JP2009236693A - Ammonia concentration measuring sensor element, ammonia concentration measuring instrument, and ammonia concentration measuring method - Google Patents

Ammonia concentration measuring sensor element, ammonia concentration measuring instrument, and ammonia concentration measuring method Download PDF

Info

Publication number
JP2009236693A
JP2009236693A JP2008083409A JP2008083409A JP2009236693A JP 2009236693 A JP2009236693 A JP 2009236693A JP 2008083409 A JP2008083409 A JP 2008083409A JP 2008083409 A JP2008083409 A JP 2008083409A JP 2009236693 A JP2009236693 A JP 2009236693A
Authority
JP
Japan
Prior art keywords
ammonia concentration
sensor element
ammonia
solid electrolyte
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008083409A
Other languages
Japanese (ja)
Other versions
JP5105284B2 (en
Inventor
Norio Miura
則雄 三浦
Elumalai Perumal
エルマレイ ぺルマル
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Kyushu University NUC
Original Assignee
NGK Insulators Ltd
Kyushu University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd, Kyushu University NUC filed Critical NGK Insulators Ltd
Priority to JP2008083409A priority Critical patent/JP5105284B2/en
Publication of JP2009236693A publication Critical patent/JP2009236693A/en
Application granted granted Critical
Publication of JP5105284B2 publication Critical patent/JP5105284B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ammonia concentration measuring sensor element having high sensitivity and selectivity with respect to ammonia, capable of being reduced in size and enhanced in heat resistance and durability, an ammonia concentration measuring instrument and an ammonia concentration measuring method. <P>SOLUTION: The ammonia concentration measuring sensor element 11 includes a detection electrode which includes a solid electrolyte substrate 12 comprising an ion conductive solid electrolyte, the Au layer 16 formed on the solid electrolyte substrate 12 and a porous oxide layer 13 covered with the Au layer 16, the Pt reference electrode coming into contact with the solid electrolyte and a temperature regulating part for regulating the temperature of the solid electrolyte. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、被検ガス中のアンモニア濃度を検出するアンモニアセンサ素子に関する。本発明のアンモニアセンサ素子は、例えば内燃機関の排ガス中のアンモニア濃度を測定するために用いられ、特に、尿素を添加してNOxを浄化するNOx選択還元システムに好適に使用される。   The present invention relates to an ammonia sensor element that detects an ammonia concentration in a test gas. The ammonia sensor element of the present invention is used, for example, to measure the ammonia concentration in the exhaust gas of an internal combustion engine, and is particularly preferably used in a NOx selective reduction system that purifies NOx by adding urea.

NOx等を含む自動車のエンジン等の内燃機関から排出される排ガスは、自然環境に深刻な悪影響を及ぼしている。その結果として自動車の排ガスからのNOxを除去するための厳しい環境基準が国際的にも課題となってきている。こうして近年では、内燃機関、特に自動車のエンジンから排出されるNOxを浄化する研究が進んでいる。例えばSCR(Selective Catalytic Reduction)触媒に尿素を添加することによりアンモニアを発生させ、そのアンモニアによりNOxを還元して排ガスを浄化する技術(NOx選択還元システム)が開発されている。   Exhaust gas discharged from an internal combustion engine such as an automobile engine containing NOx or the like has a serious adverse effect on the natural environment. As a result, strict environmental standards for removing NOx from automobile exhaust gas have become an international issue. Thus, in recent years, research for purifying NOx discharged from an internal combustion engine, particularly an automobile engine, has been advanced. For example, a technology (NOx selective reduction system) has been developed in which ammonia is generated by adding urea to an SCR (Selective Catalytic Reduction) catalyst, NOx is reduced by the ammonia, and exhaust gas is purified.

この技術では、排出されるNOxをアンモニアにより高効率で還元浄化するために、尿素の添加量を調節する必要があるので、アンモニア濃度を正確に測定する必要がある。そのため、例えばWOを主体とし、貴金属を添加した感応層を用いたアンモニアセンサ(例えば特許文献1参照)や、WOを主体としMoOを添加した感応層を用いたアンモニアセンサ(例えば特許文献2参照)が開示されている。 In this technique, in order to reduce and purify the exhausted NOx with ammonia with high efficiency, it is necessary to adjust the amount of urea added, so it is necessary to accurately measure the ammonia concentration. Therefore, for example, WO 3 as a main component, ammonia sensor using a sensitive layer added with noble metal (for example, see Patent Document 1) and, the ammonia sensor (for example, Patent Document Using sensitive layer was added MoO 3 as a main component WO 3 2).

また、上記アンモニアセンサは、自動車排ガス触媒のオンボード監視システムにおいて必要とされてきている。この場合、高速応答、小型、安価であることが求められ、さらに、厳しい環境下で高温でも作動する性能が求められていた。   Also, the ammonia sensor has been required in an onboard monitoring system for automobile exhaust gas catalyst. In this case, a high-speed response, a small size, and a low cost are required, and further, a performance that operates at a high temperature in a severe environment is required.

特開平5−87760号公報JP-A-5-87760 特開平10−19821号公報JP-A-10-19821

しかしながら、前記特許文献1に記載のアンモニアセンサは、NO、NOに感度があるため、尿素を添加して排ガス中のNOxを還元浄化するNOx選択還元システムに使用できないという問題がある。 However, since the ammonia sensor described in Patent Document 1 is sensitive to NO and NO 2 , there is a problem that it cannot be used in a NOx selective reduction system that reduces and purifies NOx in exhaust gas by adding urea.

また、前記特許文献2に記載のアンモニアセンサでは、選択性は改善されているものの、選択性改善のために添加されているMoOの融点が795℃、沸点が1155℃と低いため、上述したNOx選択還元システムに使用するには、耐熱性に問題があり、排ガス中で使用することは困難である。 Further, in the ammonia sensor described in Patent Document 2, although the selectivity is improved, the melting point of MoO 3 added for improving the selectivity is 795 ° C. and the boiling point is as low as 1155 ° C. When used in a NOx selective reduction system, there is a problem in heat resistance, and it is difficult to use in exhaust gas.

本発明は、前記課題を解決するためになされたものであり、アンモニアに対して感度が大きく、選択性が高く、小型化が可能で、耐熱性及び耐久性が高いアンモニア濃度測定用センサ素子、アンモニア濃度測定装置、およびアンモニア濃度測定方法を提供することを目的とする。   The present invention has been made to solve the above-mentioned problems, and has a high sensitivity to ammonia, a high selectivity, a small size, a high heat resistance and durability, and a sensor element for measuring ammonia concentration. An object of the present invention is to provide an ammonia concentration measuring device and an ammonia concentration measuring method.

即ち、本発明によれば、以下のアンモニア濃度測定用センサ素子、アンモニア濃度測定装置、およびアンモニア濃度測定方法が提供される。   That is, according to the present invention, the following ammonia concentration measuring sensor element, ammonia concentration measuring apparatus, and ammonia concentration measuring method are provided.

[1] イオン伝導性固体電解質からなる固体電解質基板と、前記固体電解質基板上に設けられたAu層と、前記Au層を被覆した多孔質酸化物層と、を含む検知極と、前記固体電解質基板上に設けられたPt参照極と、前記固体電解質基板の温度調節をする温度調節部と、を含むアンモニア濃度測定用センサ素子。 [1] A detection electrode including a solid electrolyte substrate made of an ion conductive solid electrolyte, an Au layer provided on the solid electrolyte substrate, and a porous oxide layer covering the Au layer, and the solid electrolyte A sensor element for measuring ammonia concentration, comprising: a Pt reference electrode provided on a substrate; and a temperature adjusting unit for adjusting the temperature of the solid electrolyte substrate.

[2] 前記多孔質酸化物層が多孔質NiO層である前記[1]に記載のアンモニア濃度測定用センサ素子。 [2] The ammonia concentration measurement sensor element according to [1], wherein the porous oxide layer is a porous NiO layer.

[3] 前記検知極は、前記固体電解質基板上に設けられた前記Au層と、Pt検知極リードと、前記Au層および前記Pt検知極リードとを被覆した多孔質酸化物層層と、を含む前記[1]または[2]に記載のアンモニア濃度測定用センサ素子。 [3] The detection electrode comprises: the Au layer provided on the solid electrolyte substrate; a Pt detection electrode lead; and a porous oxide layer layer covering the Au layer and the Pt detection electrode lead. The ammonia concentration measuring sensor element according to [1] or [2].

[4] 前記固体電解質基板は安定化剤としてイットリアを3〜15mol%添加したジルコニアからなる前記[1]〜[3]のいずれかに記載のアンモニア濃度測定用センサ素子。 [4] The ammonia concentration measurement sensor element according to any one of [1] to [3], wherein the solid electrolyte substrate is made of zirconia to which 3 to 15 mol% of yttria is added as a stabilizer.

[5] 被検ガスを内部に導入する検知区画と、前記検知区画に設けられた前記[1]〜[4]のいずれかに記載のアンモニア濃度測定用センサ素子と、前記検知極と前記参照極との電極間の起電力差と、あらかじめ蓄積された検量線データとを比較することにより前記被検ガス中のアンモニア濃度を測定する演算部と、を含むアンモニア濃度測定装置。 [5] A detection section for introducing a gas to be detected inside, the ammonia concentration measuring sensor element according to any one of [1] to [4] provided in the detection section, the detection electrode, and the reference An ammonia concentration measuring apparatus comprising: an arithmetic unit that measures an ammonia concentration in the test gas by comparing an electromotive force difference between the electrodes and a calibration curve data accumulated in advance.

[6] 前記検知区画が、前記検知区画内部に導入された前記被検ガスの酸素濃度を制御するための電気化学的酸素ポンプを有した前記[5]に記載のアンモニア濃度測定装置。 [6] The ammonia concentration measuring apparatus according to [5], wherein the detection section includes an electrochemical oxygen pump for controlling an oxygen concentration of the test gas introduced into the detection section.

[7] 前記[5]に記載のアンモニア濃度測定装置を用い、前記検知区画に前記被検ガスを導入し、前記温度調節部を用いて前記固体電解質基板の温度を750〜850℃の範囲となるように制御し、前記検知極と前記参照極との電極間の起電力差を測定し、前記検知極と前記参照極との電極間の起電力差と、あらかじめ蓄積された前記検知極と前記参照極との電極間の起電力差から得られた検量線データとを比較することにより前記被検ガス中のアンモニア濃度を測定するアンモニア濃度の測定方法。 [7] Using the ammonia concentration measuring apparatus according to [5], the test gas is introduced into the detection section, and the temperature of the solid electrolyte substrate is set within a range of 750 to 850 ° C. using the temperature control unit. And measuring the electromotive force difference between the detection electrode and the reference electrode, the electromotive force difference between the detection electrode and the reference electrode, and the detection electrode accumulated in advance A method for measuring ammonia concentration, wherein the ammonia concentration in the test gas is measured by comparing calibration curve data obtained from an electromotive force difference between the reference electrode and the electrode.

[8] 前記[6]に記載のアンモニア濃度測定装置を用い、前記検知区画に前記被検ガスを導入し、前記温度調節部を用いて前記固体電解質基板の温度を750〜850℃の範囲となるように制御し、前記電気化学的酸素ポンプを用いて前記検知区画内部に導入された前記被検ガスの酸素濃度を5〜15vol.%の範囲となるように制御し、前記検知極と前記参照極との電極間の起電力差を測定し、前記検知極と前記参照極との電極間の起電力差と、あらかじめ蓄積された前記検知極と前記参照極との電極間の起電力差から得られた検量線データとを比較することにより前記被検ガス中のアンモニア濃度を測定するアンモニア濃度の測定方法。 [8] Using the ammonia concentration measuring apparatus according to [6], the test gas is introduced into the detection section, and the temperature of the solid electrolyte substrate is set within a range of 750 to 850 ° C. using the temperature control unit. The oxygen concentration of the test gas introduced into the detection section using the electrochemical oxygen pump is adjusted to 5 to 15 vol. %, The electromotive force difference between the detection electrode and the reference electrode is measured, and the electromotive force difference between the detection electrode and the reference electrode is stored in advance. A method for measuring ammonia concentration, wherein the ammonia concentration in the test gas is measured by comparing calibration curve data obtained from the electromotive force difference between the detection electrode and the reference electrode.

本発明によれば、アンモニアに対して感度が大きく、選択性が高く、小型化が可能で、耐熱性及び耐久性が高いアンモニアセンサ素子を提供することを目的とする。また、本発明のアンモニアセンサ素子を用いたアンモニア濃度測定装置、およびアンモニア濃度測定方法を用いれば、SCR触媒に尿素を添加することによりアンモニアを発生させ、そのアンモニアによりNOxを還元して排ガスを浄化する技術を従来に比して容易に実現でき、自動車排ガス等の厳しい環境基準を満たすことが可能となる。   An object of the present invention is to provide an ammonia sensor element that has high sensitivity to ammonia, high selectivity, can be miniaturized, and has high heat resistance and durability. Further, by using the ammonia concentration measuring apparatus and the ammonia concentration measuring method using the ammonia sensor element of the present invention, ammonia is generated by adding urea to the SCR catalyst, and NOx is reduced by the ammonia to purify the exhaust gas. This technology can be easily realized compared to the conventional technology, and can meet strict environmental standards such as automobile exhaust gas.

以下、図面を参照しつつ本発明の実施の形態について説明する。本発明は、以下の実施形態に限定されるものではなく、発明の範囲を逸脱しない限りにおいて、変更、修正、改良を加え得るものである。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to the following embodiments, and changes, modifications, and improvements can be added without departing from the scope of the invention.

本発明のアンモニアセンサ素子の基本的な構成の一例を図1、図2および図3A、図3Bに示す。図3Aは図1のアンモニアセンサ素子11のX−X’断面図を示す。図3Bは図1のアンモニアセンサ素子11のY−Y’断面図を示す。本発明のアンモニアセンサ素子11は、イオン伝導性の固体電解質からなる固体電解質基板12と、固体電解質基板12上に設けられたAu層16と、Au層16の上を被覆した多孔質酸化物層13と、を含む検知極18と、固体電解質基板12上に設けられたPt参照極15と、固体電解質基板12の温度調節をする温度調節部43と、を含むように構成される。Pt参照極15は、参照極19として用いられるものである。検知極18のAu層16は、粒子状に分散し、多孔質酸化物層13及び固体電解質基板12へ拡散して存在する。   An example of the basic configuration of the ammonia sensor element of the present invention is shown in FIGS. 1, 2, 3A, and 3B. FIG. 3A shows a cross-sectional view of the ammonia sensor element 11 in FIG. FIG. 3B shows a Y-Y ′ cross-sectional view of the ammonia sensor element 11 of FIG. 1. The ammonia sensor element 11 of the present invention includes a solid electrolyte substrate 12 made of an ion conductive solid electrolyte, an Au layer 16 provided on the solid electrolyte substrate 12, and a porous oxide layer covering the Au layer 16 13, a Pt reference electrode 15 provided on the solid electrolyte substrate 12, and a temperature adjustment unit 43 that adjusts the temperature of the solid electrolyte substrate 12. The Pt reference electrode 15 is used as the reference electrode 19. The Au layer 16 of the detection electrode 18 is dispersed in the form of particles and diffuses into the porous oxide layer 13 and the solid electrolyte substrate 12.

本発明のアンモニアセンサ素子11においては、検知極で用いられるAu層上を被覆した多孔質酸化物層13の酸化物としてCr、Mn、Fe、Co、Ni、Cu、Zn、V、および希土類元素から選択される少なくとも1種の元素を含む酸化物であることが好ましい。また、本発明のアンモニアセンサ素子においては、検知極で用いられるAu層上を被覆した多孔質酸化物層13の酸化物としてCr、Mn、Fe、Co、Ni、Cu、Zn、V、および希土類元素から選択される少なくとも2種の元素を含む複酸化物であることが好ましい。またさらに、本発明のアンモニアセンサ素子においては、検知極で用いられるAu層上を被覆した多孔質酸化物層13の酸化物としてNiOが特に好ましい。   In the ammonia sensor element 11 of the present invention, Cr, Mn, Fe, Co, Ni, Cu, Zn, V, and rare earth elements are used as the oxide of the porous oxide layer 13 covering the Au layer used in the detection electrode. It is preferable that the oxide contains at least one element selected from. In the ammonia sensor element of the present invention, Cr, Mn, Fe, Co, Ni, Cu, Zn, V, and rare earth are used as oxides of the porous oxide layer 13 covering the Au layer used in the detection electrode. A double oxide containing at least two elements selected from the elements is preferable. Furthermore, in the ammonia sensor element of the present invention, NiO is particularly preferable as the oxide of the porous oxide layer 13 covering the Au layer used in the detection electrode.

本発明のアンモニアセンサ素子11は、図1、図2および図3A、図3Bに示すように、イオン伝導性の固体電解質からなる固体電解質基板12と、固体電解質基板12上に設けられたAu層16と、そのAu層16の上を被覆した多孔質NiO層(多孔質酸化物層13)、を含む検知極18と、固体電解質基板12上に設けられたPt参照極15と、固体電解質基板の温度調節をする温度調節部43と、を含むように構成することが特に好ましい。   As shown in FIGS. 1, 2, 3A, and 3B, the ammonia sensor element 11 of the present invention includes a solid electrolyte substrate 12 made of an ion conductive solid electrolyte, and an Au layer provided on the solid electrolyte substrate 12. 16, a sensing electrode 18 including a porous NiO layer (porous oxide layer 13) covering the Au layer 16, a Pt reference electrode 15 provided on the solid electrolyte substrate 12, and a solid electrolyte substrate It is particularly preferable that the temperature control unit 43 includes a temperature control unit 43 that controls the temperature.

また、本発明のアンモニアセンサ素子11において、検知極18は、前記固体電解質基板12上に設けられた前記Au層16と、Pt検知極リード17と、Au層16およびPt検知極リード17とを被覆した多孔質NiO層(多孔質酸化物層13)と、を含むように構成することが好ましい。   In the ammonia sensor element 11 of the present invention, the detection electrode 18 includes the Au layer 16, the Pt detection electrode lead 17, the Au layer 16 and the Pt detection electrode lead 17 provided on the solid electrolyte substrate 12. The coated porous NiO layer (porous oxide layer 13) is preferably included.

また、本発明のアンモニアセンサ素子11において、Au層16は固体電解質基板12上にスパッタ法を用いて成膜する方法、金コロイド溶液塗布法、あるいは金の前駆体を塗布し還元熱分解する方法などにより形成することが好ましい。   In the ammonia sensor element 11 of the present invention, the Au layer 16 is formed on the solid electrolyte substrate 12 using a sputtering method, a colloidal gold solution coating method, or a method in which a gold precursor is applied and reduced thermal decomposition is performed. It is preferable to form by such as.

また、本発明のアンモニアセンサ素子11において、Au層16とその上に形成した多孔質酸化物層13とを焼結温度950〜1200度で焼結することが好ましい。   In the ammonia sensor element 11 of the present invention, the Au layer 16 and the porous oxide layer 13 formed thereon are preferably sintered at a sintering temperature of 950 to 1200 degrees.

また、本発明のアンモニアセンサ素子11において、固体電解質基板12は安定化剤としてイットリアを3〜15mol%添加したジルコニアからなることが好ましい。   In the ammonia sensor element 11 of the present invention, the solid electrolyte substrate 12 is preferably made of zirconia to which 3 to 15 mol% of yttria is added as a stabilizer.

また、本発明のアンモニアセンサ素子11を用いてアンモニア濃度測定装置(図示しない)を構成することができる。この場合、被検ガスを内部に導入する検知区画(図示しない)と、前記検知区画に設けられた上述の本発明のアンモニア濃度測定用センサ素子11と、検知極18と参照極19との電極間の起電力差と、あらかじめ蓄積された検量線データとを比較することにより被検ガス中のアンモニア濃度を測定する演算部と、を含み、検知極18と参照極19との電極間の起電力差を、あらかじめ蓄積された検量線データと比較することにより被検ガス中のアンモニア濃度を測定するアンモニア濃度測定装置を構成することができる。   Further, an ammonia concentration measuring device (not shown) can be configured using the ammonia sensor element 11 of the present invention. In this case, a detection section (not shown) for introducing the test gas into the inside, the above-described ammonia concentration measuring sensor element 11 of the present invention provided in the detection section, electrodes of the detection electrode 18 and the reference electrode 19 And an arithmetic unit that measures the ammonia concentration in the test gas by comparing the difference in electromotive force between them and the calibration curve data accumulated in advance, and the electromotive force between the electrodes of the detection electrode 18 and the reference electrode 19 is measured. By comparing the power difference with the calibration curve data accumulated in advance, an ammonia concentration measuring device that measures the ammonia concentration in the test gas can be configured.

また、本発明のアンモニアセンサ素子11を用いてアンモニア濃度測定装置を構成する場合において、検知区画が、検知区画内部に導入された被検ガスの酸素濃度を制御するための電気化学的酸素ポンプ(図示しない)を有するように構成することが好ましい。検知区画内部の酸素濃度を一定に制御することにより、被検ガス(排ガス)中の酸素濃度に変動があった場合でも安定した精度のアンモニア濃度測定を行うことができる。   In the case where the ammonia concentration measuring device is configured using the ammonia sensor element 11 of the present invention, an electrochemical oxygen pump (in which the detection section controls the oxygen concentration of the test gas introduced into the detection section) (Not shown) is preferable. By controlling the oxygen concentration inside the detection section to be constant, even when the oxygen concentration in the test gas (exhaust gas) varies, the ammonia concentration can be measured with stable accuracy.

上述した本発明のアンモニア濃度測定装置を用いてアンモニア濃度を測定する方法においては、検知区画に被検ガスを導入し、温度調節部43を用いて固体電解質基板12の温度を750〜850℃の範囲となるように制御し、検知極18と参照極19との電極間の起電力差を測定し、検知極18と参照極19との電極間の起電力差と、あらかじめ蓄積された検知極18と参照極19との電極間の起電力差から得られた検量線データとを比較することにより被検ガス中のアンモニア濃度を測定することができる。さらに好ましくは、固体電解質基板12の温度を750〜800℃の範囲となるように制御すると良い。   In the method for measuring the ammonia concentration using the ammonia concentration measuring apparatus of the present invention described above, a test gas is introduced into the detection section, and the temperature of the solid electrolyte substrate 12 is set to 750 to 850 ° C. using the temperature adjusting unit 43. The difference between the electromotive force between the electrodes of the detection electrode 18 and the reference electrode 19 is measured, and the difference between the electromotive forces between the electrodes of the detection electrode 18 and the reference electrode 19 is detected. The ammonia concentration in the test gas can be measured by comparing the calibration curve data obtained from the electromotive force difference between the electrodes 18 and 19. More preferably, the temperature of the solid electrolyte substrate 12 may be controlled to be in the range of 750 to 800 ° C.

また、上述した本発明のアンモニア濃度測定装置を用いてアンモニア濃度を測定する方法においては、検知区画に被検ガスを導入し、温度調節部43を用いて固体電解質基板12の温度を750〜850℃の範囲となるように制御し、電気化学的酸素ポンプを用いて前記検知区画内部に導入された被検ガスの酸素濃度を5〜15vol.%の範囲となるように制御し、検知極18と参照極19との電極間の起電力差を測定し、検知極18と参照極19との電極間の起電力差と、あらかじめ蓄積された検知極18と参照極19との電極間の起電力差から得られた検量線データとを比較することにより被検ガス中のアンモニア濃度を測定することが好ましい。このように、被検ガスの酸素濃度を5〜15vol.%の範囲となるように制御することにより、被検ガス(排ガス)中の酸素濃度に変動があった場合でも安定した精度のアンモニア濃度測定を行うことができる。さらに好ましくは、固体電解質基板12の温度を750〜800℃の範囲となるように制御制御すると良い。   Moreover, in the method for measuring the ammonia concentration using the above-described ammonia concentration measuring apparatus of the present invention, a test gas is introduced into the detection section, and the temperature of the solid electrolyte substrate 12 is adjusted to 750 to 850 using the temperature adjusting unit 43. The oxygen concentration of the test gas introduced into the detection section by using an electrochemical oxygen pump is controlled to be in the range of 5 ° C. and 5-15 vol. %, The electromotive force difference between the electrodes of the detection electrode 18 and the reference electrode 19 is measured, and the electromotive force difference between the electrodes of the detection electrode 18 and the reference electrode 19 is stored in advance. It is preferable to measure the ammonia concentration in the test gas by comparing the calibration curve data obtained from the electromotive force difference between the detection electrode 18 and the reference electrode 19. Thus, the oxygen concentration of the test gas is set to 5 to 15 vol. By controlling to be in the range of%, stable and accurate ammonia concentration measurement can be performed even when the oxygen concentration in the test gas (exhaust gas) varies. More preferably, the temperature of the solid electrolyte substrate 12 may be controlled and controlled to be in the range of 750 to 800 ° C.

本発明のアンモニアセンサ素子の検知原理は混成電位に基づいている。検知極では、Au層および多孔質酸化物層により、NH以外のNOx、CO、水素、炭化水素は、多く含まれる酸素と速やかに反応し、酸素と平衡の状況にある。固体電解質と、検知極を構成するAu層および多孔質酸化物層と、気相との界面(三相界面)では、酸素と、NH、あるいはNHからの派生物のみが、電位の発生に寄与する。一方、参照極では、NHを含めて酸素と速やかに反応して、酸素と平衡の状況にある。固体電解質と、参照極と、気相との界面では、酸素のみが、電位の発生に寄与する。酸素はその他の成分に比較して充分多いため、他の成分と反応しても大きい濃度変化はなく、三相界面での電位を発生に影響しない。この結果、検知極と参照極との電位の差は、NHの濃度による差となると、推定された。 The detection principle of the ammonia sensor element of the present invention is based on the hybrid potential. At the sensing electrode, due to the Au layer and the porous oxide layer, NOx other than NH 3 , CO, hydrogen, and hydrocarbon react quickly with a large amount of oxygen and are in equilibrium with oxygen. A solid electrolyte, and an Au layer and a porous oxide layer which constitutes the sensing electrode, the interface between the gas phase (three-phase interface), and oxygen only derivatives from NH 3 or NH 3,, occurrence of potential Contribute to. On the other hand, the reference electrode reacts quickly with oxygen including NH 3 and is in equilibrium with oxygen. At the interface between the solid electrolyte, the reference electrode, and the gas phase, only oxygen contributes to potential generation. Since oxygen is sufficiently larger than other components, there is no significant change in concentration even if it reacts with other components, and the potential at the three-phase interface is not affected. As a result, the potential difference between the detection electrode and the reference electrode was estimated to be a difference due to the concentration of NH 3 .

一般に、酸素濃度7%では、アンモニアガスが100ppm導入されたとしても、平衡酸素分圧では100/70000以下の影響であるが、本発明において用いられるAu層および多孔質NiO層のような特定の電極の場合、アンモニアガス、あるいはNHからの派生物が三相界面での還元力が優先するため、動的な現象として平衡時の影響以上の値が検出されるものである。 In general, at an oxygen concentration of 7%, even if ammonia gas is introduced at 100 ppm, the equilibrium oxygen partial pressure has an effect of 100 / 70,000 or less. However, a specific layer such as an Au layer and a porous NiO layer used in the present invention is used. In the case of an electrode, ammonia gas or a derivative derived from NH 3 is given priority over the reducing power at the three-phase interface, so that a value exceeding the influence at equilibrium is detected as a dynamic phenomenon.

以下に、本発明のアンモニアセンサ素子11の使用方法について簡単に説明する。本実施例のアンモニアセンサ素子11は、車両(ディーゼル車)の排ガス中のNOxを低減するシステムに用いられる。   Below, the usage method of the ammonia sensor element 11 of this invention is demonstrated easily. The ammonia sensor element 11 of the present embodiment is used in a system that reduces NOx in exhaust gas from a vehicle (diesel vehicle).

具体的には、図9に示す様に、車両の排気管71に取り付けられた酸化触媒73上流側に、周知のSCR触媒装置75が配置されており、このSCR触媒装置75に(還元剤として)尿素を供給してアンモニアを発生させ、このアンモニアによって、排ガス中のNOxを窒素に還元して排ガスの浄化を行う。   Specifically, as shown in FIG. 9, a well-known SCR catalyst device 75 is disposed upstream of the oxidation catalyst 73 attached to the exhaust pipe 71 of the vehicle. ) Urea is supplied to generate ammonia, and with this ammonia, NOx in the exhaust gas is reduced to nitrogen to purify the exhaust gas.

このとき、排ガスの還元浄化を効率よく行わせるためには、供給する尿素の量(従って発生するアンモニアの濃度)を調節することが必要であるので、SCR触媒装置75の下流側にアンモニアセンサ素子11を配置して、SCR触媒装置75から排出されるアンモニアの濃度を検出する。   At this time, in order to efficiently reduce and purify the exhaust gas, it is necessary to adjust the amount of urea to be supplied (and hence the concentration of generated ammonia), so that an ammonia sensor element is provided downstream of the SCR catalyst device 75. 11 is arranged to detect the concentration of ammonia discharged from the SCR catalyst device 75.

つまり、アンモニアセンサ素子11により検出されるアンモニア濃度が検出限界以下の場合には、尿素の供給量を増加し、一方、アンモニア濃度が検出される場合には、その濃度に応じて尿素の供給量を低減する等の制御を行うことにより、排ガスの還元浄化効率を高めることができる。   That is, when the ammonia concentration detected by the ammonia sensor element 11 is below the detection limit, the urea supply amount is increased. On the other hand, when the ammonia concentration is detected, the urea supply amount according to the concentration. By performing control such as reducing the emission, the reduction and purification efficiency of the exhaust gas can be increased.

以下、本発明を実施例に基づいてさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated further in detail based on an Example, this invention is not limited to these Examples.

(実施例1)本発明のアンモニアセンサ素子の基本的な構成の一例の概略、を実施例1として図1、図2および図3A、3Bに示す。図1は、アンモニアセンサ素子11のセンサ素子表面51から見た模式的斜視図である。図2は、アンモニアセンサ素子11のセンサ素子裏面52から見た模式的斜視図である。図3Aは図1のアンモニアセンサ素子11のX−X’断面図を示す。図3Bは図1のアンモニアセンサ素子11のY−Y’断面図を示す。本発明の実施形態のアンモニアセンサ素子11は、安定化剤としてイットリアを8mol%添加したジルコニアからなり、寸法が縦50mm×横10mm×厚さ5mmである固体電解質基板12の上に、Au層16と、Pt検知極リード17と、Au層16を被覆した多孔質NiO層(多孔質酸化物層13)とで構成される検知極18とを形成し、さらに参照極19としてPt参照極15を設け、固体電解質基板12内部に温度調節をするための温度調節部43とを形成した。温度調節部43は、図2に示すように、ヒーター44およびヒーターリード45とで構成した。   (Example 1) An example of the basic configuration of the ammonia sensor element of the present invention is shown as Example 1 in FIGS. 1, 2, 3A, and 3B. FIG. 1 is a schematic perspective view seen from the sensor element surface 51 of the ammonia sensor element 11. FIG. 2 is a schematic perspective view seen from the sensor element back surface 52 of the ammonia sensor element 11. FIG. 3A shows a cross-sectional view of the ammonia sensor element 11 in FIG. FIG. 3B shows a Y-Y ′ cross-sectional view of the ammonia sensor element 11 of FIG. 1. An ammonia sensor element 11 according to an embodiment of the present invention is made of zirconia to which 8 mol% of yttria is added as a stabilizer, and has an Au layer 16 on a solid electrolyte substrate 12 having dimensions of 50 mm length × 10 mm width × 5 mm thickness. And a detection electrode 18 composed of a Pt detection electrode lead 17 and a porous NiO layer (porous oxide layer 13) coated with the Au layer 16, and a Pt reference electrode 15 as a reference electrode 19. And a temperature adjusting unit 43 for adjusting the temperature inside the solid electrolyte substrate 12 was formed. As shown in FIG. 2, the temperature adjustment unit 43 includes a heater 44 and a heater lead 45.

具体的には、Pt参照極15は、スクリーン印刷法を用いて、固体電解質基板12の表面に形成し、温度1000℃大気圧下で2時間焼結して得られた。また、Ptペーストを線状に塗布して焼付け,Pt検知極リード17および参照極リード41を形成した。Au層16の元となるAu薄膜は、固体電解質基板12上に室温にてAuを0.1Paで200秒間スパッタ法を用いて成膜することによって形成した。   Specifically, the Pt reference electrode 15 was obtained by forming it on the surface of the solid electrolyte substrate 12 using a screen printing method and sintering it at 1000 ° C. under atmospheric pressure for 2 hours. Further, the Pt paste was applied in a linear form and baked to form the Pt detection electrode lead 17 and the reference electrode lead 41. The Au thin film used as the base of the Au layer 16 was formed by depositing Au on the solid electrolyte substrate 12 at room temperature at 0.1 Pa using a sputtering method for 200 seconds.

多孔質NiO層は、以下の条件で作成した。市販のNiO粉末をα―テルピノールとともに攪拌、ペースト状に調製した。得られたペーストを転写紙の上にスクリーン印刷法を用いて所望の形状(縦2mm×横10mm×厚さ0.006mm)に成形した。これを上述のスパッタ法によりAu薄膜が成膜された固体電解質基板12の上に、転写法を用いてNiO層を固体電解質基板12上に形成した。   The porous NiO layer was created under the following conditions. A commercially available NiO powder was stirred together with α-terpinol and prepared into a paste. The obtained paste was formed on a transfer paper into a desired shape (length 2 mm × width 10 mm × thickness 0.006 mm) using a screen printing method. A NiO layer was formed on the solid electrolyte substrate 12 by using the transfer method on the solid electrolyte substrate 12 on which the Au thin film was formed by the sputtering method described above.

次に、Au薄膜と、Au薄膜の上を被覆したNiO層とが設けられた固体電解質基板12を大気圧、温度1000℃にて2時間焼結することにより、検知極18を得た。このとき、NiO層は、膜厚4μm以下の多孔質層となる。   Next, the detection electrode 18 was obtained by sintering the solid electrolyte substrate 12 provided with the Au thin film and the NiO layer coated on the Au thin film at atmospheric pressure and a temperature of 1000 ° C. for 2 hours. At this time, the NiO layer becomes a porous layer having a thickness of 4 μm or less.

こうして得られたアンモニアセンサ素子11における検知極18の断面のSEM像を図27に示す。また、検知極18の断面を示すback−scattering SEM(反射電子像)写真を図28に示す。図28中のAuのEDXスペクトルを示すグラフを図29に示す。図27のSEM像から多孔質NiO層の厚みは1〜4μmとなることがわかった。図28のback−scattering SEM像(反射電子像)から、真空蒸着で得られたAu薄膜は、NiO層とともに温度1000℃で焼結されることにより、少なくとも一部はAu微粒子の凝集体としてイットリア安定化ジルコニア固体電解質の表面上に分散して形成されていることがわかった。   FIG. 27 shows an SEM image of the cross section of the detection electrode 18 in the ammonia sensor element 11 thus obtained. Further, a back-scattering SEM (reflection electron image) photograph showing a cross section of the detection electrode 18 is shown in FIG. A graph showing the EDX spectrum of Au in FIG. 28 is shown in FIG. From the SEM image of FIG. 27, it was found that the thickness of the porous NiO layer was 1 to 4 μm. From the back-scattering SEM image (reflection electron image) of FIG. 28, the Au thin film obtained by vacuum deposition is sintered at a temperature of 1000 ° C. together with the NiO layer, so that at least a part thereof is an agglomerate of Au fine particles. It was found that it was dispersed on the surface of the stabilized zirconia solid electrolyte.

このようにして得られたアンモニアセンサ素子11のアンモニアガスの各濃度による参照極19および検知極18における起電力差の応答特性([起電力差Δemf]=[被検ガスの起電力]−[基準ガスの起電力])のグラフを図8に示す。計測条件は、以下の通りである。測定温度:800℃、酸素濃度:7vol.%、HO濃度:5vol.%(wet condition)。起電力の値は、ガス導入時から基準値より上昇し始め、定常状態となるまでに数分を要した。90%応答時間は50秒であった。図8のグラフによれば、アンモニアガスの各濃度が20〜100ppmの範囲においては、起電力差−Δemf/mVが線形に推移することがわかった。 Response characteristics of the electromotive force difference between the reference electrode 19 and the detection electrode 18 according to each concentration of ammonia gas of the ammonia sensor element 11 obtained in this way ([electromotive force difference Δemf] = [electromotive force of the test gas] − [ A graph of the electromotive force of the reference gas]) is shown in FIG. The measurement conditions are as follows. Measurement temperature: 800 ° C., oxygen concentration: 7 vol. %, H 2 O concentration: 5 vol. % (Wet condition). The value of the electromotive force started to increase from the reference value from the time of gas introduction, and it took several minutes to reach a steady state. The 90% response time was 50 seconds. According to the graph of FIG. 8, it was found that the electromotive force difference −Δemf / mV changes linearly in the range where each concentration of ammonia gas is 20 to 100 ppm.

アンモニアセンサ素子11の酸素濃度に対する応答特性を調査した。測定条件および結果を図16〜20に示す。各酸素濃度においてもアンモニアセンサ素子11のアンモニアに対する選択性が示された。酸素濃度は5〜21vol.%で測定可能である。好ましくは、7〜15vol.%で一定とした状態で測定する。酸素濃度は電気化学的酸素ポンプを使用して制御することが好ましい。   The response characteristic of the ammonia sensor element 11 to the oxygen concentration was investigated. Measurement conditions and results are shown in FIGS. The selectivity of the ammonia sensor element 11 for ammonia was also shown at each oxygen concentration. The oxygen concentration is 5 to 21 vol. % Can be measured. Preferably, 7-15 vol. Measured in a constant state of%. The oxygen concentration is preferably controlled using an electrochemical oxygen pump.

図21にアンモニアセンサ素子11の、複数のアンモニア濃度ガスを導入した場合の起電力差のグラフを示す。測定条件は、測定温度:800℃、酸素濃度:7vol.%、HO濃度:5vol.%である。このような測定データを蓄積することにより検量線を作成し、アンモニア濃度測定装置やアンモニア濃度測定方法に適用することができる。図22〜図26に、各酸素濃度に対しての、複数のアンモニア濃度ガスを導入した場合の起電力差のグラフを示す。測定条件は、測定温度:800℃、HO濃度:5vol.%である。 FIG. 21 shows a graph of the electromotive force difference when a plurality of ammonia concentration gases are introduced into the ammonia sensor element 11. The measurement conditions were: measurement temperature: 800 ° C., oxygen concentration: 7 vol. %, H 2 O concentration: 5 vol. %. A calibration curve can be created by accumulating such measurement data, and can be applied to an ammonia concentration measuring apparatus and an ammonia concentration measuring method. 22 to 26 show graphs of the electromotive force difference when a plurality of ammonia concentration gases are introduced with respect to each oxygen concentration. The measurement conditions were: measurement temperature: 800 ° C., H 2 O concentration: 5 vol. %.

また、図13〜図15に、温度条件を750℃、775℃、800℃とした場合の複数のガスに対するアンモニアセンサ素子11の選択性を示す。測定条件は以下の通りである。酸素濃度:21vol.%、HO濃度:5vol.%、計測に用いられた各ガス濃度:400ppm。さらに、図30〜図33に、温度条件を775℃、800℃、825℃、850℃とした場合の複数のガスに対するアンモニアセンサ素子11の選択性を示す。測定条件は以下の通りである。酸素濃度:7vol.%、HO濃度:5vol.%、計測に用いられた各ガス濃度:100ppm。このように、アンモニアセンサ素子11が高温において優れたアンモニアガスに対する選択性を有していることが明らかとなった。 13 to 15 show the selectivity of the ammonia sensor element 11 for a plurality of gases when the temperature conditions are 750 ° C, 775 ° C, and 800 ° C. The measurement conditions are as follows. Oxygen concentration: 21 vol. %, H 2 O concentration: 5 vol. %, Each gas concentration used for measurement: 400 ppm. 30 to 33 show the selectivity of the ammonia sensor element 11 for a plurality of gases when the temperature conditions are 775 ° C., 800 ° C., 825 ° C., and 850 ° C. The measurement conditions are as follows. Oxygen concentration: 7 vol. %, H 2 O concentration: 5 vol. %, Each gas concentration used for measurement: 100 ppm. Thus, it became clear that the ammonia sensor element 11 has excellent selectivity for ammonia gas at high temperatures.

アンモニアセンサ素子11の想定される実用環境では、測定対象とするアンモニアの他、自動車等の排ガス中のNO,NO、COや炭化水素ガス等の複数のガスが同時に混在した状態で含まれている。このため、実用環境においては測定対象とするガスの感受性の選択性が重要となる。実施例1のセンサ素子11に対して複数のガス(NO、NO、CO、CH、C、C3H、NH)を使用して得られた検知極18および参照極19の起電力差Δemfのグラフを図10に示す。測定条件は以下の通りである。測定温度:800℃、酸素濃度:7vol.%、HO濃度:5vol.%、計測に用いられたNO、NO、CO、CH、C、C3H、NHの各ガス濃度:100ppm(wet condition)。 In the assumed practical environment of the ammonia sensor element 11, a plurality of gases such as NO, NO 2 , CO, and hydrocarbon gas in the exhaust gas of an automobile and the like are mixed at the same time in addition to ammonia to be measured. Yes. For this reason, the selectivity of the sensitivity of the gas to be measured is important in a practical environment. The detection electrode 18 and the reference electrode 19 obtained by using a plurality of gases (NO 2 , NO, CO, CH 4 , C 3 H 6 , C 3 H 8 , NH 3 ) for the sensor element 11 of the first embodiment. A graph of the electromotive force difference Δemf is shown in FIG. The measurement conditions are as follows. Measurement temperature: 800 ° C., oxygen concentration: 7 vol. %, H 2 O concentration: 5 vol. %, Each gas concentration of NO 2 , NO, CO, CH 4 , C 3 H 6 , C 3 H 8 , and NH 3 used for measurement: 100 ppm (wet condition).

図10のグラフから、実施例1のセンサ素子のアンモニアガスの感受性に対する選択性が非常に高いことが示された。アンモニアガス濃度100ppmに対する起電力差が−34mVに達しているにもかかわらず、アンモニア以外のガスに対しては、起電力差の絶対値が5mV以下あるいは無視できる値となった。   From the graph of FIG. 10, it was shown that the selectivity with respect to the sensitivity of the ammonia gas of the sensor element of Example 1 was very high. Although the electromotive force difference with respect to the ammonia gas concentration of 100 ppm reached -34 mV, the absolute value of the electromotive force difference became 5 mV or less or a negligible value for gases other than ammonia.

一般に、自動車等の排ガス中には、水蒸気が5〜13vol.%含まれている。このため、水蒸気による実施例1のアンモニアセンサ素子に対する影響を調査した。アンモニアガス中の水蒸気を5〜13vol.%の範囲で試験したところ、アンモニア濃度の感受性はほとんど影響を受けなかった。このようなアンモニアセンサ素子は自動車の排ガス中のアンモニア濃度測定に非常に適している。これまでにこのような特性を示すようなイットリア安定化ジルコニア固体電解質タイプの混成電位型アンモニアセンサ素子は報告されていないものである。   Generally, in the exhaust gas of automobiles, water vapor is 5 to 13 vol. %include. For this reason, the influence with respect to the ammonia sensor element of Example 1 by water vapor | steam was investigated. The water vapor in ammonia gas is 5-13 vol. When tested in the% range, the sensitivity of ammonia concentration was hardly affected. Such an ammonia sensor element is very suitable for measuring ammonia concentration in the exhaust gas of automobiles. So far, no yttria-stabilized zirconia solid electrolyte type mixed potential ammonia sensor element exhibiting such characteristics has been reported.

(比較例1)実施例1に示すアンモニアセンサ素子11の構成から多孔質NiO層を除く構成でアンモニアセンサ素子21を作成した。このアンモニアセンサ素子21を図4および図5に示す。図4は、アンモニアセンサ素子21のセンサ素子表面51から見た模式的斜視図である。図5は図4のアンモニアセンサ素子21のY−Y’断面図を示す。比較例1のアンモニアセンサ素子21は、イットリアを安定化剤として8mol%添加したジルコニアからなり、寸法が縦50mm×横10mm×厚さ5mmである固体電解質基板22の上に、Au層26と、Pt検知極リード27とで構成される検知極28とを形成し、さらにPt参照極25(参照極29)を設け、固体電解質基板22内部に温度調節をするための温度調節部43(ヒーター)とを形成した。   (Comparative Example 1) An ammonia sensor element 21 was prepared by removing the porous NiO layer from the structure of the ammonia sensor element 11 shown in Example 1. This ammonia sensor element 21 is shown in FIGS. FIG. 4 is a schematic perspective view seen from the sensor element surface 51 of the ammonia sensor element 21. FIG. 5 is a Y-Y ′ cross-sectional view of the ammonia sensor element 21 of FIG. 4. The ammonia sensor element 21 of Comparative Example 1 is made of zirconia added with 8 mol% of yttria as a stabilizer, and has an Au layer 26 on a solid electrolyte substrate 22 having dimensions of 50 mm long × 10 mm wide × 5 mm thick, A temperature adjusting unit 43 (heater) for adjusting a temperature inside the solid electrolyte substrate 22 is formed by forming a detection electrode 28 composed of a Pt detection electrode lead 27 and further providing a Pt reference electrode 25 (reference electrode 29). And formed.

(比較例2)実施例1に示すアンモニアセンサ素子11の構成からAu層16を除く構成でアンモニアセンサ素子31を作成した。このアンモニアセンサ素子31を図6および図7に示す。図6は、アンモニアセンサ素子31のセンサ素子表面51から見た模式的斜視図である。図7は図6のアンモニアセンサ素子31のY−Y’断面図を示す。比較例2のアンモニアセンサ素子31は、イットリアを安定化剤として8mol%添加したジルコニアからなり、寸法が縦50mm×横10mm×厚さ5mmである固体電解質基板32の上に、Pt検知極リード37と、Pt検知極リード37を被覆した多孔質NiO層33とで構成される検知極38とを形成し、さらに固体電解質基板32上の検知極38とは反対側の表面にPt参照極35(参照極39)を設け、固体電解質基板32内部に温度調節をするための温度調節部43(ヒーター)とを形成した。   (Comparative Example 2) An ammonia sensor element 31 was prepared by removing the Au layer 16 from the structure of the ammonia sensor element 11 shown in Example 1. This ammonia sensor element 31 is shown in FIGS. FIG. 6 is a schematic perspective view seen from the sensor element surface 51 of the ammonia sensor element 31. FIG. 7 is a Y-Y ′ cross-sectional view of the ammonia sensor element 31 of FIG. 6. The ammonia sensor element 31 of Comparative Example 2 is made of zirconia added with 8 mol% of yttria as a stabilizer, and has a Pt detection electrode lead 37 on a solid electrolyte substrate 32 having dimensions of 50 mm in length, 10 mm in width, and 5 mm in thickness. And a detection electrode 38 composed of the porous NiO layer 33 covering the Pt detection electrode lead 37, and a Pt reference electrode 35 (on the surface opposite to the detection electrode 38 on the solid electrolyte substrate 32). A reference electrode 39) was provided, and a temperature adjustment unit 43 (heater) for adjusting the temperature inside the solid electrolyte substrate 32 was formed.

図10、図11、図12はそれぞれ実施例1、比較例1、比較例2の各アンモニアセンサ素子を用いた複数のガス(NO、NO、CO、CH、C、C3H、NH)に対する参照極と検知極との起電力差を示すグラフである。測定条件は以下の通り。測定温度:800℃、酸素濃度:7vol.%、HO濃度:5vol.%、計測に用いられたNO、NO、CO、CH、C、C3H、NHの各ガス濃度:100ppm(wet condition)。 10, 11, and 12 show a plurality of gases (NO 2 , NO, CO, CH 4 , C 3 H 6 , C 3 H 8) using the ammonia sensor elements of Example 1, Comparative Example 1, and Comparative Example 2, respectively. , NH 3 ) is a graph showing the electromotive force difference between the reference electrode and the detection electrode. The measurement conditions are as follows. Measurement temperature: 800 ° C., oxygen concentration: 7 vol. %, H 2 O concentration: 5 vol. %, Each gas concentration of NO 2 , NO, CO, CH 4 , C 3 H 6 , C 3 H 8 , and NH 3 used for measurement: 100 ppm (wet condition).

図10、図11、図12のグラフから、実施例1のアンモニアセンサ素子11のアンモニアガスに対する選択性が顕著であることが明らかとなった。   From the graphs of FIGS. 10, 11, and 12, it became clear that the selectivity of the ammonia sensor element 11 of Example 1 with respect to ammonia gas was remarkable.

本発明によれば、アンモニアに対して感度が大きく、選択性が高く、小型化が可能で、耐熱性及び耐久性が高いアンモニアセンサ素子を提供する。また、本発明のアンモニアセンサ素子を用いたアンモニア濃度測定装置、およびアンモニア濃度測定方法を提供する。   According to the present invention, an ammonia sensor element having high sensitivity to ammonia, high selectivity, miniaturization, high heat resistance and durability is provided. Also provided are an ammonia concentration measuring device and an ammonia concentration measuring method using the ammonia sensor element of the present invention.

本発明の実施の形態のアンモニアセンサ素子の表側から見た模式的斜視図である。It is the typical perspective view seen from the front side of the ammonia sensor element of embodiment of this invention. 本発明の実施の形態のアンモニアセンサ素子の裏側から見た模式的一部透過斜視図である。It is the typical partial transmission perspective view seen from the back side of the ammonia sensor element of embodiment of this invention. 図1に示す本発明の実施の形態のアンモニアセンサ素子のX−X’断面図である。It is X-X 'sectional drawing of the ammonia sensor element of embodiment of this invention shown in FIG. 図1に示す本発明の実施の形態のアンモニアセンサ素子のY−Y’断面図である。FIG. 2 is a Y-Y ′ sectional view of the ammonia sensor element according to the embodiment of the present invention shown in FIG. 1. 比較例1のアンモニアセンサ素子の表側から見た模式的斜視図である。6 is a schematic perspective view of an ammonia sensor element of Comparative Example 1 as viewed from the front side. FIG. 図4に示す本発明の実施の形態のアンモニアセンサ素子のY−Y’断面図である。FIG. 6 is a Y-Y ′ sectional view of the ammonia sensor element according to the embodiment of the present invention shown in FIG. 4. 比較例2のアンモニアセンサ素子の表側から見た模式的斜視図である。6 is a schematic perspective view of an ammonia sensor element of Comparative Example 2 viewed from the front side. FIG. 図6に示す本発明の実施の形態のアンモニアセンサ素子のY−Y’断面図である。FIG. 7 is a Y-Y ′ sectional view of the ammonia sensor element according to the embodiment of the present invention shown in FIG. 6. 本発明の実施形態のアンモニアセンサ素子におけるアンモニア濃度と起電力の応答特性を示すグラフである。It is a graph which shows the ammonia concentration and electromotive force response characteristic in the ammonia sensor element of embodiment of this invention. 本発明のアンモニアセンサ素子の使用方法の一例を示す説明図である。It is explanatory drawing which shows an example of the usage method of the ammonia sensor element of this invention. 本発明の実施形態のアンモニアセンサ素子における複数の試料ガスの選択性を示すグラフである。It is a graph which shows the selectivity of several sample gas in the ammonia sensor element of embodiment of this invention. 比較例1のアンモニアセンサ素子における複数の試料ガスの選択性を示すグラフである。6 is a graph showing the selectivity of a plurality of sample gases in the ammonia sensor element of Comparative Example 1. 比較例2のアンモニアセンサ素子における複数の試料ガスの選択性を示すグラフである。10 is a graph showing the selectivity of a plurality of sample gases in the ammonia sensor element of Comparative Example 2. 本発明の実施形態のアンモニアセンサ素子における複数の試料ガスの選択性を示すグラフである。It is a graph which shows the selectivity of several sample gas in the ammonia sensor element of embodiment of this invention. 本発明の実施形態のアンモニアセンサ素子における複数の試料ガスの選択性を示すグラフである。It is a graph which shows the selectivity of several sample gas in the ammonia sensor element of embodiment of this invention. 本発明の実施形態のアンモニアセンサ素子における複数の試料ガスの選択性を示すグラフである。It is a graph which shows the selectivity of several sample gas in the ammonia sensor element of embodiment of this invention. 本発明の実施形態のアンモニアセンサ素子における複数の試料ガスの選択性を示すグラフである。It is a graph which shows the selectivity of several sample gas in the ammonia sensor element of embodiment of this invention. 本発明の実施形態のアンモニアセンサ素子における複数の試料ガスの選択性を示すグラフである。It is a graph which shows the selectivity of several sample gas in the ammonia sensor element of embodiment of this invention. 本発明の実施形態のアンモニアセンサ素子における複数の試料ガスの選択性を示すグラフである。It is a graph which shows the selectivity of several sample gas in the ammonia sensor element of embodiment of this invention. 本発明の実施形態のアンモニアセンサ素子における複数の試料ガスの選択性を示すグラフである。It is a graph which shows the selectivity of several sample gas in the ammonia sensor element of embodiment of this invention. 本発明の実施形態のアンモニアセンサ素子における複数の試料ガスの選択性を示すグラフである。It is a graph which shows the selectivity of several sample gas in the ammonia sensor element of embodiment of this invention. 起電力から検量線によりアンモニア濃度を測定する方法を説明するための本発明の実施形態のアンモニアセンサ素子におけるアンモニア濃度の応答特性を示すグラフである。It is a graph which shows the response characteristic of the ammonia concentration in the ammonia sensor element of embodiment of this invention for demonstrating the method to measure ammonia concentration from an electromotive force with a calibration curve. 本発明の実施形態のアンモニアセンサ素子におけるアンモニア濃度の応答特性を示すグラフである。It is a graph which shows the response characteristic of the ammonia concentration in the ammonia sensor element of embodiment of this invention. 本発明の実施形態のアンモニアセンサ素子におけるアンモニア濃度の応答特性を示すグラフである。It is a graph which shows the response characteristic of the ammonia concentration in the ammonia sensor element of embodiment of this invention. 本発明の実施形態のアンモニアセンサ素子におけるアンモニア濃度の応答特性を示すグラフである。It is a graph which shows the response characteristic of the ammonia concentration in the ammonia sensor element of embodiment of this invention. 本発明の実施形態のアンモニアセンサ素子におけるアンモニア濃度の応答特性を示すグラフである。It is a graph which shows the response characteristic of the ammonia concentration in the ammonia sensor element of embodiment of this invention. 本発明の実施形態のアンモニアセンサ素子におけるアンモニア濃度の応答特性を示すグラフである。It is a graph which shows the response characteristic of the ammonia concentration in the ammonia sensor element of embodiment of this invention. 本発明の実施形態のアンモニアセンサ素子における検知極の断面を示す図面代用SEM写真である。It is a drawing substitute SEM photograph which shows the cross section of the detection pole in the ammonia sensor element of embodiment of this invention. 本発明の実施形態のアンモニアセンサ素子における検知極の断面を示す図面代用back−scattering SEM(反射電子像)写真である。It is a back-scattering SEM (reflected electron image) photograph which substitutes for a figure which shows the cross section of the detection pole in the ammonia sensor element of embodiment of this invention. 本発明の実施形態のアンモニアセンサ素子における検知極の断面のAuのEDXスペクトルを示すグラフである。It is a graph which shows the EDX spectrum of Au of the cross section of the detection pole in the ammonia sensor element of embodiment of this invention. 本発明の実施形態のアンモニアセンサ素子における複数の試料ガスの選択性を示すグラフである。It is a graph which shows the selectivity of several sample gas in the ammonia sensor element of embodiment of this invention. 本発明の実施形態のアンモニアセンサ素子における複数の試料ガスの選択性を示すグラフである。It is a graph which shows the selectivity of several sample gas in the ammonia sensor element of embodiment of this invention. 本発明の実施形態のアンモニアセンサ素子における複数の試料ガスの選択性を示すグラフである。It is a graph which shows the selectivity of several sample gas in the ammonia sensor element of embodiment of this invention. 本発明の実施形態のアンモニアセンサ素子における複数の試料ガスの選択性を示すグラフである。It is a graph which shows the selectivity of several sample gas in the ammonia sensor element of embodiment of this invention.

符号の説明Explanation of symbols

11:アンモニアセンサ素子、12:固定電解質基板、13:多孔質酸化物層、15:Pt参照極、16:Au層、17:Pt検知極リード、18:検知極、19:参照極、21:アンモニアセンサ素子、22:固定電解質基板、25:Pt参照極、26:Au層、27:Pt検知極リード、28:検知極、29:参照極、31:アンモニアセンサ素子、32:固定電解質基板、33:多孔質NiO層、35:Pt参照極、37:Pt検知極リード、38:検知極、39:参照極、41:参照極リード、43:温度調節部、44:ヒーター、45:ヒーターリード、51:センサ素子表面、52:センサ素子裏面、71:排気管、73:酸化触媒、75:SCR触媒装置。 11: Ammonia sensor element, 12: Fixed electrolyte substrate, 13: Porous oxide layer, 15: Pt reference electrode, 16: Au layer, 17: Pt detection electrode lead, 18: Detection electrode, 19: Reference electrode, 21: Ammonia sensor element, 22: fixed electrolyte substrate, 25: Pt reference electrode, 26: Au layer, 27: Pt detection electrode lead, 28: detection electrode, 29: reference electrode, 31: ammonia sensor element, 32: fixed electrolyte substrate, 33: Porous NiO layer, 35: Pt reference electrode, 37: Pt detection electrode lead, 38: Detection electrode, 39: Reference electrode, 41: Reference electrode lead, 43: Temperature control unit, 44: Heater, 45: Heater lead 51: Sensor element surface, 52: Sensor element back surface, 71: Exhaust pipe, 73: Oxidation catalyst, 75: SCR catalyst device.

Claims (8)

イオン伝導性固体電解質からなる固体電解質基板と、
前記固体電解質基板上に設けられたAu層と、前記Au層を被覆した多孔質酸化物層と、を含む検知極と、
前記固体電解質基板上に設けられたPt参照極と、
前記固体電解質基板の温度調節をする温度調節部と、を含むアンモニア濃度測定用センサ素子。
A solid electrolyte substrate made of an ion conductive solid electrolyte;
A sensing electrode comprising an Au layer provided on the solid electrolyte substrate, and a porous oxide layer covering the Au layer;
A Pt reference electrode provided on the solid electrolyte substrate;
A sensor element for measuring ammonia concentration, comprising: a temperature adjusting unit for adjusting the temperature of the solid electrolyte substrate.
前記多孔質酸化物層が多孔質NiO層である請求項1に記載のアンモニア濃度測定用センサ素子。   The sensor element for measuring ammonia concentration according to claim 1, wherein the porous oxide layer is a porous NiO layer. 前記検知極は、前記固体電解質基板上に設けられた前記Au層と、Pt検知極リードと、前記Au層および前記Pt検知極リードとを被覆した多孔質酸化物層と、を含む請求項1または2に記載のアンモニア濃度測定用センサ素子。   The detection electrode includes the Au layer provided on the solid electrolyte substrate, a Pt detection electrode lead, and a porous oxide layer covering the Au layer and the Pt detection electrode lead. Or the ammonia concentration measuring sensor element according to 2; 前記固体電解質基板は安定化剤としてイットリアを3〜15mol%添加したジルコニアからなる請求項1〜3のいずれか1項に記載のアンモニア濃度測定用センサ素子。   The sensor element for ammonia concentration measurement according to any one of claims 1 to 3, wherein the solid electrolyte substrate is made of zirconia to which 3 to 15 mol% of yttria is added as a stabilizer. 被検ガスを内部に導入する検知区画と、
前記検知区画に設けられた請求項1〜4のいずれか1項に記載のアンモニア濃度測定用センサ素子と、
前記検知極と前記参照極との電極間の起電力差と、あらかじめ蓄積された検量線データとを比較することにより前記被検ガス中のアンモニア濃度を測定する演算部と、を含むアンモニア濃度測定装置。
A detection zone for introducing the test gas into the interior;
The sensor element for ammonia concentration measurement according to any one of claims 1 to 4, provided in the detection section,
An ammonia concentration measurement comprising: an arithmetic unit that measures an ammonia concentration in the test gas by comparing an electromotive force difference between the detection electrode and the reference electrode with a previously stored calibration curve data apparatus.
前記検知区画が、前記検知区画内部に導入された前記被検ガスの酸素濃度を制御するための電気化学的酸素ポンプを有した請求項5に記載のアンモニア濃度測定装置。   The ammonia concentration measuring apparatus according to claim 5, wherein the detection section has an electrochemical oxygen pump for controlling the oxygen concentration of the test gas introduced into the detection section. 請求項5に記載のアンモニア濃度測定装置を用い、
前記検知区画に前記被検ガスを導入し、
前記温度調節部を用いて前記固体電解質基板の温度を750〜850℃の範囲となるように制御し、
前記検知極と前記参照極との電極間の起電力差を測定し、
前記検知極と前記参照極との電極間の起電力差と、あらかじめ蓄積された前記検知極と前記参照極との電極間の起電力差から得られた検量線データとを比較することにより前記被検ガス中のアンモニア濃度を測定するアンモニア濃度の測定方法。
Using the ammonia concentration measuring device according to claim 5,
Introducing the test gas into the detection section;
Control the temperature of the solid electrolyte substrate to be in the range of 750 to 850 ° C. using the temperature adjusting unit,
Measure the electromotive force difference between the detection electrode and the reference electrode,
By comparing the electromotive force difference between the electrodes of the detection electrode and the reference electrode and the calibration curve data obtained from the electromotive force difference between the electrodes of the detection electrode and the reference electrode stored in advance. A method for measuring ammonia concentration for measuring ammonia concentration in a test gas.
請求項6に記載のアンモニア濃度測定装置を用い、
前記検知区画に前記被検ガスを導入し、
前記温度調節部を用いて前記固体電解質基板の温度を750〜850℃の範囲となるように制御し、
前記電気化学的酸素ポンプを用いて前記検知区画内部に導入された前記被検ガスの酸素濃度を5〜15vol.%の範囲となるように制御し、
前記検知極と前記参照極との電極間の起電力差を測定し、
前記検知極と前記参照極との電極間の起電力差と、あらかじめ蓄積された前記検知極と前記参照極との電極間の起電力差から得られた検量線データとを比較することにより前記被検ガス中のアンモニア濃度を測定するアンモニア濃度の測定方法。
Using the ammonia concentration measuring device according to claim 6,
Introducing the test gas into the detection section;
Control the temperature of the solid electrolyte substrate to be in the range of 750 to 850 ° C. using the temperature adjusting unit,
The oxygen concentration of the test gas introduced into the detection section using the electrochemical oxygen pump is adjusted to 5 to 15 vol. % To control the range,
Measure the electromotive force difference between the detection electrode and the reference electrode,
By comparing the electromotive force difference between the electrodes of the detection electrode and the reference electrode and the calibration curve data obtained from the electromotive force difference between the electrodes of the detection electrode and the reference electrode accumulated in advance. A method for measuring ammonia concentration for measuring the ammonia concentration in a test gas.
JP2008083409A 2008-03-27 2008-03-27 Ammonia concentration measuring sensor element, ammonia concentration measuring device, and ammonia concentration measuring method Active JP5105284B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008083409A JP5105284B2 (en) 2008-03-27 2008-03-27 Ammonia concentration measuring sensor element, ammonia concentration measuring device, and ammonia concentration measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008083409A JP5105284B2 (en) 2008-03-27 2008-03-27 Ammonia concentration measuring sensor element, ammonia concentration measuring device, and ammonia concentration measuring method

Publications (2)

Publication Number Publication Date
JP2009236693A true JP2009236693A (en) 2009-10-15
JP5105284B2 JP5105284B2 (en) 2012-12-26

Family

ID=41250829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008083409A Active JP5105284B2 (en) 2008-03-27 2008-03-27 Ammonia concentration measuring sensor element, ammonia concentration measuring device, and ammonia concentration measuring method

Country Status (1)

Country Link
JP (1) JP5105284B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012037509A (en) * 2010-07-16 2012-02-23 Ngk Spark Plug Co Ltd Ammonia gas sensor
CN106018507A (en) * 2016-05-16 2016-10-12 天津理工大学 Preparation method of mesoporous nickel oxide having excellent ammonia gas sensitive properties
CN109603525A (en) * 2018-12-27 2019-04-12 浙江浙能温州发电有限公司 A kind of denitration subregion spray ammonia control method based on unevenness judgement
CN112362716A (en) * 2020-11-05 2021-02-12 武汉科技大学 Novel ammonia gas sensor chip and preparation method thereof

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000193639A (en) * 1998-12-25 2000-07-14 Ngk Spark Plug Co Ltd Ammonia detection sensor and ammonia detection method using the same
JP2000214128A (en) * 1999-01-25 2000-08-04 Ngk Spark Plug Co Ltd Ammonia-detecting sensor and method for detecting ammonia using the same
JP2003083933A (en) * 2001-09-11 2003-03-19 Ngk Spark Plug Co Ltd Ammonia-gas-concentration measuring apparatus
JP2003185625A (en) * 2001-10-09 2003-07-03 Riken Corp Gas detecting element and gas detecting apparatus using the same
JP2004132791A (en) * 2002-10-09 2004-04-30 Riken Corp Gas detection device
JP2005083817A (en) * 2003-09-05 2005-03-31 Ngk Spark Plug Co Ltd Ammonia sensor
JP2008116321A (en) * 2006-11-06 2008-05-22 Ngk Spark Plug Co Ltd Ammonia gas sensor and manufacturing method therefor
JP2009036754A (en) * 2007-07-11 2009-02-19 Ngk Spark Plug Co Ltd Ammonia gas sensor
JP2009115776A (en) * 2007-07-11 2009-05-28 Ngk Spark Plug Co Ltd Ammonia gas sensor
JP2009198347A (en) * 2008-02-22 2009-09-03 Ngk Spark Plug Co Ltd Ammonia gas sensor
JP2009222703A (en) * 2008-02-22 2009-10-01 Ngk Spark Plug Co Ltd Ammonia gas sensor
JP2009236556A (en) * 2008-03-26 2009-10-15 Ngk Spark Plug Co Ltd Ammonia gas sensor

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000193639A (en) * 1998-12-25 2000-07-14 Ngk Spark Plug Co Ltd Ammonia detection sensor and ammonia detection method using the same
JP2000214128A (en) * 1999-01-25 2000-08-04 Ngk Spark Plug Co Ltd Ammonia-detecting sensor and method for detecting ammonia using the same
JP2003083933A (en) * 2001-09-11 2003-03-19 Ngk Spark Plug Co Ltd Ammonia-gas-concentration measuring apparatus
JP2003185625A (en) * 2001-10-09 2003-07-03 Riken Corp Gas detecting element and gas detecting apparatus using the same
JP2004132791A (en) * 2002-10-09 2004-04-30 Riken Corp Gas detection device
JP2005083817A (en) * 2003-09-05 2005-03-31 Ngk Spark Plug Co Ltd Ammonia sensor
JP2008116321A (en) * 2006-11-06 2008-05-22 Ngk Spark Plug Co Ltd Ammonia gas sensor and manufacturing method therefor
JP2009036754A (en) * 2007-07-11 2009-02-19 Ngk Spark Plug Co Ltd Ammonia gas sensor
JP2009115776A (en) * 2007-07-11 2009-05-28 Ngk Spark Plug Co Ltd Ammonia gas sensor
JP2009198347A (en) * 2008-02-22 2009-09-03 Ngk Spark Plug Co Ltd Ammonia gas sensor
JP2009222703A (en) * 2008-02-22 2009-10-01 Ngk Spark Plug Co Ltd Ammonia gas sensor
JP2009236556A (en) * 2008-03-26 2009-10-15 Ngk Spark Plug Co Ltd Ammonia gas sensor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012037509A (en) * 2010-07-16 2012-02-23 Ngk Spark Plug Co Ltd Ammonia gas sensor
CN106018507A (en) * 2016-05-16 2016-10-12 天津理工大学 Preparation method of mesoporous nickel oxide having excellent ammonia gas sensitive properties
CN106018507B (en) * 2016-05-16 2018-05-15 天津理工大学 A kind of preparation method of the mesoporous nickel oxide with ammonia air-sensitive performance
CN109603525A (en) * 2018-12-27 2019-04-12 浙江浙能温州发电有限公司 A kind of denitration subregion spray ammonia control method based on unevenness judgement
CN109603525B (en) * 2018-12-27 2023-11-03 浙江浙能温州发电有限公司 Denitration partition ammonia spraying control method based on non-uniformity judgment
CN112362716A (en) * 2020-11-05 2021-02-12 武汉科技大学 Novel ammonia gas sensor chip and preparation method thereof

Also Published As

Publication number Publication date
JP5105284B2 (en) 2012-12-26

Similar Documents

Publication Publication Date Title
EP1754050B1 (en) Nox gas sensor method and device
EP1760461B1 (en) Gas sensor and method for forming same
EP1167957A2 (en) NOx sensor
JP3128114B2 (en) Nitrogen oxide detector
US20080274559A1 (en) Gas Sensor for Determining Ammonia
KR20080069575A (en) Nox sensor and methods of using the same
US7964072B2 (en) Sensor material and gas sensor element and gas sensor derived therefrom
JP5105284B2 (en) Ammonia concentration measuring sensor element, ammonia concentration measuring device, and ammonia concentration measuring method
US20090020422A1 (en) Sensor Assemblies For Analyzing NO and NO2 Concentrations In An Emission Gas And Methods For Fabricating The Same
US20210247354A1 (en) Ammonia detector
US20080017510A1 (en) NOx Gas Sensor Method and Device
JP2009243942A (en) Hydrocarbon concentration measuring sensor element and hydrocarbon concentration measuring method
JP2006133039A (en) Nitrogen oxide sensor
JPH1172476A (en) Nitrogen oxide gas sensor
US20110210013A1 (en) Selective gas sensor device and associated method
JP4153238B2 (en) Electrochemical oxygen pump cell and nitrogen oxide detector using the same
JP5645607B2 (en) Nitrogen oxide sensor element and nitrogen oxide detection method
JP2016521855A (en) Gas sensor for measuring a plurality of different gases and associated manufacturing method
JP2009210299A (en) NOx SENSOR, EXHAUST EMISSION CONTROL SYSTEM, AND NOx MEASURING METHOD
JP2002005883A (en) Nitrogen oxide gas sensor
JP4750574B2 (en) Gas detection element
JP5724832B2 (en) Oxygen concentration sensor
JP2002071641A (en) Complex gas detector
JP5692162B2 (en) Gas sensor element and gas sensor including the gas sensor element
WO2021251036A1 (en) Ammonia concentration sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110325

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120828

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120921

R150 Certificate of patent or registration of utility model

Ref document number: 5105284

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151012

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350