JP2009236724A - Probe for probe card - Google Patents

Probe for probe card Download PDF

Info

Publication number
JP2009236724A
JP2009236724A JP2008084018A JP2008084018A JP2009236724A JP 2009236724 A JP2009236724 A JP 2009236724A JP 2008084018 A JP2008084018 A JP 2008084018A JP 2008084018 A JP2008084018 A JP 2008084018A JP 2009236724 A JP2009236724 A JP 2009236724A
Authority
JP
Japan
Prior art keywords
probe
tip
shape
diameter
phiv
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008084018A
Other languages
Japanese (ja)
Other versions
JP5630947B2 (en
Inventor
Shinichiro Furusaki
新一郎 古崎
Mamoru Ueda
守 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Electronic Materials Corp
Original Assignee
Japan Electronic Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Electronic Materials Corp filed Critical Japan Electronic Materials Corp
Priority to JP2008084018A priority Critical patent/JP5630947B2/en
Publication of JP2009236724A publication Critical patent/JP2009236724A/en
Application granted granted Critical
Publication of JP5630947B2 publication Critical patent/JP5630947B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Leads Or Probes (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a probe having good durability even when it is material of low mechanical strength. <P>SOLUTION: The probe 1 includes a chip contact section 11, an elastic deformation section 12, and a back end support. The continuous thickness shape from the chip contact section 11 to the back end support to be electrically connectably fixed to a probe card is a curve shape as a continuous body of the cross section of a diameter &phiv; that is represented by polynomial (specifically, mathematical formula &Phi;, &Phi;=[((&phiv;<SB>1</SB><SP>N</SP>-&phiv;<SB>0</SB><SP>N</SP>)/L)&times;X+&phiv;<SB>0</SB><SP>N</SP>]<SP>1/N</SP>) of N-root of the distance X from the chip 111, or a shape obtained by approximating the curve shape with two or more straight lines. Here, L is the length from the chip 111 of the probe 1 to the fixed part, X is the distance from the chip 111 of the probe 1, &phiv; is the diameter from the chip 111 of the probe 1 to the point X, &phiv;<SB>0</SB>is the diameter of the chip 111 of the probe 1, &phiv;<SB>1</SB>is the diameter of the fixed part of the probe 1, and N is any integer of three or more. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、LSIチップの半導体デバイス等を検査する目的で使用されるプローブカード用プローブに関する。   The present invention relates to a probe for a probe card used for the purpose of inspecting a semiconductor device or the like of an LSI chip.

半導体ウエハに作成されたLSIチップ等の電気的特性を測定するに当たり、図7に示すようにプローブカードに取り付けられたプローブ100の先端部(コンタクト・ティップ)を半導体ウエハ200上に作成されたLSIチップ等の電極201に接触した状態で行われる。この際、電極201とプローブ100の先端部との間の電気的接続を確保するために、オーバードライブを行うとともにスクラブして電極201の表面上を覆っている酸化膜等を除去するようにしている。   In measuring the electrical characteristics of an LSI chip or the like formed on a semiconductor wafer, the tip (contact tip) of the probe 100 attached to the probe card is formed on the semiconductor wafer 200 as shown in FIG. This is performed in contact with the electrode 201 such as a chip. At this time, in order to ensure electrical connection between the electrode 201 and the tip of the probe 100, overdrive is performed and scrubbing is performed to remove an oxide film or the like covering the surface of the electrode 201. Yes.

図7にはスクラブ時にプローブ100に作用する力が併せて示されている。図中f1はプローブ100を電極201の表面上に押圧接触したときの反作用力、図中f2はプローブ100をスクラブ方向αに水平移動させたときの押し戻し力である。押し戻し力f2については、スクラブ方向αとは反対の方向に作用することから、プローブ100の先端と電極201との間の摩擦力との関係で、スクラブ時にプローブ100の先端部に曲げモーメントMが発生する。その結果、プローブ100を長期にわたり使用すると、プローブ100の先端部が反スクラブ方向に曲がり、測定の継続が困難になる虞れがあった。   FIG. 7 also shows the forces acting on the probe 100 during scrubbing. In the figure, f1 is a reaction force when the probe 100 is pressed against the surface of the electrode 201, and f2 is a pushing force when the probe 100 is moved horizontally in the scrub direction α. The push-back force f2 acts in a direction opposite to the scrub direction α. Therefore, a bending moment M is applied to the tip of the probe 100 during scrubbing due to the frictional force between the tip of the probe 100 and the electrode 201. appear. As a result, when the probe 100 is used over a long period of time, the tip of the probe 100 may bend in the anti-scrub direction, and it may be difficult to continue the measurement.

そのため、特許文献1に示されているようにプローブの材質を機械的強度の大きいタングステン合金等に変更する等して、プローブ自体の耐久性を良好にしていた。   For this reason, the durability of the probe itself has been improved by changing the material of the probe to a tungsten alloy or the like having a high mechanical strength as disclosed in Patent Document 1.

特開2002−173731JP 2002-173731 A

しかしながら、電極密度が高く且つ電極下に回路が形成された次世代デバイスについては、測定時の強い力でプローブを電極に押し付けると、電極下の回路を破壊する恐れがあることから、プローブの材質としてタングステン合金等の機械的強度が大きいものを使用することに不向きであり、貴金属合金等の機械強度の低いものを使用せざるを得なかった。この課題を解消しない限り、スクラブ時の曲げモーメントにより次世代デバイス用のプローブカードの耐久性が低くなり、経済的効率性を損なう結果となる。   However, for next-generation devices with high electrode density and a circuit formed under the electrode, if the probe is pressed against the electrode with a strong force during measurement, the circuit under the electrode may be destroyed. However, it is unsuitable for using a tungsten alloy or the like having a high mechanical strength, and a noble metal alloy or the like having a low mechanical strength has to be used. Unless this problem is solved, the bending moment during scrubbing lowers the durability of probe cards for next-generation devices, resulting in a loss of economic efficiency.

本発明は上記した背景の下で創作されたものであって、その目的は、たとえ機械強度の低い材質であってもその耐久性を良好にすることが可能なプローブカード用プローブを提供することにある。   The present invention has been created under the above-described background, and an object thereof is to provide a probe for a probe card that can improve the durability even of a material having low mechanical strength. It is in.

本発明に係るプローブカード用プローブは、被測定電極に接触する先端接触部からプローブカードに電気接続可能に固定される後端支持部までの連続的な太さ形状を、その先端からの距離のn乗根(nは2又は3)の多項式になる直径の断面積の連続体となる曲線の形状又はその曲線の形状を2本以上の直線によって近似した形状となっている。   The probe for a probe card according to the present invention has a continuous thickness shape from the tip contact portion that contacts the electrode to be measured to the rear end support portion that is fixed to the probe card so as to be electrically connectable. It is a shape of a curve that is a continuum of a cross-sectional area of a diameter that becomes a polynomial of the nth root (n is 2 or 3), or a shape that approximates the shape of the curve by two or more straight lines.

この発明によると、スクラブ時にプローブの先端接触部に現れる応力分布が均一化されることから、応力のピーク値が従来に比べて小さくなり、たとえ機械強度の低い材質であってもその耐久性を良好にすることができる。よって、電極密度が高く且つ電極下に回路が形成された次世代デバイス用のプローブカードについてもその耐久性を悪化させることなく使用することが可能となり、その経済的効率性を高める上で大きな意義がある。   According to the present invention, since the stress distribution appearing at the probe tip contact portion during scrubbing is made uniform, the peak value of stress is smaller than in the past, and even if the material has low mechanical strength, its durability is improved. Can be good. Therefore, it is possible to use a probe card for a next generation device having a high electrode density and a circuit formed under the electrode without deteriorating its durability, which is of great significance for enhancing its economic efficiency. There is.

上記多項式の具体例としては下記の数式1がある。

Figure 2009236724
As a specific example of the polynomial, there is the following formula 1.
Figure 2009236724

但し、Lはプローブの先端から固定部までの長さ、Xはプローブの先端からの距離、Nは3以上の任意の整数、φはプローブの先端からXの点における直径、φ0 はプローブの先端直径、φ1 はプローブの固定部直径である。 Where L is the length from the probe tip to the fixed part, X is the distance from the probe tip, N is an arbitrary integer of 3 or more, φ is the diameter at the point X from the probe tip, φ 0 is the probe The tip diameter, φ 1 is the diameter of the fixed part of the probe.

スクラブ時において、プローブの先端と被測定電極との摩擦力又は切削抵抗による曲げモーメントに対して発生する応力は下記の数式2で示される。

Figure 2009236724
At the time of scrubbing, the stress generated with respect to the bending moment due to the frictional force or cutting resistance between the tip of the probe and the electrode to be measured is expressed by the following Equation 2.
Figure 2009236724

但し、σはプローブの距離Xの点における最大応力、Fはプローブの先端に作用する曲げ方向力である。   However, (sigma) is the maximum stress in the point of the distance X of a probe, F is the bending direction force which acts on the front-end | tip of a probe.

この発明によると、上記のようにスクラブ時にプローブの先端部に現れる応力のピーク値が小さくなり、その応力分布も長さ方向に一層均一化され、フローブの機械的強度が一層高まる。   According to the present invention, as described above, the peak value of the stress appearing at the tip of the probe during scrubbing is reduced, the stress distribution is further uniformed in the length direction, and the mechanical strength of the flow is further increased.

本案のプローブについては、上記断面積を円形形状によって構成した場合だけでなく、矩形形状によって構成した場合も上記と全く同様の作用効果を奏する。   About the probe of this proposal, not only when the said cross-sectional area is comprised by circular shape, but when it comprises by rectangular shape, there exists the same effect as the above.

以下、本発明のプローブカード用プローブの実施の形態を図面を参照して説明する。図1は同プローブを有するフローブカードの概略側面図、図2は同プローブを示す図であって、(a)はプローブの先端部を示す側面図、(b)はA−A断面図である。   Embodiments of a probe for a probe card according to the present invention will be described below with reference to the drawings. FIG. 1 is a schematic side view of a flow card having the probe, FIG. 2 is a view showing the probe, (a) is a side view showing the tip of the probe, and (b) is a cross-sectional view taken along line AA. .

ここに例として掲げるプローブカード用プローブ1(以下、これを「プローブ1」と称する。)は、断面円形の線材を加工したものであり、先端接触部11、弾性変形部12及び後端支持部13を有している。その材質や先後端の寸法については従来プローブと全く同じであって、先端接触部11からプローブカード2に電気接続可能に固定される後端支持部13までの連続的な太さ形状(プローブ1の側面の稜線の形状)が従来プローブとは全く異なっている。   A probe 1 for a probe card (hereinafter referred to as “probe 1”) listed as an example is obtained by processing a wire having a circular cross section, and includes a tip contact portion 11, an elastic deformation portion 12, and a rear end support portion. 13. The material and the dimensions of the front and rear ends are the same as those of the conventional probe, and the continuous thickness from the front end contact portion 11 to the rear end support portion 13 fixed to the probe card 2 so as to be electrically connectable (probe 1). The shape of the ridge line on the side surface of the probe is completely different from that of the conventional probe.

なお、図1中2はカンチレバー型のプローブカード、3は検査台、4は検査対象の半導体ウエハである。プローブカード2を水平状態に保持するための機構及び検査台3をプローブカード2に対して垂直及び水平に相対的に移動させる機構については図示省略されている。   In FIG. 1, 2 is a cantilever type probe card, 3 is an inspection table, and 4 is a semiconductor wafer to be inspected. A mechanism for holding the probe card 2 in a horizontal state and a mechanism for moving the inspection table 3 relative to the probe card 2 vertically and horizontally are not shown.

プローブ1の先端接触部11は、図2に示すように略円錐状をなしたコンタクト・ティップであって、先端111が半導体ウエハ4に作成された電極41(被測定電極)に接触可能になっている。   The tip contact portion 11 of the probe 1 is a contact tip having a substantially conical shape as shown in FIG. 2, and the tip 111 can come into contact with an electrode 41 (electrode to be measured) formed on the semiconductor wafer 4. ing.

弾性変形部12は、先端接触部11と後端支持部13との間に設けられた略直線状部材であって、先端部が約90度〜110度に折り曲げられ、先端接触部11の後端に連なって形成されている。   The elastic deformation portion 12 is a substantially linear member provided between the front end contact portion 11 and the rear end support portion 13, and the front end portion is bent at about 90 to 110 degrees, and the rear end of the front end contact portion 11 is It is connected to the end.

後端支持部13は、プローブカード2の裏面の配線パターンにハンダ付け等により固定される直線状部材であって、弾性変形部12の後端に連なって形成されている。   The rear end support portion 13 is a linear member fixed to the wiring pattern on the back surface of the probe card 2 by soldering or the like, and is formed continuously to the rear end of the elastic deformation portion 12.

図2(a)中には破線で従来プローブの先端部の形状が併せて示されている。従来プローブの先端部の側面の稜線が直線状であったが、本案のフローブ1については、その先端部の側面の稜線が従来プローブに比べて外側に若干膨らんだ曲線状となっている。   In FIG. 2A, the shape of the tip of the conventional probe is also shown by a broken line. The ridge line on the side surface of the tip portion of the conventional probe is linear, but the ridge line on the side surface of the tip portion of the present probe has a curved shape slightly bulging outward as compared to the conventional probe.

本実施形態においては、先端接触部11から後端支持部13までの連続的な太さ形状を、その先端111からの距離XのN乗根の多項式(具体的には下記の数式1)になる直径φの断面積の連続体となる曲線の形状にしている。

Figure 2009236724
In the present embodiment, the continuous thickness shape from the front end contact portion 11 to the rear end support portion 13 is changed to an N-th root polynomial (specifically, the following formula 1) of the distance X from the front end 111. The shape of the curve is a continuum of the cross-sectional area of the diameter φ.
Figure 2009236724

但し、Lはプローブ1の先端111から固定部(プローブカード2に対するプローブ1の固定箇所)までの長さ、Xはプローブ1の先端111からの距離、φはプローブ1の先端111からXの点における直径、φ0 はプローブ1の先端111の直径、φ1 はプローブ1の上記固定部の直径、Nは3以上の任意の整数である。 Where L is the length from the tip 111 of the probe 1 to the fixing portion (the location where the probe 1 is fixed to the probe card 2), X is the distance from the tip 111 of the probe 1, and φ is the point from the tip 111 of the probe 1 to X , Φ 0 is the diameter of the tip 111 of the probe 1, φ 1 is the diameter of the fixed portion of the probe 1, and N is an arbitrary integer of 3 or more.

上記した構造のプローブ1をプローブカードに使用した場合、スクラブ時にプローブ1の先端部に現れる応力は下記の数式4に示す通りとなる。

Figure 2009236724
When the probe 1 having the structure described above is used for a probe card, the stress appearing at the tip of the probe 1 during scrubbing is as shown in the following Equation 4.
Figure 2009236724

但し、σはプローブ1の距離Xの点における最大応力、Fはプローブ1の先端111に作用する曲げ方向力である。   However, (sigma) is the maximum stress in the point of the distance X of the probe 1, and F is the bending direction force which acts on the front-end | tip 111 of the probe 1. FIG.

数式4を用いてスクラブ時にプローブ1の先端部に現れる長さ方向の応力分布を求めると、図3のグラフに示す通りとなる。   When the stress distribution in the length direction that appears at the tip of the probe 1 during scrubbing is calculated using Equation 4, the result is as shown in the graph of FIG.

同グラフの縦軸はスクラブ時にプローブ1の先端部に現れる応力σ、同グラフの横軸はプローブ1の先端111からの距離Xである。破線のグラフは従来プローブの応力分布を示している。図3中には距離Xとプローブ1との位置関係が併せて示されている。   The vertical axis of the graph is the stress σ that appears at the tip of the probe 1 during scrubbing, and the horizontal axis of the graph is the distance X from the tip 111 of the probe 1. The broken line graph shows the stress distribution of the conventional probe. In FIG. 3, the positional relationship between the distance X and the probe 1 is also shown.

このようにプローブ1の先端接触部11から後端支持部13までの連続的な太さ形状が上記した通りに改良されていることから、スクラブ時にプローブ1の先端部に現れる長さ方向の応力分布が略一定となり、応力のピーク値が従来プロープの場合の約半分に低下した。即ち、プローブ1の材質として機械的強度の高いタングステン合金等を使用しなくても、その耐久性を高めることが可能になった。よって、電極密度が高く且つ電極下に回路が形成された次世代デバイス用のプローブカードについてもその耐久性を悪化させることなく使用することが可能となった。   Since the continuous thickness shape from the tip contact portion 11 to the rear end support portion 13 of the probe 1 is improved as described above, the stress in the length direction appearing at the tip portion of the probe 1 during scrubbing. The distribution became substantially constant, and the peak value of the stress dropped to about half that of the conventional probe. That is, even if a tungsten alloy having high mechanical strength is not used as the material of the probe 1, it is possible to improve its durability. Therefore, a probe card for a next-generation device having a high electrode density and a circuit formed under the electrodes can be used without deteriorating its durability.

プローブ1の製造方法については従来方法を採用すれば良い。例えば、直径が200μm以下の円柱状の線材に研磨装置等を用いて加工し、その先端部を折り曲げて作成すると良い。もっとも、プローブ1の外側面を曲面加工する必要があるので、加工方法としては限定される。この点、図4に示すプローブ1'の場合、曲面加工が必要でなく平面加工だけで良いことから、加工自体が簡単となり、この点で低コスト化を図ることか可能になる。   A conventional method may be adopted as a method for manufacturing the probe 1. For example, a cylindrical wire having a diameter of 200 μm or less may be processed by using a polishing apparatus or the like, and the tip may be bent. However, since it is necessary to process the outer surface of the probe 1 with a curved surface, the processing method is limited. In this regard, in the case of the probe 1 ′ shown in FIG. 4, since the curved surface machining is not necessary and only the planar machining is required, the machining itself is simplified, and it is possible to reduce the cost in this respect.

図4はプローブ1'の先端部の側面図である。図2で示すプローブ1と大きく異なるのは、プローブ1'の先端接触部11'から後端支持部(図示省略)までの連続的な太さ形状が上記した曲線ではなく、同曲線を2本の直線によって近似された形状になっている点である。   FIG. 4 is a side view of the distal end portion of the probe 1 ′. A significant difference from the probe 1 shown in FIG. 2 is that the continuous thickness shape from the tip contact portion 11 ′ to the rear end support portion (not shown) of the probe 1 ′ is not the above-described curve, but two same curves. This is a point approximated by a straight line.

プローブ1'の製造方法の一例を図5を参照して説明する。図5はプローブ1'を機械式研磨装置を用いて加工するその製造工程を示す模式図である。図5中の直線は研磨面を示している。即ち、円柱状の線材の先端部に対し、稜線角度を2段階に小さくして研磨加工した後、折り曲げ加工するようにする。   An example of a method for manufacturing the probe 1 ′ will be described with reference to FIG. FIG. 5 is a schematic view showing a manufacturing process for processing the probe 1 ′ using a mechanical polishing apparatus. The straight line in FIG. 5 shows the polished surface. That is, with respect to the tip of the cylindrical wire rod, the ridge line angle is reduced in two steps and polished, and then the bending is performed.

このようなプローブ1'であってもスクラブ時にその先端部に現れる応力分布は図3に示すものと近いものとなる。より良好な応力分布を得るには近似する直線の本数を3以上にして曲線近似の精度を高くすると良い。   Even with such a probe 1 ', the stress distribution appearing at the tip of the probe during scrubbing is close to that shown in FIG. In order to obtain a better stress distribution, it is preferable to increase the accuracy of curve approximation by increasing the number of approximated straight lines to 3 or more.

図2及び図4に示すプローブ1等については、断面形状が円形状であって、専ら機械式研磨で製作するのに適した形状であったが、図露光技術と電鋳技術を用いて製作するのに適した形状、例えば、図6に示すような断面形状が矩形形状であるプローブ1”についても上記と同様に適用可能である。   The probe 1 and the like shown in FIGS. 2 and 4 have a circular cross-sectional shape and are suitable for manufacturing by mechanical polishing, but they are manufactured using drawing exposure technology and electroforming technology. For example, a probe 1 ″ having a rectangular cross section as shown in FIG. 6 can be applied in the same manner as described above.

図6はプローブ1”の先端部の側面図である。プローブ1”が図2で示すプローブ1と大きく異なるのは、先端接触部11”から後端支持部(図示省略)までの連続的な太さ形状を、その先端111”からの距離XのN乗根の多項式(具体的には下記の数式5)になる直径φ'の断面積の連続体となる曲線の形状にした点である。

Figure 2009236724
FIG. 6 is a side view of the distal end portion of the probe 1 ″. The probe 1 ″ differs greatly from the probe 1 shown in FIG. 2 in that it is continuous from the distal end contact portion 11 ″ to the rear end support portion (not shown). This is the point where the thickness shape is the shape of a curve that is a continuum of the cross-sectional area of the diameter φ ′ that becomes the N-th root polynomial of the distance X from the tip 111 ″ (specifically, the following formula 5). .
Figure 2009236724

なお、Lはプローブ1”の先端111”から固定部(プローブカード2に対するプローブ1”の固定箇所)までの長さ、Xはプローブ1”の先端111”からの距離、φ'はプローブ1”の先端111”からXの点における厚み、φ0 'はプローブ1”の先端111”の直径、φ1 'はプローブ1”の上記固定部の厚み、Nは2以上の任意の整数である。 Note that L is the length from the tip 111 ″ of the probe 1 ″ to the fixing portion (the place where the probe 1 ″ is fixed to the probe card 2), X is the distance from the tip 111 ″ of the probe 1 ″, and φ ′ is the probe 1 ″. , The thickness at the point from the tip 111 ″ to X, φ 0 ′ is the diameter of the tip 111 ″ of the probe 1 ″, φ 1 ′ is the thickness of the fixed portion of the probe 1 ″, and N is an arbitrary integer of 2 or more.

図6(a)中には破線で従来プローブの先端部の形状が併せて示されている。従来プローブの先端部の側面の稜線が直線状であったが、本案のフローブ1”については、その先端部の側面の稜線が従来プローブに比べてその外側に若干膨らんだ曲線状となっている。。   In FIG. 6A, the shape of the tip of the conventional probe is also shown by a broken line. Although the ridge line on the side surface of the tip portion of the conventional probe is linear, the ridge line on the side surface of the tip portion of the present probe has a curved shape slightly inflated to the outside as compared with the conventional probe. ..

なお、プローブ1”の側面の稜線形状を図4で示すプローブ1'と同様に、数式5で示す曲線ではなく、その曲線を複数本の直線によって近似した形状にしても良い。   Note that the ridge line shape of the side surface of the probe 1 ″ may be a shape approximated by a plurality of straight lines instead of the curve shown in Formula 5, similarly to the probe 1 ′ shown in FIG.

このような構造のプローブ1”をプローブカードに使用した場合、スクラブ時にプローブ1”の先端部に現れる応力については上記数式4に示すものと同様となり、長さ方向の応力分布についても図3のグラフに示すものと同様になる。   When the probe 1 ″ having such a structure is used for a probe card, the stress appearing at the tip of the probe 1 ″ during scrubbing is the same as that shown in the above equation 4, and the stress distribution in the length direction is also shown in FIG. It is the same as that shown in the graph.

プローブ1”については、光学的マスクを変更するだけで露光技術と電鋳技術を用いて同様に製作することが可能であり、上記したメリットに加えて、コスト面で一層メリットがある。   The probe 1 ″ can be manufactured in the same manner by using an exposure technique and an electroforming technique only by changing the optical mask. In addition to the above-described merits, there is a further merit in terms of cost.

なお、本発明に係るプローブカード用プローブは、カンチレバー型のものだけの適用に止まらず、垂直動作型のものでも同様に適用可能である。また、先端接触部から後端支持部までの連続的な太さ形状を、その先端からの距離の2又は3乗根の多項式になる直径の断面積の連続体となる曲線の形状にしたり、その曲線の形状を2本以上の直線によって近似した形状にしても良く、その荷重や材質等に応じて適宜設計変更すると良い。   The probe for the probe card according to the present invention is not limited to the cantilever type, but can be similarly applied to a vertical operation type. In addition, the continuous thickness shape from the tip contact portion to the rear end support portion is changed to a curved shape that is a continuum of a cross-sectional area of a diameter that becomes a polynomial of the second or third root of the distance from the tip, The shape of the curve may be approximated by two or more straight lines, and the design may be changed as appropriate according to the load, material, and the like.

本発明の実施の形態を説明するための図であって、本案プローブを有するフローブカードの概略側面図である。It is a figure for demonstrating embodiment of this invention, Comprising: It is a schematic side view of the flow card | curd which has this plan probe. 同プローブを示す図であって、(a)はプローブの先端部を示す側面図、(b)はA−A断面図である。It is a figure which shows the probe, Comprising: (a) is a side view which shows the front-end | tip part of a probe, (b) is AA sectional drawing. スクラブ時に同プローブの先端部に現れる長さ方向の応力分布を示すグラフである。It is a graph which shows the stress distribution of the length direction which appears in the front-end | tip part of the probe at the time of scrubbing. 同プローブの変形例を示す図であって、プローブの先端部を示す側面図である。It is a figure which shows the modification of the probe, Comprising: It is a side view which shows the front-end | tip part of a probe. 同プローブの製造方法を説明するための図であって、その製造工程を示す模式図である。It is a figure for demonstrating the manufacturing method of the probe, and is a schematic diagram which shows the manufacturing process. 別の実施の形態を説明するための図であって、(a)はプローブの先端部を示す側面図、(b)はB−B断面図,(c)はC−C断面図である。It is a figure for demonstrating another embodiment, Comprising: (a) is a side view which shows the front-end | tip part of a probe, (b) is BB sectional drawing, (c) is CC sectional drawing. 従来例を説明するための図であって、(a)はスクラブ時にプローブに作用する力を併せて示すプローブの側面図、(b)は長年使用し続けた結果、先端部分が曲がった様子を示すプローブの側面図である。It is a figure for demonstrating a prior art example, Comprising: (a) is a side view of the probe which also shows the force which acts on a probe at the time of scrub, (b) is a state where the front-end | tip part bent | curved as a result of continuing using for many years. It is a side view of the probe shown.

符号の説明Explanation of symbols

1 プローブ(プローブカード用プローブ)
11 先端接触部
111 先端
12 弾性変形部
13 後端支持部
2 プローブカード
3 検査台
4 半導体ウエハ
41 電極(被測定電極)
α スクラブ方向
1 Probe (probe for probe card)
DESCRIPTION OF SYMBOLS 11 Front end contact part 111 Front end 12 Elastic deformation part 13 Back end support part 2 Probe card 3 Inspection table 4 Semiconductor wafer 41 Electrode (measurement electrode)
α Scrub direction

Claims (3)

被測定電極に接触する先端接触部からプローブカードに電気接続可能に固定される後端支持部までの連続的な太さ形状を、その先端からの距離のn乗根(nは2又は3)の多項式になる直径の断面積の連続体となる曲線の形状又はその曲線の形状を2本以上の直線によって近似した形状となっていることを特徴とするフローブカード用プローブ。   The continuous thickness shape from the front end contact portion that contacts the electrode to be measured to the rear end support portion that is fixed so as to be electrically connected to the probe card is the nth root of the distance from the front end (n is 2 or 3) A probe for a flow card characterized by having a shape of a curve that is a continuum of a cross-sectional area of a diameter that becomes a polynomial of or a shape that approximates the shape of the curve by two or more straight lines. 上記多項式が下記の数式1であることを特徴とする請求項1に記載のフローブカード用プローブ。
Figure 2009236724
但し、Lはプローブの先端から固定部までの長さ、Xはプローブの先端からの距離、Nは3以上の任意の整数、φはプローブの先端からXの点における直径、φ0 はプローブの先端直径、φ1 はプローブの固定部直径である。
The probe for a flow card according to claim 1, wherein the polynomial is Equation 1 below.
Figure 2009236724
Where L is the length from the probe tip to the fixed part, X is the distance from the probe tip, N is an arbitrary integer of 3 or more, φ is the diameter at the point X from the probe tip, φ 0 is the probe The tip diameter, φ 1 is the diameter of the fixed part of the probe.
上記断面積を矩形形状によって構成したことを特徴とする請求項2に記載のフローブカード用プローブ。   The probe for a flow card according to claim 2, wherein the cross-sectional area is formed in a rectangular shape.
JP2008084018A 2008-03-27 2008-03-27 Cantilever type probe Active JP5630947B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008084018A JP5630947B2 (en) 2008-03-27 2008-03-27 Cantilever type probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008084018A JP5630947B2 (en) 2008-03-27 2008-03-27 Cantilever type probe

Publications (2)

Publication Number Publication Date
JP2009236724A true JP2009236724A (en) 2009-10-15
JP5630947B2 JP5630947B2 (en) 2014-11-26

Family

ID=41250857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008084018A Active JP5630947B2 (en) 2008-03-27 2008-03-27 Cantilever type probe

Country Status (1)

Country Link
JP (1) JP5630947B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01155104A (en) * 1987-12-14 1989-06-19 Babcock Hitachi Kk Boiler device
JP2002173731A (en) * 2000-12-05 2002-06-21 Toshiba Corp Tungsten wire and its production method
JP2003232809A (en) * 1996-05-17 2003-08-22 Formfactor Inc Microelectronic contact structure and its manufacturing method
JP2004093355A (en) * 2002-08-30 2004-03-25 Toshiba Corp Pd ALLOY SERIES PROBE PIN AND PROBE PIN DEVICE USING IT

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01155104A (en) * 1987-12-14 1989-06-19 Babcock Hitachi Kk Boiler device
JP2003232809A (en) * 1996-05-17 2003-08-22 Formfactor Inc Microelectronic contact structure and its manufacturing method
JP2002173731A (en) * 2000-12-05 2002-06-21 Toshiba Corp Tungsten wire and its production method
JP2004093355A (en) * 2002-08-30 2004-03-25 Toshiba Corp Pd ALLOY SERIES PROBE PIN AND PROBE PIN DEVICE USING IT

Also Published As

Publication number Publication date
JP5630947B2 (en) 2014-11-26

Similar Documents

Publication Publication Date Title
JP3745184B2 (en) Probe for probe card and manufacturing method thereof
JP6305754B2 (en) Contact probe unit
JP2005129428A (en) Manufacturing method for telescopic contact, contact manufactured by the method and inspection device or electronic instrument provided with the contact
JP6837665B2 (en) Contact probe
JP6872960B2 (en) Electrical connection device
JP2007218675A (en) Probe, and manufacturing method of probe
JP2004093355A (en) Pd ALLOY SERIES PROBE PIN AND PROBE PIN DEVICE USING IT
JP4859820B2 (en) probe
JP2008151684A (en) Electrical connection apparatus and its usage
JP4704843B2 (en) probe
JP4313827B2 (en) Inspection method of semiconductor device having spherical external electrode
JP2017215221A (en) Probe and manufacturing method thereof
JP5630947B2 (en) Cantilever type probe
JP2007271343A (en) Contact probe and manufacturing method therefor
JP2007121198A (en) Contact probe, manufacturing method therefor, probe unit, and probe card
JP2004228314A (en) Semiconductor device with pad
JP2008233022A (en) Contact probe
JPWO2006068156A1 (en) Kelvin probe
JP2015212622A (en) Probe card pin and manufacturing method of the same
JP6770798B2 (en) Contact probe
JP6778937B2 (en) Probe needle for semiconductor devices
KR101072848B1 (en) Probe
JP4490338B2 (en) Probe unit manufacturing method and probe unit using the same
JP2006133199A (en) Spring contact probe device
US20210333307A1 (en) Cantilever-Type Probe with Multiple Metallic Coatings

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130121

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130702

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130709

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20130809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141007

R150 Certificate of patent or registration of utility model

Ref document number: 5630947

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250