JP4321862B2 - Cavitation stabilizer - Google Patents

Cavitation stabilizer Download PDF

Info

Publication number
JP4321862B2
JP4321862B2 JP2004316384A JP2004316384A JP4321862B2 JP 4321862 B2 JP4321862 B2 JP 4321862B2 JP 2004316384 A JP2004316384 A JP 2004316384A JP 2004316384 A JP2004316384 A JP 2004316384A JP 4321862 B2 JP4321862 B2 JP 4321862B2
Authority
JP
Japan
Prior art keywords
cavitation
flow
pipe
outlet side
stabilizer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004316384A
Other languages
Japanese (ja)
Other versions
JP2006122834A (en
Inventor
良司 村椿
信秀 高杉
義昭 高沢
泰伸 中川
尚嗣 寺崎
和幸 佐渡
竜 江頭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sugino Machine Ltd
Original Assignee
Sugino Machine Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sugino Machine Ltd filed Critical Sugino Machine Ltd
Priority to JP2004316384A priority Critical patent/JP4321862B2/en
Publication of JP2006122834A publication Critical patent/JP2006122834A/en
Application granted granted Critical
Publication of JP4321862B2 publication Critical patent/JP4321862B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/34Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl
    • B05B1/3402Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl to avoid or to reduce turbulencies, e.g. comprising fluid flow straightening means

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Cleaning By Liquid Or Steam (AREA)
  • Nozzles (AREA)

Description

本発明は、例えば液中噴射用ノズルに装着され、ノズルからの液体噴流により発生するキャビテーションを安定させるための安定器に関するものである。   The present invention relates to a ballast that is mounted on, for example, a submerged nozzle and stabilizes cavitation generated by a liquid jet from the nozzle.

現在、噴射ノズルからの高圧液体の噴射による噴流が切削等の加工装置や乳化装置、洗浄装置など様々な技術分野で利用されている。なかでも液体中に噴射する所謂水中噴流においては、本来周辺機材に対してエロージョン作用を生じるために防止すべきものとされていたキャビテーションの破砕効果を積極的に利用するものがある(例えば、特許文献1参照。)。   Currently, jets generated by jetting high-pressure liquid from jet nozzles are used in various technical fields such as processing devices such as cutting, emulsifying devices, and cleaning devices. Among so-called underwater jets that are injected into liquids, there are those that actively use the cavitation crushing effect that was originally supposed to be prevented in order to cause erosion to peripheral equipment (for example, Patent Documents). 1).

このような水中噴流は、噴射水と周囲の水との間に生じる非常に大きな速度勾配によってキャビテーションを発生するものであり、このキャビテーションによる物理現象を洗浄装置などに利用するものである。   Such a submerged jet generates cavitation due to a very large velocity gradient generated between the jet water and the surrounding water, and a physical phenomenon caused by the cavitation is used for a cleaning device or the like.

特公平4−43712号公報Japanese Examined Patent Publication No. 4-43712

しかしながら、このような水中噴流のキャビテーションを利用した装置では、通常は噴射ノズルまでの供給流路途中で、配管のレイアウトや装置の機能を実現するために様々な配管要素が付属することが多い。例えば、流れ方向を変更するためのエルボ配管や、段差を得るための継ぎ手や、またはこれらの要素を複雑に組み合わせたようなものが用いられることもある。とくに、流路方向を360度に亘って自由に変更できるスイベルジョイントが多くの場合用いられている。   However, in an apparatus using such cavitation of an underwater jet, various piping elements are often attached to realize the layout of the piping and the function of the apparatus in the middle of the supply flow path to the injection nozzle. For example, an elbow pipe for changing the flow direction, a joint for obtaining a step, or a complex combination of these elements may be used. In particular, swivel joints that can freely change the flow path direction over 360 degrees are often used.

これらのような配管要素が配置されて流れ方向が変更される場所では、その部分で発生する流れの乱れによって配管流路内の速度分布形状が変化してしまうが、この速度分布の変化が高圧供給流路における噴射ノズルの直ぐ上流で生じる場合には、水中噴流に発生するキャビテーション自体にも大きい影響が及び、キャビテーション効果の変化により最終的に装置の性能にも変化が生じてしまう。   In places where piping elements such as these are arranged and the flow direction is changed, the velocity distribution shape in the piping flow path changes due to the turbulence in the flow, but this change in velocity distribution is When it occurs immediately upstream of the injection nozzle in the supply flow path, it has a great influence on the cavitation itself generated in the submerged jet, and finally the performance of the apparatus also changes due to the change of the cavitation effect.

本発明の目的は、上記問題点に鑑み、液中噴射流を用いる装置において配管系の影響によることなく常に安定したキャビテーションの発生を可能とするキャビテーション安定器を提供することにある。   In view of the above problems, an object of the present invention is to provide a cavitation stabilizer capable of always generating stable cavitation in an apparatus using a submerged jet flow without being influenced by a piping system.

上記目的を達成するため、請求項1に記載の発明に係るキャビテーション安定器は、液中噴射ノズルと、該ノズルへ高圧液体を供給する配管先端との間に装着されるキャビテーション安定器であって、前記配管が、流速分布を不均一に変化させる屈曲部を備えたものであり、前記配管先端から供給される高圧液体を受け入れ、配管の開口に対して予め定められた絞り比で縮径した流路断面積の筒状ストレート通路を入口側に有すると共に、この筒状ストレート通路の出口に直線的に連通し、該筒状ストレート通路からの噴流を複数の平行な分流に分けて前記噴射ノズルの高圧液体流入口に送り込む複数の貫流通路を出口側に備えたものである。 In order to achieve the above object, a cavitation stabilizer according to the invention described in claim 1 is a cavitation stabilizer attached between a submerged spray nozzle and a pipe tip for supplying high-pressure liquid to the nozzle. The pipe is provided with a bent portion that changes the flow velocity distribution non-uniformly, accepts high-pressure liquid supplied from the pipe tip , and is reduced in diameter at a predetermined throttle ratio with respect to the opening of the pipe. The injection nozzle has a cylindrical straight passage having a cross-sectional area on the inlet side and linearly communicates with an outlet of the cylindrical straight passage, and divides the jet flow from the cylindrical straight passage into a plurality of parallel split flows. A plurality of through-flow passages that are fed into the high-pressure liquid inlet are provided on the outlet side.

また、請求項2に記載の発明に係るキャビテーション安定器は、請求項1に記載のキャビテーション安定器において、入口側の筒状ストレート通路及び出口側の各貫流通路の流路長さがそれぞれ5mm以上であることを特徴とするものである。   The cavitation stabilizer according to the invention described in claim 2 is the cavitation stabilizer according to claim 1, wherein the flow path lengths of the cylindrical straight passage on the inlet side and each through-passage on the outlet side are each 5 mm or more. It is characterized by being.

また、請求項3に記載の発明に係るキャビテーション安定器は、請求項1又は請求項2に記載のキャビテーション安定器において、複数の貫流通路の総流路断面積が、筒状ストレート通路の流路断面積より小さいことを特徴とするものである。   The cavitation stabilizer according to claim 3 is the cavitation stabilizer according to claim 1 or 2, wherein the total flow cross-sectional area of the plurality of through-flow passages is a flow passage of the cylindrical straight passage. It is smaller than the cross-sectional area.

さらに、請求項4に記載の発明に係るキャビテーション安定器は、請求項1〜請求項3のいずれか1項に記載のキャビテーション安定器において、出口側の複数の貫流通路が、キャビテーション安定器を構成する本体の出口側に形成された複数の円形貫通孔からなるものである。   Furthermore, the cavitation stabilizer according to the invention described in claim 4 is the cavitation stabilizer described in any one of claims 1 to 3, wherein the plurality of through-flow passages on the outlet side constitute the cavitation stabilizer. It consists of a plurality of circular through holes formed on the outlet side of the main body.

また、請求項5に記載の発明に係るキャビテーション安定器は、請求項1〜請求項3のいずれか1項に記載のキャビテーション安定器において、前記出口側の複数の貫流通路が、キャビテーション安定器を構成する本体の出口側に配された格子状部材により形成された格子空間からなるものである。   Moreover, the cavitation stabilizer which concerns on invention of Claim 5 is a cavitation stabilizer of any one of Claims 1-3. WHEREIN: The some through-flow path by the said exit side is a cavitation stabilizer. It consists of a lattice space formed by a lattice-like member arranged on the outlet side of the main body to be configured.

本発明は、液中噴射ノズルと、該ノズルへ高圧液体を供給する配管先端との間に装着され、配管先端から供給される高圧液体を受け入れ、配管の開口に対して予め定められた絞り比で縮径した流路断面積の筒状ストレート通路を入口側に有すると共に、この筒状ストレート通路の出口に直線的に連通し、該筒状ストレート通路からの噴流を複数の平行な分流に分けて前記噴射ノズルの高圧液体流入口に送り込む複数の貫流通路を出口側に備えたキャビテーション安定器であり、配管の屈曲部を経て速度分布が変化した高圧流体が配管先端から供給されてきても、入口側の筒状ストレート通路と複数の貫流通路とからなる安定器の整流効果によって、高圧流体は流路内の半径方向にほぼ均一な流速分布となって噴射ノズルへ供給されるため、噴射ノズルから液中噴射される噴流において、良好にキャビテーション発生力を回復させることができ、上流の配管系によることなく常に安定したキャビテーション効果が得られるという効果がある。   The present invention is mounted between a submerged jet nozzle and a pipe tip for supplying high-pressure liquid to the nozzle, accepts the high-pressure liquid supplied from the pipe tip, and has a predetermined throttle ratio with respect to the opening of the pipe. A cylindrical straight passage having a reduced cross-sectional area with a cylindrical straight passage on the inlet side and linearly communicating with the outlet of the cylindrical straight passage, and the jet from the cylindrical straight passage is divided into a plurality of parallel shunts A cavitation stabilizer provided on the outlet side with a plurality of through-flow passages to be fed to the high-pressure liquid inlet of the injection nozzle, even if a high-pressure fluid whose velocity distribution has changed through the bent portion of the pipe is supplied from the pipe tip, Due to the rectifying effect of the ballast composed of the cylindrical straight passage on the inlet side and a plurality of through-flow passages, the high-pressure fluid is supplied to the injection nozzle in a substantially uniform flow velocity distribution in the radial direction in the flow path. In jets injected in the liquid from the nozzle, good can recover the cavitation force, there is an effect that is always stable cavitation effect without resulting that by upstream piping system.

本発明は、液中噴射ノズルと、該ノズルへ高圧液体を供給する配管先端との間に装着されるキャビテーション安定器が、入口側に配管先端から供給される高圧液体を受け入れて配管の開口に対して予め定められた絞り比で縮径した流路断面積の筒状ストレート通路を有すると共に、出口側に、この筒状ストレート通路の出口に直線的に連通して該筒状ストレート通路からの噴流を複数の平行な分流に分けて噴射ノズルの高圧液体流入口に送り込む複数の貫流通路を備えたものである。   According to the present invention, a cavitation stabilizer mounted between a submerged jet nozzle and a pipe tip that supplies high-pressure liquid to the nozzle receives high-pressure liquid supplied from the pipe tip to an inlet side to the opening of the pipe. On the other hand, it has a cylindrical straight passage having a channel cross-sectional area reduced in diameter with a predetermined throttle ratio, and communicates linearly with the outlet of the cylindrical straight passage on the outlet side from the cylindrical straight passage. The jet flow is divided into a plurality of parallel shunts and provided with a plurality of through-flow passages that feed the jet nozzle to the high-pressure liquid inlet.

従って、配管先端から供給される高圧流体に、配管屈曲部で乱された流れ軸と垂直な平面での流れ(以下、2次流れと記す)成分が発生して流速分布が変化して不均一となり、その2次流れ成分が発達して大きな渦流れが形成されていても、以下のようなキャビテーション安定器の整流効果によって均一な速度分布で一定流速の高圧流体として噴射ノズルへ供給される。   Therefore, a high-pressure fluid supplied from the pipe tip generates a flow component (hereinafter referred to as a secondary flow) in a plane perpendicular to the flow axis disturbed by the pipe bend, resulting in a non-uniform flow velocity distribution. Even if the secondary flow component develops and a large vortex flow is formed, it is supplied to the injection nozzle as a high-pressure fluid having a uniform velocity distribution and a uniform flow rate by the rectification effect of the cavitation stabilizer as described below.

即ち、まず、該安定器の入口側から筒状ストレート通路を通過することによって、流体が流れ方向に加速されて2次流れ成分が相対的に弱められると同時に配管先端の開口より流路断面積が小さくなっている筒状ストレート通路によって外周領域の大きな周速を持つ渦流れが排除された主流のみが出口側へ送られる。さらにこの主流は、出口側で複数の貫流通路へ送られて平行な分流に分けられ、流路断面積が漸減することと外周部の境界層が遮られることから、この出口側部分が整流格子として働き、高圧流体は半径方向にほぼ均一な流速分布となって一定流速の高圧流体として噴射ノズルの流入口に供給される。   That is, first, by passing through the cylindrical straight passage from the inlet side of the ballast, the fluid is accelerated in the flow direction and the secondary flow component is relatively weakened. Only the main flow from which the vortex flow having a large peripheral speed in the outer peripheral region is eliminated by the cylindrical straight passage having a small diameter is sent to the outlet side. Furthermore, this main stream is sent to a plurality of through-flow passages on the outlet side and divided into parallel shunts, and the cross-sectional area of the flow path gradually decreases and the boundary layer of the outer periphery is blocked. The high-pressure fluid has a substantially uniform flow velocity distribution in the radial direction, and is supplied to the inlet of the injection nozzle as a high-pressure fluid having a constant flow velocity.

この所謂トップハット型の流速分布を持つ高圧流体は、放物型の流速分布の場合よりも噴射ノズルの出口部で周囲流体との間の速度勾配が鋭くなり、激しいキャビテーション発生を引き起こすことができる。従って、配管側に屈曲部があっても、本発明の安定器が介在することによって、上記のような流速分布がトップハット型の半径方向に均一な高圧流体を噴射ノズルへ供給することができるため、常にキャビテーション発生力を回復させて噴射ノズルからの液中噴流に安定したキャビテーションを発生させることができる。   The high-pressure fluid having the so-called top-hat type flow velocity distribution has a sharper velocity gradient with the surrounding fluid at the outlet of the injection nozzle than in the case of a parabolic flow velocity distribution, and can cause severe cavitation. . Therefore, even if there is a bent portion on the piping side, the high-pressure fluid having a uniform flow velocity distribution in the radial direction of the top hat type can be supplied to the injection nozzle by the presence of the ballast of the present invention. Therefore, the cavitation generating force can always be recovered and stable cavitation can be generated in the submerged jet flow from the injection nozzle.

なお、入口側の筒状ストレート通路から出口側の複数の貫流通路へ送られる際に高圧流体をより確実に均一な流速分布とするためには、複数の貫流通路の総流路断面積を筒状ストレート通路の流路断面積より小さくなるように設計しておくことが望ましい。   In order to make the high-pressure fluid have a more uniform flow velocity distribution when it is sent from the cylindrical straight passage on the inlet side to the plurality of through-flow passages on the outlet side, the total channel cross-sectional area of the plurality of through-flow passages is It is desirable to design so that it may become smaller than the channel cross-sectional area of a straight path.

また、本発明のキャビテーション安定器を構成する入口側の筒状ストレート通路と出口側の貫流通路は、共に、長いほどキャビテーションによるエロージョン力が高く、加工装置利用におきてはその加工性を向上させることができる。そこで、本発明においては、この筒状ストレート通路と各貫流通路の流路長をそれぞれ少なくとも5mmとするのが好ましい。さらに好ましくはそれぞれ10mm以上とする。筒状ストレート通路と各貫流通路の流路長がそれぞれ5mmより短くなると、エロージョン力を充分発揮できるキャビテーション発生力の回復が困難となる。   Further, the longer the straight straight passage on the inlet side and the through-flow passage on the outlet side that constitute the cavitation stabilizer of the present invention, the higher the erosion force due to cavitation, and the better the workability when using the processing apparatus. be able to. Therefore, in the present invention, it is preferable that the channel lengths of the cylindrical straight passage and each through-flow passage be at least 5 mm. More preferably, each is 10 mm or more. When the channel lengths of the cylindrical straight passage and each through-flow passage are shorter than 5 mm, it becomes difficult to recover the cavitation generating force that can sufficiently exert the erosion force.

このようなキャビテーション安定器において、出口側の構成は、複数の貫流通路が形成されるものであれば良い。例えば、キャビテーション安定器を構成する本体の出口側に複数の円形貫通孔を形成することによって貫流通路とすることができ、また、本体の出口側に格子状部材を配すれば該部材に形成された格子空間を貫流通路とすることができる。   In such a cavitation stabilizer, the configuration on the outlet side may be any one as long as a plurality of through-flow passages are formed. For example, by forming a plurality of circular through holes on the outlet side of the main body constituting the cavitation stabilizer, a through-flow passage can be formed, and if a lattice-like member is arranged on the outlet side of the main body, it is formed on the member. The lattice space can be used as a through-flow passage.

これら複数の貫流通路が設けられる出口側の安定器本体部分と筒状ストレート通路が設けられる入口側の安定器本体部分とは、可能であれば同一部材として一体に成形したものとしても、またそれぞれ別体に成形したものを連続配置して構成しても良く、実際に用いる配管系に応じてより簡便に低コストでキャビテーション安定器を得られる製造方法を適宜選択すれば良い。   The outlet-side ballast main body portion where the plurality of through-flow passages are provided and the inlet-side ballast main body portion where the cylindrical straight passage is provided may be integrally formed as the same member if possible. What is formed in a separate body may be continuously arranged, and a production method capable of obtaining a cavitation stabilizer more simply and at low cost may be selected as appropriate according to the piping system actually used.

本発明の一実施例として、本体の出口側に円形貫通孔を形成してなる貫流通路を備えたキャビテーション安定器を噴射ノズル装着状態で図1に示す。図1(a)は側断面図、(b)は入口側から見た正面図である。   As one embodiment of the present invention, a cavitation stabilizer provided with a through-flow passage formed by forming a circular through hole on the outlet side of the main body is shown in FIG. FIG. 1A is a side sectional view, and FIG. 1B is a front view seen from the inlet side.

本キャビテーション安定器1は、円柱状本体2の入口側に筒状ストレート通路3を、出口側に7つの貫流通路4を備えたものである。本実施例では、これらの貫流通路4は、同心円状に中心位置に一つとその外周上に等角度間隔で5つ配置した。これら全貫流通路4の総流路断面積が、筒状ストレート通路3の流路断面積より小さく設定されている。   This cavitation stabilizer 1 is provided with a cylindrical straight passage 3 on the inlet side of a cylindrical main body 2 and seven through-flow passages 4 on the outlet side. In the present embodiment, these through-flow passages 4 are arranged concentrically at a central position and at five equiangular intervals on the outer periphery thereof. The total channel cross-sectional area of all the through-flow passages 4 is set smaller than the channel cross-sectional area of the cylindrical straight passage 3.

上記構成のキャビテーション安定器1を、図2に示すように、90度に屈曲したエルボー部21を備えた直角曲げ配管20の先端と噴射ノズル10との間に装着した。この配管先端の開口22の流路断面積に対して、キャビテーション安定器1の入口側筒状ストレート貫流通路3の流路断面積が小さく設定されている。   As shown in FIG. 2, the cavitation stabilizer 1 having the above-described configuration was mounted between the tip of the right-angle bent pipe 20 having the elbow portion 21 bent at 90 degrees and the injection nozzle 10. The flow passage cross-sectional area of the inlet-side cylindrical straight through-passage 3 of the cavitation stabilizer 1 is set smaller than the flow passage cross-sectional area of the opening 22 at the tip of the pipe.

この配管系において、キャビテーション安定器1を介して噴射ノズル10から水の水中噴射を行った際に発生するキャビテーションの効果を評価した。結果を以下の表1に示す。なおこの評価は、キャビテーション効果をアルミ板に対するエロージョン(壊食)力として、質量欠損量を測定して行った。   In this piping system, the effect of cavitation generated when water was injected from the injection nozzle 10 through the cavitation stabilizer 1 was evaluated. The results are shown in Table 1 below. This evaluation was performed by measuring the amount of mass defect using the cavitation effect as the erosion (erosion) force against the aluminum plate.

即ち、アルミ板(材質:A1050)を、噴射ノズル10から一定の距離に板表面がジェット噴流軸と垂直になるように設置し、一定圧力、一定水深を保ったまま、30分間噴射を続けて、対象のアルミ板に対して壊食を発生させる。アルミ板は予め質量を測定しておき、所定時間の噴射処理後に再度質量計測を行って、処理前後の質量変化量を質量欠損量として壊食力の指標とした。   That is, an aluminum plate (material: A1050) is installed at a certain distance from the injection nozzle 10 so that the plate surface is perpendicular to the jet jet axis, and the injection is continued for 30 minutes while maintaining a constant pressure and a constant water depth. , Causing erosion to the target aluminum plate. The mass of the aluminum plate was measured in advance, and mass measurement was performed again after a predetermined time of injection treatment, and the amount of mass change before and after the treatment was used as a mass defect amount as an index of erosion power.

この評価テストにおけるキャブテーション安定器1は、筒状ストレート通路3が流路断面直径9.0mmで流路長5.0mm、7つの貫流通路4の各流路断面直径2.5mmで流路長5.0mmとした。また、この際の噴射処理条件としては、噴射ノズル10出口からアルミ板表面までの距離(スタンドオフ距離)を75mmとし、噴射ノズル10のノズル径が2.5mmで噴射圧力4MPa、で行った。   In this evaluation test, the cavitation stabilizer 1 includes a cylindrical straight passage 3 having a passage cross-sectional diameter of 9.0 mm and a passage length of 5.0 mm, and each of the seven through-passage passages 4 having a passage cross-sectional diameter of 2.5 mm. It was 5.0 mm. In addition, as the injection treatment conditions at this time, the distance (standoff distance) from the outlet of the injection nozzle 10 to the aluminum plate surface was 75 mm, the nozzle diameter of the injection nozzle 10 was 2.5 mm, and the injection pressure was 4 MPa.

上記噴射処理と共に、比較対象として、配管系を直管のみとした場合(比較例1)、直角曲げ配管のみとした場合(比較例2)、直管に本キャビテーション安定器1を装着した場合(比較例3)を、同じ処理条件で行った。結果を以下の表1に示す。   Along with the above injection process, as a comparison object, when the piping system is only a straight pipe (Comparative Example 1), when only a right angle bending pipe is used (Comparative Example 2), when the cavitation stabilizer 1 is attached to a straight pipe ( Comparative example 3) was carried out under the same processing conditions. The results are shown in Table 1 below.

Figure 0004321862
Figure 0004321862

表1の結果から明らかなように、比較例2の直角曲げ配管で水中噴射を行うと、配管系の影響のない噴射となる比較例1の直管のみの場合に見られた壊食力が損なわれてしまうのに対して、本実施例として、直角曲げ配管に本キャビテーション安定器1を装着した場合では、壊食力が大きく回復しており、これは、本キャビテーション安定器1によってキャビテーションの発生が安定化したためである。また、直管に本キャビテーション安定器1を装着しても、壊食力の低下は見られず、キャビテーション発生に何ら悪影響を及ぼすこともないことが明らかとなった。   As is clear from the results in Table 1, when underwater injection is performed with the right-angle bent pipe of Comparative Example 2, the erosion force seen in the case of only the straight pipe of Comparative Example 1 that is an injection without the influence of the piping system is In contrast, in the present embodiment, when the cavitation stabilizer 1 is attached to a right-angled bending pipe, the erosion force is greatly recovered. This is because the cavitation stabilizer 1 This is because the generation has stabilized. Moreover, even if this cavitation stabilizer 1 is attached to a straight pipe, it has been clarified that the erosion force is not reduced and the cavitation is not adversely affected.

なお、比較例2の場合以外、全てアルミ板上でエロージョン痕がはっきり現れており、また、水中噴射のキャビテーションエロージョンに特有の中心部分が壊食されない、いわゆるドーナツ状のエロージョン痕となっていた。   Except in the case of Comparative Example 2, all of the erosion marks clearly appeared on the aluminum plate, and the central part peculiar to the cavitation erosion of the underwater injection was not eroded, so-called donut-shaped erosion marks.

次に、上記直角曲げ配管に装着する安定器の入口側の筒状ストレート通路3と出口側の貫流通路4とを異なる流路長にした場合のキャビテーション効果の評価を上記と同様の評価方法で行った。このとき、比較対象として、本キャビテーション安定器1の代わりに入口側の筒状ストレート通路が形成された部分のみから構成されたものを装着した場合(比較例11,12)、出口側の7つの貫流通路が形成された部分のみから構成されたものを装着した場合(比較例13)、についても同様に評価を行った。いずれの場合も筒状ストレート通路は流路断面直径9mm、貫流通路は7つで各流路断面直径2.5mm、という設計を共通に持つものとした。結果を以下の表2に示す。   Next, evaluation of the cavitation effect in the case where the cylindrical straight passage 3 on the inlet side and the through-flow passage 4 on the outlet side of the ballast attached to the right-angled bending pipe have different flow path lengths by the same evaluation method as described above. went. At this time, as a comparison object, when the one composed only of the portion where the cylindrical straight passage on the inlet side is formed instead of the present cavitation stabilizer 1 (Comparative Examples 11 and 12), seven on the outlet side The same evaluation was carried out for the case where only the portion formed with the through-flow passage was mounted (Comparative Example 13). In any case, the cylindrical straight passage has a common design such that the cross-sectional diameter of the channel is 9 mm, the number of through-flow passages is seven, and the cross-sectional diameter of each flow channel is 2.5 mm. The results are shown in Table 2 below.

Figure 0004321862
Figure 0004321862

表2の結果から明らかなように、筒状ストレート通路3と複数の貫流通路4とが共に長いほど、壊食力の回復力が高くなっている。また、比較例13で示されるように、複数の貫通流路のみでも壊食力の回復は見られるが、この場合、流路長を非常に長く設定する必要が生じ、配管設計の点からみて実際的でなく実用に適さない。   As is clear from the results in Table 2, the longer the cylindrical straight passage 3 and the plurality of through-flow passages 4 are, the higher the erosion force recovery force is. In addition, as shown in Comparative Example 13, erosion force recovery can be seen only with a plurality of through channels, but in this case, it is necessary to set the channel length to be very long, from the viewpoint of piping design. Not practical and not suitable for practical use.

また、本実施例の入口側に筒状ストレート通路3を設けて出口側に複数の貫流通路4を設けた場合と逆の配置で安定器を構成した場合(比較例14)について、同じ流路長(それぞれ10mm)として同様の評価を行い比較してみた。結果は以下の表3に示す。   Further, the same flow path is obtained in the case where the ballast is configured in the reverse arrangement to the case where the cylindrical straight passage 3 is provided on the inlet side and the plurality of through-flow passages 4 are provided on the outlet side in this embodiment (Comparative Example 14). The same evaluation was made for the lengths (10 mm each) and compared. The results are shown in Table 3 below.

Figure 0004321862
Figure 0004321862

表3に示すように、比較例14の構成、即ち、入口側に複数の貫流通路を設けて出口側に筒状ストレート通路を設けものでは、幾らかの壊食力の回復は見られたものの、本実施例タイプのものには及ばず、キャビテーション安定器としては、入口側に筒状ストレート通路を、出口側に複数の貫流通路を配する本発明の構成が壊食力の回復としてみられるキャビテーション効果の回復に最適であることも確認できた。   As shown in Table 3, in the configuration of Comparative Example 14, that is, in the case where a plurality of through-flow passages are provided on the inlet side and a cylindrical straight passage is provided on the outlet side, some recovery of erosion force was observed. The cavitation stabilizer is not limited to that of the present embodiment type, and the configuration of the present invention in which a cylindrical straight passage is provided on the inlet side and a plurality of flow-through passages on the outlet side is seen as recovery of erosion power. It was also confirmed that it was optimal for restoring the cavitation effect.

以上の実施例で示されたように、本発明によるキャビテーション安定器によれば、直角曲げ配管など、屈曲のある配管系を介した高圧液体の供給の場合でも、噴射ノズルによる水中噴射流は、キャビテーション効果が良好に回復されるものであり、配管系の影響によることなく常に安定したキャビテーションの発生を可能とする。   As shown in the above embodiments, according to the cavitation stabilizer according to the present invention, even in the case of supplying high-pressure liquid via a bent piping system such as a right-angle bent pipe, the underwater jet flow by the injection nozzle is The cavitation effect is recovered satisfactorily, and stable cavitation can always be generated without being affected by the piping system.

本発明の一実施例によるキャビテーション安定器の概略構成図であり、(a)は噴射ノズルに装着された状態における側断面図、(b)は入口側から見た正面図である。It is a schematic block diagram of the cavitation stabilizer by one Example of this invention, (a) is a sectional side view in the state with which the injection nozzle was mounted | worn, (b) is the front view seen from the inlet side. 本キャビテーション安定器を直角曲げ配管と噴射ノズルとの間に装着した状態を示す側断面図である。It is a sectional side view which shows the state with which this cavitation stabilizer was mounted | worn between the right angle bending piping and the injection nozzle.

符号の説明Explanation of symbols

1:キャビテーション安定器
2:安定器本体
3:筒状ストレート通路
4:貫流通路
10:噴射ノズル
20:直角曲げ配管
21:エルボー部
22:配管先端開口
1: Cavitation stabilizer 2: Ballast body 3: Cylindrical straight passage 4: Through-flow passage 10: Injection nozzle 20: Right angle bending pipe 21: Elbow part 22: Opening of pipe tip

Claims (5)

液中噴射ノズルと、該ノズルへ高圧液体を供給する配管先端との間に装着されるキャビテーション安定器であって、
前記配管が、流速分布を不均一に変化させる屈曲部を備えたものであり、
前記配管先端から供給される高圧液体を受け入れ、配管の開口に対して予め定められた絞り比で縮径した流路断面積の筒状ストレート通路を入口側に有すると共に、この筒状ストレート通路の出口に直線的に連通し、該筒状ストレート通路からの噴流を複数の平行な分流に分けて前記噴射ノズルの高圧液体流入口に送り込む複数の貫流通路を出口側に備えたことを特徴とするキャビテーション安定器。
A cavitation stabilizer mounted between a submerged spray nozzle and a pipe tip for supplying high-pressure liquid to the nozzle,
The pipe is provided with a bent portion that changes the flow velocity distribution unevenly,
The pipe receives a high-pressure liquid supplied from the tip of the pipe, and has a cylindrical straight passage having a cross-sectional area with a reduced diameter with respect to the opening of the pipe on the inlet side. The outlet side is provided with a plurality of through-flow passages that communicate linearly with the outlet and divide the jet flow from the cylindrical straight passage into a plurality of parallel shunts and send them to the high-pressure liquid inlet of the injection nozzle. Cavitation stabilizer.
入口側の筒状ストレート通路及び出口側の各貫流通路の流路長さがそれぞれ5mm以上であることを特徴とする請求項1に記載のキャビテーション安定器。   2. The cavitation stabilizer according to claim 1, wherein the flow path lengths of the cylindrical straight passage on the inlet side and the through-flow passages on the outlet side are each 5 mm or more. 複数の貫流通路の総流路断面積が、筒状ストレート通路の流路断面積より小さいことを特徴とする請求項1または請求項2に記載のキャビテーション安定器。   3. The cavitation stabilizer according to claim 1, wherein a total cross-sectional area of the plurality of through-flow passages is smaller than a cross-sectional area of the cylindrical straight passage. 出口側の複数の貫流通路が、キャビテーション安定器を構成する本体の出口側に形成された複数の円形貫通孔からなることを特徴とする請求項1〜請求項3のいずれか1項に記載のキャビテーション安定器。   The plurality of through-flow passages on the outlet side include a plurality of circular through holes formed on the outlet side of the main body constituting the cavitation stabilizer. Cavitation stabilizer. 前記出口側の複数の貫流通路が、キャビテーション安定器を構成する本体の出口側に配された格子状部材により形成された格子空間からなることを特徴とする請求項1〜請求項3のいずれか1項に記載のキャビテーション安定器。   The plurality of through-flow passages on the outlet side include a lattice space formed by a lattice-like member arranged on the outlet side of the main body constituting the cavitation stabilizer. The cavitation stabilizer according to item 1.
JP2004316384A 2004-10-29 2004-10-29 Cavitation stabilizer Active JP4321862B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004316384A JP4321862B2 (en) 2004-10-29 2004-10-29 Cavitation stabilizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004316384A JP4321862B2 (en) 2004-10-29 2004-10-29 Cavitation stabilizer

Publications (2)

Publication Number Publication Date
JP2006122834A JP2006122834A (en) 2006-05-18
JP4321862B2 true JP4321862B2 (en) 2009-08-26

Family

ID=36718069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004316384A Active JP4321862B2 (en) 2004-10-29 2004-10-29 Cavitation stabilizer

Country Status (1)

Country Link
JP (1) JP4321862B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2992964A1 (en) 2014-09-08 2016-03-09 Sugino Machine Limited Straightening device and fluid nozzle

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4933104B2 (en) * 2006-02-03 2012-05-16 株式会社スギノマシン Submerged water jet injection device and cavitation erasing device used therefor
DE102007024247B3 (en) * 2007-05-15 2008-11-06 Lechler Gmbh High pressure nozzle and method of making a high pressure nozzle
JP5696443B2 (en) * 2010-11-12 2015-04-08 Jfeスチール株式会社 Thermal steel plate cooling device
WO2015012030A1 (en) * 2013-07-24 2015-01-29 シャープ株式会社 Cleaning device
CN104043620B (en) * 2014-06-20 2015-12-16 山东电力建设第一工程公司 Oil-line steaming device
CN109689222B (en) * 2016-09-23 2021-10-22 本田技研工业株式会社 Coating device
JP6872929B2 (en) 2017-02-23 2021-05-19 株式会社スギノマシン Water jet peening method
CN108662436A (en) * 2018-08-09 2018-10-16 中冶赛迪技术研究中心有限公司 Spray equipment with gooseneck
CN112138888B (en) * 2020-09-04 2022-06-07 大连理工大学 Jet cavitation generator
JP7404566B1 (en) 2023-01-06 2023-12-25 株式会社スギノマシン Surgical implant surface treatment method and surgical implant

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2992964A1 (en) 2014-09-08 2016-03-09 Sugino Machine Limited Straightening device and fluid nozzle
KR20160030049A (en) 2014-09-08 2016-03-16 가부시키가이샤 스기노 마신 Straightening device and fluid nozzle
US9700903B2 (en) 2014-09-08 2017-07-11 Sugino Machine Limited Straightening device and fluid nozzle

Also Published As

Publication number Publication date
JP2006122834A (en) 2006-05-18

Similar Documents

Publication Publication Date Title
KR102005607B1 (en) Straightening device and fluid nozzle
EP2529843B1 (en) Reverse-flow nozzle for generating cavitating or pulsed jets
JP4321862B2 (en) Cavitation stabilizer
KR102283979B1 (en) High-pressure waterjet cutting head systems, components and related methods
JP6258994B2 (en) Usage of flat jet nozzle and flat jet nozzle
US5086974A (en) Cavitating jet nozzle
JP2018111197A5 (en) Fluid supply device
US20040074979A1 (en) High impact waterjet nozzle
JPH0443712B2 (en)
US4497664A (en) Erosion of a solid surface with a cavitating liquid jet
JP2009269025A (en) Descaling spray nozzle assembly
JP2017531553A (en) Two-fluid nozzle
JP2011051021A (en) Injection nozzle for blast machining
JP2001124280A (en) Orifice plate
US20200238309A1 (en) High velocity fluid nozzle
JP2018089597A (en) One fluid nozzle
JP2009101411A (en) Descaling nozzle
KR102098439B1 (en) Peening nozzle device and peening apparatus having the same
JP5996348B2 (en) Cavitation nozzle
JP4933104B2 (en) Submerged water jet injection device and cavitation erasing device used therefor
RU2640871C2 (en) Versatile working ejector chamber (versions)
JPH0526153U (en) Branch structure of jet liquid
JP2019098222A5 (en) Internal structure and fluid supply pipe containing the same
GB2189170A (en) Cavitation nozzle
JP2010240580A (en) Liquid injection nozzle and shower head

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090311

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090501

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090527

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090601

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4321862

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150612

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250