodiment does not have the curved surface 22 but has only the flat surface 21.

実施形態3に係る表面処理装置におけるその他の構成は実施形態1と同様であり、したがって実施形態1と同様の表面処理方法を実施することにより、実施形態1とほぼ同様の作用効果を奏する。   The other configuration of the surface treatment apparatus according to the third embodiment is the same as that of the first embodiment. Therefore, by performing the same surface treatment method as that of the first embodiment, substantially the same effects as those of the first embodiment can be obtained.

なお、実施形態3に係る表面処理装置では、最狭隘部5の上流側に導入拡大部7が設けられていないので、被処理物3の衝突部Pに衝突した後のキャビテーション噴流4を最狭隘部5から拡大部6へ供給できる量は、実施形態1と比べて減少する。   In the surface treatment apparatus according to the third embodiment, since the introduction expansion unit 7 is not provided on the upstream side of the narrowest flange portion 5, the cavitation jet 4 after colliding with the collision portion P of the workpiece 3 is narrowed down. The amount that can be supplied from the unit 5 to the enlarged unit 6 is reduced as compared with the first embodiment.

(実施形態4)
図4に示される実施形態4に係る表面処理装置では、実施形態1における流れ規制板2の形状を変更した。
(Embodiment 4)
In the surface treatment apparatus according to the fourth embodiment shown in FIG. 4, the shape of the flow restricting plate 2 in the first embodiment is changed.

すなわち、実施形態4に係る表面処理装置における流れ規制板2は、湾曲面22の代わりに、流れ規制板2の一端側(被処理物3の衝突部Pに近いキャビテーション噴流4の上流側)に、先端に向かうに連れて被処理物3からの距離が長くなるように形成された傾斜面24を有している。   That is, the flow restricting plate 2 in the surface treatment apparatus according to the fourth embodiment is disposed on one end side of the flow restricting plate 2 (upstream side of the cavitation jet 4 close to the collision portion P of the workpiece 3) instead of the curved surface 22. The inclined surface 24 is formed so that the distance from the workpiece 3 becomes longer toward the tip.

実施形態4に係る表面処理装置におけるその他の構成は実施形態1と同様であり、したがって実施形態1と同様の表面処理方法を実施することにより、実施形態1と同様の作用効果を奏する。   The other configuration of the surface treatment apparatus according to the fourth embodiment is the same as that of the first embodiment. Therefore, by performing the same surface treatment method as that of the first embodiment, the same effects as those of the first embodiment can be obtained.

(その他の実施形態)
実施形態1〜4では、被処理物3の衝突部Pよりも下方に一つの流れ規制板2を配置する例について説明したが、例えば衝突部Pよりも下方と上方のそれぞれに流れ規制板2を配置してもよい。
(Other embodiments)
Although Embodiment 1-4 demonstrated the example which arrange | positions the one flow control board 2 below the collision part P of the to-be-processed object 3, For example, the flow control board 2 is each below and upper than the collision part P, for example. May be arranged.

実施形態1〜4では、被処理物3の側部の衝突部Pに対して水平方向からキャビテーション噴流4を衝突させる例について説明したが、例えば被処理物の上部の衝突部Pに対して垂直方向からキャビテーション噴流4を衝突させてもよい。   In the first to fourth embodiments, the example in which the cavitation jet 4 collides with the collision portion P on the side of the workpiece 3 from the horizontal direction has been described. The cavitation jet 4 may collide from the direction.

さらに、被処理面3a及び流れ規制板2の形状は実施形態1〜4で説明したものに限られない。例えば、被処理面3aが半球状又はお椀状の凸曲面であってもよく、この場合半球状又はお椀状の凸曲面に対応した形状の流れ規制板2とすることができる。   Furthermore, the shapes of the surface 3a to be processed and the flow restriction plate 2 are not limited to those described in the first to fourth embodiments. For example, the processed surface 3a may be a hemispherical or bowl-shaped convex curved surface, and in this case, the flow regulating plate 2 having a shape corresponding to the hemispherical or bowl-shaped convex curved surface can be used.

加えて、実施形態1〜4では、噴流に水を用いる例について説明したが、これに限定されることなく、油、エマルジョン(乳濁液)やその他の液体を用いてもよい。   In addition, although the example which uses water for a jet flow was demonstrated in Embodiment 1-4, you may use oil, an emulsion (emulsion), and another liquid, without being limited to this.

(実施例1)
実施形態1で説明した図1に示される表面処理装置を用いて、以下の条件で、表面処理した。
Example 1
Using the surface treatment apparatus shown in FIG. 1 described in Embodiment 1, surface treatment was performed under the following conditions.

被処理物3:アルミ合金よりなるφ6mmの丸棒
被処理面3aの曲率半径:r=3mm
最狭隘部5における流れ規制板2と被処理物3の被処理面3aとの間隔:D=2mm
上記間隔Dと曲率半径rとの関係:r/D=1.5
流れ規制板2の平坦面21における法線と衝突部Pに衝突する前のキャビテーション噴流4の噴流中心軸Cとがなす角度:θ=45度
噴射ノズル1のノズル径:φ1mm
キャビテーション噴流4の圧力:10MPa
噴射ノズル1の噴射口から被処理物3の衝突部Pまでの距離:L=23mm
処理時間:30分
被処理物3の回転:無し
噴射ノズル1の移動:無し
(実施例2)
実施形態2で説明した図2に示される表面処理装置を用いて、実施例1と同様の条件で、表面処理した。
Object to be treated 3: φ6 mm round bar made of aluminum alloy Curvature radius of surface to be treated 3a: r = 3 mm
Distance between the flow restricting plate 2 and the processing surface 3a of the processing object 3 in the narrowest flange 5: D = 2 mm
Relationship between the distance D and the radius of curvature r: r / D = 1.5
Angle formed between the normal line on the flat surface 21 of the flow restricting plate 2 and the jet central axis C of the cavitation jet 4 before colliding with the collision part P: θ = 45 degrees Nozzle diameter of the jet nozzle 1: φ1 mm
Pressure of cavitation jet 4: 10 MPa
Distance from the injection port of the injection nozzle 1 to the collision part P of the workpiece 3: L = 23 mm
Processing time: 30 minutes Rotation of workpiece 3: None Movement of injection nozzle 1: None (Example 2)
Surface treatment was performed under the same conditions as in Example 1 using the surface treatment apparatus shown in FIG.

(実施例3)
実施形態1で説明した図1に示される表面処理装置を用いて、以下の条件で被処理物3を軸O回り(図1の反時計回り)に回転させるとともに噴射ノズル1を被処理物3の軸O方向に移動させること以外は、実施例1と同様の条件で、表面処理した。
(Example 3)
Using the surface treatment apparatus shown in FIG. 1 described in the first embodiment, the workpiece 3 is rotated around the axis O (counterclockwise in FIG. 1) under the following conditions, and the spray nozzle 1 is moved to the workpiece 3. Surface treatment was performed under the same conditions as in Example 1 except that the film was moved in the direction of the axis O.

被処理物3の回転速度:3rpm
噴射ノズル1の移動速度:6mm/分
(実施例4)
実施形態3で説明した図3に示される表面処理装置を用いて、実施例1と同様の条件で、表面処理した。
Rotation speed of workpiece 3: 3 rpm
Movement speed of the injection nozzle 1: 6 mm / min (Example 4)
Using the surface treatment apparatus shown in FIG. 3 described in Embodiment 3, surface treatment was performed under the same conditions as in Example 1.

(実施例5)
実施形態4で説明した図4に示される表面処理装置を用いて、実施例1と同様の条件で、表面処理した。
(Example 5)
Using the surface treatment apparatus shown in FIG. 4 described in Embodiment 4, surface treatment was performed under the same conditions as in Example 1.

(実施例6)
実施形態1で説明した図1に示される表面処理装置を用いて、以下の条件で被処理物3を軸O回り(実施例3と反対方向である図1の時計回り)に回転させるとともに噴射ノズル1を被処理物3の軸O方向に移動させること以外は、実施例1と同様の条件で、表面処理した。
(Example 6)
Using the surface treatment apparatus shown in FIG. 1 described in the first embodiment, the workpiece 3 is rotated around the axis O (clockwise in FIG. 1 which is the opposite direction to that of the third embodiment) and sprayed under the following conditions. Surface treatment was performed under the same conditions as in Example 1 except that the nozzle 1 was moved in the direction of the axis O of the workpiece 3.

被処理物3の回転速度:3rpm
噴射ノズル1の移動速度:6mm/分
(実施例7)
実施形態4で説明した図4に示される表面処理装置を用いて、以下の条件で被処理物3を軸O回り(図4の反時計回り)に回転させるとともに噴射ノズル1を被処理物3の軸O方向に移動させること以外は、実施例1と同様の条件で、表面処理した。
Rotation speed of workpiece 3: 3 rpm
Movement speed of injection nozzle 1: 6 mm / min (Example 7)
Using the surface treatment apparatus shown in FIG. 4 described in the fourth embodiment, the workpiece 3 is rotated around the axis O (counterclockwise in FIG. 4) under the following conditions, and the spray nozzle 1 is moved to the workpiece 3. Surface treatment was performed under the same conditions as in Example 1 except that the film was moved in the direction of the axis O.

被処理物3の回転速度:3rpm
噴射ノズル1の移動速度:6mm/分
(実施例8)
実施形態4で説明した図4に示される表面処理装置を用いて、以下の条件で被処理物3を軸O回り(実施例7と反対方向である図4の時計回り)に回転させるとともに噴射ノズル1を被処理物3の軸O方向に移動させること以外は、実施例1と同様の条件で、表面処理した。
Rotation speed of workpiece 3: 3 rpm
Movement speed of injection nozzle 1: 6 mm / min (Example 8)
Using the surface treatment apparatus shown in FIG. 4 described in the fourth embodiment, the workpiece 3 is rotated around the axis O (clockwise in FIG. 4 which is the opposite direction to that of the seventh embodiment) and sprayed under the following conditions. Surface treatment was performed under the same conditions as in Example 1 except that the nozzle 1 was moved in the direction of the axis O of the workpiece 3.

被処理物3の回転速度:3rpm
噴射ノズル1の移動速度:6mm/分
(比較例1)
流れ規制板2を設けないこと以外は、実施例1と同様の条件で、表面処理した。
Rotation speed of workpiece 3: 3 rpm
Movement speed of injection nozzle 1: 6 mm / min (Comparative Example 1)
Surface treatment was performed under the same conditions as in Example 1 except that the flow restricting plate 2 was not provided.

(比較例2)
流れ規制板2を設けないこと以外は、実施例3と同様の条件で、表面処理した。
(Comparative Example 2)
Surface treatment was performed under the same conditions as in Example 3 except that the flow restricting plate 2 was not provided.

(比較例3)
実施形態3で説明した図3に示される表面処理装置において、流れ規制板2を被処理物3の真下に、噴射ノズル1から噴射されるキャビテーション噴流4の噴流軸芯Cと流れ規制板2の平坦面21の法線とがなす角度θが90度となるように配置し、かつ、被処理物3ではなく最狭隘部5を目がけて噴射ノズル1からキャビテーション噴流4を噴射させること以外は、実施例1と同様の条件で、表面処理した(図5参照)。
(Comparative Example 3)
In the surface treatment apparatus shown in FIG. 3 described in the third embodiment, the flow restricting plate 2 is directly below the workpiece 3 and the jet axis C of the cavitation jet 4 injected from the injection nozzle 1 and the flow restricting plate 2 Except that the angle θ formed by the normal line of the flat surface 21 is 90 degrees and that the cavitation jet 4 is jetted from the jet nozzle 1 aiming at the narrowest flange 5 instead of the workpiece 3. Surface treatment was performed under the same conditions as in Example 1 (see FIG. 5).

なお、噴射ノズル1の噴射口から最狭隘部5までの距離をL=23mmとした。   The distance from the injection port of the injection nozzle 1 to the narrowest flange portion 5 was set to L = 23 mm.

(比較例4)
実施形態4で説明した図4に示される表面処理装置において、流れ規制板2を被処理物3の真下に、噴射ノズル1から噴射されるキャビテーション噴流4の噴流軸芯Cと流れ規制板2の平坦面21の法線とがなす角度θが90度となるように配置し、かつ、被処理物3ではなく最狭隘部5を目がけて噴射ノズル1からキャビテーション噴流4を噴射させること以外は、実施例1と同様の条件で、表面処理した(図6参照)。
(Comparative Example 4)
In the surface treatment apparatus shown in FIG. 4 described in the fourth embodiment, the flow restricting plate 2 is directly below the workpiece 3 and the flow axis C of the cavitation jet 4 injected from the injection nozzle 1 and the flow restricting plate 2 Except that the angle θ formed by the normal line of the flat surface 21 is 90 degrees and that the cavitation jet 4 is jetted from the jet nozzle 1 aiming at the narrowest flange 5 instead of the workpiece 3. Surface treatment was performed under the same conditions as in Example 1 (see FIG. 6).

なお、噴射ノズル1の噴射口から最狭隘部5までの距離をL=23mmとした。   The distance from the injection port of the injection nozzle 1 to the narrowest flange portion 5 was set to L = 23 mm.

(処理面積の評価)
実施例1、2、4及び5並びに比較例1、3及び4において、表面処理後の被処理面3aについて、壊食領域(キャビテーション崩壊により表面が損傷してボロボロになっている領域)の面積を測定した。その結果を図7に示す。なお、図7の横軸は、比較例1の壊食領域の面積(処理面積)を100とした指数を示す。
(Evaluation of processing area)
In Examples 1, 2, 4, and 5 and Comparative Examples 1, 3, and 4, the area of the erosion region (the region in which the surface is damaged and broken by cavitation collapse) on the surface 3a after the surface treatment Was measured. The result is shown in FIG. The horizontal axis of FIG. 7 indicates an index with the area (processing area) of the erosion region of Comparative Example 1 as 100.

比較例1では、キャビテーション噴流4が被処理物3に衝突した衝突部Pの近傍のみに、キャビテーション崩壊(キャビテーション噴流4中に含まれるキャビテーション気泡の崩壊)による壊食痕が見られた。   In Comparative Example 1, erosion marks due to cavitation collapse (collapse of cavitation bubbles contained in the cavitation jet 4) were observed only in the vicinity of the collision portion P where the cavitation jet 4 collided with the workpiece 3.

また、比較例3及び4では、拡大部6の近傍のみに、キャビテーション崩壊による壊食痕が見られた。また、比較例3及び4における処理面積は、比較例1における処理面積の半分程度と小さくなった。これは、被処理物3への衝突によるキャビテーション噴流4の流速低下がないため、キャビテーション噴流4を被処理物3に衝突させた比較例1や実施例1等と比べて、キャビテーション噴流4の流速低下が小さくなる。その結果、被処理面3a近傍でキャビテーション崩壊する量が少なくなったためと考えられる。   In Comparative Examples 3 and 4, erosion marks due to cavitation collapse were observed only in the vicinity of the enlarged portion 6. Moreover, the processing area in Comparative Examples 3 and 4 was as small as about half of the processing area in Comparative Example 1. This is because there is no decrease in the flow velocity of the cavitation jet 4 due to the collision with the workpiece 3, and therefore, the flow velocity of the cavitation jet 4 compared to Comparative Example 1 and Example 1 in which the cavitation jet 4 collides with the workpiece 3. Decrease is reduced. As a result, it is considered that the amount of cavitation collapse near the surface to be processed 3a is reduced.

これに対し、実施例1、2、4及び5では、キャビテーション噴流4が被処理物3に衝突した衝突部Pの近傍及び拡大部6の近傍に、キャビテーション崩壊による壊食痕が見られた。   On the other hand, in Examples 1, 2, 4 and 5, erosion marks due to cavitation collapse were observed in the vicinity of the collision portion P where the cavitation jet 4 collided with the workpiece 3 and in the vicinity of the enlarged portion 6.

また、実施例1、2、4及び5における処理面積は、比較例1における処理面積の1.5倍以上になった。   Moreover, the processing area in Examples 1, 2, 4, and 5 became 1.5 times or more of the processing area in the comparative example 1.

特に、実施例2及び5では、被処理物3の衝突部Pに衝突した後のキャビテーション噴流4をより多く最狭隘部5から拡大部6へ供給することができたため、実施例2及び5における拡大部6の近傍の処理面積が、実施例1及び4における拡大部6の近傍の処理面積よりも広くなった。   In particular, in Examples 2 and 5, it was possible to supply more cavitation jets 4 after colliding with the collision part P of the workpiece 3 from the narrowest flange part 5 to the enlarged part 6, so in Examples 2 and 5 The processing area in the vicinity of the enlarged portion 6 was larger than the processing area in the vicinity of the enlarged portion 6 in Examples 1 and 4.

(残留応力の評価)
実施例3、6、7及び8並びに比較例2において、表面処理後の被処理面3aについて、X線残留応力測定装置を用いて被処理面3aの残留応力を測定した。その結果を図8に示す。
(Evaluation of residual stress)
In Examples 3, 6, 7 and 8, and Comparative Example 2, the residual stress of the surface to be processed 3a was measured on the surface to be processed 3a after the surface treatment using an X-ray residual stress measuring device. The result is shown in FIG.

比較例2では、被処理物3の被処理面3aの全体(丸棒の外周面の全体)に約50MPaの圧縮残留応力が発生した。   In Comparative Example 2, a compressive residual stress of about 50 MPa was generated on the entire surface 3a (the entire outer peripheral surface of the round bar) of the object 3 to be processed.

これに対し、実施例3、6、7及び8では、拡大部6の近傍で確実にキャビテーション崩壊を発生させることができたため、比較例2における圧縮残留応力よりも大きな約80MPaの圧縮残留応力が被処理物3の被処理面3aの全体に発生した。   On the other hand, in Examples 3, 6, 7 and 8, since cavitation collapse was reliably generated in the vicinity of the enlarged portion 6, a compressive residual stress of about 80 MPa larger than the compressive residual stress in Comparative Example 2 was obtained. It occurred on the entire surface 3a of the object 3 to be processed.

特に、実施例7及び8では、実施例3及び6と比べてさらに多くのキャビテーション崩壊を発生させることができたため、実施例3及び6における圧縮残留応力よりも大きな約90MPaの圧縮残留応力が被処理物3の被処理面3aの全体に発生した。   In particular, in Examples 7 and 8, it was possible to generate more cavitation collapse than in Examples 3 and 6, so that a compressive residual stress of about 90 MPa larger than the compressive residual stress in Examples 3 and 6 was applied. It occurred on the entire surface 3a of the processed object 3.

なお、被処理物3の回転方向の違いによっては、処理効果に顕著な差が見られなかった。   In addition, depending on the difference in the rotation direction of the workpiece 3, no significant difference was observed in the processing effect.

実施形態1に係る表面処理方法を模式的に説明するとともに、実施形態1に係る表面処理装置の主要部を模式的に示す図である。It is a figure which shows typically the principal part of the surface treatment apparatus which concerns on Embodiment 1 while describing the surface treatment method which concerns on Embodiment 1 typically. 実施形態2に係る表面処理方法を模式的に説明するとともに、実施形態1に係る表面処理装置の主要部を模式的に示す図である。It is a figure which shows typically the principal part of the surface treatment apparatus which concerns on Embodiment 1 while describing the surface treatment method which concerns on Embodiment 2 typically. 実施形態3に係る表面処理方法を模式的に説明するとともに、実施形態1に係る表面処理装置の主要部を模式的に示す図である。It is a figure which shows typically the principal part of the surface treatment apparatus which concerns on Embodiment 1 while describing the surface treatment method which concerns on Embodiment 3 typically. 実施形態4に係る表面処理方法を模式的に説明するとともに、実施形態1に係る表面処理装置の主要部を模式的に示す図である。It is a figure which shows typically the principal part of the surface treatment apparatus which concerns on Embodiment 1 while describing the surface treatment method which concerns on Embodiment 4 typically. 比較例3に係る表面処理方法を模式的に説明するとともに、比較例3に係る表面処理装置の主要部を模式的に示す図である。It is a figure which shows typically the principal part of the surface treatment apparatus which concerns on the comparative example 3, while explaining the surface treatment method which concerns on the comparative example 3. FIG. 比較例4に係る表面処理方法を模式的に説明するとともに、比較例4に係る表面処理装置の主要部を模式的に示す図である。It is a figure which shows typically the principal part of the surface treatment apparatus which concerns on the comparative example 4 while explaining the surface treatment method which concerns on the comparative example 4. FIG. 実施例1、2、4及び5並びに比較例1、3及び4において、表面処理後の被処理面について、壊食領域の面積(処理面積)を測定した結果を示す図である。In Examples 1, 2, 4, and 5 and Comparative Examples 1, 3, and 4, it is a figure which shows the result of having measured the area (processed area) of the erosion area | region about the to-be-processed surface after surface treatment. 実施例3、6、7及び8並びに比較例2において、表面処理後の被処理面について、残留応力を測定した結果を示す図である。In Example 3, 6, 7, and 8 and the comparative example 2, it is a figure which shows the result of having measured the residual stress about the to-be-processed surface after surface treatment. 従来のキャビテーションピーニングを利用した表面処理方法を模式的に説明する図である。It is a figure which illustrates typically the surface treatment method using the conventional cavitation peening. 他の従来のキャビテーションピーニングを利用した表面処理方法を模式的に説明する図である。It is a figure which illustrates typically the surface treatment method using other conventional cavitation peening.

符号の説明Explanation of symbols

1…噴射ノズル 2…流れ規制板
3…被処理物 3a…被処理面
4…キャビテーション噴流 5…最狭隘部
6…拡大部 7…導入拡大部
DESCRIPTION OF SYMBOLS 1 ... Injection nozzle 2 ... Flow control board 3 ... To-be-processed object 3a ... To-be-processed surface 4 ... Cavitation jet 5 ... The narrowest narrow part 6 ... Expansion part 7 ... Introduction expansion part

Claims (7)

凸曲面よりなる被処理面を有する被処理物にキャビテーション噴流を衝突させてキャビテーション気泡を崩壊させ、気泡崩壊時に発生する衝撃圧力により該被処理面を処理する方法であって、
前記キャビテーション噴流が衝突する前記被処理物の衝突部の近傍に前記被処理面と対向する流れ規制板を配設することにより、該流れ規制板と該被処理面との間に、両者の間隔が最も狭い最狭隘部と、両者の間隔が該最狭隘部よりも広がった拡大部とを、この順で、前記キャビテーション噴流の上流側から下流側に向けて連続して形成し、
前記衝突部に衝突した後の前記キャビテーション噴流を前記最狭隘部から前記拡大部に流すことにより前記気泡崩壊を助長することを特徴とする表面処理方法。
Cavitation jet collides with an object having a surface to be processed having a convex curved surface to collapse cavitation bubbles, and the surface to be processed is processed by an impact pressure generated at the time of bubble collapse,
By disposing a flow restricting plate facing the surface to be processed in the vicinity of the collision portion of the object to be processed with which the cavitation jet collides, a gap between both is provided between the flow restricting plate and the surface to be processed. The narrowest narrow part and the enlarged part in which the distance between the two is wider than the narrowest narrow part, in this order, continuously from the upstream side to the downstream side of the cavitation jet,
The surface treatment method according to claim 1, wherein the bubble collapse is promoted by flowing the cavitation jet after colliding with the colliding portion from the narrowest narrow portion to the enlarged portion.
前記流れ規制板と前記被処理物との間に、両者の間隔が前記最狭隘部よりも広がった導入拡大部を、該最狭隘部の前記キャビテーション噴流の上流側に形成し、
前記衝突部に衝突した後の前記キャビテーション噴流を前記導入拡大部から前記最狭隘部に導くことを特徴とする請求項1に記載の表面処理方法。
Between the flow restricting plate and the object to be processed, an introduction expansion part in which the distance between the two is wider than the narrowest narrow part is formed on the upstream side of the cavitation jet of the narrowest narrow part,
The surface treatment method according to claim 1, wherein the cavitation jet after colliding with the collision part is guided from the introduction enlarged part to the narrowest narrow part.
前記最狭隘部と前記被処理面との間隔Dと、前記凸曲面の曲率半径rとの関係において、r/Dの値が0.5〜5であることを特徴とする請求項1〜2のいずれか一つに記載の表面処理方法。   The value of r / D is 0.5-5 in the relationship between the space | interval D of the said narrowest flange part and the said to-be-processed surface, and the curvature radius r of the said convex curved surface. The surface treatment method as described in any one of these. 前記凸曲面の曲率半径が1mm〜5mmであることを特徴とする請求項1〜3のいずれか一つに記載の表面処理方法。   The surface treatment method according to claim 1, wherein a radius of curvature of the convex curved surface is 1 mm to 5 mm. 前記流れ規制板の法線と、前記衝突部に衝突する前記キャビテーション噴流の噴流中心軸とがなす角度θが、15度〜75度であることを特徴とする請求項1〜4のいずれか一つに記載の表面処理方法。   5. The angle θ formed by the normal line of the flow restricting plate and the jet central axis of the cavitation jet colliding with the collision portion is 15 to 75 degrees. The surface treatment method as described in one. 凸曲面よりなる被処理面を有する被処理物にキャビテーション噴流を衝突させてキャビテーション気泡を崩壊させ、気泡崩壊時に発生する衝撃圧力により該被処理面を処理する装置であって、
前記キャビテーション噴流を噴射して該キャビテーション噴流を前記被処理物に衝突させる噴射ノズルと、
前記キャビテーション噴流が衝突する前記被処理物の衝突部の近傍に前記被処理面と対向して配設される流れ規制板と、を備え、
前記流れ規制板は、該流れ規制板と該被処理面との間に、両者の間隔が最も狭い最狭隘部と、両者の間隔が該最狭隘部よりも広がった拡大部とを、この順で、前記キャビテーション噴流の上流側から下流側に向けて連続して形成し、該衝突部に衝突した後の該キャビテーション噴流を該最狭隘部から該拡大部に流すことにより前記気泡崩壊を助長することを特徴とする表面処理装置。
A device for collapsing a cavitation jet against a workpiece having a surface to be processed having a convex curved surface to collapse a cavitation bubble, and processing the surface to be processed by an impact pressure generated at the time of bubble collapse,
An injection nozzle that injects the cavitation jet to cause the cavitation jet to collide with the workpiece;
A flow restriction plate disposed in the vicinity of a collision portion of the workpiece to which the cavitation jet collides, and disposed to face the treatment surface,
The flow restricting plate includes, in this order, a narrowest flange portion having a narrowest interval between the flow restricting plate and the surface to be processed, and an enlarged portion in which the interval between the two is wider than the narrowest flange portion. The cavitation jet is continuously formed from the upstream side to the downstream side, and the bubble collapse is promoted by flowing the cavitation jet after colliding with the collision part from the narrowest part to the enlarged part. The surface treatment apparatus characterized by the above-mentioned.
前記流れ規制板は、該流れ規制板と前記被処理物との間に、両者の間隔が前記最狭隘部よりも広がった導入拡大部を、該最狭隘部の前記キャビテーション噴流の上流側に形成し、前記衝突部に衝突した後の前記キャビテーション噴流を該導入拡大部から該最狭隘部に導くことを特徴とする請求項6に記載の表面処理装置。   The flow restricting plate is formed between the flow restricting plate and the object to be processed on the upstream side of the cavitation jet of the narrowest ridge, with an interval between the two being wider than the narrowest ridge. The surface treatment apparatus according to claim 6, wherein the cavitation jet after colliding with the collision portion is guided from the introduction enlarged portion to the narrowest narrow portion.
JP2008090610A 2008-03-31 2008-03-31 Surface treatment method and surface treatment device Pending JP2009241199A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008090610A JP2009241199A (en) 2008-03-31 2008-03-31 Surface treatment method and surface treatment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008090610A JP2009241199A (en) 2008-03-31 2008-03-31 Surface treatment method and surface treatment device

Publications (1)

Publication Number Publication Date
JP2009241199A true JP2009241199A (en) 2009-10-22

Family

ID=41303721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008090610A Pending JP2009241199A (en) 2008-03-31 2008-03-31 Surface treatment method and surface treatment device

Country Status (1)

Country Link
JP (1) JP2009241199A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011122674A (en) * 2009-12-11 2011-06-23 Jfe Bars & Shapes Corp High fatigue strength bolt and method of manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011122674A (en) * 2009-12-11 2011-06-23 Jfe Bars & Shapes Corp High fatigue strength bolt and method of manufacturing the same

Similar Documents

Publication Publication Date Title
JP3478914B2 (en) Fluid injection nozzle and stress improvement processing method using the nozzle
JP4581910B2 (en) Hole surface processing method
US8739589B2 (en) Method and apparatus for surface strengthening of blisk blades
JPS60168554A (en) Jet nozzle in liquid
JP2016172251A (en) Flat jet nozzle and usage of flat jet nozzle
JP3320105B2 (en) Nozzle for cavitation jet
JP4706388B2 (en) Surface processing method
JPH04362124A (en) Residual stress improvement by water jet peening
JP2007260550A (en) Combined nozzle and steel surface treatment methodl
JP5578318B2 (en) Cavitation generator
JP2009241199A (en) Surface treatment method and surface treatment device
JP2018089597A (en) One fluid nozzle
JPH07241494A (en) Nozzle for water jet
JP4321862B2 (en) Cavitation stabilizer
JP2006255865A (en) Surface modification method for metallic material, semiconductor material, and the like, modification device implementing it, and cavitation shotless peening method exhibiting high machinability
JPH1076467A (en) Liquid jet peening method for tube inner surface, and nozzle used in the method
JP2878529B2 (en) Processing method using underwater water jet
KR102098439B1 (en) Peening nozzle device and peening apparatus having the same
JP2991545B2 (en) Residual stress improving method, residual stress improving device, and nozzle for water jet peening
JP3317723B2 (en) Underwater nozzle for metal reinforcement
JP2010214477A (en) Surface treatment method and device
JP5996348B2 (en) Cavitation nozzle
JP4916018B2 (en) Deaerator
JP4525475B2 (en) Surface processing method
JP3315153B2 (en) Cavitation jet nozzle