JP2009236706A - Shape calculator, shape calculation program, shape calculating method, and shape-measuring device - Google Patents

Shape calculator, shape calculation program, shape calculating method, and shape-measuring device Download PDF

Info

Publication number
JP2009236706A
JP2009236706A JP2008083579A JP2008083579A JP2009236706A JP 2009236706 A JP2009236706 A JP 2009236706A JP 2008083579 A JP2008083579 A JP 2008083579A JP 2008083579 A JP2008083579 A JP 2008083579A JP 2009236706 A JP2009236706 A JP 2009236706A
Authority
JP
Japan
Prior art keywords
phase
light
measurement
data
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008083579A
Other languages
Japanese (ja)
Other versions
JP5054592B2 (en
Inventor
Masahito Amanaka
将人 甘中
Eiji Takahashi
英二 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2008083579A priority Critical patent/JP5054592B2/en
Publication of JP2009236706A publication Critical patent/JP2009236706A/en
Application granted granted Critical
Publication of JP5054592B2 publication Critical patent/JP5054592B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a shape calculator for highly accurately measuring a shape by performing phase connection processing based on phase data obtained by an optical interferometer even concerning an object to be measured in which a singular part of a dust deposition part, a damaged part or the like partially exists, and to provide its program, its method and a shape-measuring device. <P>SOLUTION: The shape calculator includes: dividing a plurality of phase data obtained to detect the phase of an intensity signal of interference light into processing object data in which amplitude of an interference light intensity signal corresponding to the phase data is within an amplitude allowable range and non-processing object data other than them while changing measuring points with the optical interferometer for irradiating object light on the surface of the object to be measured 1; sequentially executing phase connection processing based on the two processing object data in which the measuring points are adjacent along one scanning line; and executing phase connection processing based on the processing object data and adjacent other processing object data in a direction where the measuring points to the processing object data are intersected to one scanning line when the measuring points of the non-processing object data and the measuring points of the processing object data are adjacent along one scanning line. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は,半導体ウェハ等の被測定物の形状を光干渉計を通じて得られた位相データに基づき算出する形状算出装置,そのプログラム及びその方法,並びにその形状算出装置を備えた形状測定装置に関するものである。   The present invention relates to a shape calculation device that calculates the shape of an object to be measured such as a semiconductor wafer based on phase data obtained through an optical interferometer, a program and method thereof, and a shape measurement device including the shape calculation device. It is.

薄板状の半導体ウェハ(被測定物の一例,以下,ウェハという)の形状測定において,干渉計を用いた非接触型の形状測定装置が普及している。これは,2つに分岐された一方の光線を被測定物の表面に反射させた反射光である測定光と,もう一方の光線を所定の参照面に反射させた反射光である参照光とを含む干渉光を受光し,その干渉光により形成される干渉画像から被測定物の表面形状(表面高さの分布)を求めるものである。
より具体的には,光干渉計によるウェハの表面形状測定においては,ウェハの表面に対向配置された光干渉計により,そのウェハの表面上の多数の測定部位に物体光を照射して得られる干渉光の強度信号の位相を検出し,これにより得られる複数の測定部位ごとの位相データに基づく位相接続処理(いわゆるアンラップ処理)が行われる。この位相接続処理により得られる位相の分布情報における各位相は,物体光の波長に基づいて表面高さの寸法値に換算できる。このため,位相接続処理により得られる位相の分布情報は,ウェハの表面高さの分布情報,即ち,形状情報と等価である。
これにより,非接触でウェハの表面形状を測定できるので,触針式の形状計で測定する場合のように,ウェハ表面に傷等を生じさせることなくその表面形状を測定できる。ウェハの形状測定では,その表面全体に渡る形状を測定する必要があるため,一般に,ウェハ周辺のエッジ部を支持(通常は3点支持)した状態で測定がなされる。
In the shape measurement of a thin semiconductor wafer (an example of an object to be measured, hereinafter referred to as a wafer), a non-contact type shape measuring apparatus using an interferometer has become widespread. This is because measurement light that is reflected light that reflects one of the light beams branched into two on the surface of the object to be measured, and reference light that is reflected light that reflects the other light beam on a predetermined reference surface, and The surface shape (surface height distribution) of the object to be measured is obtained from the interference image formed by the interference light.
More specifically, when measuring the surface shape of a wafer with an optical interferometer, it is obtained by irradiating a number of measurement sites on the surface of the wafer with object light using an optical interferometer arranged opposite to the wafer surface. The phase of the intensity signal of the interference light is detected, and phase connection processing (so-called unwrap processing) based on the phase data for each of the plurality of measurement sites obtained thereby is performed. Each phase in the phase distribution information obtained by this phase connection process can be converted into a surface height dimension value based on the wavelength of the object light. Therefore, the phase distribution information obtained by the phase connection process is equivalent to the wafer surface height distribution information, that is, shape information.
As a result, the surface shape of the wafer can be measured in a non-contact manner, so that the surface shape can be measured without causing scratches or the like on the wafer surface as in the case of measuring with a stylus type shape meter. In the measurement of the shape of the wafer, it is necessary to measure the shape over the entire surface thereof, and therefore generally the measurement is performed with the edge portion around the wafer supported (usually, three points are supported).

また,特許文献1には,ウェハ1の表裏各々に光干渉計が配置され,一方の光干渉計で得られる物体光(測定光)及び参照光を,プリズム等により他方の光干渉計へ導いて再び干渉させ,その干渉光に基づいてウェハ1の厚み(形状の一例)を測定する形状測定装置が示されている。
特許文献1に示される形状測定装置によれば,振動によって生じる被測定物の変位分が,同じ物体光を被測定物の表裏相対する測定部位へ照射することにより相殺され,被測定物の振動の影響を受けずに高精度な厚み測定が可能となる。
In Patent Document 1, optical interferometers are arranged on the front and back of the wafer 1, and object light (measurement light) and reference light obtained by one optical interferometer are guided to the other optical interferometer by a prism or the like. There is shown a shape measuring apparatus that causes interference again and measures the thickness (an example of the shape) of the wafer 1 based on the interference light.
According to the shape measuring apparatus shown in Patent Document 1, the displacement of the object to be measured caused by vibration is canceled by irradiating the same object light to the measurement parts opposite to each other, and the vibration of the object to be measured. It is possible to measure the thickness with high accuracy without being affected by the above.

また,特許文献2には,位相接続処理の詳細について示されている。
特許文献2には,セルに収容された流体の特性変化を,そのセルに通過させた物体光と他の参照光とが重ねられた干渉光の位相の変化を検出することによって測定する技術について示されている。その際,位相データが所定周期でサンプリングされ,ある時点の位相データについて,1つ前の時点の位相データを基準として位相差が−π〜+πの範囲に収まるように,前記ある時点の位相データに対して2πの整数倍分だけ位相をシフトする位相接続処理が行われる。
同様に,形状測定における位相接続処理においては,隣り合う2つの測定点で得られた2つの位相データの一方の位相を,他方の位相を基準とした位相差bが−π〜+πの範囲に収まるように,各位相データに対して2πの整数倍分だけ位相をシフトする補正が行われる。この位相接続処理は,隣り合う2つの測定点の表面高さの差が,物体光の4分の1波長分を超えないという前提に基づく処理である。
特開2003−329422号公報 特開2000−292351号公報
Patent Document 2 discloses details of the phase connection process.
Patent Document 2 discloses a technique for measuring a change in characteristics of a fluid contained in a cell by detecting a change in phase of interference light in which object light passed through the cell and other reference light are superimposed. It is shown. At that time, the phase data is sampled at a predetermined cycle, and the phase data at a certain time point is set so that the phase difference falls within the range of −π to + π with reference to the phase data at the previous time point. Then, a phase connection process for shifting the phase by an integral multiple of 2π is performed.
Similarly, in phase connection processing in shape measurement, one phase of two phase data obtained at two adjacent measurement points is set to a phase difference b in the range of −π to + π with the other phase as a reference. In order to be within the range, each phase data is corrected to shift the phase by an integral multiple of 2π. This phase connection process is based on the premise that the difference in surface height between two adjacent measurement points does not exceed a quarter wavelength of object light.
JP 2003-329422 A JP 2000-292351 A

しかしながら,光干渉計を用いた従来の形状測定において,被測定物の形状測定領域の一部に,物体光の反射特性が他と大きく異なる部分(以下,特異部という)が存在する場合,被測定物の本来の形状を表さない誤った位相接続処理の結果が得られてしまうという問題点があった。前記特異部に反射した物体光は,その特異部以外の測定部位と異なる反射特性に起因して,他の測定部位に反射した物体光とは異なる挙動を示し,それが干渉光の強度信号におけるノイズとなるからである。前記特異部としては,例えば,被測定物の表面におけるゴミの付着部や傷の生じた部分,被測定物を支持する部材が存在する部分等が考えられる。   However, in the conventional shape measurement using an optical interferometer, when there is a part (hereinafter referred to as a singular part) in which the reflection characteristic of the object light is significantly different from the other part of the shape measurement region of the object to be measured. There is a problem in that an erroneous phase connection process result that does not represent the original shape of the measurement object is obtained. The object light reflected on the singular part exhibits a different behavior from the object light reflected on other measurement parts due to the reflection characteristics different from those of the measurement parts other than the singular part, and this is reflected in the interference light intensity signal. This is noise. Examples of the singular part include a part where dust adheres to or is scratched on the surface of the object to be measured, and a part where a member that supports the object to be measured exists.

図10は,前記特異部を有する被測定物について光干渉計を用いた従来の形状測定により得られる位相接続処理後の位相のデータと本来の形状を表す位相のデータとがグラフ化された模式図である。なお,図10において,グラフの横軸は各測定点を識別する番号の座標軸であり,縦軸は位相接続処理後の位相θ’の座標軸である。また,番号が連続する測定点は,被測定物の表面における位置が隣り合うものである。また,図10において,(Kx+1)番目及び(Kx+2)番目の測定点は,前記特異部内の測定点である。
被測定物の一部に前記特異部が存在する場合,光干渉計を通じて複数の測定点について得られる位相データにおいて,前記特異部内の測定点とその周辺の測定点との間で光の反射特性の違いに起因する位相差のノイズが生じる。
しかしながら,そのようなノイズを含む位相データに対し従来の位相接続処理を施すと,図10に示されるように,前記特異部内の測定点(図10における(Kx+1)番目及び(Kx+2)番目)において,処理後の位相が,本来の形状を表す位相とは大きく異なるものとなる。
さらに,前記特異部内の測定点(図10における(Kx+2)番目)の位相を基準として連鎖的に位相接続が行われる後続の測定点(図10における(Kx+3)番目以降)全てにおいても,位相接続処理後の位相が,本来の形状を表す位相とは大きく異なるものとなる。
従って,本発明は上記事情に鑑みてなされたものであり,その目的とするところは,ゴミの付着部や傷の生じた部分等の光の反射特性が他と異なる部分(特異部)が一部に存在する被測定物についても,光干渉計により得られる位相データに基づく位相接続処理を行うことによって高精度で形状を測定できる形状算出装置,そのプログラム及びその方法,並びに形状測定装置を提供することにある。
FIG. 10 is a schematic diagram in which phase data after phase connection processing obtained by conventional shape measurement using an optical interferometer and phase data representing the original shape are graphed for the object to be measured having the singular part. FIG. In FIG. 10, the horizontal axis of the graph is the coordinate axis of the number for identifying each measurement point, and the vertical axis is the coordinate axis of the phase θ ′ after the phase connection process. In addition, the measurement points having consecutive numbers are adjacent to each other on the surface of the object to be measured. In FIG. 10, the (Kx + 1) th and (Kx + 2) th measurement points are measurement points in the singular part.
When the singular part is present in a part of the object to be measured, in the phase data obtained for a plurality of measurement points through an optical interferometer, the light reflection characteristics between the measurement point in the singular part and the surrounding measurement points A phase difference noise caused by the difference occurs.
However, when conventional phase connection processing is performed on such phase data including noise, as shown in FIG. 10, at the measurement points in the singular part ((Kx + 1) th and (Kx + 2) th in FIG. 10). , The phase after processing is greatly different from the phase representing the original shape.
Further, the phase connection is also performed at all subsequent measurement points (from (Kx + 3) in FIG. 10) on which the phase connection is performed in a chain manner with reference to the phase of the measurement point ((Kx + 2) in FIG. 10) in the singular part. The phase after processing is significantly different from the phase representing the original shape.
Therefore, the present invention has been made in view of the above circumstances, and the object of the present invention is to have a portion (singular portion) having a different light reflection characteristic (singular portion) such as a dust adhesion portion or a scratched portion. A shape calculation device capable of measuring a shape with high accuracy by performing phase connection processing based on phase data obtained by an optical interferometer, a program therefor, a method therefor, and a shape measurement device are provided. There is to do.

上記目的を達成するために本発明に係る形状算出装置は,被測定物の複数の測定部位ごとに得られる位相データに基づいて,被測定物の形状値を算出する装置であり,次の(1)〜(3)に示される各構成要素を備える。ここで,複数の前記位相データは,前記被測定物とその表面上の測定部位に物体光を照射する光干渉計との2次元方向における相対位置を変化させつつ,前記光干渉計における干渉光の強度信号の位相を検出する干渉光位相検出装置によって得られるデータである。なお,"相対位置を変化させる"ということには,前記光干渉計の位置を固定して前記被測定物の位置のみを移動させること,前記被測定物をの位置を固定して前記光干渉計の位置のみを移動させること,及び前記光干渉計及び前記被測定物の両方の位置を移動させることが含まれる。
(1)前記位相の検出ごとにその検出対象である前記干渉光の強度信号の振幅を検出して得られる複数の振幅データを取得する振幅データ取得手段。
(2)前記干渉光位相検出装置により得られる前記位相データを,その位相データに対応する前記振幅データが予め設定された振幅許容範囲内である処理対象データとそれ以外の非処理対象データとに区分するデータ区分手段。
(3)前記干渉光位相検出装置により得られる前記位相データのうち前記処理対象データのみに基づいて位相接続処理を行うことにより,前記被測定物の形状値を算出する位相接続手段。
例えば,前記位相接続手段が,次の(3−1)及び(3−2)に示される処理を実行することが考えられる。
(3−1)複数の前記位相データに対応する複数の測定部位における始点となる測定部位から順次隣の測定部位へと渡る予め定められた1本の走査線に沿って,測定部位が隣り合う2つの前記処理対象データに基づく位相接続処理を順次実行する。
(3−2)前記予め定められた一本の走査線に沿って前記非処理対象データの測定部位と前記処理対象データの測定部位とが隣り合う場合,その処理対象データとその処理対象データに対して測定部位が前記予め定められた一本の走査線と交差する方向において隣り合う他の前記処理対象データとに基づく位相接続処理を実行する。
In order to achieve the above object, a shape calculation device according to the present invention is a device for calculating a shape value of a device under test based on phase data obtained for each of a plurality of measurement sites of the device under test. Each component shown in 1) to (3) is provided. Here, the plurality of pieces of phase data are obtained by changing the relative position in the two-dimensional direction between the object to be measured and the optical interferometer that irradiates the measurement site on the surface thereof with the interference light in the optical interferometer. This is data obtained by an interference light phase detection device that detects the phase of the intensity signal. Note that “changing the relative position” means that the position of the optical interferometer is fixed and only the position of the measured object is moved, and the position of the measured object is fixed and the optical interference is fixed. This includes moving only the position of the meter and moving the positions of both the optical interferometer and the device under test.
(1) Amplitude data acquisition means for acquiring a plurality of amplitude data obtained by detecting the amplitude of the intensity signal of the interference light that is the detection target each time the phase is detected.
(2) The phase data obtained by the interference light phase detection device is converted into processing target data whose amplitude data corresponding to the phase data is within a preset amplitude tolerance range and other non-processing target data. Data sorting means to sort.
(3) Phase connection means for calculating a shape value of the object to be measured by performing phase connection processing based only on the processing target data among the phase data obtained by the interference light phase detection device.
For example, it is conceivable that the phase connecting means executes the following processes (3-1) and (3-2).
(3-1) The measurement sites are adjacent to each other along a predetermined scanning line that sequentially extends from the measurement site that is the starting point of the plurality of measurement sites corresponding to the plurality of phase data to the next measurement site. The phase connection process based on the two data to be processed is sequentially executed.
(3-2) When the measurement part of the non-processing target data and the measurement part of the processing target data are adjacent to each other along the predetermined scanning line, the processing target data and the processing target data are On the other hand, the phase connection process based on the other data to be processed adjacent in the direction in which the measurement site intersects the predetermined single scanning line is executed.

本発明に係る形状算出装置は,干渉光の強度信号の振幅(即ち,信号の強度)に基づいて,被測定物の複数の測定部位ごとに得られる位相データ各々を,ゴミの付着部や傷の生じた部分等である前記特異部において得られる前記非処理対象データと,それ以外の前記処理対象データとに区分する。これは,被測定物の表面における光の反射特性の違いが,干渉光の強度信号の振幅の違いとして表れる現象を利用するものである。
そして,本発明に係る形状算出装置は,前記特異部以外の測定部位において得られた位相データ(前記処理対象データ)のみに基づいて位相接続処理を実行する。これにより,本発明に係る形状算出装置は,光の反射特性が他と異なる前記特異部が一部に存在する被測定物についても精度の高い形状値を算出することができる。
The shape calculation apparatus according to the present invention converts each phase data obtained for each of a plurality of measurement parts of the object to be measured, based on the amplitude of the intensity signal of the interference light (that is, the signal intensity). It is divided into the non-processing object data obtained in the singular part, such as the part where the error occurs, and the other processing object data. This utilizes a phenomenon in which the difference in the light reflection characteristics on the surface of the object to be measured appears as the difference in the amplitude signal of the interference light.
And the shape calculation apparatus which concerns on this invention performs a phase connection process only based on the phase data (the said process target data) obtained in measurement parts other than the said specific | specification part. As a result, the shape calculation apparatus according to the present invention can calculate a shape value with high accuracy even for the object to be measured in which the singular part having a light reflection characteristic different from others is present in part.

また,前記振幅許容範囲は,被測定物の種類ごとに予め定められた範囲が設定されることも考えられる。しかしながら,前記干渉光の強度信号の振幅は,物体光の入射方向に対する測定部位の面の傾きの違いに起因して,同じ被測定物においても,検出される前記振幅は測定部位の位置の違いに応じて比較的大きく変動幅する。一方,前記特異部の領域において近接する測定部位において検出される前記振幅は,測定部位の面の傾きが近似しているため変動が小さい。
そこで,本発明に係る形状算出装置が,次の(4)に示される構成要素を備えれば好適である。
(4)前記干渉光位相検出装置により得られる複数の前記位相データ各々に対応する前記振幅許容範囲を,当該位相データに対応する測定部位の周囲の1又は複数の他の測定部位において得られた前記振幅データを基準にして動的に設定する振幅許容範囲設定手段。
これにより,前記位相データごとに(即ち,測定部位ごとに)的確な前記振幅許容範囲が動的に設定され,前記位相データの区分の精度,即ち,前記特異部を特定する精度が高まる。
In addition, the amplitude allowable range may be set to a predetermined range for each type of object to be measured. However, the amplitude of the intensity signal of the interference light is caused by the difference in the inclination of the surface of the measurement site with respect to the incident direction of the object light. The fluctuation range is relatively large depending on On the other hand, the amplitude detected at the measurement site adjacent in the region of the singular part has a small fluctuation because the surface inclination of the measurement site approximates.
Therefore, it is preferable that the shape calculation apparatus according to the present invention includes the constituent element shown in the following (4).
(4) The allowable amplitude range corresponding to each of the plurality of phase data obtained by the interference light phase detection device is obtained at one or a plurality of other measurement sites around the measurement site corresponding to the phase data. An amplitude allowable range setting unit that dynamically sets the amplitude data as a reference.
As a result, the accurate amplitude tolerance range is dynamically set for each phase data (that is, for each measurement site), and the accuracy of the phase data classification, that is, the accuracy of specifying the singular part is increased.

また,本発明は,以上に示した本発明に係る形状算出装置が備える各手段が実行する処理の手順を,コンピュータに実行させるための形状算出プログラムとして捉えることもできる。
同様に,本発明は,以上に示した本発明に係る形状算出装置が備える各手段が実行する処理の手順を,コンピュータによって実行する形状算出方法として捉えることもできる。
Further, the present invention can also be understood as a shape calculation program for causing a computer to execute the procedure of processing executed by each means included in the shape calculation apparatus according to the present invention described above.
Similarly, in the present invention, the procedure of processing executed by each unit included in the above-described shape calculation apparatus according to the present invention can also be understood as a shape calculation method executed by a computer.

また,本発明は,以上に示した本発明に係る形状算出装置を含む形状測定装置として捉えることもできる。
即ち,本発明に係る形状測定装置は,被測定物の表面上の測定部位に物体光を照射する光干渉計を備え,さらに,次の(a)〜(c)に示される各構成要素を備える。
(a)前記被測定物と前記光干渉計との2次元方向における相対位置を変化させる可動支持手段。
(b)前記可動支持手段による前記被測定物と前記光干渉計との相対位置の変化に応じて前記光干渉計における干渉光の強度信号の位相を検出して位相データを得る位相検波手段。
(c)前記位相検波手段により得られる複数の測定部位ごとの前記位相データを取得し,その位相データに基づいて前記被測定物の形状値を算出する前記形状算出装置(本発明に係る形状算出装置)。
Moreover, this invention can also be grasped | ascertained as a shape measuring apparatus containing the shape calculation apparatus which concerns on this invention shown above.
That is, the shape measuring apparatus according to the present invention includes an optical interferometer that irradiates object light onto a measurement site on the surface of the object to be measured, and further includes the components shown in the following (a) to (c). Prepare.
(A) A movable support means for changing a relative position between the object to be measured and the optical interferometer in a two-dimensional direction.
(B) Phase detection means for obtaining phase data by detecting the phase of the intensity signal of the interference light in the optical interferometer according to a change in the relative position between the object to be measured and the optical interferometer by the movable support means.
(C) The shape calculation apparatus (shape calculation according to the present invention) that acquires the phase data for each of a plurality of measurement sites obtained by the phase detection means, and calculates the shape value of the device under test based on the phase data. apparatus).

また,本発明に係る形状測定装置が,さらに,次の(d)〜(f)に示される各構成要素を備えればなお好適である。
(d)所定の光源から出射されるそれぞれ周波数が異なる第1の測定光及び第2の測定光のそれぞれを分岐させて前記被測定物の表裏相対する部位であるおもて面の測定部位及びうら面の測定部位の各方向へ導く導光手段。
(e)一対の前記光干渉計の一方であり,前記おもて面の測定部位の方向へ導かれた前記第1の測定光を前記おもて面の測定部位に物体光として照射させるとともに,前記おもて面の測定部位の方向へ導かれた前記第2の測定光を第1の参照面に照射させ,前記おもて面の測定部位からの前記第1の測定光の反射光と前記第1の参照面からの前記第2の測定光の反射光とを干渉させ,その干渉光の強度信号を出力するおもて面側のヘテロダイン光干渉計。
(f)一対の前記光干渉計の他方であり,前記うら面の測定部位の方向へ導かれた前記第2の測定光を前記うら面の測定部位に物体光として照射させるとともに,前記うら面の測定部位の方向へ導かれた前記第1の測定光を第2の参照面に照射させ,前記うら面の測定部位からの前記第2の測定光の反射光と前記第2の参照面からの前記第1の測定光の反射光とを干渉させ,その干渉光の強度信号を出力するうら面側のヘテロダイン干渉計。
そして,前記位相検波手段は,前記可動支持手段による前記被測定物と2つの前記ヘテロダイン光干渉計との相対位置の変化に応じて,2つの前記ヘテロダイン干渉計それぞれから出力される強度信号の位相差を検出した結果を前記位相データとする。
さらに,前記形状算出装置は,前記位相検波手段により得られる複数の測定部位ごとの前記位相データを取得し,その位相データに基づいて前記被測定物の表面の厚み分布を表す形状値を算出する。
In addition, it is further preferable that the shape measuring apparatus according to the present invention further includes each component shown in the following (d) to (f).
(D) a first measurement light and a second measurement light emitted from a predetermined light source, each of which has a different frequency, and a measurement part of the front surface that is a part opposite to the front and back of the object to be measured; Light guiding means for guiding the measurement area on the back surface in each direction.
(E) One of the pair of optical interferometers, which irradiates the measurement site on the front surface as object light with the first measurement light guided in the direction of the measurement site on the front surface. , Irradiating the first reference surface with the second measurement light guided in the direction of the measurement region on the front surface, and the reflected light of the first measurement light from the measurement region on the front surface And a reflected light of the second measurement light from the first reference surface, and a heterodyne optical interferometer on the front surface side that outputs an intensity signal of the interference light.
(F) the other of the pair of optical interferometers, irradiating the second measurement light guided in the direction of the measurement part of the back surface as the object light on the measurement part of the back surface; Irradiating the second reference surface with the first measurement light guided in the direction of the measurement site, and from the reflected light of the second measurement light from the measurement site on the back surface and the second reference surface A heterodyne interferometer on the back surface side that interferes with the reflected light of the first measurement light and outputs an intensity signal of the interference light.
Then, the phase detection means is configured to change the level of the intensity signal output from each of the two heterodyne interferometers according to a change in relative position between the object to be measured and the two heterodyne optical interferometers by the movable support means. The result of detecting the phase difference is defined as the phase data.
Further, the shape calculation device acquires the phase data for each of a plurality of measurement sites obtained by the phase detection means, and calculates a shape value representing the thickness distribution of the surface of the object to be measured based on the phase data. .

周知のヘテロダイン干渉計の原理により,前記おもて面側のヘテロダイン干渉計の出力信号は,前記被測定物における前記おもて面の測定部位の表面位置(高さ)に応じてその位相が定まるが,その信号の位相には,前記おもて面の測定部位自体の形状の成分と,その被測定物の振動等による変位量の成分とが反映される。
同様に,前記うら面側のヘテロダイン干渉計の出力信号の位相には,前記うら面の測定部位自体の形状の成分と,その被測定物の振動等による変位量の成分とが反映される。
また,前記おもて面側のヘテロダイン干渉計と前記うら面側のヘテロダイン干渉計とでは,前記第1の測定光及び前記第2の測定光のいずれを参照光又は物体光とするかの対応関係が逆になっている。即ち,被測定物の一方の面(おもて面)において物体光となっている前記第1の測定光が,他方の面(うら面)において参照光となっており,前記一方の面において参照光となっている前記第2の測定光が,前記他方の面において物体光となっている。
このため,前記位相検波手段により検出される位相差(位相データ)は,後述する(1)式〜(3)式に示されるように,前記被測定物の振動等による変位量の成分が相殺され,前記おもて面の測定部位自体の形状の成分及び前記うら面の測定部位自体の形状の成分のみが反映された変位量,即ち,前記被測定物における前記おもて面の測定部位及び前記うら面の測定部位の位置の厚みに相当する測定値となる。その結果,被測定物の振動等による変位の影響を受けないより精度の高い厚み測定を行うことができる。
According to the known heterodyne interferometer principle, the phase of the output signal of the front heterodyne interferometer depends on the surface position (height) of the measurement part of the front surface of the object to be measured. However, the phase of the signal reflects the component of the shape of the measurement portion of the front surface itself and the component of the displacement due to the vibration of the object to be measured.
Similarly, the phase component of the output signal of the heterodyne interferometer on the back surface side reflects the component of the shape of the measurement site itself of the back surface and the component of the displacement due to the vibration of the object to be measured.
Further, in the front surface side heterodyne interferometer and the back surface side heterodyne interferometer, the correspondence of which of the first measurement light and the second measurement light is the reference light or the object light The relationship is reversed. That is, the first measurement light that is object light on one surface (front surface) of the object to be measured is reference light on the other surface (back surface), and The second measurement light serving as reference light is object light on the other surface.
For this reason, the phase difference (phase data) detected by the phase detection means cancels out the displacement component due to the vibration of the object to be measured, as shown in equations (1) to (3) described later. The amount of displacement in which only the component of the shape of the measurement part of the front surface and the component of the shape of the measurement part of the back surface are reflected, that is, the measurement part of the front surface of the object to be measured And it becomes a measured value corresponding to the thickness of the position of the measurement site on the back surface. As a result, more accurate thickness measurement can be performed without being affected by displacement due to vibration or the like of the object to be measured.

本発明によれば,被測定物の形状測定領域の一部に,ゴミの付着部や傷の生じた部分等の光の反射特性が他と異なる部分(特異部)が存在する場合,光干渉計により得られる位相データのうち,前記特異部で得られた位相データ以外のデータ(前記処理対象データ)のみに基づく位相接続処理が行われる。その結果,前記特異部が一部に存在する被測定物についても,高精度で形状を測定できる。   According to the present invention, when there is a part (singular part) having different light reflection characteristics, such as a part where dust is attached or a part having a scratch, in a part of the shape measurement region of the object to be measured, Of the phase data obtained by the meter, the phase connection process based on only the data other than the phase data obtained by the singular part (the data to be processed) is performed. As a result, it is possible to measure the shape of the object to be measured in which the singular part is partially present with high accuracy.

以下添付図面を参照しながら,本発明の実施の形態について説明し,本発明の理解に供する。尚,以下の実施の形態は,本発明を具体化した一例であって,本発明の技術的範囲を限定する性格のものではない。
ここに,図1は本発明の実施形態に係る形状測定装置Xの概略構成図,図2は形状測定装置Xが備える干渉光検出部Yの構成図,図3は形状測定装置Xによる被測定物の形状測定手順の一例を表すフローチャート,図4は被測定物における測定点の分布の一例を表す模式図,図5は特異部を有する被測定物の測定により得られる干渉光の強度信号の振幅の変化を表す模式図,図6は形状測定装置Xにより算出される被測定物の特異部の周辺の測定点における位相接続処理後のデータがグラフ化された模式図,図7は形状測定装置Xにより特異部を有する被測定物の実測データのグラフ,図8は被測定物における測定点の分布の他の一例を表す模式図,図9は形状測定装置Xに適用可能な斜入射干渉計の概略構成図,図10は特異部を有する被測定物について光干渉計を用いた従来の形状測定により得られる位相接続処理後の位相のデータと本来の形状を表す位相のデータとがグラフ化された模式図である。
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings so that the present invention can be understood. The following embodiment is an example embodying the present invention, and does not limit the technical scope of the present invention.
Here, FIG. 1 is a schematic configuration diagram of a shape measuring apparatus X according to an embodiment of the present invention, FIG. 2 is a configuration diagram of an interference light detection unit Y provided in the shape measuring apparatus X, and FIG. FIG. 4 is a schematic diagram showing an example of the distribution of measurement points on the object to be measured. FIG. 5 is a diagram showing the intensity signal of the interference light obtained by measuring the object to be measured having a singular part. FIG. 6 is a schematic diagram showing changes in amplitude, FIG. 6 is a schematic diagram in which data after phase connection processing at measurement points around the singular part of the object to be measured, calculated by the shape measuring apparatus X, is graphed, and FIG. 7 is a shape measurement. FIG. 8 is a schematic diagram showing another example of the distribution of measurement points on the measurement object, and FIG. 9 is an oblique incidence interference applicable to the shape measurement apparatus X. FIG. Fig. 10 is a schematic diagram of the total, and Fig. 10 It is a schematic diagram and the phase of the data is graphed representing the phase of the data and the original shape after phase unwrapping process obtained by the conventional shape measurement using an optical interferometer for Jobutsu.

以下,図1に示される構成図を参照しながら,本発明の実施形態に係る形状測定装置Xについて説明する。
図1に示されるように,形状測定装置Xは,一対の光干渉計a20,b20を含む干渉光検出部Yと,2つの位相検波器4,5と,計算機6と,可動支持装置Zとを備えている。
前記計算機6は,CPU6a,メモリ6b及び信号入出力インターフェース6c(図中,I/Oと表示)を備え,前記CPU6aが所定のプログラムを実行することにより,各種の演算,前記信号入出力インターフェース6cを通じた外部装置との信号の送受信及び前記メモリ6bへのデータの記録等を実行する。
前記一対の光干渉計a20,b20は,半導体ウェハ等の薄板状の被測定物1の表裏各面の測定点1a,1bに物体光を照射し,その反射光(物体光)と所定の参照光とが重畳された干渉光の強度信号Sg1,Sg2を出力する光学機器である。なお,前記一対の光干渉計a20,b20は,それぞれ被測定物1の形状値の補正に用いられるもう一つの干渉光の強度信号Ref1,Ref2も出力するが,これについては後述する。
また,一方の前記位相検波器4(以下,第1位相検波器4という)は,前記一対の光干渉計a20,b20から出力される前記干渉光の強度信号Sg1,Sg2の位相検波を行い,その検波結果である位相データΔΦs(以下,第1位相データΔΦsという)を出力する信号処理装置である。さらに,前記位相検波器4は,位相検波の際に前記干渉光の強度信号Sg1,Sg2それぞれの振幅As1,As2を検出し,その検出結果も出力する。
なお,他方の前記位相検波器5(以下,第2位相検波器5という)は,前記一対の光干渉計a20,b20から出力される補正用のもう1つの干渉光の強度信号Ref1,Ref2の位相検波を行い,その検波結果である位相データΔΦr(以下,第2位相データΔΦrという)を出力する信号処理装置である。
Hereinafter, the shape measuring apparatus X according to the embodiment of the present invention will be described with reference to the configuration diagram shown in FIG.
As shown in FIG. 1, the shape measuring apparatus X includes an interference light detection unit Y including a pair of optical interferometers a20 and b20, two phase detectors 4 and 5, a calculator 6, and a movable support device Z. It has.
The computer 6 includes a CPU 6a, a memory 6b, and a signal input / output interface 6c (shown as I / O in the figure). When the CPU 6a executes a predetermined program, various operations and the signal input / output interface 6c are performed. For example, transmission / reception of signals to / from an external device and recording of data in the memory 6b are performed.
The pair of optical interferometers a20 and b20 irradiate the measurement points 1a and 1b on the front and back surfaces of the thin plate-like object 1 such as a semiconductor wafer with the reflected light (object light) and a predetermined reference. The optical device outputs intensity signals Sg1 and Sg2 of interference light on which light is superimposed. The pair of optical interferometers a20 and b20 also output the other interference light intensity signals Ref1 and Ref2 used for correcting the shape value of the DUT 1, which will be described later.
One of the phase detectors 4 (hereinafter referred to as the first phase detector 4) performs phase detection of the intensity signals Sg1 and Sg2 of the interference light output from the pair of optical interferometers a20 and b20, This is a signal processing device that outputs phase data ΔΦs (hereinafter referred to as first phase data ΔΦs) that is the detection result. Further, the phase detector 4 detects the amplitudes As1 and As2 of the interference light intensity signals Sg1 and Sg2 at the time of phase detection, and outputs the detection results.
The other phase detector 5 (hereinafter referred to as the second phase detector 5) is configured to output intensity signals Ref1 and Ref2 of the other interference light for correction output from the pair of optical interferometers a20 and b20. This is a signal processing device that performs phase detection and outputs phase data ΔΦr (hereinafter referred to as second phase data ΔΦr) as a result of the detection.

そして,前記計算機6は,被測定物1の表裏各面における複数の測定点1a,1bごとに得られる前記第1位相データΔΦs及び前記第2位相データΔΦrの差である補正後位相データΔΦsr(=ΔΦs−ΔΦr)に基づいて,被測定物1の形状値を算出する。ここで,複数の前記補正後位相データΔΦsrは,被測定物1と前記一対の光干渉計a20,b20との2次元方向(被測定物1の表裏各面に沿う方向)における相対位置を変化させつつ,前記一対の光干渉計a20,b20における干渉光の強度信号の位相を2つの位相検波器4,5で検出することによって得られるデータである。
但し,前記計算機6は,複数の測定点1a,1bごとに得られる前記振幅As1,As2に基づいて,それに対応する前記補正後位相データΔΦsrが位相接続処理の対象として適当なデータであるか否か(後述する処理対象データであるか非処理対象データであるか)の区分を行う。そして,前記計算機6は,後述するように,位相接続処理の対象として適当であると区分された前記補正後位相データΔΦsrのみに基づいて位相接続処理を実行する。
以下,形状測定装置Xが備える各構成要素の詳細について説明する。
Then, the calculator 6 corrects phase data ΔΦsr (corrected) which is a difference between the first phase data ΔΦs and the second phase data ΔΦr obtained for each of the plurality of measurement points 1a, 1b on the front and back surfaces of the DUT 1. = ΔΦs−ΔΦr), the shape value of the DUT 1 is calculated. Here, the plurality of post-correction phase data ΔΦsr change the relative positions of the device under test 1 and the pair of optical interferometers a20 and b20 in the two-dimensional direction (directions along the front and back surfaces of the device under test 1). The data obtained by detecting the phase of the intensity signal of the interference light in the pair of optical interferometers a20 and b20 by the two phase detectors 4 and 5.
However, based on the amplitudes As1 and As2 obtained for each of the plurality of measurement points 1a and 1b, the calculator 6 determines whether or not the corresponding corrected phase data ΔΦsr is appropriate data for the phase connection process. (Whether it is processing target data or non-processing target data to be described later). Then, as will be described later, the computer 6 executes the phase connection process based only on the corrected phase data ΔΦsr classified as suitable for the phase connection process.
Hereinafter, the detail of each component with which the shape measuring apparatus X is provided is demonstrated.

前記可動支持装置Zは,被測定物1を前記一対の光干渉計a20,b20それぞれからの物体光の出射部の間に支持するとともに,その支持位置を2次元方向(水平方向)に移動させることにより,前記一対の光干渉計a20,b20に対する相対位置を変化させる装置である(可動支持手段の一例)。
図1に示されるように,前記可動支持装置Zは,回転軸41及びこれに連結された支持部44,回転駆動部42,直線移動機構43及び移動制御装置7を備えている。
半導体ウェハ等の円盤状の被測定物1は,その縁部(エッジ部)において,円周上の三箇所に配置された支持部44により3点支持される。これら3つの支持部44は,前記円周の中心に向かって伸びる回転軸41に連結されている。
さらに,その回転軸41は,ステッピングモータ等の前記回転駆動部42によって回転駆動される。これにより,被測定物1は,その中央部を回転中心として回転される。
また,前記回転軸41及び前記回転駆動部42は,前記直線移動機構43により,被測定物1の表裏各面に平行な方向(厚み方向に直交する方向)に所定の移動範囲内で直線移動される。即ち,前記直線移動機構43は,被測定物1をその半径方向に沿って移動させる。
また,前記移動制御装置7は,前記回転駆動部42及び前記直線移動機構43の動きを制御する装置である。さらに,前記移動制御装置7は,被測定物1における物体光の照射位置,即ち,随時変化する測定点1a,1bの位置を検出し,その検出結果を前記計算機6に伝送する。測定点1a,1bの位置の検出は,例えば,前記回転駆動部42及び前記直線移動機構43に対する動作指令の履歴(即ち,被測定物1の移動履歴)に基づいて,或いは前記回転駆動部42及び前記直線移動機構43各々に設けられた位置検出センサ(不図示)の検出結果に基づいて検出される。
The movable support device Z supports the device under test 1 between the object light emitting portions from the pair of optical interferometers a20 and b20, and moves the support position in a two-dimensional direction (horizontal direction). This is a device that changes the relative position of the pair of optical interferometers a20 and b20 (an example of movable support means).
As shown in FIG. 1, the movable support device Z includes a rotation shaft 41, a support portion 44 connected to the rotation shaft 41, a rotation drive portion 42, a linear movement mechanism 43, and a movement control device 7.
A disk-shaped object to be measured 1 such as a semiconductor wafer is supported at three points by support portions 44 arranged at three locations on the circumference at the edge (edge portion). These three support portions 44 are connected to a rotation shaft 41 extending toward the center of the circumference.
Further, the rotary shaft 41 is rotationally driven by the rotational drive unit 42 such as a stepping motor. As a result, the DUT 1 is rotated with its center portion as the center of rotation.
Further, the rotation shaft 41 and the rotation drive unit 42 are linearly moved within a predetermined movement range in a direction parallel to the front and back surfaces of the DUT 1 (direction perpendicular to the thickness direction) by the linear movement mechanism 43. Is done. That is, the linear movement mechanism 43 moves the DUT 1 along its radial direction.
The movement control device 7 is a device that controls the movement of the rotation driving unit 42 and the linear movement mechanism 43. Further, the movement control device 7 detects the irradiation position of the object light on the object 1 to be measured, that is, the positions of the measurement points 1 a and 1 b that change as needed, and transmits the detection results to the computer 6. The positions of the measurement points 1a and 1b are detected based on, for example, the history of operation commands for the rotation drive unit 42 and the linear movement mechanism 43 (that is, the movement history of the DUT 1) or the rotation drive unit 42. And it detects based on the detection result of the position detection sensor (not shown) provided in each of the said linear movement mechanism 43. FIG.

そして,形状測定装置Xは,前記回転駆動部42による被測定物1の回転と,前記直線移動機構43による被測定物1の直線方向の移動とを併用することにより,被測定物1における測定点1a,1b(物体光の照射スポット)の位置を順次変更しつつ,複数の測定点1a,1bにおける前記第1位相データΔΦs及び前記第2位相データΔΦrを検出する。
例えば,前記移動制御装置7は,被測定物1を一定速度で連続的に回転及び直線移動させつつ,一定周期で,或いは測定点1a,1bの位置が予め定められた位置となるごとに,前記計算機6に対してデータ取得指令を送信する。そして,前記計算機6が,前記データ取得指令の受信に応じて前記第1位相データΔΦs及び前記第2位相データΔΦrを前記位相検波器4,5各々から取得し,それらの差を求めることにより,複数の測定点1a,1bについての前記補正後位相データΔΦsr(=ΔΦs−ΔΦr)が得られる。
図4は,被測定物1における測定点の分布の一例を表す模式図である。
被測定物1を回転及び直線移動させつつ干渉光の位相検出を順次行った場合,図4に示されるように,測定点1a,1bの位置は,被測定物1の表面における渦巻き状の線(波線)に沿って順次変化する。
以下,前記計算機6において得られる複数の前記補正後位相データΔΦsrそれぞれに対応する測定点は,データ取得順序に従って割り振られた測定点番号(1,2,3・・・)により識別されるものとする。従って,図4に示されるように,ある測定点番号をKbとしたとき,Kb番目の測定点と(Kb+1)番目の測定点とは隣り合う点であり,また,(Kb+1)番目の測定点と(Kb+2)番目の測定点とは隣り合う点である。
このように,形状測定装置Xにおいては,被測定物1上の一本の走査線Rに沿って,前記一対の干渉計a20,b20それぞれからの物体光が走査される。換言すると,この1本の走査線Rは,複数の前記補正後位相データΔΦsrそれぞれに対応する複数の測定点における始点となる測定点から順次隣の測定点へと渡る予め定められた1本の線である。
なお,図4において,斜線で示される部分は,被測定物1の表面において光の反射特性が他の部分と大きく異なる前記特異部である。図4には,(Kb+1)番目及び(Kb+2)番目の測定点が,前記特異部内に存在する例が示されている。
Then, the shape measuring apparatus X uses the rotation of the DUT 1 by the rotation driving unit 42 and the movement of the DUT 1 in the linear direction by the linear movement mechanism 43 to measure the DUT 1 at the DUT 1. The first phase data ΔΦs and the second phase data ΔΦr at a plurality of measurement points 1a, 1b are detected while sequentially changing the positions of the points 1a, 1b (object light irradiation spots).
For example, the movement control device 7 continuously rotates and linearly moves the device under test 1 at a constant speed, and at a constant cycle or whenever the positions of the measurement points 1a and 1b become predetermined positions. A data acquisition command is transmitted to the computer 6. Then, the computer 6 acquires the first phase data ΔΦs and the second phase data ΔΦr from each of the phase detectors 4 and 5 in response to reception of the data acquisition command, and obtains a difference between them. The corrected phase data ΔΦsr (= ΔΦs−ΔΦr) for a plurality of measurement points 1a and 1b is obtained.
FIG. 4 is a schematic diagram illustrating an example of the distribution of measurement points in the DUT 1.
When the phase of the interference light is sequentially detected while rotating the measured object 1 and moving linearly, the positions of the measurement points 1a and 1b are spiral lines on the surface of the measured object 1 as shown in FIG. It changes sequentially along the (dashed line).
Hereinafter, the measurement points corresponding to each of the plurality of corrected phase data ΔΦsr obtained in the computer 6 are identified by the measurement point numbers (1, 2, 3,...) Assigned in accordance with the data acquisition order. To do. Therefore, as shown in FIG. 4, when a certain measurement point number is Kb, the Kb-th measurement point and the (Kb + 1) -th measurement point are adjacent points, and the (Kb + 1) -th measurement point. The (Kb + 2) -th measurement point is an adjacent point.
As described above, in the shape measuring apparatus X, the object light from each of the pair of interferometers a20 and b20 is scanned along one scanning line R on the DUT 1. In other words, the one scanning line R is a predetermined one that sequentially extends from the measurement point that is the starting point at the plurality of measurement points corresponding to each of the plurality of corrected phase data ΔΦsr to the next measurement point. Is a line.
In FIG. 4, the hatched portion is the singular portion where the light reflection characteristic on the surface of the DUT 1 is significantly different from other portions. FIG. 4 shows an example in which the (Kb + 1) th and (Kb + 2) th measurement points exist in the singular part.

次に,図2に示される構成図を参照しつつ,前記一対の光干渉計a20,b20を含む前記干渉光検出部Yについて説明する。
図2に示されるように,前記干渉光検出部Yは,二偏波光源2と,偏光ビームスプリッタ3(以下,PBS3と記載する)と,複数のミラーa11〜a13,b11,b12と,A面側ヘテロダイン干渉計a20及びB面側ヘテロダイン干渉計b20と,A面側補正用干渉計a30及びB面側補正用干渉計b30と,第1位相検波器4と,第2位相検波器5とを備えている。ここで,前記A面側補正用干渉計a30及び前記B面側補正用干渉計b30が,前記一対の光干渉計である。
以下,便宜上,被測定物1の一方の面(図2における上側の面)をA面(前記おもて面に相当),これと表裏の関係にある他方の面をB面(前記うら面に相当)という。また,被測定物1の厚みの測定位置におけるA面側の表面部分をA面測定点1a(前記おもて面の測定部位に相当),そのA面測定点1aと表裏相対するB面の表面部分をB面測定点1b(前記うら面の測定部位に相当)という。
なお,図2には示されていないが,被測定物1は,前記可動支持装置Z(図1参照)により支持されている。
Next, the interference light detection unit Y including the pair of optical interferometers a20 and b20 will be described with reference to the configuration diagram shown in FIG.
As shown in FIG. 2, the interference light detection unit Y includes a two-polarized light source 2, a polarization beam splitter 3 (hereinafter referred to as PBS3), a plurality of mirrors a11 to a13, b11, b12, and A A surface-side heterodyne interferometer a20 and a B-side heterodyne interferometer b20, an A-side correction interferometer a30 and a B-side correction interferometer b30, a first phase detector 4 and a second phase detector 5; It has. Here, the A-side correction interferometer a30 and the B-side correction interferometer b30 are the pair of optical interferometers.
Hereinafter, for the sake of convenience, one surface (the upper surface in FIG. 2) of the DUT 1 is the A surface (corresponding to the front surface), and the other surface in front and back is the B surface (the back surface). Equivalent). Further, the surface portion on the A surface side at the measurement position of the thickness of the DUT 1 is the A surface measurement point 1a (corresponding to the measurement portion of the front surface), and the B surface opposite to the A surface measurement point 1a. The surface portion is referred to as a B-surface measurement point 1b (corresponding to the measurement portion of the back surface).
Although not shown in FIG. 2, the DUT 1 is supported by the movable support device Z (see FIG. 1).

前記二偏波光源2は,周波数がわずかに異なる2つのビーム光P1,P2を出射するレーザ光の光源である。なお,図2に示される前記二偏波光源2は,例えば,周波数がわずかに異なる2つのビーム光P1,P2を同軸或いはほぼ同軸(2つの光束の一部が重なる状態)で出射するゼーマンレーザ等である。以下,一方のビーム光を第1ビーム光P1,他方のビーム光を第2ビーム光P2という。
なお,図2においては,便宜上,両ビーム光P1,P2が異なる軸に沿って出射されているように記載されているが,本実施形態においては,両ビーム光P1,P2は同じ軸(同じ光路)又は一部重なる光路に沿って出射されるものとする。第1ビーム光P1及び第2ビーム光P2は,単波長光であり,それぞれの周波数は,特に限定されるものではないが,例えば,一方のビーム光の周波数ωは5×108MHz程度(可視光のレーザ光源を採用した場合の例)であり,両ビーム光の周波数の差は数十kHz程度である。また,二偏波光源2が出射する第1ビーム光P1及び第2ビーム光P2は,それぞれ偏波面の方向が異なる。ここでは,2つのビーム光P1,P2の偏波面は直交しているものとする。これら第1ビーム光P1及び第2ビーム光P2が,それぞれ周波数が異なる前記第1の測定光及び前記第2の測定光の一例である。
なお,2つのビーム光P1,P2は,1つのビーム光を出射する光源と,出射されたビーム光を2分岐させるビームスプリッタと,2分岐された一方のビーム光の周波数を変換する音響光学素子等により生成されることも考えられる。
The dual-polarized light source 2 is a laser light source that emits two light beams P1 and P2 having slightly different frequencies. 2 is, for example, a Zeeman laser that emits two light beams P1 and P2 having slightly different frequencies coaxially or substantially coaxially (in a state where two light beams partially overlap). Etc. Hereinafter, one light beam is referred to as a first light beam P1, and the other light beam is referred to as a second light beam P2.
In FIG. 2, for the sake of convenience, it is described that both beam lights P1 and P2 are emitted along different axes. However, in this embodiment, both beam lights P1 and P2 have the same axis (the same It is assumed that the light is emitted along an optical path) or a partially overlapping optical path. The first beam light P1 and the second beam light P2 are single wavelength light, and their frequencies are not particularly limited. For example, the frequency ω of one beam light is about 5 × 10 8 MHz ( This is an example in which a visible laser light source is used, and the difference in frequency between the two light beams is about several tens of kHz. Further, the first beam light P1 and the second beam light P2 emitted from the dual-polarized light source 2 have different polarization plane directions. Here, it is assumed that the polarization planes of the two light beams P1 and P2 are orthogonal. The first beam light P1 and the second beam light P2 are examples of the first measurement light and the second measurement light having different frequencies.
The two light beams P1 and P2 include a light source that emits one light beam, a beam splitter that divides the emitted light beam into two, and an acoustooptic device that converts the frequency of one of the two branched light beams. It is also conceivable that they are generated by the above.

前記PBS3は,二偏波光源2から出射される第1ビーム光P1(周波数:ω)及び第2ビーム光(周波数:ω+Δω)のそれぞれを2分岐させる。そして,PBS3により分岐された一方の第1ビーム光P1及び第2ビーム光P2は,3つのミラーa11,a12,a13により,被測定物1の前記A面測定点1aの方向へ導かれる。また,PBS3により分岐された他方の第1ビーム光P1及び第2ビーム光P2は,2つのミラーb11,b12により,被測定物1の前記B面測定点1bの方向へ導かれる。なお,前記PBS3及び各ミラーa11〜a13,b11,b12が,前記導光手段の一例である。
図2に示す例では,2つのビーム光P1,P2が同じ光路で導かれるので,両ビーム光の導光経路において揺らぎが生じても,その揺らぎは2つのビーム光P1,P2に等しく影響するので,揺らぎに起因する測定精度の悪化を防止できる。
なお,第1ビーム光P1及び第2ビーム光P2を前記A面測定点1a及び前記B面測定点1bのそれぞれへ導く光学機器としては,ミラーの他,光ファイバ等も考えられる。
The PBS 3 splits each of the first beam light P1 (frequency: ω) and the second beam light (frequency: ω + Δω) emitted from the dual-polarized light source 2 into two branches. Then, the first beam light P1 and the second beam light P2 branched by the PBS 3 are guided in the direction of the A-plane measurement point 1a of the DUT 1 by the three mirrors a11, a12, and a13. The other first beam light P1 and second beam light P2 branched by the PBS 3 are guided in the direction of the B surface measurement point 1b of the object 1 to be measured by the two mirrors b11 and b12. The PBS 3 and the mirrors a11 to a13, b11, b12 are an example of the light guide means.
In the example shown in FIG. 2, since the two light beams P1 and P2 are guided along the same optical path, even if fluctuations occur in the light guide paths of the two light beams, the fluctuations equally affect the two light beams P1 and P2. Therefore, it is possible to prevent the measurement accuracy from deteriorating due to fluctuations.
In addition, as an optical device for guiding the first beam light P1 and the second beam light P2 to the A-surface measurement point 1a and the B-surface measurement point 1b, an optical fiber or the like can be considered in addition to a mirror.

前記A面側ヘテロダイン干渉計a20(前記おもて面側のヘテロダイン干渉計に相当)は,図2に示すように,偏光ビームスプリッタa21(以下,A面側PBS(a21)という),2つの4分の1波長板a22及びa23,A面側参照板a24,偏光板a25(以下,A面側第1偏光板a25という)及び光検出器a26(以下,A面側第1光検出器a26という)を備えている。一方の4分の1波長板a22は,前記A面側PBS(a21)と前記A面測定点1aとの間に配置され,他方の4分の1波長板a23は,前記A面側PBS(a21)と前記A面側参照板a24との間に配置されている。   As shown in FIG. 2, the A-side heterodyne interferometer a20 (corresponding to the front-side heterodyne interferometer) includes a polarization beam splitter a21 (hereinafter referred to as A-side PBS (a21)), two Quarter-wave plates a22 and a23, A-side reference plate a24, polarizing plate a25 (hereinafter referred to as A-side first polarizing plate a25) and photodetector a26 (hereinafter referred to as A-side first photodetector a26). Is provided). One quarter-wave plate a22 is disposed between the A-plane side PBS (a21) and the A-plane measurement point 1a, and the other quarter-wave plate a23 is disposed on the A-plane side PBS ( a21) and the A-side reference plate a24.

前記A面側PBS(a21)は,ミラーa11〜a13によって前記A面測定点1aの方向へ導かれた第1ビーム光P1を透過させることにより,その第1ビーム光P1を前記A面測定点1aに照射させるとともに,同じく前記A面測定点1aの方向へ導かれた第2ビーム光P2を反射することにより,その第2ビーム光P2を前記A面側参照板a24の表面(前記第1の参照面に相当)に照射させる。図2に示す例では,前記第1ビーム光P1及び前記第2ビーム光P2は,それぞれ前記A面測定点1aの表面及び前記A面側参照板a24の表面に対して垂直入射される。
さらに,前記A面側PBS(a21)は,前記A面測定点1aからの前記第1ビーム光P1の反射光と,前記A面側参照板a24の表面からの前記第2ビーム光P2の反射光との両方を,前記A面側第1偏光板a25の方向(同じ方向)へ導く。
なお,4分の1波長板a22の存在により,前記A面側PBS(a21)から前記A面測定点1a側へ出射される第1ビーム光P1の偏光の状態(P偏光かS偏光か)と,前記A面測定点1aに反射して前記A面側PBS(a21)に入射される第1ビーム光P1の偏光の状態とが入れ替わる。同様に,4分の1波長板a23の存在により,前記A面側PBS(a21)から前記A面測参照板a24側へ出射される第2ビーム光P2の偏光の状態と,前記A面測参照板a24に反射して前記A面側PBS(a21)に入射される第2ビーム光P2の偏光の状態とが入れ替わる。
前記A面側第1偏光板a25は,所定方向(両ビーム光の偏波面の方向の中間方向)の偏波面の光のみを透過させることにより,前記A面測定点1aからの前記第1ビーム光P1の反射光と,前記A面側参照板a24の表面からの前記第2ビーム光P2の反射光とを干渉させる。その干渉光(以下,A面測定干渉光という)は,前記A面側第1光検出器a26に入力(入射)される。
前記A面側第1光検出器a26は,前記A面測定干渉光を受光して光電変換を行うことにより,前記A面測定干渉光の強度信号Sig1(電気信号)を出力する。
The A surface side PBS (a21) transmits the first beam light P1 guided in the direction of the A surface measurement point 1a by the mirrors a11 to a13, and thereby transmits the first beam light P1 to the A surface measurement point. While irradiating 1a and reflecting the 2nd beam light P2 similarly guided to the direction of the A surface measurement point 1a, the second beam light P2 is reflected on the surface of the A surface side reference plate a24 (the first surface). Equivalent to the reference plane). In the example shown in FIG. 2, the first beam light P1 and the second beam light P2 are perpendicularly incident on the surface of the A surface measurement point 1a and the surface of the A surface side reference plate a24, respectively.
Further, the A-plane side PBS (a21) reflects the reflected light of the first beam light P1 from the A-plane measurement point 1a and reflects the second beam light P2 from the surface of the A-plane side reference plate a24. Both light and light are guided in the direction (the same direction) of the A-plane side first polarizing plate a25.
The state of polarization of the first light beam P1 emitted from the A-plane side PBS (a21) to the A-plane measurement point 1a side (P-polarized light or S-polarized light) due to the presence of the quarter-wave plate a22. And the state of polarization of the first beam light P1 reflected on the A-plane measurement point 1a and incident on the A-plane side PBS (a21) is switched. Similarly, due to the presence of the quarter-wave plate a23, the polarization state of the second beam light P2 emitted from the A-plane side PBS (a21) to the A-plane measurement reference plate a24 side, and the A-plane measurement The polarization state of the second light beam P2 that is reflected by the reference plate a24 and incident on the A-side PBS (a21) is switched.
The A-plane-side first polarizing plate a25 transmits only the light having a polarization plane in a predetermined direction (an intermediate direction between the polarization planes of both light beams), whereby the first beam from the A-plane measurement point 1a is transmitted. The reflected light of the light P1 is caused to interfere with the reflected light of the second beam light P2 from the surface of the A-plane side reference plate a24. The interference light (hereinafter referred to as A-surface measurement interference light) is input (incident) into the A-surface side first photodetector a26.
The A surface side first photodetector a26 outputs the intensity signal Sig1 (electric signal) of the A surface measurement interference light by receiving the A surface measurement interference light and performing photoelectric conversion.

一方,前記B面側ヘテロダイン干渉計b20は,前記A面側ヘテロダイン干渉計a20と同様の構成を備えるが,両者は,前記第1ビーム光P1及び前記第2ビーム光P2のいずれを参照光(参照板への照射光)又は物体光(測定点への照射光)とするかの対応関係が逆になっている。
即ち,前記B面側ヘテロダイン干渉計b20(前記うら面側のヘテロダイン干渉計に相当)は,図2に示すように,偏光ビームスプリッタb21(以下,B面側PBS(b21)という),2つの4分の1波長板b22及びb23,B面側参照板b24,偏光板b25(以下,B面側第1偏光板b25という)及び光検出器b26(以下,B面側第1光検出器b26という)を備えている。一方の4分の1波長板b22は,前記B面側PBS(b21)と前記B面測定点1bとの間に配置され,他方の4分の1波長板b23は,前記B面側PBS(b21)と前記B面側参照板b24との間に配置されている。
On the other hand, the B-side heterodyne interferometer b20 has the same configuration as the A-side heterodyne interferometer a20, but both of them use either the first beam light P1 or the second beam light P2 as reference light ( The correspondence relationship between the irradiation light on the reference plate) and the object light (irradiation light on the measurement point) is reversed.
That is, the B-side heterodyne interferometer b20 (corresponding to the back-side heterodyne interferometer) includes a polarization beam splitter b21 (hereinafter referred to as B-side PBS (b21)), two pieces as shown in FIG. Quarter-wave plates b22 and b23, B-side reference plate b24, polarizing plate b25 (hereinafter referred to as B-side first polarizing plate b25) and photodetector b26 (hereinafter referred to as B-side first photodetector b26). Is provided). One quarter-wave plate b22 is disposed between the B-side PBS (b21) and the B-plane measurement point 1b, and the other quarter-wave plate b23 is disposed on the B-side PBS ( b21) and the B-side reference plate b24.

前記B面側PBS(b21)は,ミラーb11〜b12によって前記B面測定点1bの方向へ導かれた第2ビーム光P2を透過させることにより,その第2ビーム光P2を前記B面測定点1bに照射させるとともに,同じく前記B面測定点1bの方向へ導かれた第1ビーム光P1を反射することにより,その第1ビーム光P1を前記B面側参照板b24の表面(前記第2の参照面に相当)に照射させる。図2に示す例では,前記第2ビーム光P2及び前記第1ビーム光P1は,それぞれ前記B面測定点1bの表面及び前記B面側参照板b24の表面に対して垂直入射される。
さらに,前記B面側PBS(b21)は,前記B面測定点1bからの前記第2ビーム光P2の反射光と,前記B面側参照板b24の表面からの前記第1ビーム光P1の反射光との両方を,前記B面側第1偏光板b25の方向(同じ方向)へ導く。
なお,4分の1波長板b22の存在により,前記B面側PBS(b21)から前記B面測定点1b側へ出射される第2ビーム光P2の偏光の状態(S偏光かP偏光か)と,前記B面測定点1bに反射して前記B面側PBS(b21)に入射される第2ビーム光P2の偏光の状態とが入れ替わる。同様に,4分の1波長板b23の存在により,前記B面側PBS(b21)から前記B面測参照板b24側へ出射される第1ビーム光P1の偏光の状態と,前記B面測参照板b24に反射して前記B面側PBS(b21)に入射される第1ビーム光P1の偏光の状態とが入れ替わる。
前記B面側第1偏光板b25は,所定方向(両ビーム光の偏波面の方向の中間方向)の偏波面の光のみを透過させることにより,前記B面測定点1bからの前記第2ビーム光P2の反射光と,前記B面側参照板b24の表面からの前記第1ビーム光P1の反射光とを干渉させる。その干渉光(以下,B面測定干渉光という)は,前記B面側第1光検出器b26に入力(入射)される。
前記B面側第1光検出器b26は,前記B面測定干渉光を受光して光電変換を行うことにより,前記B面測定干渉光の強度信号Sig2(電気信号)を出力する。
The B-side PBS (b21) transmits the second beam light P2 guided in the direction of the B-plane measurement point 1b by the mirrors b11 to b12, and thereby transmits the second beam light P2 to the B-plane measurement point. While irradiating 1b and reflecting the 1st beam light P1 similarly guided to the said B surface measurement point 1b direction, the 1st beam light P1 is made into the surface (said 2nd said 2nd surface side reference board b24). Equivalent to the reference plane). In the example shown in FIG. 2, the second beam light P2 and the first beam light P1 are perpendicularly incident on the surface of the B surface measurement point 1b and the surface of the B surface side reference plate b24, respectively.
Further, the B surface side PBS (b21) reflects the reflected light of the second beam light P2 from the B surface measurement point 1b and the reflected light of the first beam light P1 from the surface of the B surface side reference plate b24. Both the light and the light are guided in the direction (the same direction) of the B-side first polarizing plate b25.
The state of polarization of the second light beam P2 emitted from the B-side PBS (b21) to the B-side measurement point 1b due to the presence of the quarter-wave plate b22 (S-polarized light or P-polarized light) And the state of polarization of the second light beam P2 reflected on the B-surface measurement point 1b and incident on the B-surface side PBS (b21) is switched. Similarly, due to the presence of the quarter-wave plate b23, the polarization state of the first beam light P1 emitted from the B-side PBS (b21) to the B-side measurement reference plate b24 side, and the B-side measurement. The polarization state of the first light beam P1 reflected on the reference plate b24 and incident on the B-side PBS (b21) is switched.
The B-side first polarizing plate b25 transmits only the light having the polarization plane in a predetermined direction (the intermediate direction between the polarization planes of both light beams), so that the second beam from the B-plane measurement point 1b is transmitted. The reflected light of the light P2 is caused to interfere with the reflected light of the first beam light P1 from the surface of the B-side reference plate b24. The interference light (hereinafter referred to as B-surface measurement interference light) is input (incident) into the B-surface side first photodetector b26.
The B surface side first photodetector b26 outputs the intensity signal Sig2 (electric signal) of the B surface measurement interference light by receiving the B surface measurement interference light and performing photoelectric conversion.

前記第1位相検波器4(前記位相検波手段に相当)は,前記A面側ヘテロダイン干渉計a20及び前記B面側ヘテロダイン干渉計b20のそれぞれから出力される強度信号Sig1,Sig2の位相差ΔΦsを検出し,その検出値を電気信号(検出信号)として出力するものである。例えば,前記第1位相検波器4として,ロックインアンプを採用することができる。ここで,前記第1位相検波器4の出力信号の値(位相差ΔΦs)は,被測定物1における前記A面測定点1aの表面位置と前記B面測定点1bの表面位置との差,即ち,被測定物1における両測定点1a,1bの位置の厚みに応じて変化する。   The first phase detector 4 (corresponding to the phase detection means) calculates the phase difference ΔΦs between the intensity signals Sig1 and Sig2 output from the A-side heterodyne interferometer a20 and the B-side heterodyne interferometer b20, respectively. The detected value is output as an electric signal (detection signal). For example, a lock-in amplifier can be adopted as the first phase detector 4. Here, the value (phase difference ΔΦs) of the output signal of the first phase detector 4 is the difference between the surface position of the A-surface measurement point 1a and the surface position of the B-surface measurement point 1b in the device under test 1. That is, it changes according to the thickness of the position of both measurement points 1a and 1b on the DUT 1.

周知のヘテロダイン干渉計の原理により,前記A面側ヘテロダイン干渉計a20の出力信号Sig1の位相は,前記A面測定点1aの表面位置(高さ)に応じて定まるが,出力信号Sig1の位相には,前記A面測定点1a自体の形状(凹凸)の成分と,前記被測定物1の振動による変位量の成分との両方が反映される。
同様に,前記B面側ヘテロダイン干渉計b20の出力信号Sig2の位相は,前記B面測定点1bの表面位置(高さ)に応じて定まるが,出力信号Sig2の位相には,前記B面測定点1b自体の形状(凹凸)の成分と,前記被測定物1の振動による変位量の成分との両方が反映される。
また,前述したように,前記A面側ヘテロダイン干渉計a20と前記B面側ヘテロダイン干渉計b20とでは,前記第1ビーム光P1及び前記第2ビーム光P2のいずれを参照光又は物体光とするかの対応関係が逆になっている。
このため,前記第1位相検波器4により検出される位相差ΔΦsは,被測定物1の振動による変位量の成分がA面側とB面側とで相殺され,前記A面測定点1a自体の形状(凹凸)の成分及び前記B面測定点1b自体の形状(凹凸)の成分のみが反映された変位量,即ち,被測定物1における前記A面測定点1a及びB面測定点1bの位置の厚みに相当する測定値となる。
According to the known principle of the heterodyne interferometer, the phase of the output signal Sig1 of the A-plane side heterodyne interferometer a20 is determined according to the surface position (height) of the A-plane measurement point 1a, but the phase of the output signal Sig1 This reflects both the shape (unevenness) component of the A surface measurement point 1a itself and the displacement amount component due to the vibration of the DUT 1.
Similarly, the phase of the output signal Sig2 of the B-side heterodyne interferometer b20 is determined according to the surface position (height) of the B-plane measurement point 1b, but the phase of the output signal Sig2 includes the B-plane measurement. Both the shape (irregularity) component of the point 1b itself and the displacement component due to the vibration of the DUT 1 are reflected.
Further, as described above, in the A-side heterodyne interferometer a20 and the B-side heterodyne interferometer b20, either the first beam light P1 or the second beam light P2 is used as reference light or object light. The corresponding relationship is reversed.
For this reason, the phase difference ΔΦs detected by the first phase detector 4 cancels out the displacement component due to the vibration of the DUT 1 between the A plane side and the B plane side, and the A plane measurement point 1a itself The amount of displacement reflecting only the shape (unevenness) component and the shape (unevenness) component of the B-side measurement point 1b itself, that is, the A-side measurement point 1a and the B-side measurement point 1b of the object 1 to be measured. The measured value corresponds to the thickness of the position.

一方,前記A面側補正用干渉計a30は,図2に示すように,ビームスプリッタa31(以下,A面側BS(a31)という),偏光板a32(以下,A面側第2偏光板a32という)及び光検出器a33(以下,A面側第2光検出器a33という)を備えている。
前記A面側BS(a31)は,前記A面測定点1aの方向へ導かれた第1ビーム光P1及び第2ビーム光P2を,前記A面側ヘテロダイン干渉計a20に入力される直前の位置において,そのA面側ヘテロダイン干渉計a20に入力されるビーム光(以下,主光という)と,それ以外のビーム光(以下,副光という)とに分岐させる(おもて面側の主副分光手段)。
前記A面側第2偏光板a32は,所定方向(両ビーム光の偏波面の方向の中間方向)の偏波面の光のみを透過させることにより,前記A面側BS(a31)により分岐された前記副光(即ち,分岐された第1ビーム光P1及び第2ビーム光P2)を干渉させる(おもて面側の副光干渉手段)。
前記A面側第2光検出器a33は,前記A面側第2偏光板a32により得られる干渉光を受光して光電変換を行うことにより,その干渉光の強度信号Ref1(電気信号)を出力する(おもて面側の副光強度検出手段)。
On the other hand, as shown in FIG. 2, the A-side correction interferometer a30 includes a beam splitter a31 (hereinafter referred to as A-side BS (a31)) and a polarizing plate a32 (hereinafter referred to as A-side second polarizing plate a32). And a photodetector a33 (hereinafter referred to as A-side second photodetector a33).
The A plane side BS (a31) is a position immediately before the first beam light P1 and the second beam light P2 guided in the direction of the A plane measurement point 1a are input to the A plane heterodyne interferometer a20. In FIG. 2, the light beam (hereinafter referred to as main light) input to the A-side heterodyne interferometer a20 and the other light beam (hereinafter referred to as sub-light) are branched (main surface side main sub-light). Spectroscopic means).
The A-plane-side second polarizing plate a32 is branched by the A-plane-side BS (a31) by transmitting only light having a polarization plane in a predetermined direction (a middle direction between the polarization planes of both light beams). The auxiliary light (that is, the branched first beam light P1 and second beam light P2) is caused to interfere (sub-light interference means on the front surface side).
The A-side second photodetector a33 receives the interference light obtained by the A-side second polarizing plate a32 and performs photoelectric conversion, thereby outputting an intensity signal Ref1 (electric signal) of the interference light. (Sub-light intensity detecting means on the front side).

また,前記B面側補正用干渉計b30は,被測定物1のB面側において,前記A面側補正用干渉計a30と同様の構成を備えるものである。
即ち,前記B面側補正用干渉計b30は,図2に示すように,ビームスプリッタb31(以下,B面側BS(b31)という),偏光板b32(以下,B面側第2偏光板b32という)及び光検出器b33(以下,B面側第2光検出器b33という)を備えている。
前記B面側BS(b31)は,前記B面測定点1bの方向へ導かれた第1ビーム光P1及び第2ビーム光P2を,前記B面側ヘテロダイン干渉計b20に入力される直前の位置において,そのB面側ヘテロダイン干渉計b20に入力されるビーム光(主光)と,それ以外のビーム光(副光)とに分岐させる(うら面側の主副分光手段)。
前記B面側第2偏光板b32は,所定方向(両ビーム光の偏波面の方向の中間方向)の偏波面の光のみを透過させることにより,前記B面側BS(b31)により分岐された前記副光(即ち,分岐された第1ビーム光P1及び第2ビーム光P2)を干渉させる(うら面側の副光干渉手段)。
前記B面側第2光検出器b33は,前記B面側第2偏光板b32により得られる干渉光を受光して光電変換を行うことにより,その干渉光の強度信号Ref2(電気信号)を出力する(うら面側の副光強度検出手段)。
The B-side correction interferometer b30 has the same configuration as the A-side correction interferometer a30 on the B side of the DUT 1.
That is, as shown in FIG. 2, the B-side correction interferometer b30 includes a beam splitter b31 (hereinafter referred to as B-side BS (b31)) and a polarizing plate b32 (hereinafter referred to as B-side second polarizing plate b32). And a photodetector b33 (hereinafter referred to as a B-side second photodetector b33).
The B surface side BS (b31) is a position immediately before the first beam light P1 and the second beam light P2 guided in the direction of the B surface measurement point 1b are input to the B surface heterodyne interferometer b20. In FIG. 2, the light beam (main light) input to the B-side heterodyne interferometer b20 is branched into the other light beam (sub-light) (back side main sub-spectral means).
The B-side second polarizing plate b32 is branched by the B-side BS (b31) by transmitting only light having a polarization plane in a predetermined direction (the intermediate direction between the polarization planes of both light beams). The auxiliary light (that is, the branched first beam light P1 and second beam light P2) is caused to interfere (sub-light interference means on the back surface side).
The B-side second photodetector b33 receives the interference light obtained by the B-side second polarizing plate b32 and performs photoelectric conversion to output an intensity signal Ref2 (electric signal) of the interference light. (Sub-light intensity detecting means on the back side).

また,前記第2位相検波器5は,前記A面側第2光検出器a33及び前記B面側第2光検出器b33のそれぞれから出力される強度信号Ref1,Ref2の位相差ΔΦrを検出し,その検出値を電気信号(検出信号)として出力するものであり,例えば,ロックインアンプを採用することができる。ここで,前記第2位相検波器5の出力信号の値(位相差ΔΦr)は,後述するように,前記被測定物1の厚みの補正用の測定値(前記第2の測定値に相当)である。
前記第1ビーム光P1及び前記第2ビーム光P2について,前記二偏波光源2から前記PBS3及びミラーa11〜a13,b11,b12によりA面測定点1a及びB面測定点1bのそれぞれへ導かれる経路において位相の揺らぎが生じた場合,その揺らぎの影響が前記第1位相検波器4により検出される位相差ΔΦsに反映され,それが測定誤差となる。
しかしながら,そのような位相の揺らぎの成分のA面側及びB面側の合計は,前記第2位相検波器5により検出される位相差ΔΦrに反映される。従って,前記第1位相検波器4により検出される位相差ΔΦsから,前記第2位相検波器5により検出される位相差ΔΦrを差し引く補正を行うことにより得られる前記補正後位相データΔΦsr(=ΔΦs−ΔΦr)は,2つのヘテロダイン干渉計a20,b20に至るまでの両ビーム光P1,P2の位相の揺らぎの影響が除去された測定データとなる。
ここで,前記補正後位相データΔΦsrは,被測定物1の厚みに応じて変化するが,ΔΦs及びΔΦrが−π〜+πの範囲内で検出される値であるため,隣り合う2つの測定点における厚みの差(形状変化)が小さくても,それら2つの測定点で得られる前記補正後位相データΔΦsrの差が大きくなる場合がある。そのため,複数の測定点で得られた前記補正後位相データΔΦsrに対して位相接続処理を施すことより,被測定物1の連続的な厚み変化に応じて連続的に変化する位相データ(以下,処理後位相データθという)を算出する必要がある。
The second phase detector 5 detects the phase difference ΔΦr between the intensity signals Ref1 and Ref2 output from the A-side second photodetector a33 and the B-side second photodetector b33, respectively. The detection value is output as an electric signal (detection signal), and, for example, a lock-in amplifier can be employed. Here, the value (phase difference ΔΦr) of the output signal of the second phase detector 5 is a measured value for correcting the thickness of the DUT 1 (corresponding to the second measured value), as will be described later. It is.
The first beam light P1 and the second beam light P2 are guided from the dual-polarized light source 2 to the A-plane measurement point 1a and the B-plane measurement point 1b by the PBS 3 and mirrors a11 to a13, b11, and b12, respectively. When phase fluctuation occurs in the path, the influence of the fluctuation is reflected in the phase difference ΔΦs detected by the first phase detector 4, which becomes a measurement error.
However, the sum of the phase fluctuation components on the A plane side and the B plane side is reflected in the phase difference ΔΦr detected by the second phase detector 5. Therefore, the corrected phase data ΔΦsr (= ΔΦs) obtained by performing correction by subtracting the phase difference ΔΦr detected by the second phase detector 5 from the phase difference ΔΦs detected by the first phase detector 4. −ΔΦr) is measurement data from which the influence of the phase fluctuations of the two light beams P1 and P2 up to the two heterodyne interferometers a20 and b20 is removed.
Here, the corrected phase data ΔΦsr changes according to the thickness of the DUT 1, but ΔΦs and ΔΦr are values detected within a range of −π to + π, and therefore, two adjacent measurement points are measured. Even if the difference in thickness (shape change) is small, the difference between the corrected phase data ΔΦsr obtained at these two measurement points may be large. Therefore, phase data (hereinafter, referred to as “phase data”) that continuously changes in accordance with a continuous thickness change of the DUT 1 by applying a phase connection process to the corrected phase data ΔΦsr obtained at a plurality of measurement points. It is necessary to calculate post-processing phase data θ).

そこで,前記計算機6は,複数の測定点1a,1bについて前記位相検波器4,5を通じて複数組の位相差ΔΦs,ΔΦrを取得して,それらから前記補正後位相データΔΦsrを算出する。さらに,前記計算機6は,複数の測定点1a,1bごとに得られる前記補正後位相データΔΦsrに基づく位相接続処理を行う。この位相接続処理により得られる複数の前記処理後位相データθ各々は,各測定点における被測定物1の厚みを表すデータであり,それら全体として被測定物1の厚み分布を表すデータである。さらに,前記計算機6は,その位相接続処理により算出された前記処理後位相データθ(被測定物1の厚み分布を表すデータ)を出力する。なお,データの出力とは,例えば,前記計算機6が備える記憶部(ハードディスク等)へ書き込むこと,所定の通信インターフェースを通じて外部装置へ送信すること,又は液晶表示装置等の所定の表示部に算出値の情報を表示させること等を意味する。   Therefore, the computer 6 obtains a plurality of sets of phase differences ΔΦs and ΔΦr through the phase detectors 4 and 5 for a plurality of measurement points 1a and 1b, and calculates the corrected phase data ΔΦsr therefrom. Further, the computer 6 performs a phase connection process based on the corrected phase data ΔΦsr obtained for each of the plurality of measurement points 1a and 1b. Each of the plurality of post-processing phase data θ obtained by this phase connection processing is data representing the thickness of the device under test 1 at each measurement point, and is data representing the thickness distribution of the device under test 1 as a whole. Further, the calculator 6 outputs the processed phase data θ (data representing the thickness distribution of the DUT 1) calculated by the phase connection process. The data output is, for example, writing to a storage unit (hard disk or the like) included in the computer 6, transmitting to an external device through a predetermined communication interface, or a calculated value on a predetermined display unit such as a liquid crystal display device. Means to display the information.

次に,数式を用いて,形状測定装置Xの測定原理について説明する。
まず,数式で用いられる符号について説明する。
ω:第1ビーム光L1の周波数。
ω+Δω:第2ビーム光L2の周波数。
λ:第1ビーム光L1の波長。なお,Δω/ωの値はごく小さいので,λは第2ビーム光L2の波長と等しいと近似できる。
L1:A面側PBS(a21)からA面測定点1aまでの光路長。
L2:B面側PBS(b21)からB面測定点1bまでの光路長。
M1:A面側PBS(a21)からA面側参照板a24表面までの光路長。
M2:B面側PBS(b21)からB面側参照板b24表面までの光路長。
ΔL1:A面測定点1aの形状に基づく表面変位量(表面高さ)。
ΔL2:B面測定点1bの形状に基づく表面変位量(表面高さ)。
ΔN:被測定物1の振動による変位量。
なお,tは時間,iは自然数の変数を表す。
Next, the measurement principle of the shape measuring apparatus X will be described using mathematical expressions.
First, symbols used in mathematical expressions will be described.
ω: frequency of the first beam light L1.
ω + Δω: frequency of the second beam light L2.
λ: wavelength of the first beam light L1. Since the value of Δω / ω is very small, it can be approximated that λ is equal to the wavelength of the second beam light L2.
L1: Optical path length from the A-side PBS (a21) to the A-side measurement point 1a.
L2: Optical path length from the B-side PBS (b21) to the B-side measurement point 1b.
M1: Optical path length from the A-side PBS (a21) to the A-side reference plate a24 surface.
M2: optical path length from the B-side PBS (b21) to the B-side reference plate b24 surface.
ΔL1: Surface displacement amount (surface height) based on the shape of the A-plane measurement point 1a.
ΔL2: Surface displacement amount (surface height) based on the shape of the B surface measurement point 1b.
ΔN: A displacement amount due to vibration of the DUT 1.
Note that t represents time and i represents a natural number variable.

形状測定装置Xは,測定前に,前記二偏波光源2から前記A面側補正用干渉計a30及び前記B面側補正用干渉計b30のそれぞれに至る過程において,ビーム光P1,P2(即ち,両ヘテロダイン干渉計a20,b20への入力光)に位相の揺らぎの差が生じない状態(以下,入力光に位相揺らぎの差がない状態という),或いはそう近似できる程度の状態に設定されているものとする。
前記入力光に位相揺らぎの差がない状態或いはそう近似できる程度の状態とする方法としては,例えば,前記A面測定点1a及び前記B面測定点1bの方向へ導かれる両ビーム光P1,P2の光路を極力同一の光路とすることや,その光路の周囲を覆う断熱材を設けることにより両ビーム光P1,P2の光路の温度を極力一定に保持すること等が考えられる。また,両ビーム光P1,P2をA面測定点1a及びB面測定点1bへ導くミラーや光ファイバ等の導光手段を,固定された堅牢な(高強度の)支持部材に固着させること等も有効である。
まず,前記A面側ヘテロダイン干渉計a20の出力信号Sig1の強度I1は,次の(1)式により表される。

Figure 2009236706
また,前記B面側ヘテロダイン干渉計b20の出力信号Sig2の強度I2は,次の(2)式により表される。
Figure 2009236706
ここで,被測定物1の振動に起因する変位量ΔNは,前記A面側と前記B面側とで正負が逆となって影響し,さらに,前記A面側と前記B面側とで,ヘテロダイン干渉計における物体光と参照光との対応関係が逆になっているため,この(1)式及び(2)式において,変位量ΔNの符号は同じとなる。
前記(1)式及び(2)式(最終行に記載の式)において,"4π/λ"以降の項が,各周波数Δωの周期変化の位相を決定する。そして,前記入力光に位相揺らぎの差がない状態における前記第1位相検波器4により検出される出力信号Sig1,Sig2の位相差Φs’は,次の(3)式により表される。
Figure 2009236706
前記(3)式において,A面側及びB面側の相殺効果により,被測定物1の振動に起因する変位量ΔNが除去(相殺)されていることがわかる。 Before the measurement, the shape measuring apparatus X performs beam light P1, P2 (that is, in the process from the dual-polarized light source 2 to the A-side correction interferometer a30 and the B-side correction interferometer b30). , The input light to both heterodyne interferometers a20 and b20) is set to a state in which there is no difference in phase fluctuation (hereinafter referred to as a state in which there is no difference in phase fluctuation in the input light), or a state that can be approximated. It shall be.
As a method of making the input light have no phase fluctuation difference or a state that can be approximated, for example, both beam lights P1 and P2 guided in the direction of the A-plane measurement point 1a and the B-plane measurement point 1b. It is conceivable that the optical paths of the two light beams P1 and P2 are kept constant as much as possible by providing the same optical path as much as possible, or providing a heat insulating material covering the periphery of the optical path. Further, a light guide means such as a mirror or an optical fiber for guiding both light beams P1 and P2 to the A-surface measurement point 1a and the B-surface measurement point 1b is fixed to a fixed and robust (high-strength) support member. Is also effective.
First, the intensity I1 of the output signal Sig1 of the A-plane side heterodyne interferometer a20 is expressed by the following equation (1).
Figure 2009236706
The intensity I2 of the output signal Sig2 of the B-side heterodyne interferometer b20 is expressed by the following equation (2).
Figure 2009236706
Here, the amount of displacement ΔN caused by the vibration of the DUT 1 is affected by the opposite in the positive and negative directions on the A surface side and the B surface side, and further on the A surface side and the B surface side. Since the correspondence relationship between the object beam and the reference beam in the heterodyne interferometer is reversed, the sign of the displacement amount ΔN is the same in the equations (1) and (2).
In the equations (1) and (2) (the equation in the last row), the term after “4π / λ” determines the phase of the period change of each frequency Δω. Then, the phase difference Φs ′ of the output signals Sig1 and Sig2 detected by the first phase detector 4 in a state where there is no phase fluctuation difference in the input light is expressed by the following equation (3).
Figure 2009236706
In the equation (3), it can be seen that the displacement amount ΔN due to the vibration of the DUT 1 is removed (cancelled) by the canceling effect on the A plane side and the B plane side.

また,前記(3)式において,ΔΦs’は測定値であり,その他における(ΔL1−ΔL2)以外の数値は既知の不変量である。そのため,前記入力光に位相揺らぎの差がない状態,或いはそう近似できる程度の状態であれば,計算機6によって測定値ΔΦsを前記(3)に適用する(ΔΦs’の部分に代入する)計算を行うことにより,被測定物1の厚み(ΔL1−ΔL2)を算出できる。
なお,(ΔL1−ΔL2)は,被測定物1の厚みの絶対値を表すものでなく,他の測定点の厚みに対する相対値を評価する指標(相対的な厚みを表す値)であるが,半導体ウェハ等の被測定物の形状測定においては,相対的な厚みを表す値の分布を得ることに重要な意味がある。
In the equation (3), ΔΦs ′ is a measured value, and other numerical values other than (ΔL1−ΔL2) are known invariants. Therefore, if there is no phase fluctuation difference in the input light or a state that can be approximated, the calculation 6 applies the measurement value ΔΦs to the above (3) (substitute for ΔΦs ′). By doing so, the thickness (ΔL1-ΔL2) of the DUT 1 can be calculated.
Note that (ΔL1−ΔL2) does not represent the absolute value of the thickness of the DUT 1, but is an index for evaluating a relative value with respect to the thickness of other measurement points (a value indicating a relative thickness). In measuring the shape of an object to be measured such as a semiconductor wafer, it is important to obtain a distribution of values representing relative thicknesses.

ところで,被測定物1の振動により生じる変位ΔNは,ビーム光P1,P2の波長λに比べて十分に大きいため,もし,変位ΔNの影響が除去されないとすると,被測定物1の厚みを実質的に測定できない状態となる。
例えば,位相検波器により,前記A面側第1光検出器a26の検出信号Sig1と,前記A面側第2光検出器a33の検出信号Ref1との位相差ΔΦaを検出した場合,各測定点における位相差ΔΦaの分布において,いわゆる位相とびが多数回生じるため,被測定物1の厚み分布を表す連続した値の分布を正確に求めることが困難となる。
By the way, the displacement ΔN caused by the vibration of the device under test 1 is sufficiently larger than the wavelength λ of the light beams P1 and P2, so that if the influence of the displacement ΔN is not removed, the thickness of the device under test 1 is substantially reduced. Cannot be measured automatically.
For example, when the phase detector detects the phase difference ΔΦa between the detection signal Sig1 of the A-plane side first photodetector a26 and the detection signal Ref1 of the A-plane side second photodetector a33, each measurement point In the distribution of the phase difference ΔΦa at, so-called phase jumps occur many times, and it is difficult to accurately obtain a distribution of continuous values representing the thickness distribution of the DUT 1.

以上に示したように,形状測定装置Xにおいては,その測定値Φsにおいて,被測定物1の振動による変位量ΔNの成分が相殺され,A面測定点1a自体の形状の成分及びB面測定点1b自体の形状の成分のみが反映された被測定物1の厚みに相当する測定値が得られる。しかも,形状測定装置Xは,干渉光を被測定物1のA面(おもて面)からB面(うら面)へ伝播させないため,その伝播経路における光路調整(光学機器の調整)を必要とせず,また,その伝播経路において干渉光の揺らぎが生じることもない。さらに,光路に光学系以外のものが挿入されないので,干渉光に乱れを生じさせることもない。   As described above, in the shape measuring apparatus X, the component of the displacement amount ΔN due to the vibration of the DUT 1 is canceled out in the measured value Φs, and the shape component of the A plane measurement point 1a itself and the B plane measurement A measurement value corresponding to the thickness of the DUT 1 reflecting only the component having the shape of the point 1b itself is obtained. Moreover, since the shape measuring apparatus X does not propagate the interference light from the A surface (front surface) of the DUT 1 to the B surface (back surface), it is necessary to adjust the optical path in the propagation path (adjustment of optical equipment). In addition, the interference light does not fluctuate in the propagation path. Furthermore, since nothing other than the optical system is inserted in the optical path, the interference light is not disturbed.

ところで,両ヘテロダイン干渉計a20,b20への入力されるビーム光P1,P2は,前記二偏波光源2から前記A面側補正用干渉計a30及び前記B面側補正用干渉計b30のそれぞれに至る過程において,温度や湿度の変化等により位相の揺らぎが生じた場合,その揺らぎの影響が測定値ΔΦs(位相差)に反映され,それが測定誤差となる。
これに対し,位相差ΔΦsから補正用の位相差ΔΦrを差し引いて得られる位相差(ΔΦs−ΔΦr)は,2つのヘテロダイン干渉計a20,b20に至るまでの両ビーム光P1,P2の位相の揺らぎの影響が除去された測定値となる。
そこで,前記計算機6は,前記(3)式におけるΔΦs’が前記補正後位相データΔΦsr(=ΔΦs−ΔΦr)に置き換えられた次の(4)式に基づいて被測定物1の厚み(ΔL1−ΔL2)を算出する。その算出値は,両ビーム光P1,P2の位相の揺らぎの影響を受けない値となる。

Figure 2009236706
By the way, the beam lights P1 and P2 input to the heterodyne interferometers a20 and b20 are respectively transmitted from the dual-polarized light source 2 to the A-plane side correction interferometer a30 and the B-plane side correction interferometer b30. If a phase fluctuation occurs due to changes in temperature, humidity, etc., the influence of the fluctuation is reflected in the measured value ΔΦs (phase difference), which becomes a measurement error.
On the other hand, the phase difference (ΔΦs−ΔΦr) obtained by subtracting the correction phase difference ΔΦr from the phase difference ΔΦs is the fluctuation of the phases of the two light beams P1 and P2 up to the two heterodyne interferometers a20 and b20. This is a measurement value from which the influence of is removed.
Therefore, the computer 6 calculates the thickness (ΔL1−) of the DUT 1 based on the following equation (4) in which ΔΦs ′ in the equation (3) is replaced with the corrected phase data ΔΦsr (= ΔΦs−ΔΦr). ΔL2) is calculated. The calculated value is a value that is not affected by the fluctuation of the phases of the two light beams P1 and P2.
Figure 2009236706

次に,図3に示されるフローチャートを参照しつつ,形状測定装置Xによる被測定物1の形状測定手順の一例について説明する。なお,図3に示される処理が開始される前に,被測定物1が,前記可動支持装置Zにより予め定められた初期位置に保持されているものとする。また,以下に示されるS1,S2,…は,処理手順の識別符号を表す。
まず,前記計算機6が,測定点の番号を表す変数iを初期化(i=1)するとともに,前記二偏波光源2及び前記移動制御装置7に対して測定開始指令を出力する(S1)。これにより,前記二偏波光源2による前記ビーム光P1,P2の出射,即ち,被測定物1への物体光の照射が開始されるととに,被測定物1の2次元方向における移動が開始される。これにより,被測定物1の表裏各面において前記走査線R(図4参照)に沿った物体光の走査が開始される。
これ以降,測定点の番号を表す変数iが順次カウントアップ(S10)されつつ,以下に示されるステップS2〜S9が順次繰り返される。
Next, an example of the procedure for measuring the shape of the DUT 1 using the shape measuring device X will be described with reference to the flowchart shown in FIG. It is assumed that the device under test 1 is held at a predetermined initial position by the movable support device Z before the processing shown in FIG. Further, S1, S2,... Shown below represent identification codes of processing procedures.
First, the computer 6 initializes a variable i representing a measurement point number (i = 1), and outputs a measurement start command to the dual-polarized light source 2 and the movement control device 7 (S1). . Thereby, when the emission of the light beams P1 and P2 by the dual-polarized light source 2, that is, the irradiation of the object light to the object to be measured 1 is started, the object to be measured 1 moves in the two-dimensional direction. Be started. As a result, scanning of the object light along the scanning line R (see FIG. 4) is started on the front and back surfaces of the DUT 1.
Thereafter, steps S2 to S9 shown below are sequentially repeated while the variable i representing the number of the measurement point is sequentially counted up (S10).

続いて,前記計算機6は,i番目の測定点における前記第1位相差ΔΦs及び前記第2位相差ΔΦr,前記振幅As1,As2,並びにその測定点の位置データを取得する(S2)。さらに,前記計算機6は,取得した前記振幅As1,As2及び測定点の位置データとともに,前記第1位相差ΔΦs及び前記第2位相差ΔΦrの差である前記補正後位相データΔΦsrを前記メモリ6bに記録する(S2)。
このように,干渉光の強度信号の位相が検出されるごと(前記補正後位相データが取得されるごと)に,その検出対象である前記干渉光の強度信号Sig1,Sig2の振幅が順次検出され,前記計算機6は,その検出により得られる複数の振幅データAs1,As2を取得する(S2,振幅データ取得手順)。
なお,前記第1位相差ΔΦs及び前記振幅As1,As2は,前記第1位相検波器4から取得されるデータであり,前記測定点の位置データは,前記移動制御装置7から取得されるデータである。
Subsequently, the calculator 6 acquires the first phase difference ΔΦs and the second phase difference ΔΦr, the amplitudes As1, As2, and the position data of the measurement points at the i-th measurement point (S2). Further, the calculator 6 stores the corrected phase data ΔΦsr, which is the difference between the first phase difference ΔΦs and the second phase difference ΔΦr, in the memory 6b together with the acquired amplitudes As1, As2 and position data of the measurement points. Record (S2).
In this way, every time the phase of the interference light intensity signal is detected (each time the corrected phase data is acquired), the amplitudes of the interference light intensity signals Sig1 and Sig2 that are detection targets are sequentially detected. The computer 6 acquires a plurality of amplitude data As1 and As2 obtained by the detection (S2, amplitude data acquisition procedure).
The first phase difference ΔΦs and the amplitudes As1 and As2 are data acquired from the first phase detector 4, and the position data of the measurement point is data acquired from the movement control device 7. is there.

次に,前記計算機6は,i番目測定点における前記振幅As1,As2それぞれの許容範囲(以下,振幅許容範囲という)を,i番目測定点の周囲の1つ又は複数の他の測定点において得られた前記振幅As1,As2を基準にして設定する(S3,振幅許容範囲設定手順)。なお,前記振幅許容範囲は,前記A面側の測定点1a,前記B面側の測定点1bそれぞれについて個別に設定される。
例えば,前記計算機6は,i番目測定点についての前記振幅許容範囲を,i番目測定点から所定範囲内にある測定点のうち,前記走査線Rに沿って測定順序とは逆の方向に遡った位置にある複数の測定点(例えば,(i−3)番目〜(i−1)番目の測定点)を選択する。さらに,前記計算機6は,選択した複数の測定点で得られた前記振幅As1,As2の加重平均値を算出し,その加重平均値に予め定められた下限値設定用係数及び上限値設定用係数それぞれを乗算した値を,前記振幅許容範囲の下限値AL及び上限値AHとして設定する。その加重平均において,i番目測定点に対してより近い測定点のデータに高い重みが設定される。或いは,i番目測定点に対して前記走査線Rに沿って遡った隣の位置にある1つの測定点((i−1)番目の測定点)を選択し,その測定点で得られた前記振幅As1,As2に前記下限値設定用係数及び前記上限値設定用係数それぞれを乗算した値を,前記振幅許容範囲の下限値AL及び上限値AHとして設定することも考えられる。
Next, the calculator 6 obtains an allowable range of each of the amplitudes As1 and As2 at the i-th measurement point (hereinafter referred to as an amplitude allowable range) at one or a plurality of other measurement points around the i-th measurement point. The amplitudes As1 and As2 are set as a reference (S3, amplitude allowable range setting procedure). The allowable amplitude range is individually set for each of the measurement points 1a on the A plane side and the measurement points 1b on the B plane side.
For example, the calculator 6 sets the allowable amplitude range for the i-th measurement point back in the direction opposite to the measurement order along the scanning line R among the measurement points within the predetermined range from the i-th measurement point. A plurality of measurement points (for example, (i-3) th to (i-1) th measurement points) at the selected position are selected. Further, the calculator 6 calculates a weighted average value of the amplitudes As1 and As2 obtained at a plurality of selected measurement points, and sets a lower limit value setting coefficient and an upper limit value setting coefficient that are predetermined for the weighted average value. The values obtained by multiplying them are set as the lower limit value AL and the upper limit value AH of the amplitude allowable range. In the weighted average, a high weight is set to data at a measurement point closer to the i-th measurement point. Alternatively, one measurement point ((i-1) th measurement point) located at an adjacent position retroactive along the scanning line R with respect to the i-th measurement point is selected, and the measurement point obtained at the measurement point is selected. A value obtained by multiplying the amplitudes As1 and As2 by the lower limit value setting coefficient and the upper limit value setting coefficient may be set as the lower limit value AL and the upper limit value AH of the allowable amplitude range.

図5は,前記特異部を有する被測定物1の測定により得られる干渉光の強度信号の振幅の変化を表す模式図である。
図5に示されるように,前記特異部における干渉光の強度信号の振幅は,その周辺の位置で得られる振幅に対して大きな差がある。本発明においては,この現象を利用して,前記特異部内の測定点で得られた位相データ(前記被処理対象データ)とそれ以外の測定点で得られた位相データ(前記処理対象データ)とを区分する。
また,図5には,Kb番目測定点の振幅データを基準に設定された,(Kb+1)番目測定点における前記振幅許容範囲(AL〜AH)が波線で示されている。なお,図5に示される測定点は,図4に示される測定点と対応しており,(Kb+1)番目及び(Kb+2)番目の測定点が,前記特異部内に存在する測定点である。
このように,前記計算機6は,前記第1位相検波器4及び前記第2位相検波器5を通じて得られる複数の前記補正後位相データΔΦsr各々に対応する前記振幅許容範囲を,当該補正後位相データΔΦsrに対応する測定点の周囲の他の測定点において得られた前記振幅データAs1,As2を基準にして動的に設定する(S3)。
FIG. 5 is a schematic diagram showing changes in the amplitude signal of the interference light obtained by measuring the DUT 1 having the singular part.
As shown in FIG. 5, the amplitude signal of the interference light in the singular part has a large difference from the amplitude obtained at the peripheral positions. In the present invention, using this phenomenon, the phase data obtained at the measurement point in the singular part (the data to be processed) and the phase data obtained at other measurement points (the data to be processed) Is divided.
Further, in FIG. 5, the allowable amplitude range (AL to AH) at the (Kb + 1) th measurement point set based on the amplitude data at the Kbth measurement point is indicated by a wavy line. Note that the measurement points shown in FIG. 5 correspond to the measurement points shown in FIG. 4, and the (Kb + 1) th and (Kb + 2) th measurement points are the measurement points existing in the singular part.
In this way, the calculator 6 determines the amplitude allowable range corresponding to each of the plurality of corrected phase data ΔΦsr obtained through the first phase detector 4 and the second phase detector 5 as the corrected phase data. The amplitude data As1 and As2 obtained at other measurement points around the measurement point corresponding to ΔΦsr are dynamically set (S3).

次に,前記計算機6は,i番目測定点について,ステップS2で得られた前記振幅データAs1,As2が,ステップS3で設定された前記振幅許容範囲内であるか否かを判別し,その判別結果に応じて前記補正後位相データΔΦsrを処理対象データと非処理対象データのいずれかに区分し,その区分の結果を前記メモリ6bに記録する(S4,データ区分手順)
このステップS4の処理により,ステップS2の処理により順次得られる複数の前記補正後位相データΔΦsrが,そのデータに対応する前記振幅データAs1,As2が前記振幅許容範囲内である前記処理対象データと,それ以外の前記非処理対象データとに区分される。
Next, the computer 6 determines whether or not the amplitude data As1 and As2 obtained in step S2 are within the amplitude allowable range set in step S3 for the i-th measurement point. According to the result, the corrected phase data ΔΦsr is classified into either processing target data or non-processing target data, and the result of the classification is recorded in the memory 6b (S4, data classification procedure).
By the process of step S4, a plurality of the corrected phase data ΔΦsr sequentially obtained by the process of step S2, the amplitude target data As1 and As2 corresponding to the data, the processing target data within the amplitude allowable range, It is divided into other non-processing target data.

次に,前記計算機6は,ステップS2の処理が繰り返されることによって得られる複数の前記補正後位相データΔΦsrのうち,ステップS4において前記処理対象データであると区分されたものみに基づく位相接続処理により,前記被測定物1の厚みを表す形状値,即ち,前記処理後位相データθを算出する処理を実行する(S5〜S9)。以下,その内容について説明する。
まず,前記計算機6は,i番目測定点における前記補正後位相データΔΦsrが,前記処理対象データであるか前記非処理対象データであるかにより,処理を切り替える(S5)。
即ち,i番目測定点における前記補正後位相データΔΦsrが前記非処理対象データである場合,前記計算機6は,その補正後位相データΔΦsrに対する位相接続処理は行わず,変数iのカウントアップ(S10)のみを行う。
Next, the computer 6 performs a phase connection process based only on a plurality of the corrected phase data ΔΦsr obtained by repeating the process of step S2 that is classified as the process target data in step S4. Thus, a process of calculating the shape value representing the thickness of the DUT 1, that is, the post-processing phase data θ is executed (S5 to S9). The contents will be described below.
First, the computer 6 switches processing depending on whether the corrected phase data ΔΦsr at the i-th measurement point is the processing target data or the non-processing target data (S5).
That is, when the corrected phase data ΔΦsr at the i-th measurement point is the non-processing target data, the computer 6 does not perform the phase connection process on the corrected phase data ΔΦsr and counts up the variable i (S10). Only do.

また,i番目測定点における前記補正後位相データΔΦsrが前記処理対象データである場合,前記計算機6は,(i−1)番目測定点における前記補正後位相データΔΦsrが前記処理対象データあるか否かを判別する(S6)。
そして,前記走査線Rに沿って隣り合う(i−1)番目測定点及びi番目測定点両方における前記補正後位相データΔΦsrがともに前記処理対象データである場合,前記計算機6は,(i−1)番目測定点における位相データ(位相接続処理後のデータθ)を位相接続処理の基準位相データとして設定する(S7)。ここで,基準位相データとは,位相接続処理の際に,位相接続処理の対象とされる位相データ(ここでは,i番目測定点の前記補正後位相データΔΦsr)と対比される基準となるデータである。即ち,後述するステップS9における位相接続処理の際,i番目測定点の前記補正後位相データΔΦsrは,前記基準位相データに対する位相差が−π〜+πの範囲に収まるように,2πの整数倍分だけ位相がシフトされ,位相シフト後のデータが前記処理後位相データθとして算出される。
When the corrected phase data ΔΦsr at the i-th measurement point is the processing target data, the calculator 6 determines whether the corrected phase data ΔΦsr at the (i−1) -th measurement point is the processing target data. Is determined (S6).
When both the corrected phase data ΔΦsr at both the (i−1) -th measurement point and the i-th measurement point that are adjacent along the scanning line R are the processing target data, the calculator 6 1) The phase data at the measurement point (data θ after the phase connection process) is set as the reference phase data for the phase connection process (S7). Here, the reference phase data is data used as a reference to be compared with the phase data (here, the corrected phase data ΔΦsr at the i-th measurement point) that is the target of the phase connection process in the phase connection process. It is. That is, at the time of phase connection processing in step S9 described later, the corrected phase data ΔΦsr at the i-th measurement point is an integral multiple of 2π so that the phase difference with respect to the reference phase data falls within the range of −π to + π. The phase is shifted by this amount, and the data after the phase shift is calculated as the post-processing phase data θ.

一方,i番目測定点での前記補正後位相データΔΦsrが前記処理対象データであるが,その測定点に対し前記走査線Rに沿って隣り合う(i−1)番目測定点における前記補正後位相データΔΦsrが前記非処理対象データである場合,前記計算機6は,i番目測定点の近傍の測定点についての位相データのうち,前記処理対象データに区分されているデータ(但し,位相接続処理後のデータθ)を前記基準位相データとして設定する(S8)。
例えば,前記計算機6は,i番目測定点に対し,前記走査線Rと交差する方向において隣り合う測定点における位相データの中から,前記処理対象データに区分されているもの(但し,位相接続処理後のデータθ)を前記基準位相データとして設定する。
そして,前記計算機6は,i番目測定点における前記補正後位相データΔΦsrに対し,ステップS7又はS8において設定された前記基準位相データに基づく位相接続処理を施し,処理後の位相データθを,i番目測定点における厚みを表す形状値として前記メモリ6bに記録する(S10)。
On the other hand, the corrected phase data ΔΦsr at the i-th measurement point is the data to be processed, and the corrected phase at the (i−1) -th measurement point adjacent to the measurement point along the scanning line R. When the data ΔΦsr is the non-processing target data, the calculator 6 includes the data classified into the processing target data among the phase data for the measurement points in the vicinity of the i-th measurement point (however, after the phase connection processing) Is set as the reference phase data (S8).
For example, the computer 6 is divided into the processing target data from the phase data at the measurement points adjacent to the i-th measurement point in the direction crossing the scanning line R (however, the phase connection process) The later data θ) is set as the reference phase data.
Then, the calculator 6 performs a phase connection process based on the reference phase data set in step S7 or S8 on the corrected phase data ΔΦsr at the i-th measurement point, and converts the processed phase data θ to i The shape value representing the thickness at the th measurement point is recorded in the memory 6b (S10).

図6は,前記計算機6により算出される被測定物1の前記特異部及びその周辺の測定点における位相接続処理後のデータθがグラフ化された模式図である。なお,図6に示される測定点は,図4に示される測定点と対応しており,(Kb+1)番目及び(Kb+2)番目の測定点が,前記特異部内に存在する測定点である。また,同様の測定点における従来の位相接続処理後のデータθ’がグラフ化された模式図が図10である。
図6に示されるように,形状測定装置Xにおいては,前記振幅に基づいて前記特異部内の測定点((Kb+1)番目及び(Kb+2)番目)が判別され,前記特異部内の測定点における位相データに対しては,位相接続処理が行われない(図3のステップS5の処理)。
また,前記走査線Rに沿った通常の順序で位相接続処理を行えば,前記特異部内の測定点((Kb+2)番目)に対応する位相データが,前記基準位相データとなってしまう測定点((Kb+3)番目)については,位相接続処理が行われる。この場合,(Kb+3)番目の測定点に対し,前記走査線Rと交差する方向において隣り合うKa番目の測定点(図4参照)の位相データ(但し,前記処理対象データに区分された位相接続処理後のデータ)が前記基準位相データに設定され,その基準位相データを基準として,(Kb+3)番目の測定点の位相データの位相接続処理が行われる(図3のステップS8及びS9の処理)。
そして,前記計算機6は,測定点の番号を表す変数iをカウントアップ(S10)しつつ,全ての測定点についての測定が完了するまで,以上に示したステップS2〜S9の処理を繰り返す(S11)。
FIG. 6 is a schematic diagram in which the data θ after the phase connection process at the singular part of the device under test 1 and the measurement points in the vicinity thereof calculated by the computer 6 is graphed. Note that the measurement points shown in FIG. 6 correspond to the measurement points shown in FIG. 4, and the (Kb + 1) th and (Kb + 2) th measurement points are the measurement points existing in the singular part. FIG. 10 is a schematic diagram in which data θ ′ after conventional phase connection processing at the same measurement point is graphed.
As shown in FIG. 6, in the shape measuring apparatus X, the measurement points ((Kb + 1) th and (Kb + 2) th) in the singular part are discriminated based on the amplitude, and the phase data at the measurement points in the singular part. Is not subjected to the phase connection process (the process of step S5 in FIG. 3).
Further, if phase connection processing is performed in the normal order along the scanning line R, the phase data corresponding to the measurement point ((Kb + 2) th) in the singular part becomes the reference phase data. For (Kb + 3) th), a phase connection process is performed. In this case, the phase data of the Kath measurement point (see FIG. 4) adjacent to the (Kb + 3) th measurement point in the direction crossing the scanning line R (however, the phase connection divided into the processing object data) (Data after processing) is set as the reference phase data, and phase connection processing of the phase data of the (Kb + 3) th measurement point is performed using the reference phase data as a reference (processing in steps S8 and S9 in FIG. 3). .
Then, the computer 6 counts up the variable i representing the number of the measurement points (S10), and repeats the processes of steps S2 to S9 described above until the measurement for all the measurement points is completed (S11). ).

以上に示したように,形状測定装置Xにおける前記計算機6は,干渉光の強度信号の振幅As1,As2(即ち,信号の強度)に基づいて,被測定物1の複数の測定点1a,1bごとに得られる位相データΔΦsr各々を,ゴミの付着部や傷の生じた部分等である前記特異部において得られる前記非処理対象データと,それ以外の前記処理対象データとに区分する(S3,S4)。これは,被測定物1の表面における光(物体光)の反射特性の違いが,干渉光の強度信号の振幅As1,As2の違いとして表れる現象を利用するものである。
そして,前記計算機6は,前記特異部以外の測定点において得られた位相データΔΦsr(前記処理対象データ)のみに基づいて位相接続処理を実行する(S5〜S9)。これにより,前記計算機6は,光の反射特性が他と異なる前記特異部が一部に存在する被測定物1についても精度の高い形状値θを算出することができる。
As described above, the computer 6 in the shape measuring apparatus X uses the plurality of measurement points 1a and 1b of the DUT 1 based on the amplitudes As1 and As2 (that is, the signal strength) of the intensity signal of the interference light. Each of the phase data ΔΦsr obtained for each is divided into the non-processing object data obtained in the singular part, such as a dust adhering part or a scratched part, and the other processing object data (S3, S3). S4). This utilizes a phenomenon in which a difference in the reflection characteristics of light (object light) on the surface of the DUT 1 appears as a difference in the amplitudes As1 and As2 of the intensity signals of the interference light.
Then, the computer 6 executes the phase connection process based only on the phase data ΔΦsr (the processing target data) obtained at the measurement points other than the singular part (S5 to S9). As a result, the calculator 6 can calculate the shape value θ with high accuracy even for the DUT 1 in which the singular part having a different light reflection characteristic from others exists.

また,前記計算機6は,前記位相検波器4,5を通じて得られる複数の位相データΔΦsr各々に対応する前記振幅許容範囲(即ち,測定点ごとの前記振幅許容範囲)を,当該位相データΔΦsrに対応する測定点の周囲の1つ又は複数の他の測定点において得られた前記振幅データAs1,As2を基準にして動的に設定する(S3,振幅許容範囲設定手順)。
これにより,位相データΔΦsrごとに(即ち,測定部位ごとに)的確な前記振幅許容範囲が動的に設定され,位相データΔΦsrの区分,即ち,前記特異部の特定を適正に行うことができる。
Further, the calculator 6 corresponds the amplitude tolerance range corresponding to each of the plurality of phase data ΔΦsr obtained through the phase detectors 4 and 5 (that is, the amplitude tolerance range for each measurement point) to the phase data ΔΦsr. Is dynamically set based on the amplitude data As1 and As2 obtained at one or a plurality of other measurement points around the measurement point (S3, amplitude allowable range setting procedure).
As a result, the accurate amplitude allowable range is dynamically set for each phase data ΔΦsr (that is, for each measurement site), and the phase data ΔΦsr can be properly classified, that is, the singular part can be specified appropriately.

図7は,一部にゴミを付着させた半導体ウェハ(被測定物1の一例)を前記形状測定装置Xにより測定して得られた実測データのグラフである。実測データは,干渉光の強度信号Sig1の振幅As1,及び前記計算機6により算出された位相接続処理後の位相データθである。なお,図7には,前記特異部での測定データを除外しない従来の位相接続処理後の位相データθ’も比較対象としてグラフ化されている。
図7に示されるように,前記特異部が存在しない状況では,形状測定装置Xにより得られる位相接続処理後のデータθも,従来の位相接続処理後のデータθ’も同じ結果となる。
しかしながら,位相接続処理の途中で前記特異部で得られた位相データが参照された場合,その後の位相接続処理の対象となる測定点について算出されるデータは,形状測定装置Xによる処理結果θと従来の位相接続処理の結果θ’とで大きな違いが生じる。この場合,形状測定装置Xによる処理結果θが,測定対象としたウェハの実際の形状を表している。このように,形状測定装置Xによれば,光の反射特性が他と異なる前記特異部が一部に存在する被測定物1についても精度の高い形状値θを算出することができる。
FIG. 7 is a graph of actual measurement data obtained by measuring a semiconductor wafer (an example of the object 1 to be measured 1) with dust attached to a part thereof using the shape measuring apparatus X. The measured data are the amplitude As1 of the intensity signal Sig1 of the interference light and the phase data θ after the phase connection processing calculated by the calculator 6. In FIG. 7, the phase data θ ′ after the conventional phase connection process that does not exclude the measurement data at the singular part is also graphed as a comparison target.
As shown in FIG. 7, in the situation where the singular part does not exist, the data θ after the phase connection processing obtained by the shape measuring apparatus X and the data θ ′ after the conventional phase connection processing have the same result.
However, when the phase data obtained at the singular part is referred to during the phase connection process, the data calculated for the measurement points to be subjected to the subsequent phase connection process are the processing result θ and the shape measurement device X. There is a large difference with the result θ ′ of the conventional phase connection processing. In this case, the processing result θ by the shape measuring apparatus X represents the actual shape of the wafer to be measured. As described above, according to the shape measuring apparatus X, it is possible to calculate the shape value θ with high accuracy for the DUT 1 in which the singular part having a different light reflection characteristic is present in part.

なお,以上に示した実施形態では,前記計算機6が,測定値ΔΦsと測定値ΔΦrとの差を前記位相データとし,その位相データに基づいて位相接続処理を行う例を示した。しかしながら,各光干渉計a20,b20への入力光に位相揺らぎの差がない状態或いはそう近似できる程度の状態である場合には,図2に示す構成から前記A面側補正用干渉計a30及び前記B面側補正用干渉計b30を除いた形状測定装置(以下,形状測定装置X’という)とすることも考えられる。
そして,前記形状測定装置X’における計算機6は,前記第1位相検波器4から出力される測定値である位相差ΔΦsを前記位相データとし,その位相データに基づいて位相接続処理を行い,その処理結果を被測定物1の厚みを表す形状値として算出する。
In the embodiment described above, an example has been described in which the calculator 6 uses the difference between the measured value ΔΦs and the measured value ΔΦr as the phase data and performs phase connection processing based on the phase data. However, when the input light to each of the optical interferometers a20 and b20 has no phase fluctuation difference or a state that can be approximated, the A-side correction interferometer a30 and A shape measuring device (hereinafter referred to as a shape measuring device X ′) excluding the B-side correction interferometer b30 may be considered.
Then, the computer 6 in the shape measuring apparatus X ′ uses the phase difference ΔΦs, which is a measurement value output from the first phase detector 4, as the phase data, performs phase connection processing based on the phase data, The processing result is calculated as a shape value representing the thickness of the DUT 1.

また,前記形状測定装置Xにおいて,図2に示したヘテロダイン干渉計a20,b20は,被測定物1の表面(A面,B面)に対して略垂直に測定光を入射させるものであるが,光学系を組みかえることにより,測定光を被測定物1の表面(A面,B面)に対して斜めに入射させ,その反射光により干渉光を得るタイプの干渉計が採用されてもよい。
図9は,前記形状測定装置Xに採用可能な斜入射式のヘテロダイン干渉計(以下,A面側ヘテロダイン干渉計a20’及びB面側ヘテロダイン干渉計b20’という)の概略構成図である。
図9に示されるように,前記A面側ヘテロダイン干渉計a20’は,前記A面側PBS(a21)と,前記A面側参照板a24と,ビームスプリッタa28と,前記A面側第1偏光板a25及び前記A面側第1光検出器a26とを備えている。
前記A面側ヘテロダイン干渉計a20’においては,前記A面側PBS(a21)が,それを透過した前記第1ビーム光P1が前記A面側測定点1aの表面(平面)に対して斜めに入射するよう配置されている。
そして,前記A面側PBS(a21)は,前記第2ビーム光P2とは異なる光路で導かれた前記第1ビーム光P1を透過させることにより,その第1ビーム光P1を前記A面測定点1aに照射させる(斜め入射させる)とともに,前記第2ビーム光P2を反射することにより,その第2ビーム光P2を前記A面側参照板a24の表面(第1の参照面)に照射させる(斜め入射させる)。
また,前記ビームスプリッタa28は,前記A面測定点1aからの前記第1ビーム光P1の反射光(正反射光)を前記A面側第1偏光板a25の方向へ透過させるとともに,前記A面側参照板a24の表面からの前記第2ビーム光P2の反射光(正反射光)を前記A面側第1偏光板a25の方向へ反射する。これにより,前記ビームスプリッタa28を透過した前記A面測定点1aからの前記第1ビーム光P1の反射光と,前記ビームスプリッタa28に反射した前記A面側参照板a24の表面からの前記第2ビーム光P2の反射光とが,同じ光路に沿って(光軸が重なった状態で)進行しつつ前記A面側第1偏光板a25を通過することによって相互に干渉する。その干渉光(前記A面測定干渉光)は,前記A面側第1光検出器a26に入力(入射)され,前記A面測定干渉光の強度信号Sig1が得られる。
In the shape measuring apparatus X, the heterodyne interferometers a20 and b20 shown in FIG. 2 allow measurement light to enter substantially perpendicular to the surface (A surface, B surface) of the DUT 1. Even if an interferometer of a type in which the measurement light is incident obliquely with respect to the surface (A surface, B surface) of the object to be measured 1 and the interference light is obtained by the reflected light by changing the optical system is adopted. Good.
FIG. 9 is a schematic configuration diagram of a grazing incidence type heterodyne interferometer (hereinafter referred to as an A-side heterodyne interferometer a20 ′ and a B-side heterodyne interferometer b20 ′) that can be employed in the shape measuring apparatus X.
As shown in FIG. 9, the A-side heterodyne interferometer a20 ′ includes the A-side PBS (a21), the A-side reference plate a24, a beam splitter a28, and the A-side first polarization. A plate a25 and the A-side first photodetector a26 are provided.
In the A-plane side heterodyne interferometer a20 ′, the A-plane side PBS (a21) causes the first beam P1 transmitted therethrough to be inclined with respect to the surface (plane) of the A-plane side measurement point 1a. It arrange | positions so that it may inject.
The A-side PBS (a21) transmits the first beam P1 guided by an optical path different from that of the second beam P2, thereby transmitting the first beam P1 to the A-plane measurement point. 1a is irradiated (obliquely incident) and the second beam light P2 is reflected to irradiate the surface (first reference surface) of the A-plane side reference plate a24 with the second beam light P2 ( Obliquely incident).
The beam splitter a28 transmits the reflected light (regularly reflected light) of the first beam light P1 from the A-plane measurement point 1a in the direction of the A-plane side first polarizing plate a25, and the A-plane. The reflected light (regular reflected light) of the second beam light P2 from the surface of the side reference plate a24 is reflected in the direction of the A-plane side first polarizing plate a25. As a result, the reflected light of the first beam light P1 from the A-plane measurement point 1a transmitted through the beam splitter a28 and the second light from the surface of the A-plane side reference plate a24 reflected by the beam splitter a28. The reflected light of the light beam P2 interferes with each other by passing through the first A-side polarizing plate a25 while traveling along the same optical path (in a state where the optical axes overlap). The interference light (the A surface measurement interference light) is input (incident) into the A surface side first photodetector a26, and an intensity signal Sig1 of the A surface measurement interference light is obtained.

同様に,前記B面側ヘテロダイン干渉計b20’は,前記B面側PBS(b21)と,前記B面側参照板b24と,ビームスプリッタb28と,前記B面側第1偏光板b25及び前記B面側第1光検出器b26とを備えている。
前記B面側ヘテロダイン干渉計b20’においては,前記B面側PBS(b21)が,それを透過した前記第2ビーム光P2が前記B面側測定点1bの表面(平面)に対して斜めに入射するよう配置されている。
そして,前記B面側PBS(b21)は,前記第1ビーム光P1とは異なる光路で導かれた前記第2ビーム光P2を透過させることにより,その第2ビーム光P2を前記B面測定点1bに照射させる(斜め入射させる)とともに,前記第1ビーム光P1を反射することにより,その第1ビーム光P1を前記B面側参照板b24の表面(第2の参照面)に照射させる(斜め入射させる)。
また,前記ビームスプリッタb28は,前記B面測定点1bからの前記第2ビーム光P2の反射光(正反射光)を前記B面側第1偏光板b25の方向へ透過させるとともに,前記B面側参照板b24の表面からの前記第1ビーム光P1の反射光(正反射光)を前記B面側第1偏光板b25の方向へ反射する。これにより,前記ビームスプリッタb28を透過した前記B面測定点1bからの前記第2ビーム光P2の反射光と,前記ビームスプリッタb28に反射した前記B面側参照板b24の表面からの前記第1ビーム光P1の反射光とが,同じ光路に沿って(光軸が重なった状態で)進行しつつ前記B面側第1偏光板b25を通過することによって相互に干渉する。その干渉光(前記B面測定干渉光)は,前記B面側第1光検出器b26に入力(入射)され,前記B面測定干渉光の強度信号Sig2が得られる。
図9に示されるように,測定光を被測定物1に対して斜め入射させるヘテロダイン干渉計が採用された形状測定装置も,本発明の実施形態の一例である。
Similarly, the B-side heterodyne interferometer b20 ′ includes the B-side PBS (b21), the B-side reference plate b24, a beam splitter b28, the B-side first polarizing plate b25 and the B-side. The surface side 1st photodetector b26 is provided.
In the B-side heterodyne interferometer b20 ', the B-side PBS (b21) causes the second beam light P2 transmitted therethrough to be inclined with respect to the surface (plane) of the B-side measurement point 1b. It arrange | positions so that it may inject.
The B-side PBS (b21) transmits the second beam light P2 guided by an optical path different from that of the first beam light P1, thereby transmitting the second beam light P2 to the B-surface measurement point. 1b is irradiated (obliquely incident) and the first beam light P1 is reflected to irradiate the surface (second reference surface) of the B-side reference plate b24 with the first beam light P1 (second reference surface). Obliquely incident).
The beam splitter b28 transmits reflected light (regularly reflected light) of the second beam light P2 from the B-surface measurement point 1b in the direction of the B-surface side first polarizing plate b25, and the B-surface. The reflected light (regular reflected light) of the first beam light P1 from the surface of the side reference plate b24 is reflected in the direction of the B-side first polarizing plate b25. Thereby, the reflected light of the second beam light P2 from the B surface measurement point 1b that has passed through the beam splitter b28 and the first surface from the surface of the B surface side reference plate b24 reflected by the beam splitter b28. The reflected light of the light beam P1 interferes with each other by passing through the first B-side polarizing plate b25 while traveling along the same optical path (with the optical axes overlapping). The interference light (the B surface measurement interference light) is input (incident) to the B surface side first photodetector b26, and an intensity signal Sig2 of the B surface measurement interference light is obtained.
As shown in FIG. 9, a shape measuring apparatus employing a heterodyne interferometer that obliquely enters measurement light with respect to the DUT 1 is also an example of an embodiment of the present invention.

また,前述した実施形態では,図4に示されるように,測定点1a,1bの位置は,被測定物1の表面における渦巻き状の前記走査線Rに沿って順次変化する例を示した。
しかしながら,例えば,前記可動支持装置Zとして,X−Yプロッタのように被測定物1の支持部44を交差する2直線それぞれに沿って移動させる装置が採用されたることも考えられる。この場合,測定点1a,1bの位置を,被測定物1の表面において図8に示されるような走査線Rに沿って順次変化させることも考えられる。なお,図8には,(Kb+1)番目及び(Kb+2)番目の測定点が,前記特異部内に存在する例が示されている。
In the above-described embodiment, as shown in FIG. 4, the example in which the positions of the measurement points 1 a and 1 b sequentially change along the spiral scanning line R on the surface of the DUT 1 has been described.
However, for example, as the movable support device Z, a device that moves the support portion 44 of the DUT 1 along two intersecting straight lines such as an XY plotter may be used. In this case, it is also conceivable to sequentially change the positions of the measurement points 1a and 1b along the scanning line R as shown in FIG. FIG. 8 shows an example in which the (Kb + 1) th and (Kb + 2) th measurement points exist in the singular part.

また,前記形状測定装置Xは,被測定物1の表裏相対する測定点1a,1b各々に物体光を照射する一対の光干渉計a20,b20が配置され,被測定物1の厚みを測定するものであるが,一方の光干渉計a20のみが設けられた形状測定装置も考えられる。この場合,前記第1位相検波器4が,2つの前記干渉光の強度信号Sig1及びRef1を入力し,それらの位相差を,位相接続処理に用いられる前記位相データとして検出することが考えられる。この場合,前記第1位相検波器4により得られる位相データに基づく位相接続処理により算出されるデータは,被測定物1のA面の高さを表すデータとなる。   Further, the shape measuring apparatus X is provided with a pair of optical interferometers a20 and b20 that irradiate object light on the measurement points 1a and 1b opposite to each other on the object 1 to measure the thickness of the object 1 to be measured. However, a shape measuring apparatus in which only one optical interferometer a20 is provided is also conceivable. In this case, it is conceivable that the first phase detector 4 receives the two interference light intensity signals Sig1 and Ref1, and detects the phase difference between them as the phase data used in the phase connection process. In this case, the data calculated by the phase connection process based on the phase data obtained by the first phase detector 4 is data representing the height of the A surface of the DUT 1.

また,前記形状測定装置Xにおいては,ヘテロダイン干渉計が採用されたが,その他,1つのレーザ光(単波長レーザ光)を物体光及び参照光に分岐させ,その物体光の反射光と参照光とを干渉させた干渉光の強度信号を出力する一般的な他の干渉計,例えば,マイケルソン干渉計やフィゾー干渉計,或いは斜入射干渉計等が採用されることも考えられる。   In the shape measuring apparatus X, a heterodyne interferometer is employed. In addition, one laser beam (single-wavelength laser beam) is branched into object light and reference light, and reflected light and reference light of the object light. It is also conceivable that other general interferometers that output the intensity signal of the interference light that interferes with each other, such as a Michelson interferometer, a Fizeau interferometer, or an oblique incidence interferometer, may be employed.

本発明は,半導体ウェハ等の被測定物についての形状測定装置に利用可能である。   The present invention is applicable to a shape measuring apparatus for an object to be measured such as a semiconductor wafer.

本発明の実施形態に係る形状測定装置Xの概略構成図。The schematic block diagram of the shape measuring apparatus X which concerns on embodiment of this invention. 形状測定装置Xが備える干渉光検出部Yの構成図。The block diagram of the interference light detection part Y with which the shape measuring apparatus X is provided. 形状測定装置Xによる被測定物の形状測定手順の一例を表すフローチャート。5 is a flowchart showing an example of a shape measuring procedure of an object to be measured by the shape measuring apparatus X. 被測定物における測定点の分布の一例を表す模式図。The schematic diagram showing an example of distribution of the measurement point in a to-be-measured object. 特異部を有する被測定物の測定により得られる干渉光の強度信号の振幅の変化を表す模式図。The schematic diagram showing the change of the amplitude signal of the intensity signal of the interference light obtained by measuring the to-be-measured object which has a specific part. 形状測定装置Xにより算出される被測定物の特異部の周辺の測定点における位相接続処理後のデータがグラフ化された模式図。The schematic diagram by which the data after the phase connection process in the measurement point of the circumference | surroundings of the singular part of the to-be-measured object computed by the shape measuring apparatus X was graphed. 形状測定装置Xにより特異部を有する被測定物の実測データのグラフ。The graph of the measurement data of the to-be-measured object which has a specific part by the shape measuring apparatus X. 被測定物における測定点の分布の他の一例を表す模式図。The schematic diagram showing another example of distribution of the measurement point in a to-be-measured object. 形状測定装置Xに適用可能な斜入射干渉計の概略構成図。2 is a schematic configuration diagram of an oblique incidence interferometer applicable to the shape measuring apparatus X. FIG. 特異部を有する被測定物について光干渉計を用いた従来の形状測定により得られる位相接続処理後の位相のデータと本来の形状を表す位相のデータとがグラフ化された模式図。The schematic diagram by which the phase data after the phase connection process obtained by the conventional shape measurement which used the optical interferometer about the to-be-measured object which has a specific part, and the phase data showing an original shape were graphed.

符号の説明Explanation of symbols

X :本発明の実施形態に係る形状測定装置
Y :干渉光検出部
Z :可動支持装置
1 :被測定物
1a:A面測定点
1b:B面測定点
2,2’:二偏波光源
3 :偏光ビームスプリッタ
4 :第1位相検波器
5 :第2位相検波器
6 :計算機
7 :移動制御装置
a11〜a13,b11,b12:ミラー
a20,a20−1〜a20−4:A面側ヘテロダイン干渉計
a30,a30−1,a30−2:A面側補正用干渉計
b20,b20−1〜b20−4:B面側ヘテロダイン干渉計
b30,b30−1,b30−2:B面側補正用干渉計
P1 :第1ビーム光
P2 :第2ビーム光
R :走査線
S1,S2,…:処理手順(ステップ)
X: shape measuring device Y according to an embodiment of the present invention Y: interference light detection unit Z: movable support device 1: object to be measured 1a: A surface measurement point 1b: B surface measurement point 2, 2 ′: dual polarized light source 3 : Polarizing beam splitter 4: First phase detector 5: Second phase detector 6: Computer 7: Movement control devices a11 to a13, b11, b12: Mirrors a20, a20-1 to a20-4: A-plane side heterodyne interference Total a30, a30-1, a30-2: A-side correction interferometers b20, b20-1 to b20-4: B-side heterodyne interferometers b30, b30-1, b30-2: B-side correction interference Total P1: First beam light P2: Second beam light R: Scan lines S1, S2,...: Processing procedure (step)

Claims (7)

被測定物とその表面上の測定部位に物体光を照射する光干渉計との2次元方向における相対位置を変化させつつ前記光干渉計における干渉光の強度信号の位相を検出する干渉光位相検出装置によって得られる複数の測定部位ごとの位相データに基づいて,前記被測定物の形状値を算出する形状算出装置であって,
前記位相の検出ごとにその検出対象である前記干渉光の強度信号の振幅を検出して得られる複数の振幅データを取得する振幅データ取得手段と,
前記干渉光位相検出装置により得られる前記位相データを,該位相データに対応する前記振幅データが予め設定された振幅許容範囲内である処理対象データとそれ以外の非処理対象データとに区分するデータ区分手段と,
前記干渉光位相検出装置により得られる前記位相データのうち前記処理対象データのみに基づいて位相接続処理を行うことにより,前記被測定物の形状値を算出する位相接続手段と,
を具備してなることを特徴とする形状算出装置。
Interference light phase detection for detecting the phase of the intensity signal of the interference light in the optical interferometer while changing the relative position in the two-dimensional direction of the object to be measured and the optical interferometer that irradiates the measurement site on the surface with the object light A shape calculation device for calculating a shape value of the object to be measured based on phase data for each of a plurality of measurement sites obtained by the device,
Amplitude data acquisition means for acquiring a plurality of amplitude data obtained by detecting the amplitude of the intensity signal of the interference light that is the detection target for each detection of the phase;
Data that classifies the phase data obtained by the interference light phase detection device into processing target data in which the amplitude data corresponding to the phase data is within a preset allowable amplitude range and other non-processing target data Classification means;
Phase connection means for calculating a shape value of the object to be measured by performing phase connection processing based only on the processing target data among the phase data obtained by the interference light phase detection device;
A shape calculation apparatus comprising:
前記位相接続手段が,
複数の前記位相データに対応する複数の測定部位における始点となる測定部位から順次隣の測定部位へと渡る予め定められた1本の走査線に沿って,測定部位が隣り合う2つの前記処理対象データに基づく位相接続処理を順次実行するとともに,
前記予め定められた一本の走査線に沿って前記非処理対象データの測定部位と前記処理対象データの測定部位とが隣り合う場合,該処理対象データと該処理対象データに対して測定部位が前記予め定められた一本の走査線と交差する方向において隣り合う他の前記処理対象データとに基づく位相接続処理を実行してなる請求項1に記載の形状算出装置。
The phase connecting means comprises:
The two processing objects that are adjacent to each other along a predetermined scanning line that sequentially extends from the measurement site that is the starting point of the plurality of measurement sites corresponding to the plurality of phase data to the next measurement site. Perform phase connection processing based on data sequentially,
When the measurement part of the non-processing target data and the measurement part of the processing target data are adjacent to each other along the predetermined one scanning line, the measurement part is relative to the processing target data and the processing target data. The shape calculation apparatus according to claim 1, wherein a phase connection process based on the other data to be processed adjacent to each other in a direction crossing the predetermined scanning line is executed.
前記干渉光位相検出装置により得られる複数の前記位相データ各々に対応する前記振幅許容範囲を,当該位相データに対応する測定部位の周囲の1又は複数の他の測定部位において得られた前記振幅データを基準にして動的に設定する振幅許容範囲設定手段を具備してなる請求項1又は2のいずれかに記載の形状算出装置。   The amplitude data obtained in one or a plurality of other measurement sites around the measurement site corresponding to the phase data, the amplitude tolerance range corresponding to each of the plurality of phase data obtained by the interference light phase detection device The shape calculation apparatus according to claim 1, further comprising an amplitude allowable range setting unit that dynamically sets the reference value. 被測定物の表面上の測定部位に物体光を照射する光干渉計を備えた形状測定装置であって,
前記被測定物と前記光干渉計との2次元方向における相対位置を変化させる可動支持手段と,
前記可動支持手段による前記被測定物と前記光干渉計との相対位置の変化に応じて前記光干渉計における干渉光の強度信号の位相を検出して位相データを得る位相検波手段と,
前記位相検波手段により得られる複数の測定部位ごとの前記位相データを取得し,該位相データに基づいて前記被測定物の形状値を算出する請求項1〜3のいずれかに記載の形状算出装置と,
を具備してなることを特徴とする形状測定装置。
A shape measuring device including an optical interferometer that irradiates a measurement site on the surface of an object to be measured with object light,
Movable support means for changing a relative position in a two-dimensional direction between the object to be measured and the optical interferometer;
Phase detection means for obtaining phase data by detecting a phase of an intensity signal of interference light in the optical interferometer according to a change in a relative position between the object to be measured and the optical interferometer by the movable support means;
The shape calculation device according to any one of claims 1 to 3, wherein the phase data for each of a plurality of measurement sites obtained by the phase detection means is acquired, and a shape value of the object to be measured is calculated based on the phase data. When,
A shape measuring apparatus comprising:
所定の光源から出射されるそれぞれ周波数が異なる第1の測定光及び第2の測定光のそれぞれを分岐させて前記被測定物の表裏相対する部位であるおもて面の測定部位及びうら面の測定部位の各方向へ導く導光手段と,
一対の前記光干渉計の一方であり,前記おもて面の測定部位の方向へ導かれた前記第1の測定光を前記おもて面の測定部位に物体光として照射させるとともに,前記おもて面の測定部位の方向へ導かれた前記第2の測定光を第1の参照面に照射させ,前記おもて面の測定部位からの前記第1の測定光の反射光と前記第1の参照面からの前記第2の測定光の反射光とを干渉させ,その干渉光の強度信号を出力するおもて面側のヘテロダイン光干渉計と,
一対の前記光干渉計の他方であり,前記うら面の測定部位の方向へ導かれた前記第2の測定光を前記うら面の測定部位に物体光として照射させるとともに,前記うら面の測定部位の方向へ導かれた前記第1の測定光を第2の参照面に照射させ,前記うら面の測定部位からの前記第2の測定光の反射光と前記第2の参照面からの前記第1の測定光の反射光とを干渉させ,その干渉光の強度信号を出力するうら面側のヘテロダイン干渉計と,を具備し,
前記位相検波手段が,
前記可動支持手段による前記被測定物と2つの前記ヘテロダイン光干渉計との相対位置の変化に応じて,2つの前記ヘテロダイン干渉計それぞれから出力される強度信号の位相差を検出した結果を前記位相データとしてなり,
前記形状算出装置が,前記位相検波手段により得られる複数の測定部位ごとの前記位相データを取得し,該位相データに基づいて前記被測定物の表面の厚み分布を表す形状値を算出してなる請求項4に記載の形状測定装置。
The first measurement light and the second measurement light that are emitted from a predetermined light source and having different frequencies are branched to measure the front surface measurement region and the back surface of the measurement object. A light guiding means for guiding each direction of the measurement site;
One of the pair of optical interferometers, the first measurement light guided in the direction of the measurement part on the front surface is irradiated to the measurement part on the front surface as object light, and The second measurement light guided in the direction of the measurement part on the front surface is irradiated onto the first reference surface, and the reflected light of the first measurement light from the measurement part on the front surface and the first A heterodyne optical interferometer on the front surface side that interferes with the reflected light of the second measurement light from the reference surface of 1 and outputs an intensity signal of the interference light;
The second measurement light, which is the other of the pair of optical interferometers and guided in the direction of the measurement part of the back surface, is irradiated as object light to the measurement part of the back surface, and the measurement part of the back surface The second reference surface is irradiated with the first measurement light guided in the direction of, and the reflected light of the second measurement light from the measurement part of the back surface and the first reference light from the second reference surface A backside heterodyne interferometer that interferes with the reflected light of the measurement light of 1 and outputs an intensity signal of the interference light,
The phase detection means comprises:
The result of detecting the phase difference between the intensity signals output from each of the two heterodyne interferometers according to the change in the relative position between the object to be measured and the two heterodyne optical interferometers by the movable support means is the phase. As data,
The shape calculation device acquires the phase data for each of a plurality of measurement sites obtained by the phase detection means, and calculates a shape value representing the thickness distribution of the surface of the object to be measured based on the phase data. The shape measuring apparatus according to claim 4.
被測定物とその表面上の測定部位に物体光を照射する光干渉計との2次元方向における相対位置を変化させつつ前記光干渉計における干渉光の強度信号の位相を検出する干渉光位相検出装置によって得られる複数の測定部位ごとの位相データに基づいて,前記被測定物の形状値を算出する手順をコンピュータに実行させるための形状算出プログラムであって,
前記位相の検出ごとにその検出対象である前記干渉光の強度信号の振幅を検出して得られる複数の振幅データを取得する振幅データ取得手順と,
前記干渉光位相検出装置により得られる前記位相データを,該位相データに対応する前記振幅データが予め設定された振幅許容範囲内である処理対象データとそれ以外の非処理対象データとに区分するデータ区分手順と,
前記干渉光位相検出装置により得られる前記位相データのうち前記処理対象データのみに基づいて位相接続処理を行うことにより,前記被測定物の形状値を算出する位相接続手順と,
をコンピュータに実行させるための形状算出プログラム。
Interference light phase detection for detecting the phase of the intensity signal of the interference light in the optical interferometer while changing the relative position in the two-dimensional direction of the object to be measured and the optical interferometer that irradiates the measurement site on the surface with the object light A shape calculation program for causing a computer to execute a procedure for calculating a shape value of the object to be measured based on phase data for each of a plurality of measurement sites obtained by an apparatus,
An amplitude data acquisition procedure for acquiring a plurality of amplitude data obtained by detecting the amplitude of the intensity signal of the interference light that is the detection target for each detection of the phase;
Data that classifies the phase data obtained by the interference light phase detection device into processing target data in which the amplitude data corresponding to the phase data is within a preset allowable amplitude range and other non-processing target data Classification procedure;
A phase connection procedure for calculating a shape value of the device under test by performing phase connection processing based only on the processing target data among the phase data obtained by the interference light phase detection device;
Calculation program for causing a computer to execute.
被測定物とその表面上の測定部位に物体光を照射する光干渉計との2次元方向における相対位置を変化させつつ前記光干渉計における干渉光の強度信号の位相を検出する干渉光位相検出装置によって得られる複数の測定部位ごとの位相データに基づいて,前記被測定物の形状値を算出する手順をコンピュータにより実行する形状算出方法であって,
前記位相の検出ごとにその検出対象である前記干渉光の強度信号の振幅を検出して得られる複数の振幅データを取得する振幅データ取得手順と,
前記干渉光位相検出装置により得られる前記位相データを,該位相データに対応する前記振幅データが予め設定された振幅許容範囲内である処理対象データとそれ以外の非処理対象データとに区分するデータ区分手順と,
前記干渉光位相検出装置により得られる前記位相データのうち前記処理対象データのみに基づいて位相接続処理を行うことにより,前記被測定物の形状値を算出する位相接続手順と,
をコンピュータにより実行する形状算出方法。
Interference light phase detection for detecting the phase of the intensity signal of the interference light in the optical interferometer while changing the relative position in the two-dimensional direction of the object to be measured and the optical interferometer that irradiates the measurement site on the surface with the object light A shape calculation method for executing, by a computer, a procedure for calculating a shape value of the object to be measured based on phase data for each of a plurality of measurement sites obtained by an apparatus,
An amplitude data acquisition procedure for acquiring a plurality of amplitude data obtained by detecting the amplitude of the intensity signal of the interference light that is the detection target for each detection of the phase;
Data that classifies the phase data obtained by the interference light phase detection device into processing target data in which the amplitude data corresponding to the phase data is within a preset allowable amplitude range and other non-processing target data Classification procedure;
A phase connection procedure for calculating a shape value of the device under test by performing phase connection processing based only on the processing target data among the phase data obtained by the interference light phase detection device;
A shape calculation method for executing the above by a computer.
JP2008083579A 2008-03-27 2008-03-27 Shape calculation device, shape calculation program, shape calculation method, shape measurement device Active JP5054592B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008083579A JP5054592B2 (en) 2008-03-27 2008-03-27 Shape calculation device, shape calculation program, shape calculation method, shape measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008083579A JP5054592B2 (en) 2008-03-27 2008-03-27 Shape calculation device, shape calculation program, shape calculation method, shape measurement device

Publications (2)

Publication Number Publication Date
JP2009236706A true JP2009236706A (en) 2009-10-15
JP5054592B2 JP5054592B2 (en) 2012-10-24

Family

ID=41250842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008083579A Active JP5054592B2 (en) 2008-03-27 2008-03-27 Shape calculation device, shape calculation program, shape calculation method, shape measurement device

Country Status (1)

Country Link
JP (1) JP5054592B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011226989A (en) * 2010-04-22 2011-11-10 Kobe Steel Ltd Surface profile measuring apparatus and semiconductor wafer inspection apparatus
JP2011235388A (en) * 2010-05-10 2011-11-24 Disco Corp Method for measuring thickness of ground material to be processed, and grinding device
CN110296662A (en) * 2018-03-23 2019-10-01 株式会社钢臂功科研 Form measuring instrument and its method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05340843A (en) * 1992-06-05 1993-12-24 Olympus Optical Co Ltd Method for connecting phase of wave front by fringe scanning interference measurement system
JP2000155051A (en) * 1998-11-18 2000-06-06 Fuji Photo Optical Co Ltd Phase state analyzing method for equiphase stripes
JP2001033215A (en) * 1999-07-23 2001-02-09 Hitachi Electronics Eng Co Ltd Measuring apparatus for unevenness of wafer thickness
JP2006079275A (en) * 2004-09-08 2006-03-23 Olympus Corp Phase connection method, its device, and phase connection program
JP2008180708A (en) * 2006-12-28 2008-08-07 Kobe Steel Ltd Shape measuring apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05340843A (en) * 1992-06-05 1993-12-24 Olympus Optical Co Ltd Method for connecting phase of wave front by fringe scanning interference measurement system
JP2000155051A (en) * 1998-11-18 2000-06-06 Fuji Photo Optical Co Ltd Phase state analyzing method for equiphase stripes
JP2001033215A (en) * 1999-07-23 2001-02-09 Hitachi Electronics Eng Co Ltd Measuring apparatus for unevenness of wafer thickness
JP2006079275A (en) * 2004-09-08 2006-03-23 Olympus Corp Phase connection method, its device, and phase connection program
JP2008180708A (en) * 2006-12-28 2008-08-07 Kobe Steel Ltd Shape measuring apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011226989A (en) * 2010-04-22 2011-11-10 Kobe Steel Ltd Surface profile measuring apparatus and semiconductor wafer inspection apparatus
JP2011235388A (en) * 2010-05-10 2011-11-24 Disco Corp Method for measuring thickness of ground material to be processed, and grinding device
CN110296662A (en) * 2018-03-23 2019-10-01 株式会社钢臂功科研 Form measuring instrument and its method
TWI703307B (en) * 2018-03-23 2020-09-01 日商鋼臂功科研股份有限公司 Shape measuring device and method
CN110296662B (en) * 2018-03-23 2021-08-10 株式会社钢臂功科研 Shape measuring device and method thereof

Also Published As

Publication number Publication date
JP5054592B2 (en) 2012-10-24

Similar Documents

Publication Publication Date Title
JP4839301B2 (en) Shape measuring device
US10145785B2 (en) Optical element rotation type Mueller-matrix ellipsometer and method for measuring Mueller-matrix of sample using the same
JPS60242308A (en) Method and device for measuring thickness of thin sample andmethod and device for measuring characteristic of thin sample
US8643849B2 (en) Measurement systems and methods
JP5054623B2 (en) Shape measuring device
JP2011095239A (en) Surface shape measuring device
JP2009080038A (en) Heterodyne interference measurement method, heterodyne interference device, thickness measuring device, and thickness measurement method
JP5054592B2 (en) Shape calculation device, shape calculation program, shape calculation method, shape measurement device
JP5198418B2 (en) Shape measuring device and shape measuring method
JP4897586B2 (en) Shape measuring device
TWI591325B (en) Wafer inspection system and structure and method for monitoring incident beam position in a wafer inspection system
TWI472712B (en) Vertical and parallelism detection system and its detection method
JP2014044060A (en) Shape measurement device and shape measurement method
KR100416497B1 (en) Pattern Inspection System
JP2002202108A (en) Plate thickness measuring device
JP7428492B2 (en) Inspection method and correction method
CN113287038B (en) Measuring device and measuring method
RU2482448C2 (en) Optical measurement system for determining relative position of elements in space, method and apparatus for detecting optical radiation for use therein
US20040190003A1 (en) Interferometric method and system
JP3381888B2 (en) Method and apparatus for measuring characteristics of optical elements and the like
JP2011247736A (en) Measuring device for measuring curved surface of measured object
JP4111395B2 (en) Slit width measuring device, slit width measuring method and program
JP2016024060A (en) Measurement condition determination method and measurement device
JP2003329429A (en) Shape measuring instrument
JP2005049141A (en) Apparatus and method for measuring squareness and record medium recording the method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120626

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120703

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120727

R150 Certificate of patent or registration of utility model

Ref document number: 5054592

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150803

Year of fee payment: 3