JP2009238885A - Laminated ceramic capacitor - Google Patents

Laminated ceramic capacitor Download PDF

Info

Publication number
JP2009238885A
JP2009238885A JP2008080835A JP2008080835A JP2009238885A JP 2009238885 A JP2009238885 A JP 2009238885A JP 2008080835 A JP2008080835 A JP 2008080835A JP 2008080835 A JP2008080835 A JP 2008080835A JP 2009238885 A JP2009238885 A JP 2009238885A
Authority
JP
Japan
Prior art keywords
crystal
mol
powder
crystal particles
terms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008080835A
Other languages
Japanese (ja)
Other versions
JP5094494B2 (en
Inventor
Yuji Shingu
雄二 新宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2008080835A priority Critical patent/JP5094494B2/en
Priority to PCT/JP2009/051556 priority patent/WO2009119158A1/en
Priority to TW98103206A priority patent/TW200943338A/en
Publication of JP2009238885A publication Critical patent/JP2009238885A/en
Application granted granted Critical
Publication of JP5094494B2 publication Critical patent/JP5094494B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • C04B35/4682Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates based on BaTiO3 perovskite phase
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1218Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates
    • H01G4/1227Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates based on alkaline earth titanates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/36Glass starting materials for making ceramics, e.g. silica glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6025Tape casting, e.g. with a doctor blade
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/785Submicron sized grains, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/79Non-stoichiometric products, e.g. perovskites (ABO3) with an A/B-ratio other than 1

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Capacitors (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a laminated ceramic capacitor having high permittivity, small in a temperature change rate of relative permittivity and a D.C. bias characteristic, high in a service life characteristic in a high-temperature load test, and excelling in capacitance stability. <P>SOLUTION: This laminated ceramic capacitor contains barium titanate as a main constituent, and has a first crystal group formed of crystalline particles 9a wherein the concentration of calcium is not larger than 0.2 atomic% and a second crystal group formed of crystalline particles 9b wherein the concentration of calcium is not smaller than 0.4 atomic% at a predetermined ratio. In the laminated ceramic capacitor, the average particle diameters of the first crystalline particles 9a and the second crystalline particles 9b are 0.18-0.3 μm, and the average particle diameter of the first crystalline particles 9a is smaller than that of the second crystalline particles 9b by 0.05 μm or more. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、積層セラミックコンデンサに関し、特に、誘電体層がCa濃度の異なるチタン酸バリウムにより構成された小型で高容量の積層セラミックコンデンサに関する。   The present invention relates to a multilayer ceramic capacitor, and more particularly to a small and high capacity multilayer ceramic capacitor in which a dielectric layer is composed of barium titanate having different Ca concentrations.

積層セラミックコンデンサは、誘電体層と内部電極層とを交互に積層して構成されたコンデンサ本体の内部電極層が露出した端面に外部電極を形成して構成されており、近年、小型化、高容量化の要求に対して誘電体層および内部電極層の薄層化と多積層化が図られている。   Multilayer ceramic capacitors are constructed by forming external electrodes on the exposed end surfaces of the capacitor body, which are formed by alternately laminating dielectric layers and internal electrode layers. In response to the demand for capacitance, the dielectric layers and internal electrode layers have been made thinner and multi-layered.

ところで、積層セラミックコンデンサを構成する誘電体層となる誘電体磁器として、従来より、チタン酸バリウムを主成分とする誘電率材料が用いられているが、近年に至り、チタン酸バリウム粉末とチタン酸バリウムにカルシウムを固溶させた粉末を混合して用いて、これらの誘電体材料を共存させた複合系の誘電体材料が開発され、積層セラミックコンデンサに応用されている(例えば、特許文献1参照)。   By the way, as a dielectric porcelain serving as a dielectric layer constituting a multilayer ceramic capacitor, a dielectric constant material mainly composed of barium titanate has been conventionally used. However, in recent years, barium titanate powder and titanic acid have been used. A composite dielectric material in which these dielectric materials coexist is developed by mixing powder in which calcium is dissolved in barium, and applied to a multilayer ceramic capacitor (see, for example, Patent Document 1). ).

上述したチタン酸バリウム粉末やチタン酸バリウムにカルシウムを固溶させた粉末を用いて作製される誘電体磁器には、マグネシウム、希土類元素およびマンガンの各酸化物が添加剤として用いられ、焼成時に、これらの添加剤を、チタン酸バリウム粉末やチタン酸バリウムにカルシウムを固溶させたチタン酸バリウムカルシウム粉末のそれぞれの表面付近に固溶させて比誘電率や比誘電率の温度特性などの向上が図られている。
特開2001−156450号公報
Dielectric porcelain produced using the above-mentioned barium titanate powder or powder in which calcium is dissolved in barium titanate, magnesium, rare earth elements and manganese oxides are used as additives. These additives can be dissolved in the vicinity of each surface of barium titanate powder or barium calcium titanate powder in which calcium is dissolved in barium titanate to improve the relative permittivity and temperature characteristics of relative permittivity. It is illustrated.
JP 2001-156450 A

上述のような結晶粒子により構成された誘電体磁器を誘電体層とする積層セラミックコンデンサは、比誘電率の向上とともに、比誘電率の温度特性としてX5R(25℃を基準にしたときの比誘電率の温度変化率が−55〜85℃において±15%以内)を満足するものの、誘電体層の厚みを、例えば2μm程度まで薄層化すると、高温負荷試験での寿命特性が大きく低下するとともに、積層セラミックコンデンサに直流電圧を印加したときの静電容量の低下が大きい(DCバイアス特性が大きい)という問題があった。   A multilayer ceramic capacitor having a dielectric ceramic layer composed of the above-described crystal particles as a dielectric layer has an improved relative dielectric constant and a relative dielectric constant temperature characteristic of X5R (relative dielectric relative to 25 ° C.). Although the temperature change rate of the rate satisfies the range of ± 15% at −55 to 85 ° C.), if the thickness of the dielectric layer is reduced to, for example, about 2 μm, the life characteristics in the high temperature load test are greatly reduced. There has been a problem that the capacitance is greatly reduced (DC bias characteristics are large) when a DC voltage is applied to the multilayer ceramic capacitor.

従って、本発明は、高誘電率で、比誘電率の温度変化率が小さく、高温負荷試験での寿命特性が高く、かつDCバイアス特性の小さい積層セラミックコンデンサを提供することを目的とする。   Accordingly, an object of the present invention is to provide a multilayer ceramic capacitor having a high dielectric constant, a small temperature change rate of a relative dielectric constant, a high life characteristic in a high temperature load test, and a small DC bias characteristic.

本発明の積層セラミックコンデンサは、チタン酸バリウムを主成分とする誘電体磁器からなる誘電体層と内部電極層とが交互に積層されたコンデンサ本体と、該コンデンサ本体の前記内部電極層が露出した端面に設けられた外部電極とを具備する積層セラミックコンデンサにおいて、前記誘電体磁器は、前記チタン酸バリウムを構成するチタン100モルに対して、マグネシウムをMgO換算で0.2〜1モル、マンガンをMnO換算で0.2〜0.5モル、ホルミウム,イットリウム,エルビウム,ツリウム,イッテルビウムおよびルテチウムの群から選ばれる1種の第1希土類元素(RE)およびサマリウム,ユーロピウム,ガドリニウム,テルビウムおよびジスプロシウムの群から選ばれる1種の第2希土類元素(RE)をRE換算した合計で0.7〜3モル含有するとともに、主結晶相として、前記チタン酸バリウムを主成分とし、カルシウムの濃度が0.2原子%以下の第1結晶粒子からなる第1の結晶群と、前記チタン酸バリウムを主成分とし、カルシウムの濃度が0.4原子%以上の第2結晶粒子からなる第2の結晶群とを有し、前記第1結晶粒子および前記第2結晶粒子の平均粒径が0.18〜0.3μmであり、前記第1結晶粒子の平均粒径が前記第2結晶粒子の平均粒径より0.05μm以上小さく、かつ前記誘電体磁器の研磨面における3μm×3μmの領域内に見られる前記第1結晶粒子の個数をa、第2結晶粒子9bの個数をbとしたときに、b/(a+b)が0.5〜0.8であることを特徴とする。 The multilayer ceramic capacitor of the present invention has a capacitor body in which dielectric layers composed of dielectric ceramics mainly composed of barium titanate and internal electrode layers are alternately stacked, and the internal electrode layer of the capacitor body is exposed. In the multilayer ceramic capacitor having an external electrode provided on an end face, the dielectric ceramic is composed of 0.2 to 1 mol of magnesium in terms of MgO and manganese in 100 mol of titanium constituting the barium titanate. 0.2 to 0.5 mol in terms of MnO, one kind of first rare earth element (RE) selected from the group of holmium, yttrium, erbium, thulium, ytterbium and lutetium, and a group of samarium, europium, gadolinium, terbium and dysprosium one second rare earth element selected from the (RE) RE 2 O Convert summed together to 0.7 to 3 moles contained in the main as a crystalline phase, as a main component the barium titanate, a first crystal group concentration of calcium consists of first crystal grains of less than 0.2 atomic% And a second crystal group consisting of second crystal particles having the barium titanate as a main component and a calcium concentration of 0.4 atomic% or more, and the first crystal particles and the second crystal particles The average particle size is 0.18 to 0.3 μm, the average particle size of the first crystal particles is 0.05 μm or more smaller than the average particle size of the second crystal particles, and 3 μm on the polished surface of the dielectric ceramic. The b / (a + b) is 0.5 to 0.8, where a is the number of the first crystal particles found in the region of 3 μm and b is the number of the second crystal particles 9b. And

また、前記第1結晶粒子の平均粒径が前記第2結晶粒子の平均粒径より0.1μm以上小さいことが望ましい。   The average grain size of the first crystal particles is preferably smaller by 0.1 μm or more than the average grain size of the second crystal particles.

さらに、前記第1結晶粒子および前記第2結晶粒子の平均粒径が0.22〜0.27μmであることが望ましい。   Furthermore, it is desirable that an average particle size of the first crystal particles and the second crystal particles is 0.22 to 0.27 μm.

またさらに、前記チタン酸バリウムを構成するチタン100モルに対して、前記マグネシウムをMgO換算で0.5〜1モル、前記マンガンをMnO換算で0.2〜0.4モル、第1希土類元素(RE)として前記イットリウムをY換算で0.6〜0.8モル、および第2希土類元素(RE)として前記テルビウムをTb換算で0.2〜0.5モル含有することが望ましい。 Furthermore, with respect to 100 mol of titanium constituting the barium titanate, the magnesium is 0.5 to 1 mol in terms of MgO, the manganese is 0.2 to 0.4 mol in terms of MnO, the first rare earth element ( RE) containing 0.6 to 0.8 mol of yttrium in terms of Y 2 O 3 and 0.2 to 0.5 mol of terbium in terms of Tb 2 O 3 as the second rare earth element (RE) Is desirable.

なお、第1希土類元素および第2希土類元素は共にREとして表しているが、これは周期表における希土類元素の英文表記(Rare earth)に基づくものである。   The first rare earth element and the second rare earth element are both represented as RE, which is based on the English representation of the rare earth element (Rare earth) in the periodic table.

本発明によれば、高誘電率で、比誘電率の温度変化率が小さく、高温負荷試験での寿命特性が高く、かつDCバイアス特性の小さい積層セラミックコンデンサを得ることができる。   According to the present invention, it is possible to obtain a multilayer ceramic capacitor having a high dielectric constant, a low relative dielectric constant temperature change rate, a high life characteristic in a high temperature load test, and a small DC bias characteristic.

本発明の積層セラミックコンデンサについて、図1および図2をもとに詳細に説明する。図1は、本発明の積層セラミックコンデンサの一実施形態を示す概略断面図であり、図2は、図1の積層セラミックコンデンサを構成する誘電体層の拡大図であり、結晶粒子および粒界相を示す模式図である。   The multilayer ceramic capacitor of the present invention will be described in detail with reference to FIGS. FIG. 1 is a schematic cross-sectional view showing one embodiment of the multilayer ceramic capacitor of the present invention, and FIG. 2 is an enlarged view of a dielectric layer constituting the multilayer ceramic capacitor of FIG. It is a schematic diagram which shows.

この積層セラミックコンデンサは、誘電体磁器からなる誘電体層5と内部電極層7とが交互に積層されたコンデンサ本体1と、前記内部電極層7の一端がそれぞれ露出するコンデンサ本体1の両端部に形成された外部電極3とから構成されている。   This multilayer ceramic capacitor has a capacitor body 1 in which dielectric layers 5 made of dielectric ceramics and internal electrode layers 7 are alternately laminated, and both ends of the capacitor body 1 where one end of the internal electrode layer 7 is exposed. The external electrode 3 is formed.

誘電体磁器からなる誘電体層5は、結晶粒子9と粒界相11とから構成されており、その厚みは2μm以下、特に、1μm以下が望ましく、これにより積層セラミックコンデンサを小型化、高容量化することが可能となる。なお、誘電体層5の厚みが0.4μm以上であると、静電容量のばらつきを小さくでき、また容量温度特性を安定化させることができる。   The dielectric layer 5 made of a dielectric ceramic is composed of crystal grains 9 and grain boundary phases 11, and the thickness thereof is preferably 2 μm or less, particularly preferably 1 μm or less, thereby reducing the size and capacity of the multilayer ceramic capacitor. Can be realized. In addition, when the thickness of the dielectric layer 5 is 0.4 μm or more, the variation in capacitance can be reduced, and the capacitance-temperature characteristic can be stabilized.

内部電極層7を構成する導体成分としては、高積層化しても製造コストを抑制できるという点で、ニッケル(Ni)や銅(Cu)などの卑金属が望ましく、特に、後述する誘電体磁器からなる誘電体層5との同時焼成が図れるという点でニッケル(Ni)がより望ましい。また、外部電極3を構成する導体成分としては、例えば、CuもしくはCuとNiの合金を用いることができ、これらの導体成分を含むペーストをコンデンサ本体1の端面に塗布したあと、焼き付けを行なうことにより形成されている。   The conductor component constituting the internal electrode layer 7 is preferably a base metal such as nickel (Ni) or copper (Cu) from the viewpoint that the manufacturing cost can be suppressed even when the number of layers is increased, and is particularly composed of a dielectric ceramic described later. Nickel (Ni) is more desirable because it can be fired simultaneously with the dielectric layer 5. Further, as the conductor component constituting the external electrode 3, for example, Cu or an alloy of Cu and Ni can be used. After applying paste containing these conductor components to the end face of the capacitor body 1, baking is performed. It is formed by.

なお、図1では誘電体層5と内部電極層7との積層状態を単純化して示しているが、本発明の積層セラミックコンデンサは、誘電体層5と内部電極層7とが数百層にも及ぶ積層体となっている。   In FIG. 1, the laminated state of the dielectric layer 5 and the internal electrode layer 7 is shown in a simplified manner. However, the multilayer ceramic capacitor of the present invention has several hundred layers of the dielectric layer 5 and the internal electrode layer 7. It is also a laminated body.

ところで、誘電体層5を構成する誘電体磁器は、チタン酸バリウムを主成分とし、カルシウム,マグネシウムおよびマンガンと、ホルミウム、イットリウム、エルビウム、ツリウム、イッテルビウムおよびルテチウムの群から選ばれる1種の第1希土類元素(RE)およびサマリウム、ユーロピウム、ガドリニウム、テルビウムおよびジスプロシウムの群から選ばれる1種の第2希土類元素(RE)とを含む焼結体からなり、チタン酸バリウムを構成するチタン100モルに対して、マグネシウムをMgO換算で0.2〜1モル、前記マンガンをMnO換算で0.2〜0.5モル、第1希土類元素(RE)および第2希土類元素(RE)をRE換算した合計で0.7〜3モル含有する。 By the way, the dielectric porcelain constituting the dielectric layer 5 is composed of barium titanate as a main component, and is a first type selected from the group consisting of calcium, magnesium and manganese, and holmium, yttrium, erbium, thulium, ytterbium and lutetium. A sintered body containing a rare earth element (RE) and one second rare earth element (RE) selected from the group consisting of samarium, europium, gadolinium, terbium and dysprosium, and with respect to 100 moles of titanium constituting barium titanate The magnesium is converted to 0.2 to 1 mol in terms of MgO, the manganese is converted to 0.2 to 0.5 mol in terms of MnO, and the first rare earth element (RE) and the second rare earth element (RE) are converted to RE 2 O 3. The total content is 0.7-3 mol.

また、この誘電体磁器は、チタン酸バリウムを主成分とし、カルシウムの濃度が0.2原子%以下の結晶粒子からなる第1の結晶群を構成する第1結晶粒子9aと、チタン酸バリウムを主成分とし、カルシウムの濃度が0.4原子%以上の結晶粒子からなる第2の結晶群を構成する第2結晶粒子9bとからなる結晶粒子9を主結晶相として備えている。   In addition, the dielectric ceramic is composed of first crystal particles 9a constituting a first crystal group composed of crystal particles mainly composed of barium titanate and having a calcium concentration of 0.2 atomic% or less, and barium titanate. The main crystal phase is provided with crystal grains 9 composed of the second crystal grains 9b constituting the second crystal group consisting of crystal grains having a main component and a calcium concentration of 0.4 atomic% or more.

さらに、第1の結晶群を構成する第1結晶粒子9aおよび第2の結晶群を構成する第2結晶粒子9bの平均粒径が0.18〜0.3μmであり、かつ第1の結晶群を構成する第1結晶粒子9aの平均粒径が第2の結晶群を構成する第2結晶粒子9bの平均粒径より0.05μm以上小さい。   Furthermore, the average grain size of the first crystal particles 9a constituting the first crystal group and the second crystal particles 9b constituting the second crystal group is 0.18 to 0.3 μm, and the first crystal group Is smaller than the average particle diameter of the second crystal particles 9b constituting the second crystal group by 0.05 μm or more.

またさらに、この誘電体磁器の研磨面における3μm×3μmの領域内に見られる前記第1結晶粒子の個数をa、第2結晶粒子9bの個数をbとしたときに、b/(a+b)が0.5〜0.8である。   Furthermore, when the number of the first crystal particles found in the 3 μm × 3 μm region on the polished surface of the dielectric ceramic is a and the number of the second crystal particles 9b is b, b / (a + b) is 0.5 to 0.8.

このような誘電体磁器は、室温(25℃)における比誘電率が3500以上、比誘電率の温度特性がX5R(25℃を基準にしたときの比誘電率の温度変化率が−55〜85℃において±15%)を満足し、さらに、DCバイアス特性(DC無印可に対して、2V/μmの直流を印加した場合の容量変化率)を30%以下に小さくすることができる。そのため、この誘電体磁器からなる誘電体層5を備える本発明の積層セラミックコンデンサは、DCバイアスが印加される実使用においても静電容量の低下が小さく、容量安定性に優れた誘電特性を有する。   Such a dielectric ceramic has a relative dielectric constant of 3500 or more at room temperature (25 ° C.) and a temperature characteristic of the relative dielectric constant of X5R (the rate of temperature change of the relative dielectric constant with respect to 25 ° C. is −55 to 85. Furthermore, the DC bias characteristic (capacity change rate when a DC voltage of 2 V / μm is applied to a DC imprint) can be reduced to 30% or less. For this reason, the multilayer ceramic capacitor of the present invention including the dielectric layer 5 made of this dielectric ceramic has a dielectric property with a small decrease in capacitance even in actual use where a DC bias is applied, and excellent capacitance stability. .

ここで、誘電体層5を構成する誘電体磁器に含まれるマグネシウムの含有量が、チタン酸バリウムを構成するチタン100モルに対して、MgO換算で0.2モルよりも少ないと、25℃に対して85℃における比誘電率の温度変化率がX5Rを満足しなくなるとともに、高温負荷試験での寿命特性も大きく低下する。一方、マグネシウムの含有量がチタン酸バリウムを構成するチタン100モルに対して、MgO換算で1モルよりも多くなると比誘電率が3500よりも低くなる。   Here, when the content of magnesium contained in the dielectric ceramic constituting the dielectric layer 5 is less than 0.2 mol in terms of MgO with respect to 100 mol of titanium constituting the barium titanate, On the other hand, the temperature change rate of the relative dielectric constant at 85 ° C. does not satisfy X5R, and the life characteristics in the high temperature load test are greatly deteriorated. On the other hand, when the content of magnesium is more than 1 mol in terms of MgO with respect to 100 mol of titanium constituting barium titanate, the relative dielectric constant becomes lower than 3500.

また、誘電体層5となる誘電体磁器に含まれるマンガンの含有量がチタン酸バリウムを構成するチタン100モルに対して、MnO換算で0.2モルよりも少ないと、高温負荷寿命が大きく損なわれる。一方、マンガンの含有量がチタン酸バリウムを構成するチタン100モルに対して、MnO換算で0.5モルよりも多いと、この場合も誘電体磁器の比誘電率が3500よりも低くなる。   Further, if the content of manganese contained in the dielectric ceramic serving as the dielectric layer 5 is less than 0.2 mol in terms of MnO with respect to 100 mol of titanium constituting the barium titanate, the high temperature load life is greatly impaired. It is. On the other hand, when the manganese content is more than 0.5 mol in terms of MnO with respect to 100 mol of titanium constituting barium titanate, the dielectric constant of the dielectric ceramic is also lower than 3500 in this case.

さらに、チタン酸バリウムを構成するチタン100モルに対して、第1希土類元素(RE)および第2希土類元素(RE)の含有量がRE換算した合計で0.7モルよりも少ないと、比誘電率の温度変化率が大きくなり、X5Rを満足できなくなるとともに、高温負荷試験での寿命特性が大きく低下する。一方、チタン酸バリウムを構成するチタン100モルに対して、第1希土類元素(RE)および第2希土類元素(RE)の含有量がRE換算した合計で3モルよりも多いと、比誘電率が3500よりも低くなる。 Furthermore, when the content of the first rare earth element (RE) and the second rare earth element (RE) is less than 0.7 mol in terms of RE 2 O 3 with respect to 100 moles of titanium constituting the barium titanate. In addition, the temperature change rate of the relative permittivity increases, and the X5R cannot be satisfied, and the life characteristics in the high temperature load test are greatly deteriorated. On the other hand, if the total content of the first rare earth element (RE) and the second rare earth element (RE) in terms of RE 2 O 3 is more than 3 moles with respect to 100 moles of titanium constituting barium titanate, The dielectric constant is lower than 3500.

このため、チタン酸バリウムを構成するチタン100モルに対して、マグネシウムをMgO換算で0.2〜1モル、マンガンをMnO換算で0.2〜0.5モル、第1希土類元素(RE)および第2希土類元素(RE)をRE換算した合計で0.7〜3モル含有する。また、第1希土類元素の含有量は、第2希土類元素の含有量よりも多いことが望ましい。 Therefore, with respect to 100 moles of titanium constituting barium titanate, magnesium is 0.2 to 1 mole in terms of MgO, manganese is 0.2 to 0.5 moles in terms of MnO, the first rare earth element (RE) and A total of 0.7 to 3 mol of the second rare earth element (RE) in terms of RE 2 O 3 is contained. Further, it is desirable that the content of the first rare earth element is larger than the content of the second rare earth element.

なお、本発明の積層セラミックコンデンサを構成する誘電体層5では、所望の誘電特性を維持できる範囲であれば焼結性を高めるための助剤としてガラス成分を含有させても良い。   In the dielectric layer 5 constituting the multilayer ceramic capacitor of the present invention, a glass component may be contained as an auxiliary for enhancing the sinterability as long as desired dielectric characteristics can be maintained.

本発明では、かかる積層セラミックコンデンサの誘電体層5を構成する誘電体磁器は、カルシウムの濃度が0.2原子%以下の結晶粒子9aからなる第1の結晶群と、チタン酸バリウムを主成分とし、カルシウムの濃度が0.4原子%以上の結晶粒子9bからなる第2の結晶群とを有するものである。   In the present invention, the dielectric ceramic constituting the dielectric layer 5 of the multilayer ceramic capacitor includes a first crystal group consisting of crystal grains 9a having a calcium concentration of 0.2 atomic% or less, and barium titanate as a main component. And a second crystal group consisting of crystal grains 9b having a calcium concentration of 0.4 atomic% or more.

そして、第1の結晶群を構成する第1結晶粒子9aと第2結晶粒子9bとの割合は、誘電体磁器の研磨面における3μm×3μmの領域内に見られる前記第1結晶粒子の個数をa、第2結晶粒子9bの個数をbとしたときに、b/(a+b)が0.5〜0.8である。この場合、b/(a+b)が0.5よりも小さいと、誘電体磁器の比誘電率が3500よりも低くなり、b/(a+b)が0.8よりも大きいと、DCバイアス特性が30%よりも大きくなる。そのため、b/(a+b)は0.5〜0.8の範囲が良く、特に、0.6〜0.8が望ましい。   The ratio of the first crystal particles 9a and the second crystal particles 9b constituting the first crystal group is the number of the first crystal particles found in a 3 μm × 3 μm region on the polished surface of the dielectric ceramic. a, b / (a + b) is 0.5 to 0.8, where b is the number of second crystal grains 9b. In this case, when b / (a + b) is smaller than 0.5, the dielectric constant of the dielectric ceramic is lower than 3500, and when b / (a + b) is larger than 0.8, the DC bias characteristic is 30. Greater than%. Therefore, b / (a + b) is preferably in the range of 0.5 to 0.8, particularly preferably 0.6 to 0.8.

ここで、第2結晶粒子のカルシウムの濃度は、0.5〜2.5原子%が好ましい。カルシウムの濃度がこの範囲であるとチタン酸バリウムに対するCaの固溶を十分なものにでき、また、固溶せずに粒界等に残存するCa化合物を低減することができるために、比誘電率のAC電圧依存性が大きくなることから高誘電率化を図ることが可能になる。なお、第1結晶粒子9aはカルシウムの濃度がゼロのものを含む。   Here, the calcium concentration of the second crystal particles is preferably 0.5 to 2.5 atomic%. When the calcium concentration is within this range, the solid solution of Ca in the barium titanate can be made sufficient, and the Ca compound remaining in the grain boundaries without being dissolved can be reduced. Since the dependency of the AC voltage on the AC voltage increases, it is possible to increase the dielectric constant. The first crystal particles 9a include those having a calcium concentration of zero.

結晶粒子9中のカルシウムの濃度については、積層セラミックコンデンサを構成する誘電体層5の断面を研磨した研磨面に存在する約30個の結晶粒子9に対して、元素分析機器を付設した透過型電子顕微鏡を用いて元素分析を行う。このとき電子線のスポットサイズは5nmとし、分析する箇所は結晶粒子9の粒界付近から中心へ向けて引いた直線上のうち粒界からほぼ等間隔に4〜5点とし、これら分析した値の平均値を求める。この場合、結晶粒子9の各測定点から検出されるBa、Ti、Ca、Mg、第1,第2希土類元素およびMnの全量を100%としたときのCaの割合をカルシウムの濃度として求める。   Regarding the concentration of calcium in the crystal particles 9, a transmission type in which element analysis equipment is attached to about 30 crystal particles 9 existing on the polished surface obtained by polishing the cross section of the dielectric layer 5 constituting the multilayer ceramic capacitor. Elemental analysis is performed using an electron microscope. At this time, the spot size of the electron beam is 5 nm, and the analysis points are 4 to 5 points at almost equal intervals from the grain boundary on the straight line drawn from the vicinity of the grain boundary to the center of the crystal grain 9. Find the average value of. In this case, the ratio of Ca when the total amount of Ba, Ti, Ca, Mg, first and second rare earth elements and Mn detected from each measurement point of the crystal particle 9 is 100% is obtained as the calcium concentration.

測定する結晶粒子9は、その写真上で結晶粒子9が20〜50個入る円を描き、円内および円周にかかった結晶粒子9を選択し、各結晶粒子9の輪郭から画像処理にて各粒子の面積を求め、同じ面積をもつ円に置き換えたときの直径を算出し、求めた結晶粒子9の直径が、前述した方法で求められる平均粒径の±50%の範囲にある結晶粒子9とする。   The crystal particles 9 to be measured are drawn on a circle of 20 to 50 crystal particles 9 on the photograph, and the crystal particles 9 that fall within and around the circle are selected, and image processing is performed from the outline of each crystal particle 9. Obtain the area of each particle, calculate the diameter when replaced with a circle having the same area, and the diameter of the obtained crystal particle 9 is in the range of ± 50% of the average particle diameter obtained by the method described above Nine.

なお、結晶粒子9の中心は、当該結晶粒子9の内接円の中心であり、また、結晶粒子9の粒界付近とは、当該結晶粒子9の粒界から5nm内側までの領域のことである。そして、結晶粒子9の内接円は、透過電子顕微鏡にて映し出されている画像をコンピュータに取り込んで、その画面上で結晶粒子9に対して内接円を描き、結晶粒子9の中心を決定する。さらに、第1結晶粒子9aおよび第2結晶粒子9bにおける個数比(b/a+b)はカルシウムの濃度を特定した結晶粒子9の群から求める。   The center of the crystal grain 9 is the center of the inscribed circle of the crystal grain 9, and the vicinity of the grain boundary of the crystal grain 9 is a region from the grain boundary of the crystal grain 9 to the inside of 5 nm. is there. For the inscribed circle of the crystal particle 9, the image projected by the transmission electron microscope is taken into a computer, and the inscribed circle is drawn on the crystal particle 9 on the screen to determine the center of the crystal particle 9. To do. Further, the number ratio (b / a + b) in the first crystal particle 9a and the second crystal particle 9b is obtained from the group of crystal particles 9 in which the calcium concentration is specified.

また、第1の結晶群を構成する第1結晶粒子9aおよび第2の結晶群を構成する第2結晶粒子9bの平均粒径が0.18〜0.3μmであり、特に、誘電体磁器を構成する結晶粒子9の平均粒径を0.22〜0.27μmであることが望ましい。   The average grain size of the first crystal particles 9a constituting the first crystal group and the second crystal particles 9b constituting the second crystal group is 0.18 to 0.3 μm. The average grain size of the constituting crystal grains 9 is preferably 0.22 to 0.27 μm.

本発明ではさらに、第1の結晶群を構成する結晶粒子9aの平均粒径が第2の結晶群を構成する結晶粒子9bの平均粒径よりも小さく、その差が0.05μm以上、特に、0.1μm以上であることが望ましい。   In the present invention, the average particle diameter of the crystal particles 9a constituting the first crystal group is smaller than the average particle diameter of the crystal particles 9b constituting the second crystal group, and the difference is 0.05 μm or more, It is desirable that it is 0.1 μm or more.

誘電体層5を構成する結晶粒子9の平均粒径は、焼成後のコンデンサ本体1からなる試料の破断面を研磨した後、走査型電子顕微鏡を用いて内部組織の写真を撮り、その写真上で結晶粒子9が20〜50個入る円を描き、円内および円周にかかった結晶粒子を選択し、各結晶粒子9の輪郭を画像処理し、各粒子の面積を求め、同じ面積を持つ円に置き換えたときの直径を算出し、その平均値より求める。   The average grain size of the crystal particles 9 constituting the dielectric layer 5 is determined by polishing the fracture surface of the sintered capacitor body 1 and then taking a photograph of the internal structure using a scanning electron microscope. Draw a circle containing 20 to 50 crystal grains 9, select crystal grains in and around the circle, perform image processing on the outline of each crystal grain 9, find the area of each grain, and have the same area Calculate the diameter when it is replaced with a circle, and find the average value.

そして、本発明の積層セラミックコンデンサにおいて、第1の結晶群を構成する結晶粒子9aおよび第2の結晶群を構成する結晶粒子9bの平均粒径を0.22〜0.27μmとすると、室温(25℃)における比誘電率を3570以上、比誘電率の温度特性がX5R(25℃を基準にしたときの比誘電率の温度変化率が−55〜85℃において±15%)を満足し、DCバイアス特性において、DC無印加に対して、2V/μmの直流を印加した場合の容量変化率が29%以下であり、さらに、高温負荷試験(温度:85℃、電圧:定格電圧の1.5倍、試験時間:1000時間)において不良の無い高信頼性の積層セラミックコンデンサを得ることができる。   In the multilayer ceramic capacitor of the present invention, when the average grain size of the crystal grains 9a constituting the first crystal group and the crystal grains 9b constituting the second crystal group is 0.22 to 0.27 μm, room temperature ( 25 ° C.) with a relative dielectric constant of 3570 or more and a temperature characteristic of the relative dielectric constant satisfying X5R (temperature change rate of relative dielectric constant with respect to 25 ° C. is ± 15% at −55 to 85 ° C.), In the DC bias characteristics, the capacity change rate when a direct current of 2 V / μm is applied to no DC application is 29% or less, and a high temperature load test (temperature: 85 ° C., voltage: 1. of rated voltage). 5 times, test time: 1000 hours), a highly reliable multilayer ceramic capacitor free from defects can be obtained.

また、第1の結晶群を構成する第1結晶粒子9aの平均粒径と第2の結晶群を構成する第2結晶粒子9bとの差を0.1μm以上とすると、室温(25℃)における比誘電率を3560以上、比誘電率の温度特性がX5R(25℃を基準にしたときの比誘電率の温度変化率が−55〜85℃において±15%)を満足し、高温負荷試験(温度:85℃、電圧:定格電圧の1.5倍、試験時間:1000時間)における寿命特性を維持した状態で、DCバイアス特性において、DC無印可に対して、2V/μmの直流を印加した場合の容量変化率が28%以下にできる。   Further, when the difference between the average grain size of the first crystal grains 9a constituting the first crystal group and the second crystal grains 9b constituting the second crystal group is 0.1 μm or more, the temperature is room temperature (25 ° C.). The dielectric constant is 3560 or more, the temperature characteristics of the dielectric constant satisfy X5R (the temperature change rate of the dielectric constant with respect to 25 ° C. is ± 15% at −55 to 85 ° C.), and the high temperature load test ( 2V / μm direct current was applied to the DC impressed DC bias characteristic while maintaining the life characteristics at 85 ° C., voltage: 1.5 times the rated voltage, and test time: 1000 hours. In this case, the capacity change rate can be 28% or less.

また、誘電体磁器の組成を、チタン酸バリウムを構成するチタン100モルに対して、マグネシウムをMgO換算で0.5〜1モル、マンガンをMnO換算で0.2〜0.4モル、第1希土類元素(RE)としてイットリウムをY換算で0.6〜0.8モル、および第2希土類元素(RE)としてテルビウムをTb換算で0.2〜0.5モル含有するものとすると、比誘電率の温度特性がX5R(25℃を基準にしたときの比誘電率の温度変化率が−55〜85℃において±15%以内)を満足し、かつ高温負荷試験(温度:85℃、電圧:定格電圧の1.5倍、試験時間:1000時間)において不良の発生が無く、DCバイアス特性において、DC無印可に対して、2V/μmの直流を印加した場合の容量変化率をが30%以下に維持した状態で、室温(25℃)における比誘電率を3710以上に高めることができる。 Further, the composition of the dielectric porcelain is 0.5 to 1 mol in terms of MgO and 0.2 to 0.4 mol in terms of MnO with respect to 100 mol of titanium constituting barium titanate. Yttrium as a rare earth element (RE) is 0.6 to 0.8 mol in terms of Y 2 O 3 and terbium is contained as a second rare earth element (RE) in an amount of 0.2 to 0.5 mol in terms of Tb 2 O 3. Assuming that the temperature characteristic of relative permittivity satisfies X5R (temperature change rate of relative permittivity with respect to 25 ° C is within ± 15% at -55 to 85 ° C), and high temperature load test (temperature : 85 ° C., voltage: 1.5 times the rated voltage, test time: 1000 hours), no defect occurred, and the DC bias characteristics were the capacity when DC of 2V / μm was applied to the DC imprint Change rate is 30 %, The dielectric constant at room temperature (25 ° C.) can be increased to 3710 or more.

さらに、第1の結晶群を構成する結晶粒子9aおよび第2の結晶群を構成する結晶粒子9bの平均粒径を0.23〜0.27μmとし、かつb/(a+b)を0.6〜0.8とすると、比誘電率の温度特性がX5R(25℃を基準にしたときの比誘電率の温度変化率が−55〜85℃において±15%)を満足し、かつ高温負荷試験(温度:85℃、電圧:定格電圧の1.5倍、試験時間:1000時間)における寿命特性を維持した状態で、室温(25℃)における比誘電率を3800以上、かつDCバイアス特性において、DC無印可に対して、2V/μmの直流を印加した場合の容量変化率を28%以下に低減できる。   Furthermore, the average grain size of the crystal grains 9a constituting the first crystal group and the crystal grains 9b constituting the second crystal group is set to 0.23 to 0.27 μm, and b / (a + b) is set to 0.6 to Assuming 0.8, the temperature characteristic of the dielectric constant satisfies X5R (the temperature change rate of the dielectric constant relative to 25 ° C. is ± 15% at −55 to 85 ° C.), and the high temperature load test ( While maintaining the life characteristics at a temperature of 85 ° C., a voltage of 1.5 times the rated voltage, and a test time of 1000 hours, a relative dielectric constant of 3800 or more at room temperature (25 ° C.) and a DC bias characteristic of DC The capacitance change rate when a direct current of 2 V / μm is applied can be reduced to 28% or less.

次に、本発明の積層セラミックコンデンサを製造する方法について説明する。   Next, a method for producing the multilayer ceramic capacitor of the present invention will be described.

まず、誘電体粉末をポリビニルブチラール樹脂などの有機樹脂やトルエンおよびアルコールなどの溶媒とともにボールミルなどを用いてセラミックスラリを調製し、次いで、セラミックスラリをドクターブレード法やダイコータ法などのシート成形法を用いて基材上にセラミックグリーンシートを形成する。セラミックグリーンシートの厚みは誘電体層5の高容量化のための薄層化、高絶縁性を維持するという点で1〜3μmが好ましい。   First, a ceramic slurry is prepared by using a ball mill or the like together with a dielectric powder, an organic resin such as polyvinyl butyral resin, a solvent such as toluene and alcohol, and then the ceramic slurry is subjected to a sheet molding method such as a doctor blade method or a die coater method. A ceramic green sheet is formed on the substrate. The thickness of the ceramic green sheet is preferably 1 to 3 μm from the viewpoint of reducing the thickness of the dielectric layer 5 to increase the capacity and maintaining high insulation.

本発明の積層セラミックコンデンサの製法で用いる誘電体粉末は、チタン酸バリウム粉末としてBaTiOで表されるBT粉末と、Baの一部がCaで置換されたチタン酸バリウムカルシウムとしてBa1−xCaTiO粉末(x=0.01〜0.2:BCT粉末)で表されるBCT粉末との混合粉末を用いる。 The dielectric powder used in the manufacturing method of the multilayer ceramic capacitor of the present invention includes BT powder represented by BaTiO 3 as barium titanate powder, and Ba 1-x Ca as barium calcium titanate in which a part of Ba is substituted with Ca. Mixed powder with BCT powder represented by x TiO 3 powder (x = 0.01 to 0.2: BCT powder) is used.

特に、これらBT粉末およびBCT粉末は、その構成成分であるBaおよびCaの合計含有量をAモル、Tiの含有量をBモルとしたときに、モル比A/Bが1.003以上であることが望ましく、これにより第1、第2結晶粒子9a,9bの粒成長を抑制でき、このため高絶縁性となり高温負荷寿命を向上でき、DCバイアス特性を向上できる。   In particular, these BT powders and BCT powders have a molar ratio A / B of 1.003 or more when the total content of the constituent components Ba and Ca is A mol and the content of Ti is B mol. It is desirable that the grain growth of the first and second crystal grains 9a and 9b can be suppressed, and therefore, high insulation can be achieved, the high temperature load life can be improved, and the DC bias characteristics can be improved.

また、BT粉末およびBCT粉末の平均粒径は0.1〜0.2μmであることが望ましい。これにより誘電体層5の薄層化を容易にし、BT粉末およびBCT粉末として、後述する焼成条件により高誘電率かつDCバイアス特性に適した結晶粒子9a,9bとすることが可能になる。   The average particle size of the BT powder and BCT powder is preferably 0.1 to 0.2 μm. This facilitates thinning of the dielectric layer 5 and allows the BT powder and BCT powder to be made into crystal particles 9a and 9b suitable for high dielectric constant and DC bias characteristics under the firing conditions described later.

次に、BT粉末またはBCT粉末あるいはこれらの混合粉末に、誘電体磁器の耐還元性を向上させるとともに誘電特性を高めるための添加剤として、BT粉末またはBCT粉末の合計量を100モルとしたときに、MgO粉末0.2〜1モル、MnOとして、MnCO粉末を0.2〜0.5モル、Ho粉末,Y粉末,Er粉末,Tm粉末,Yb粉末およびLu粉末から選ばれる1種の第1希土類元素(RE)およびSm粉末,Eu粉末,Gd粉末,TbおよびDy粉末から選ばれる1種の第2希土類元素(RE)の粉末を合計で0.7〜3モル添加する。 Next, when the total amount of the BT powder or BCT powder is 100 mol as an additive for improving the reduction resistance of the dielectric ceramic and enhancing the dielectric property to the BT powder or BCT powder or a mixed powder thereof. In addition, 0.2 to 1 mol of MgO powder, 0.2 to 0.5 mol of MnCO 3 powder as MnO, Ho 2 O 3 powder, Y 2 O 3 powder, Er 2 O 3 powder, Tm 2 O 3 powder , Yb 2 O 3 powder and Lu 2 O 3 powder, one kind of first rare earth element (RE) and Sm 2 O 3 powder, Eu 2 O 3 powder, Gd 2 O 3 powder, Tb 2 O 3 and Dy A total of 0.7 to 3 mol of a powder of a second rare earth element (RE) selected from 2 O 3 powder is added.

なお、本発明では、所望の誘電特性を維持できる範囲であれば、マグネシウム、第1希土類元素、第2希土類元素およびマンガン等の成分の他に、焼結性を高めるための助剤としてガラス成分を含有させても良く、この場合、焼結助剤の添加量はBCT粉末とBT粉末の混合物である誘電体粉末100質量部に対して0.5〜2質量部であること好ましい。これによりが誘電体磁器の焼結性をより高めることができる。その組成は、LiO=1〜15モル%、SiO=40〜60モル%、BaO=15〜35モル%、およびCaO=5〜25モル%が好ましい。また、焼結助剤として用いるガラス粉末の平均粒径は誘電体粉末に添加したときの分散性を高めるという理由から0.1〜0.3μmの範囲が好適である。 In the present invention, as long as desired dielectric characteristics can be maintained, in addition to components such as magnesium, first rare earth element, second rare earth element and manganese, a glass component as an auxiliary agent for enhancing sinterability. In this case, the addition amount of the sintering aid is preferably 0.5 to 2 parts by mass with respect to 100 parts by mass of the dielectric powder which is a mixture of the BCT powder and the BT powder. This can further enhance the sinterability of the dielectric ceramic. The composition is preferably Li 2 O = 1-15 mol%, SiO 2 = 40-60 mol%, BaO = 15-35 mol%, and CaO = 5-25 mol%. The average particle size of the glass powder used as a sintering aid is preferably in the range of 0.1 to 0.3 μm because it increases the dispersibility when added to the dielectric powder.

次に、得られたセラミックグリーンシートの主面上に矩形状の内部電極パターンを印刷して形成する。内部電極パターンとなる導体ペーストは、Niもしくはこれらの合金粉末を主成分金属とし、これに共材としてのセラミック粉末を混合し、有機バインダ、溶剤および分散剤を添加して調製する。また、セラミックグリーンシート上の内部電極パターンによる段差を解消するために、内部電極パターンの周囲にセラミックパターンを内部電極パターンと実質的に同一厚みで形成することが好ましい。この場合、セラミックパターンを構成するセラミック成分は、同時焼成での焼成収縮を同じにするという点でセラミックグリーンシートに用いた誘電体粉末を用いることが好ましい。   Next, a rectangular internal electrode pattern is printed and formed on the main surface of the obtained ceramic green sheet. The conductor paste used as the internal electrode pattern is prepared by mixing Ni or an alloy powder thereof as a main component metal, mixing ceramic powder as a co-material with this, and adding an organic binder, a solvent and a dispersant. Further, in order to eliminate the step due to the internal electrode pattern on the ceramic green sheet, it is preferable to form the ceramic pattern with substantially the same thickness as the internal electrode pattern around the internal electrode pattern. In this case, it is preferable to use the dielectric powder used for the ceramic green sheet as the ceramic component constituting the ceramic pattern in that the firing shrinkage in the simultaneous firing is the same.

次に、内部電極パターンが形成されたセラミックグリーンシートを所望枚数重ねて、その上下に内部電極パターンを形成していないセラミックグリーンシートを複数枚、上下層が同じ枚数になるように重ねて仮積層体を形成する。仮積層体中における内部電極パターンは長寸方向に半パターンずつずらしてある。このような積層工法により切断後の積層体の端面に内部電極パターンが交互に露出されるように形成できる。   Next, a desired number of ceramic green sheets with internal electrode patterns are stacked, and a plurality of ceramic green sheets without internal electrode patterns are stacked on top and bottom of the ceramic green sheets so that the upper and lower layers have the same number. Form the body. The internal electrode patterns in the temporary laminate are shifted by half patterns in the longitudinal direction. By such a laminating method, the internal electrode pattern can be formed so as to be alternately exposed on the end face of the cut laminate.

なお、本発明の積層セラミックコンデンサは、セラミックグリーンシートの主面に内部電極パターンを予め形成した後に積層する工法の他に、セラミックグリーンシートを一旦下層側の機材に密着させた後に、内部電極パターンを印刷し、乾燥させ、印刷、乾燥された内部電極パターン上に、内部電極パターンを印刷していないセラミックグリーンシートを重ねて仮密着させ、セラミックグリーンシートの密着と内部電極パターンの印刷を逐次行う工法によっても形成できる。   The multilayer ceramic capacitor of the present invention has a method of laminating after the internal electrode pattern is formed in advance on the main surface of the ceramic green sheet. Is printed, dried, and the ceramic green sheet without the internal electrode pattern printed thereon is temporarily adhered to the printed and dried internal electrode pattern, and the adhesion of the ceramic green sheet and the printing of the internal electrode pattern are sequentially performed. It can also be formed by a construction method.

次に、仮積層体を上記仮積層時の温度圧力よりも高温、高圧の条件にてプレスを行い、セラミックグリーンシートと内部電極パターンとが強固に密着された積層体を形成する。   Next, the temporary laminate is pressed under conditions of higher temperature and higher pressure than the temperature and pressure at the time of temporary lamination to form a laminate in which the ceramic green sheet and the internal electrode pattern are firmly adhered.

次に、積層体を格子状に切断することにより内部電極パターンの端部が露出するコンデンサ本体成形体を形成する。   Next, the capacitor body molded body in which the end portions of the internal electrode patterns are exposed is formed by cutting the laminate into a lattice shape.

次に、コンデンサ本体成形体を、所定の雰囲気下、温度条件で焼成してコンデンサ本体1を形成する。場合によっては、コンデンサ本体1の稜線部分の面取りを行うとともに、コンデンサ本体1の対向する端面から露出する内部電極層7を露出させるためにバレル研磨を施しても良い。   Next, the capacitor body 1 is formed by firing the capacitor body molded body in a predetermined atmosphere under temperature conditions. In some cases, the ridge line portion of the capacitor body 1 may be chamfered, and barrel polishing may be performed to expose the internal electrode layer 7 exposed from the opposite end surface of the capacitor body 1.

次に、得られたコンデンサ本体成形体を脱脂した後、焼成する。焼成は、昇温速度を1000〜1600℃/hとし、最高温度を1040〜1200℃、保持時間を0.1〜4時間とし、水素−窒素の雰囲気中にて行うことが望ましく、特に、昇温速度を1200〜1500℃/hとし、最高温度が1050〜1150℃がより望ましい。この後、900〜1100℃の温度範囲で再酸化処理を行うことによってコンデンサ本体1を得る。焼成をこのような条件で行うことにより、誘電体層5を構成する結晶粒子9の平均粒径を0.18〜0.3μmの範囲とし、第1の結晶群を構成する結晶粒子9aの平均粒径が第2の結晶群を構成する結晶粒子9bの平均粒径よりも小さい結晶粒子9a、9bを有するとともに、b/(a+b)が0.5〜0.8である誘電体磁器を誘電体層5として有するコンデンサ本体1を得ることができる。   Next, the obtained capacitor body molded body is degreased and fired. Firing is preferably performed in a hydrogen-nitrogen atmosphere at a temperature rising rate of 1000 to 1600 ° C./h, a maximum temperature of 1040 to 1200 ° C., a holding time of 0.1 to 4 hours, The temperature rate is 1200 to 1500 ° C./h, and the maximum temperature is more preferably 1050 to 1150 ° C. Then, the capacitor body 1 is obtained by performing reoxidation treatment in the temperature range of 900 to 1100 ° C. By performing the firing under such conditions, the average particle diameter of the crystal particles 9 constituting the dielectric layer 5 is in the range of 0.18 to 0.3 μm, and the average of the crystal grains 9a constituting the first crystal group is set. Dielectric porcelain having crystal grains 9a and 9b having a grain size smaller than the average grain size of crystal grains 9b constituting the second crystal group and having b / (a + b) of 0.5 to 0.8 The capacitor body 1 having the body layer 5 can be obtained.

次に、このコンデンサ本体1の対向する端部に、外部電極ペーストを塗布して焼付けを行い外部電極3を形成する。また、場合によっては、この外部電極3の表面に実装性を高めるためにメッキ膜を形成する。こうして本発明の積層セラミックコンデンサを得られる。   Next, an external electrode paste is applied to the opposing ends of the capacitor body 1 and baked to form the external electrodes 3. In some cases, a plating film is formed on the surface of the external electrode 3 in order to improve mountability. Thus, the multilayer ceramic capacitor of the present invention can be obtained.

まず、原料粉末として、BT粉末,BCT粉末(組成は(Ba1−xCa)TiO、 X=0.05),MgO粉末,MnCO粉末,Ho粉末,Y粉末,Er2O粉末,Tm粉末,Yb粉末,Lu粉末,Sm粉末,Eu粉末,Gd粉末,TbおよびDy粉末を準備した。これらの各種粉末を表1,2に示す割合で混合した。ただし、MgO粉末,MnCO粉末,Ho粉末,Y粉末,Er粉末,Tm粉末,Yb粉末,Lu粉末,Sm粉末,Eu粉末,Gd粉末,TbおよびDy粉末の割合はBT粉末およびBCT粉末の合計量を100モルとしたときの割合である。BT粉末およびBCT粉末は、いずれもBaおよびCaの合計含有量をAモル、Tiの含有量をBモルとしたときに、モル比A/Bが1.005のものを用いた。これらの原料粉末はいずれも純度が99.9%であり、MgO粉末,MnCO粉末,Ho粉末,Y粉末,Er粉末,Tm粉末,Yb粉末,Lu粉末,Sm粉末,Eu粉末,Gd粉末,TbおよびDy粉末は平均粒径が0.1μmのものを用いた。また、焼結助剤としてSiO=55,BaO=20,CaO=15,LiO=10(モル%)組成のガラス粉末を用いた。ガラス粉末の添加量はBT粉末およびBCT粉末の合計100質量部に対して1質量部とした。 First, as the raw material powder, BT powder, BCT powder (composition (Ba 1-x Ca x) TiO 3, X = 0.05), MgO powder, MnCO 3 powder, Ho 2 O 3 powder, Y 2 O 3 powder , Er2O 3 powder, Tm 2 O 3 powder, Yb 2 O 3 powder, Lu 2 O 3 powder, Sm 2 O 3 powder, Eu 2 O 3 powder, Gd 2 O 3 powder, Tb 2 O 3 and Dy 2 O 3 A powder was prepared. These various powders were mixed in the ratios shown in Tables 1 and 2. However, MgO powder, MnCO 3 powder, Ho 2 O 3 powder, Y 2 O 3 powder, Er 2 O 3 powder, Tm 2 O 3 powder, Yb 2 O 3 powder, Lu 2 O 3 powder, Sm 2 O 3 powder , Eu 2 O 3 powder, Gd 2 O 3 powder, Tb 2 O 3 and Dy 2 O 3 powder are ratios when the total amount of BT powder and BCT powder is 100 mol. As the BT powder and the BCT powder, those having a molar ratio A / B of 1.005 when the total content of Ba and Ca was A mol and the content of Ti was B mol were used. These raw material powders all have a purity of 99.9%, and are MgO powder, MnCO 3 powder, Ho 2 O 3 powder, Y 2 O 3 powder, Er 2 O 3 powder, Tm 2 O 3 powder, Yb 2 O. 3 powder, Lu 2 O 3 powder, Sm 2 O 3 powder, Eu 2 O 3 powder, Gd 2 O 3 powder, Tb 2 O 3 and Dy 2 O 3 powder having an average particle diameter of 0.1 μm were used. . Further, a glass powder having the composition SiO 2 = 55, BaO = 20 , CaO = 15, Li 2 O = 10 as a sintering aid (mol%). The addition amount of the glass powder was 1 part by mass with respect to a total of 100 parts by mass of the BT powder and BCT powder.

次に、これらの原料粉末を直径1mmのジルコニアボールを用いて、溶媒としてトルエンとアルコールとからなる混合溶媒を添加し湿式混合した。   Next, these raw material powders were wet mixed using a zirconia ball having a diameter of 1 mm and a mixed solvent consisting of toluene and alcohol as a solvent.

次に、湿式混合した粉末を、ポリビニルブチラール樹脂と、トルエンおよびアルコールの混合溶媒中に投入し、直径1mmのジルコニアボールを用いて湿式混合してセラミックスラリを調製し、ドクターブレード法により厚み2μmのセラミックグリーンシートを作製した。   Next, the wet-mixed powder is put into a mixed solvent of polyvinyl butyral resin and toluene and alcohol, and wet-mixed using a zirconia ball having a diameter of 1 mm to prepare a ceramic slurry, and a thickness of 2 μm is obtained by a doctor blade method. A ceramic green sheet was prepared.

次に、このセラミックグリーンシートの上面にNiを主成分とする導体ペーストを矩形状の内部電極パターンとなるように複数形成した。内部電極パターンを形成するための導体ペーストは、平均粒径が0.3μmのNi粉末100質量部に対してBT粉末を添加したものを用いた。   Next, a plurality of conductive pastes containing Ni as a main component were formed on the upper surface of the ceramic green sheet so as to form a rectangular internal electrode pattern. The conductor paste for forming the internal electrode pattern was obtained by adding BT powder to 100 parts by mass of Ni powder having an average particle size of 0.3 μm.

次に、内部電極パターンを印刷したセラミックグリーンシートを200枚積層し、その上下面に内部電極パターンを印刷していないセラミックグリーンシートをそれぞれ20枚積層し、プレス機を用いて温度60℃、圧力10Pa、時間10分の条件で密着させて積層体を作製し、しかる後、この積層体を、所定の寸法に切断してコンデンサ本体成形体を形成した。 Next, 200 ceramic green sheets on which internal electrode patterns were printed were laminated, and 20 ceramic green sheets on which the internal electrode patterns were not printed were laminated on the upper and lower surfaces, respectively, using a press machine at a temperature of 60 ° C. and pressure A laminated body was prepared by closely adhering under conditions of 10 7 Pa and time 10 minutes, and then the laminated body was cut into a predetermined size to form a capacitor body molded body.

次に、コンデンサ本体成形体を大気中で脱バインダ処理した後、水素−窒素中、1040〜1200℃で焼成してコンデンサ本体を作製した。この焼成では、ローラーハースキルンを用いて、昇温速度を1000〜2000℃/hとした条件の場合と、従来のトンネル焼成炉を用いて、昇温速度を300℃/hとした条件の焼成を行った。作製したコンデンサ本体は、続いて、窒素雰囲気中1000℃で4時間再酸化処理を行った。このコンデンサ本体の大きさは0.95×0.48×0.48mm、誘電体層の厚みは1.5μm、内部電極層の1層の有効面積は0.3mmであった。なお、有効面積とは、コンデンサ本体の異なる端面にそれぞれ露出するように積層方向に交互に形成された内部電極層同士の重なる部分の面積のことである。 Next, the capacitor body molded body was treated to remove the binder in the air and then fired at 1040 to 1200 ° C. in hydrogen-nitrogen to produce a capacitor body. In this firing, a roller hearth kiln is used under conditions where the temperature rise rate is 1000 to 2000 ° C./h, and a conventional tunnel firing furnace is used under conditions where the temperature rise rate is 300 ° C./h. Went. The produced capacitor body was subsequently reoxidized at 1000 ° C. for 4 hours in a nitrogen atmosphere. The size of the capacitor body was 0.95 × 0.48 × 0.48 mm 3 , the thickness of the dielectric layer was 1.5 μm, and the effective area of one internal electrode layer was 0.3 mm 2 . The effective area is the area of the overlapping portion of the internal electrode layers that are alternately formed in the stacking direction so as to be exposed at different end faces of the capacitor body.

次に、コンデンサ本体をバレル研磨した後、コンデンサ本体の両端部にCu粉末とガラスとを含んだ外部電極ペーストを塗布し、850℃で焼き付けを行って外部電極を形成した。その後、電解バレル機を用いて、この外部電極の表面に、順にNiメッキ及びSnメッキを行い、積層セラミックコンデンサを作製した。   Next, after barrel-polishing the capacitor body, an external electrode paste containing Cu powder and glass was applied to both ends of the capacitor body and baked at 850 ° C. to form external electrodes. Thereafter, using an electrolytic barrel machine, Ni plating and Sn plating were sequentially performed on the surface of the external electrode to produce a multilayer ceramic capacitor.

次に、これらの積層セラミックコンデンサについて以下の評価を行った。室温(25℃)における比誘電率は静電容量をLCRメータ(ヒューレットパッカード社製)を用いて、温度25℃、周波数1.0kHz、測定電圧を1Vrmsとして測定し、誘電体層の厚みと内部電極層の有効面積から求めた。また、比誘電率の温度特性は静電容量を温度−55〜85℃の範囲で測定した。比誘電率の温度特性はX5R(−55〜85℃の範囲において、25℃を基準にしたときに±15%以内)を満足する場合を○、満足しない場合を×とした。高温負荷試験は、温度85℃、印加電圧6V、1000時間の条件で行った。高温負荷試験での試料数は各試料20個とし、1000時間までショートの無いものを良品とした。   Next, the following evaluation was performed on these multilayer ceramic capacitors. The relative dielectric constant at room temperature (25 ° C.) was measured using an LCR meter (manufactured by Hewlett-Packard) with a capacitance of 25 ° C., a frequency of 1.0 kHz, and a measurement voltage of 1 Vrms. It calculated | required from the effective area of the electrode layer. Moreover, the temperature characteristic of the relative dielectric constant was measured by measuring the capacitance in the range of temperature -55 to 85 ° C. As for the temperature characteristic of the relative dielectric constant, a case where X5R (within ± 15% with respect to 25 ° C. in the range of −55 to 85 ° C.) was satisfied was evaluated as “◯”, and a case where it was not satisfied was evaluated as “X”. The high temperature load test was performed under conditions of a temperature of 85 ° C., an applied voltage of 6 V, and 1000 hours. The number of samples in the high-temperature load test was 20 for each sample, and those that did not have a short circuit up to 1000 hours were regarded as non-defective products.

DCバイアス特性の測定は、作製した積層セラミックコンデンサに3Vの直流電圧を印加して、静電容量を測定し、直流電圧無印加時の静電容量をc1、3V印加時の静電容量をc2としたときに、((c1−c2)/c1)×100(%)から求めた。   The DC bias characteristics are measured by applying a DC voltage of 3V to the manufactured multilayer ceramic capacitor, measuring the capacitance, c1 when no DC voltage is applied, and c2 when applying 3V. It was calculated from ((c1-c2) / c1) × 100 (%).

誘電体層を構成する結晶粒子の平均粒径は、焼成後のコンデンサ本体である試料の破断面を研磨した後、走査型電子顕微鏡を用いて内部組織の写真を撮り、その写真上で結晶粒子が30個入る円を描き、円内および円周にかかった結晶粒子を選択し、各結晶粒子の輪郭を画像処理し、各粒子の面積を求め、同じ面積を持つ円に置き換えたときの直径を算出し、その平均値より求めた。   The average particle size of the crystal particles constituting the dielectric layer is determined by polishing the fracture surface of the sample that is the capacitor body after firing, and then taking a picture of the internal structure using a scanning electron microscope. Draw a circle that contains 30 circles, select the crystal particles that fall within and around the circle, image the outline of each crystal particle, determine the area of each particle, and replace it with a circle with the same area Was calculated from the average value.

また、結晶粒子中のカルシウムの濃度については、積層セラミックコンデンサを構成する誘電体層5の断面を研磨した研磨面に存在する約30個の結晶粒子に対して、元素分析機器を付設した透過型電子顕微鏡を用いて元素分析を行った。このとき電子線のスポットサイズは3nmとし、分析する箇所は結晶粒子の粒界付近から中心へ向けて引いた直線上のうち粒界からほぼ等間隔に4〜5点とし、これら分析した値の平均値を求めた。この場合、結晶粒子の各測定点から検出されるBa、Ti、Ca、Mg、第1,第2希土類元素およびMnの全量を100%としたときのCaの割合をCa濃度として求めた。   Further, regarding the concentration of calcium in the crystal particles, a transmission type in which element analysis equipment is attached to about 30 crystal particles existing on the polished surface obtained by polishing the cross section of the dielectric layer 5 constituting the multilayer ceramic capacitor. Elemental analysis was performed using an electron microscope. At this time, the spot size of the electron beam is set to 3 nm, and the location to be analyzed is 4 to 5 points at approximately equal intervals from the grain boundary on the straight line drawn from the vicinity of the grain boundary toward the center. The average value was obtained. In this case, the ratio of Ca when the total amount of Ba, Ti, Ca, Mg, the first and second rare earth elements and Mn detected from each measurement point of the crystal particles was 100% was determined as the Ca concentration.

このカルシウムの濃度を求めるための結晶粒子は、その写真上で結晶粒子が20〜50個入る円を描き、円内および円周にかかった結晶粒子を選択し、各結晶粒子の輪郭から画像処理にて各粒子の面積を求め、同じ面積をもつ円に置き換えたときの直径を算出し、求めた結晶粒子の直径が、前述した方法で求められる平均粒径の±50%の範囲にある結晶粒子とした。なお、結晶粒子の中心は、当該結晶粒子の内接円の中心であり、また、結晶粒子の粒界付近とは、当該結晶粒子の粒界から5nm内側までの領域のことである。そして、結晶粒子の内接円は、透過電子顕微鏡にて映し出されている画像をコンピュータに取り込んで、その画面上で結晶粒子に対して内接円を描き、結晶粒子の中心を決定した。   The crystal particles for determining the calcium concentration are drawn on a circle of 20 to 50 crystal particles on the photograph, and the crystal particles in and around the circle are selected, and image processing is performed from the outline of each crystal particle. The diameter of each particle is obtained by calculating the diameter when replaced with a circle having the same area, and the obtained crystal particle diameter is in the range of ± 50% of the average particle diameter obtained by the method described above. Particles were used. Note that the center of the crystal grain is the center of the inscribed circle of the crystal grain, and the vicinity of the grain boundary of the crystal grain is a region from the grain boundary of the crystal grain to the inside of 5 nm. For the inscribed circle of the crystal particles, an image projected by a transmission electron microscope was taken into a computer, and an inscribed circle was drawn on the crystal particles on the screen to determine the center of the crystal particles.

次に、カルシウムの濃度を評価した結晶粒子から、第1結晶粒子および第2結晶粒子における個数比(b/a+b)を求めた。   Next, the number ratio (b / a + b) between the first crystal particles and the second crystal particles was determined from the crystal particles whose calcium concentration was evaluated.

また、得られた焼結体である試料の組成分析はICP(Inductively Coupled Plasma)分析もしくは原子吸光分析により行った。この場合、得られた誘電体磁器を硼酸と炭酸ナトリウムと混合し溶融させたものを塩酸に溶解させて、まず、原子吸光分析により誘電体磁器に含まれる元素の定性分析を行い、次いで、特定した各元素について標準液を希釈したものを標準試料として、ICP発光分光分析にかけて定量化した。また、各元素の価数を周期表に示される価数として酸素量を求めた。   Moreover, the composition analysis of the sample which is the obtained sintered body was performed by ICP (Inductively Coupled Plasma) analysis or atomic absorption analysis. In this case, the obtained dielectric porcelain mixed with boric acid and sodium carbonate and dissolved in hydrochloric acid is first subjected to qualitative analysis of the elements contained in the dielectric porcelain by atomic absorption spectrometry, and then specified. The diluted standard solution for each element was used as a standard sample and quantified by ICP emission spectroscopic analysis. Further, the amount of oxygen was determined using the valence of each element as the valence shown in the periodic table.

調合組成および焼成条件を表1〜4に、焼結体中の各元素の酸化物換算での組成を表5〜8に、および焼成後の第1,第2結晶粒子およびこれらを合わせた平均粒径、第1,第2結晶粒子の比率(b/a+b)、特性(比誘電率、比誘電率(静電容量の温度特性から求められる)の温度特性、DCバイアス特性,高温負荷試験での寿命の結果を表9〜12にそれぞれ示す。   The composition and firing conditions are shown in Tables 1 to 4, the composition of each element in the sintered body in terms of oxides is shown in Tables 5 to 8, and the first and second crystal particles after firing and the average of these combined Particle size, ratio of first and second crystal particles (b / a + b), characteristics (relative permittivity, relative permittivity (determined from temperature characteristics of capacitance)), DC bias characteristics, high temperature load test Tables 9 to 12 show the results of the lifetimes.

Figure 2009238885
Figure 2009238885

Figure 2009238885
Figure 2009238885

Figure 2009238885
Figure 2009238885

Figure 2009238885
Figure 2009238885

Figure 2009238885
Figure 2009238885

Figure 2009238885
Figure 2009238885

Figure 2009238885
Figure 2009238885

Figure 2009238885
Figure 2009238885

Figure 2009238885
Figure 2009238885

Figure 2009238885
Figure 2009238885

Figure 2009238885
Figure 2009238885

Figure 2009238885
Figure 2009238885

表1〜12の結果から明らかなように、本発明の試料No.4〜11,16〜32,35〜38,41〜52,64〜66,69,70および73〜75では、室温(25℃)における比誘電率を3500以上、比誘電率の温度特性がX5R(25℃を基準にしたときの比誘電率の温度変化率が−55〜85℃において±15%)を満足し、3Vの直流を印加するDCバイアス測定において、直流電圧無印加の静電容量値を基準としたとき、3V印可での静電容量値の低下率が30%以下であり、さらに、高温負荷試験(温度:85℃、電圧:定格電圧の1.5倍、試験時間:1000時間)において不良の無い高信頼性の積層セラミックコンデンサを得ることができた。   As is clear from the results in Tables 1 to 12, the sample No. 4 to 11, 16 to 32, 35 to 38, 41 to 52, 64 to 66, 69, 70 and 73 to 75, the relative dielectric constant at room temperature (25 ° C.) is 3500 or more, and the temperature characteristic of the relative dielectric constant is X5R. (The rate of change in temperature of relative permittivity with respect to 25 ° C. is ± 15% at −55 to 85 ° C.), and in DC bias measurement in which a DC voltage of 3 V is applied, no DC voltage is applied. When the value is used as a reference, the decrease rate of the capacitance value when 3 V is applied is 30% or less, and further, a high temperature load test (temperature: 85 ° C., voltage: 1.5 times the rated voltage, test time: 1000) A highly reliable monolithic ceramic capacitor free from defects in time) could be obtained.

また、誘電体磁器を構成する結晶粒子の平均粒径を0.22〜0.27μmとした試料No.4〜10,16〜32,36,37,41〜52,64〜66,69,70および73〜75では、比誘電率の温度特性および高温負荷試験での寿命特性を満足しつつ、室温(25℃)における比誘電率を3570以上、かつDCバイアス特性の測定における静電容量値の低下率を29%以下に抑えることができた。   Sample Nos. 1 and 2 having an average particle size of 0.22 to 0.27 μm of the crystal grains constituting the dielectric ceramic were used. 4 to 10, 16 to 32, 36, 37, 41 to 52, 64 to 66, 69, 70 and 73 to 75, while satisfying the temperature characteristics of the relative permittivity and the life characteristics in the high temperature load test, The relative dielectric constant at 25 ° C. was 3570 or more, and the decrease rate of the capacitance value in the measurement of the DC bias characteristic was suppressed to 29% or less.

また、第1の結晶群を構成する結晶粒子の平均粒径と第2の結晶群を構成する結晶粒子との差を0.1μm以上とした試料No.4〜10,16〜32,36,37,38,41〜52,64〜66,69,73および74では、室温(25℃)における比誘電率を3600以上、比誘電率の温度特性および高温負荷試験(温度:85℃、電圧:定格電圧の1.5倍、試験時間:1000時間)における寿命特性を満足しつつ、DCバイアス特性の測定における容量変化率を28%以下に抑えることができた。   In addition, the sample No. 1 in which the difference between the average particle diameter of the crystal grains constituting the first crystal group and the crystal grains constituting the second crystal group was 0.1 μm or more. 4 to 10, 16 to 32, 36, 37, 38, 41 to 52, 64 to 66, 69, 73 and 74, the relative dielectric constant at room temperature (25 ° C.) is 3600 or more, the temperature characteristics of the relative dielectric constant and the high temperature While satisfying the life characteristics in the load test (temperature: 85 ° C, voltage: 1.5 times the rated voltage, test time: 1000 hours), the capacity change rate in the measurement of DC bias characteristics can be suppressed to 28% or less. It was.

また、誘電体磁器の組成を、チタン酸バリウムを構成するチタン100モルに対して、マグネシウムをMgO換算で0.5〜1モル、マンガンをMnO換算で0.2〜0.4モル、第1希土類元素(RE)としてイットリウムをY換算で0.6〜0.8モル、および第2希土類元素(RE)としてテルビウムをTb換算で0.2〜0.5モル含有させ、さらに、第1の結晶群を構成する結晶粒子および第2の結晶群を構成する結晶粒子の平均粒径を0.23〜0.27μmとし、かつb/(a+b)を0.6〜0.8とした試料No.7〜9,36,64,65,73および74では、比誘電率の温度特性および高温負荷試験(温度:85℃、電圧:定格電圧の1.5倍、試験時間:1000時間)における寿命特性を満足しつつ、室温(25℃)における比誘電率を3800以上、かつDCバイアス特性における容量変化率を28%以下に抑えることができた。 Further, the composition of the dielectric porcelain is 0.5 to 1 mol in terms of MgO and 0.2 to 0.4 mol in terms of MnO with respect to 100 mol of titanium constituting barium titanate. As a rare earth element (RE), yttrium is contained in an amount of 0.6 to 0.8 mol in terms of Y 2 O 3 , and terbium is contained as a second rare earth element (RE) in an amount of 0.2 to 0.5 mol in terms of Tb 2 O 3. Furthermore, the average grain size of the crystal grains constituting the first crystal group and the crystal grains constituting the second crystal group is set to 0.23 to 0.27 μm, and b / (a + b) is set to 0.6 to 0. Sample No. 8 7 to 9, 36, 64, 65, 73 and 74, the temperature characteristics of the dielectric constant and the life characteristics in the high temperature load test (temperature: 85 ° C., voltage: 1.5 times the rated voltage, test time: 1000 hours) The relative dielectric constant at room temperature (25 ° C.) was 3800 or more and the capacitance change rate in the DC bias characteristics was suppressed to 28% or less.

これに対して、本発明の範囲外の試料No.1〜3,12〜15,33,34,39,40,53〜63,67,68,71,72および76では、室温(25℃)における比誘電率を3500以上、比誘電率の温度特性がX5R(25℃を基準にしたときの比誘電率の温度変化率が−55〜85℃において±15%以内)を満足すること、3Vの直流を印加するDCバイアス測定において、直流電圧無印加の静電容量値を基準としたとき、3V印可での静電容量値の低下率が30%以下および高温負荷試験(温度:85℃、電圧:定格電圧の1.5倍、試験時間:1000時間)にて不良無し、のいずれかの特性を満足しないものであった。   On the other hand, sample no. 1 to 3, 12 to 15, 33, 34, 39, 40, 53 to 63, 67, 68, 71, 72, and 76, the relative dielectric constant at room temperature (25 ° C.) is 3500 or more, and the temperature characteristics of the relative dielectric constant Satisfies X5R (temperature change rate of relative permittivity with respect to 25 ° C. is within ± 15% at −55 to 85 ° C.) In DC bias measurement applying 3 V DC, no DC voltage is applied When the capacitance value is 3V, the decrease rate of the capacitance value at 3 V applied is 30% or less and a high temperature load test (temperature: 85 ° C., voltage: 1.5 times the rated voltage, test time: 1000) Any of the following characteristics were not satisfied.

本発明の積層セラミックコンデンサの例を示す概略断面図である。It is a schematic sectional drawing which shows the example of the multilayer ceramic capacitor of this invention. 図1の例の積層セラミックコンデンサを構成する誘電体層の拡大図であり、結晶粒子および粒界相を示す模式図である。FIG. 2 is an enlarged view of a dielectric layer constituting the multilayer ceramic capacitor of the example of FIG. 1, and is a schematic diagram showing crystal grains and grain boundary phases.

符号の説明Explanation of symbols

1 コンデンサ本体
3 外部電極
5 誘電体層
7 内部電極層
9 結晶粒子
9a 第1結晶粒子
9b 第2結晶粒子
11 粒界相
DESCRIPTION OF SYMBOLS 1 Capacitor body 3 External electrode 5 Dielectric layer 7 Internal electrode layer 9 Crystal grain 9a 1st crystal grain 9b 2nd crystal grain 11 Grain boundary phase

Claims (4)

チタン酸バリウムを主成分とする誘電体磁器からなる誘電体層と内部電極層とが交互に積層されたコンデンサ本体と、該コンデンサ本体の前記内部電極層が露出した端面に設けられた外部電極とを具備する積層セラミックコンデンサにおいて、前記誘電体磁器は、前記チタン酸バリウムを構成するチタン100モルに対して、マグネシウムをMgO換算で0.2〜1モル、マンガンをMnO換算で0.2〜0.5モル、ホルミウム,イットリウム,エルビウム,ツリウム,イッテルビウムおよびルテチウムの群から選ばれる1種の第1希土類元素(RE)およびサマリウム,ユーロピウム,ガドリニウム,テルビウムおよびジスプロシウムの群から選ばれる1種の第2希土類元素(RE)をRE換算した合計で0.7〜3モル含有するとともに、主結晶相として、前記チタン酸バリウムを主成分とし、カルシウムの濃度が0.2原子%以下の第1結晶粒子からなる第1の結晶群と、前記チタン酸バリウムを主成分とし、カルシウムの濃度が0.4原子%以上の第2結晶粒子からなる第2の結晶群とを有し、前記第1結晶粒子および前記第2結晶粒子の平均粒径が0.18〜0.3μmであり、前記第1結晶粒子の平均粒径が前記第2結晶粒子の平均粒径より0.05μm以上小さく、かつ前記誘電体磁器の研磨面における3μm×3μmの領域内に見られる前記第1結晶粒子の個数をa、第2結晶粒子9bの個数をbとしたときに、b/(a+b)が0.5〜0.8であることを特徴とする積層セラミックコンデンサ。 A capacitor body in which dielectric layers composed of dielectric ceramics mainly composed of barium titanate and internal electrode layers are alternately laminated; and an external electrode provided on an end surface of the capacitor body where the internal electrode layer is exposed; In the multilayer ceramic capacitor, the dielectric ceramic is 0.2 to 1 mol in terms of MgO and 0.2 to 0 in terms of MnO with respect to 100 mol of titanium constituting the barium titanate. .5 mol, one first rare earth element (RE) selected from the group of holmium, yttrium, erbium, thulium, ytterbium and lutetium and one second selected from the group of samarium, europium, gadolinium, terbium and dysprosium be 0.7 to 3 mol containing a rare earth element and (RE) in total in terms RE 2 O 3 In addition, as the main crystal phase, the first crystal group consisting of the first crystal particles having the barium titanate as a main component and a calcium concentration of 0.2 atomic% or less, and the barium titanate as the main component, the calcium And a second crystal group consisting of second crystal particles having a concentration of 0.4 atomic% or more, and an average particle size of the first crystal particles and the second crystal particles is 0.18 to 0.3 μm And the first crystal grains having an average particle size of 0.05 μm or more smaller than the average particle size of the second crystal particles and found in a region of 3 μm × 3 μm on the polished surface of the dielectric ceramic. A multilayer ceramic capacitor, wherein b / (a + b) is 0.5 to 0.8, where a is the number of particles and b is the number of second crystal particles 9b. 前記第1結晶粒子の平均粒径が前記第2結晶粒子の平均粒径より0.1μm以上小さいことを特徴とする請求項1に記載の積層セラミックコンデンサ。   2. The multilayer ceramic capacitor according to claim 1, wherein an average particle size of the first crystal particles is 0.1 μm or more smaller than an average particle size of the second crystal particles. 前記第1結晶粒子および前記第2結晶粒子の平均粒径が0.22〜0.27μmであることを特徴とする請求項1または請求項2に記載の積層セラミックコンデンサ。   3. The multilayer ceramic capacitor according to claim 1, wherein an average particle size of the first crystal particles and the second crystal particles is 0.22 to 0.27 μm. 4. 前記チタン酸バリウムを構成するチタン100モルに対して、前記マグネシウムをMgO換算で0.5〜1モル、前記マンガンをMnO換算で0.2〜0.4モル、第1希土類元素(RE)として前記イットリウムをY換算で0.6〜0.8モル、および第2希土類元素(RE)として前記テルビウムをTb換算で0.2〜0.5モル含有することを特徴とする請求項3に記載の積層セラミックコンデンサ。 For 100 mol of titanium constituting the barium titanate, the magnesium is 0.5 to 1 mol in terms of MgO, the manganese is 0.2 to 0.4 mol in terms of MnO, and the first rare earth element (RE) The yttrium is contained in an amount of 0.6 to 0.8 mol in terms of Y 2 O 3 , and the terbium as a second rare earth element (RE) is contained in an amount of 0.2 to 0.5 mol in terms of Tb 2 O 3. The multilayer ceramic capacitor according to claim 3.
JP2008080835A 2008-03-26 2008-03-26 Multilayer ceramic capacitor Active JP5094494B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008080835A JP5094494B2 (en) 2008-03-26 2008-03-26 Multilayer ceramic capacitor
PCT/JP2009/051556 WO2009119158A1 (en) 2008-03-26 2009-01-30 Laminated ceramic capacitor
TW98103206A TW200943338A (en) 2008-03-26 2009-02-02 Laminated ceramic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008080835A JP5094494B2 (en) 2008-03-26 2008-03-26 Multilayer ceramic capacitor

Publications (2)

Publication Number Publication Date
JP2009238885A true JP2009238885A (en) 2009-10-15
JP5094494B2 JP5094494B2 (en) 2012-12-12

Family

ID=41113368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008080835A Active JP5094494B2 (en) 2008-03-26 2008-03-26 Multilayer ceramic capacitor

Country Status (3)

Country Link
JP (1) JP5094494B2 (en)
TW (1) TW200943338A (en)
WO (1) WO2009119158A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009249257A (en) * 2008-04-09 2009-10-29 Murata Mfg Co Ltd Dielectric ceramic and laminated ceramic capacitor
KR101150406B1 (en) * 2009-10-30 2012-06-01 전자부품연구원 An inner oxide electrode material and a multilayer ceramic device having the same
US9984825B2 (en) 2015-12-24 2018-05-29 Samsung Electro-Mechanics Co., Ltd. Dielectric ceramic composition, dielectric material, and multilayer ceramic capacitor containing the same
KR20200035864A (en) * 2018-09-27 2020-04-06 가부시키가이샤 무라타 세이사쿠쇼 Multilayer ceramic capacitor

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6034145B2 (en) * 2012-07-30 2016-11-30 京セラ株式会社 Capacitor
JP6034111B2 (en) * 2012-09-27 2016-11-30 京セラ株式会社 Capacitor
JP6034136B2 (en) * 2012-10-31 2016-11-30 京セラ株式会社 Capacitor
JP6707850B2 (en) * 2015-12-11 2020-06-10 株式会社村田製作所 Multilayer ceramic capacitor and manufacturing method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002293618A (en) * 2001-03-28 2002-10-09 Nippon Chemicon Corp Dielectric ceramic composition, multilayer ceramic capacitor and production method therefor
JP2006179773A (en) * 2004-12-24 2006-07-06 Kyocera Corp Multilayer ceramic capacitor and its manufacturing method
WO2006103954A1 (en) * 2005-03-25 2006-10-05 Kyocera Corporation Laminated ceramic capacitor and process for producing the same
JP2007258661A (en) * 2005-09-28 2007-10-04 Kyocera Corp Laminated ceramic capacitor and its manufacturing method
JP2008109120A (en) * 2006-09-27 2008-05-08 Kyocera Corp Multilayer ceramic capacitor and its fabrication process

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4253869B2 (en) * 1997-12-19 2009-04-15 日本ケミコン株式会社 Dielectric porcelain composition, multilayer ceramic capacitor, and method for manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002293618A (en) * 2001-03-28 2002-10-09 Nippon Chemicon Corp Dielectric ceramic composition, multilayer ceramic capacitor and production method therefor
JP2006179773A (en) * 2004-12-24 2006-07-06 Kyocera Corp Multilayer ceramic capacitor and its manufacturing method
WO2006103954A1 (en) * 2005-03-25 2006-10-05 Kyocera Corporation Laminated ceramic capacitor and process for producing the same
JP2007258661A (en) * 2005-09-28 2007-10-04 Kyocera Corp Laminated ceramic capacitor and its manufacturing method
JP2008109120A (en) * 2006-09-27 2008-05-08 Kyocera Corp Multilayer ceramic capacitor and its fabrication process

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009249257A (en) * 2008-04-09 2009-10-29 Murata Mfg Co Ltd Dielectric ceramic and laminated ceramic capacitor
KR101150406B1 (en) * 2009-10-30 2012-06-01 전자부품연구원 An inner oxide electrode material and a multilayer ceramic device having the same
US9984825B2 (en) 2015-12-24 2018-05-29 Samsung Electro-Mechanics Co., Ltd. Dielectric ceramic composition, dielectric material, and multilayer ceramic capacitor containing the same
KR20200035864A (en) * 2018-09-27 2020-04-06 가부시키가이샤 무라타 세이사쿠쇼 Multilayer ceramic capacitor
KR102193834B1 (en) 2018-09-27 2020-12-22 가부시키가이샤 무라타 세이사쿠쇼 Multilayer ceramic capacitor

Also Published As

Publication number Publication date
TW200943338A (en) 2009-10-16
JP5094494B2 (en) 2012-12-12
WO2009119158A1 (en) 2009-10-01

Similar Documents

Publication Publication Date Title
JP4925958B2 (en) Multilayer ceramic capacitor
TWI399766B (en) Multilayer ceramic capacitor and production method of the same
JP4937068B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
JP4809152B2 (en) Multilayer ceramic capacitor
JP4999987B2 (en) Multilayer ceramic capacitor
JP5483825B2 (en) Dielectric porcelain and multilayer ceramic capacitor
JP5094494B2 (en) Multilayer ceramic capacitor
JP5121311B2 (en) Dielectric porcelain and multilayer ceramic capacitor
JP5354867B2 (en) Dielectric porcelain and multilayer ceramic capacitor
JP5558249B2 (en) Multilayer ceramic capacitor
JP4999988B2 (en) Multilayer ceramic capacitor
JP5106626B2 (en) Multilayer ceramic capacitor
JP2008135638A (en) Multilayer ceramic capacitor
JP2009051717A (en) Dielectric porcelain and multilayer ceramic capacitor
JP4771818B2 (en) Multilayer ceramic capacitor
JP2011176186A (en) Multilayer ceramic capacitor
JP2014084267A (en) Dielectric ceramic and laminated ceramic capacitor
JP2011155123A (en) Laminated ceramic capacitor
JP2011155124A (en) Multilayer ceramic capacitor
JP2011132056A (en) Laminated ceramic capacitor
JP5534976B2 (en) Multilayer ceramic capacitor
JP2005263508A (en) Dielectric ceramic composition, laminated porcelain capacitor, and method for producing the capacitor
JP2011176184A (en) Multilayer ceramic capacitor
JP5100592B2 (en) Multilayer ceramic capacitor
JP2008109019A (en) Multilayer ceramic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120821

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120918

R150 Certificate of patent or registration of utility model

Ref document number: 5094494

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150928

Year of fee payment: 3