JP2009235545A - Metal oxide thin film formation device, and method for producing sheet with metal oxide thin film - Google Patents

Metal oxide thin film formation device, and method for producing sheet with metal oxide thin film Download PDF

Info

Publication number
JP2009235545A
JP2009235545A JP2008085850A JP2008085850A JP2009235545A JP 2009235545 A JP2009235545 A JP 2009235545A JP 2008085850 A JP2008085850 A JP 2008085850A JP 2008085850 A JP2008085850 A JP 2008085850A JP 2009235545 A JP2009235545 A JP 2009235545A
Authority
JP
Japan
Prior art keywords
sheet
thin film
metal oxide
film
oxide thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008085850A
Other languages
Japanese (ja)
Other versions
JP5194939B2 (en
Inventor
Makoto Sato
佐藤  誠
Kentaro Nagasaki
絢太郎 長崎
Fumiyasu Nomura
文保 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2008085850A priority Critical patent/JP5194939B2/en
Publication of JP2009235545A publication Critical patent/JP2009235545A/en
Application granted granted Critical
Publication of JP5194939B2 publication Critical patent/JP5194939B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a production device for a sheet with a metal oxide thin film, which can uniformly form the sheet with a metal oxide thin film on the surface of a sheet at high speed in such a manner that the oxidizing degree in the thickness direction is made uniform, even in the case of a relatively thick oxide metal thin film of 50 to 300 nm, and to provide a method for producing the sheet with the metal oxide thin film. <P>SOLUTION: The production device for the sheet with the metal oxide thin film comprises: a conveying means which has a sheet guiding face 3 conveying a sheet while being brought into contact with the sheet 1 and conveying the sheet with the movement of the sheet guiding face; an evaporation source 8 scattering metal vapor 10 toward the sheet on the sheet guiding face; and an oxygen introduction means introducing oxygen for conducting oxidation reaction with the metal vapor, and wherein, a metal oxide thin film is continuously formed on the sheet to be conveyed. The oxygen introduction means comprises a plurality of introduction tubes arranged in the sheet width direction, further arranged on the upstream side and the downstream side in the sheet conveying direction 25 of an evaporation source 7, and are also projected toward a region between the evaporation source and the sheet guiding face. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は金属酸化物薄膜形成装置ならびに金属酸化物薄膜付きシートの製造方法に関する。   The present invention relates to a metal oxide thin film forming apparatus and a method for producing a sheet with a metal oxide thin film.

従来から、プラスチックフィルムに例示されるシート上に薄膜を形成することにより、フィルムコンデンサや磁気記録テープ、包装用フィルム等の素材となる金属蒸着フィルムが製造されている。この製造には、例えば真空槽内で巻状物のプラスチックフィルムを巻き出し、薄膜形成した後に再び巻き取る巻取式蒸着装置(例えば非特許文献1)が用いられる。   Conventionally, by depositing a thin film on a sheet exemplified by a plastic film, a metal vapor-deposited film serving as a material for a film capacitor, a magnetic recording tape, a packaging film or the like has been manufactured. For this production, for example, a roll-up type vapor deposition apparatus (for example, Non-Patent Document 1) is used in which a plastic film as a roll is unwound in a vacuum chamber, and is formed again after being formed into a thin film.

その概要を図7を用いて説明する。図7(a)はプラスチックフィルムなどのシート上に連続的に薄膜を形成する薄膜形成装置の構成要素を示した図である。なお、この図7(a)は主要部のみを示し、構造物を収納する真空チャンバや中間ロールは省略してある。図7(a)において、長尺のシート1は、原反ロール体2から繰り出され、シートの走行方向に沿って回転する円筒状の金属製キャンの表面であるシート案内面3に中間ローラ4、5によって決まる所要の巻き付け角で、巻付点33から剥離点32まで巻き付いた状態で搬送され、その後中間ローラ5を介して巻き取られ、巻取ロール体6を形成する。シート1がシート案内面3上に搬送される際に、マスク部材11で制限される成膜開始点30から成膜終了点31の間の領域において、坩堝7(蒸発源)の中にある蒸着材料8より蒸発した蒸気10がシート1上に付着し、シート1上に薄膜13が形成される。なお蒸発には、例えば誘導加熱や抵抗加熱の原理を利用して蒸着材料を加熱する方式や、電子ビームを蒸着材料に照射して加熱する方式がある。またシート案内面3は主にシート1をシワなく搬送する役目と、シート1が受けた熱負荷を効率よく逃がす役目を持つ。このため例えば公知の熱媒体の循環による温度制御により、所要の温度に制御される。また特に円筒に限らず、ベルト体の上にシートを搬送する方式も見られる。   The outline will be described with reference to FIG. FIG. 7A is a diagram showing components of a thin film forming apparatus that continuously forms a thin film on a sheet such as a plastic film. FIG. 7A shows only the main part, and the vacuum chamber and the intermediate roll for housing the structure are omitted. In FIG. 7 (a), a long sheet 1 is fed from an original fabric roll body 2, and an intermediate roller 4 is placed on a sheet guide surface 3 which is a surface of a cylindrical metal can that rotates along the traveling direction of the sheet. 5 is conveyed in a state of being wound from the winding point 33 to the peeling point 32 at a required winding angle determined by 5, and then wound around the intermediate roller 5 to form a winding roll body 6. Deposition in the crucible 7 (evaporation source) in the region between the film formation start point 30 and the film formation end point 31 restricted by the mask member 11 when the sheet 1 is conveyed onto the sheet guide surface 3. The vapor 10 evaporated from the material 8 adheres to the sheet 1, and a thin film 13 is formed on the sheet 1. The evaporation includes, for example, a method of heating the vapor deposition material using the principle of induction heating or resistance heating, and a method of heating the vapor deposition material by irradiating the vapor deposition material. The sheet guide surface 3 mainly has a role of conveying the sheet 1 without wrinkles and a role of efficiently releasing the heat load received by the sheet 1. For this reason, for example, it is controlled to a required temperature by temperature control by circulation of a known heat medium. In addition, not only a cylinder but also a method of conveying a sheet on a belt body can be seen.

このような薄膜形成装置を使って、金属酸化物薄膜を形成する方法として、金属の蒸着材料を溶融し蒸発させ、その途中で酸素を導入して金属酸化物薄膜をシート上に形成する方法が知られている。   As a method of forming a metal oxide thin film using such a thin film forming apparatus, there is a method of forming a metal oxide thin film on a sheet by melting and evaporating a metal vapor deposition material and introducing oxygen in the middle thereof. Are known.

例えば、金属酸化物膜つきフィルムとしてガスバリア性の優れた包装用フィルムの分野で酸化アルミや酸化ケイ素の膜つきフィルムが提案されている(例えば特許文献1、2)。特に酸化アルミの蒸着においては、金属アルミを加熱して蒸発させ、その金属蒸発雰囲気に酸素を導入して酸化膜とする方法が一般的である。こうした金属酸化物膜つき包装用フィルムでは通常5〜30nm程度の金属酸化物膜をプラスチックフィルムに成膜する方法が提示されている。また、磁気記録材料に使用する強磁性体のCo、CoNi、Feを主成分とする材料の金属酸化物膜を得る方法では、磁気特性を良好にするために膜厚方向に金属を部分的に酸化させたり、半金属酸化物を得る方法が開示されている(例えば、特許文献3)。この分野では金属を完全に酸化させ、絶縁性や透明性の膜を得る目的では用いられていない。さらに、プラスチックフィルムの片面または両面に、金属、半金属及び合金並びにこれらの酸化物及び複合物から選ばれた金属材料からなる強化膜を形成し、これを磁気記録媒体用支持体とする用途も提案されている(例えば、特許文献4、5)。   For example, films with aluminum oxide or silicon oxide films have been proposed in the field of packaging films having excellent gas barrier properties as films with metal oxide films (for example, Patent Documents 1 and 2). In particular, in the vapor deposition of aluminum oxide, a method is generally used in which metal aluminum is heated and evaporated, and oxygen is introduced into the metal evaporation atmosphere to form an oxide film. In such a packaging film with a metal oxide film, a method of forming a metal oxide film of about 5 to 30 nm on a plastic film is proposed. Further, in the method of obtaining a metal oxide film of a material mainly composed of Co, CoNi, and Fe as a ferromagnetic material used for a magnetic recording material, in order to improve magnetic characteristics, a metal is partially applied in the film thickness direction. A method of oxidizing or obtaining a metalloid oxide is disclosed (for example, Patent Document 3). In this field, it is not used for the purpose of completely oxidizing a metal to obtain an insulating or transparent film. Further, a reinforcing film made of a metal material selected from metals, metalloids and alloys, and oxides and composites thereof is formed on one or both sides of a plastic film, and this is used as a support for a magnetic recording medium. It has been proposed (for example, Patent Documents 4 and 5).

このように、ガスバリア性を狙うのであれば膜厚5〜30nm程度で十分な機能が発揮でき、また磁気記録材料の磁気特性を狙うのであれば、膜厚50〜300nmの薄膜の膜厚方向に部分的に酸化させることで充分な特性が得られる。しかしながら、磁気記録媒体用支持体用の強化膜として支持体強度を上げる場合、膜厚50〜300nm程度の金属酸化物薄膜を形成する必要がある場合もあり、また、かかる薄膜においては金属が薄膜の厚み方向で均一に酸化されたものである必要がある。そのため、薄膜の厚み方向の全体を酸化させるための酸化反応効率のよい金属酸化物の形成方法が必要であった。   Thus, if the gas barrier property is aimed, a sufficient function can be exhibited at a film thickness of about 5 to 30 nm, and if the magnetic property of the magnetic recording material is aimed, it is in the film thickness direction of a thin film of 50 to 300 nm. Sufficient characteristics can be obtained by partial oxidation. However, when increasing the strength of the support as a reinforcing film for a support for magnetic recording media, it may be necessary to form a metal oxide thin film having a thickness of about 50 to 300 nm. In such a thin film, the metal is a thin film. Need to be uniformly oxidized in the thickness direction. Therefore, a method for forming a metal oxide with good oxidation reaction efficiency for oxidizing the entire thickness direction of the thin film is necessary.

従来から、金属酸化物を形成するために酸素を導入する方法やそれに用いる酸素導入手段として、いくつかの技術が提案されている。例えば、特許文献2には、シート案内面に近い位置に酸素ノズルを配置し、シートの搬送方向に沿って酸素を導入している。このようにシート案内面に近い位置に酸素ノズルを配置した場合、膜厚50nmに満たない比較的薄い膜厚の金属酸化物薄膜を得るのであれば、薄膜の厚み方向にほぼ均一に酸化した薄膜が得られるが、50nm以上の比較的厚い薄膜を形成する場合は、薄膜の厚み方向のシートとの界面側および/または薄膜の表面側の酸化がより進みやすく、厚み方向で不均一な酸化度合いの膜になりやすい。また、シートの搬送速度100m/分以上で金属酸化物薄膜を形成しようとする場合に、膜厚が充分厚くできない問題があった。   Conventionally, several techniques have been proposed as a method of introducing oxygen to form a metal oxide and oxygen introducing means used therefor. For example, in Patent Document 2, an oxygen nozzle is disposed at a position close to the sheet guide surface, and oxygen is introduced along the sheet conveyance direction. In this way, when the oxygen nozzle is disposed at a position close to the sheet guide surface, if a thin metal oxide thin film having a thickness of less than 50 nm is obtained, the thin film oxidized almost uniformly in the thickness direction of the thin film. However, when a relatively thick thin film of 50 nm or more is formed, the oxidation on the interface side with the sheet in the thickness direction of the thin film and / or the surface side of the thin film is more likely to proceed, and the degree of non-uniform oxidation in the thickness direction It is easy to become a film. Further, when the metal oxide thin film is formed at a sheet conveying speed of 100 m / min or more, there is a problem that the film thickness cannot be sufficiently increased.

これに対して、一般的には、速度を上げる、または膜厚を上げる場合には、その速度または膜厚の増加分に比例してアルミの蒸発量および酸素導入量を増加させる必要がある。しかしながら、先述の搬送速度100m/分以上で膜厚50nm以上の金属酸化物薄膜を形成しようとする場合は、その比例分以上にアルミの蒸発量を増加させないと、所望の膜厚が得られないこともあった。これは発明者らの知見によれば、シート案内面近傍で導入した酸素分子が、蒸発源からの金属蒸気粒子と衝突する割合が増加し、金属粒子がシート面に到来するのを邪魔するためと推定している。そのため、蒸発源により大きな電力を投入し、金属材料を加熱させる必要があった。加えて、これは蒸発源の温度を上げることにつながり、蒸発源からの輻射熱を増やし、フィルムを熱変形(熱負け)させる場合もあった。   On the other hand, generally, when the speed is increased or the film thickness is increased, it is necessary to increase the amount of evaporated aluminum and the amount of oxygen introduced in proportion to the increase in the speed or film thickness. However, when a metal oxide thin film having a film thickness of 50 nm or more is to be formed at a transfer speed of 100 m / min or more as described above, the desired film thickness cannot be obtained unless the amount of aluminum evaporation is increased beyond the proportional amount. There was also. This is because, according to the knowledge of the inventors, the rate at which oxygen molecules introduced in the vicinity of the sheet guide surface collide with the metal vapor particles from the evaporation source increases, preventing the metal particles from reaching the sheet surface. It is estimated. Therefore, it is necessary to heat the metal material by applying a large electric power to the evaporation source. In addition, this leads to an increase in the temperature of the evaporation source, which increases the radiant heat from the evaporation source and sometimes causes the film to undergo thermal deformation (heat loss).

その他、特許文献6には、蒸発源の直上に酸素ノズルを配置し、蒸発源からの金属蒸気がシートに向かうのと同じ方向に酸素を導入する技術が開示されている。この酸素ノズルは、蒸発源からの金属蒸気がより多い位置に酸素ノズルが配置されており、酸素が金属蒸気の飛来とほぼ同じ方向に導入されるので、先述のように導入酸素が金属蒸気の飛来を邪魔する影響は小さく、効率よく金属酸化物薄膜を形成できる特徴がある。しかしながら、蒸発源の直上に酸素ノズルがあるため、酸素ノズルに金属粒子が付着し、さらにその付着金属が蒸発源に落下して、蒸発源内の溶融金属で突沸現象(スプラッシュ)を起こし、飛来した粗大金属粒子がシートに穴をあけたり、薄膜の欠陥を生じさせる問題があった。   In addition, Patent Document 6 discloses a technique in which an oxygen nozzle is disposed immediately above an evaporation source and oxygen is introduced in the same direction as the metal vapor from the evaporation source is directed to the sheet. In this oxygen nozzle, the oxygen nozzle is disposed at a position where the metal vapor from the evaporation source is larger, and oxygen is introduced in almost the same direction as the arrival of the metal vapor. It has a feature that the metal oxide thin film can be formed efficiently with little influence on the flight. However, since there is an oxygen nozzle directly above the evaporation source, metal particles adhere to the oxygen nozzle, and the attached metal falls to the evaporation source, causing a bumping phenomenon (splash) with the molten metal in the evaporation source and flying. There was a problem that coarse metal particles perforated the sheet or caused defects in the thin film.

また、特許文献7には一定の場所で回転しているガラス基板上に光学多層膜を成膜する目的で、蒸発源から蒸発する金属蒸気雰囲気内に、酸素ガスノズルを配置し、上向きに酸素を導入することにより、膜質が均一な持つ金属酸化物薄膜を形成する技術が開示されている。しかしながらこの酸素導入方法を、連続的に搬送されるシート上に薄膜を形成するプロセスで、かつ特許文献6よりも速い蒸発レートで成膜するプロセスに適用すると、酸素ノズルの位置によって、薄膜の厚み方向で酸化度合いのムラができる場合があった。
特開昭62−103359 号公報 特開2001−192808 号公報 特開昭62−275316号公報 特開2003−129229号公報 特開平2007−226943号公報 特開平10−60626号公報 特開平6−240440号公報 伊保内賢他著、「ポリマーフィルムと機能性膜」、技報堂出版、1991年4月発行、p198〜203
In Patent Document 7, an oxygen gas nozzle is disposed in a metal vapor atmosphere evaporating from an evaporation source for the purpose of forming an optical multilayer film on a glass substrate rotating at a fixed place, and oxygen is directed upward. A technique for forming a metal oxide thin film having uniform film quality by introducing it is disclosed. However, when this oxygen introduction method is applied to a process of forming a thin film on a continuously conveyed sheet and a process of forming a film at an evaporation rate faster than Patent Document 6, the thickness of the thin film depends on the position of the oxygen nozzle. In some cases, the degree of oxidation was uneven in the direction.
JP 62-103359 A JP 2001-192808 A JP-A-62-275316 JP 2003-129229 A Japanese Patent Laid-Open No. 2007-226943 Japanese Patent Laid-Open No. 10-60626 JP-A-6-240440 Ken Ihouchi et al., “Polymer films and functional membranes”, Gihodo Publishing, April 1991, p. 198-203

以上説明したように従来技術では、金属蒸気内に酸素が充分供給できず、シート表面に50〜300nmという比較的厚い酸化金属薄膜を、高速で形成することは困難であった。そこで本発明者らは、上記のような従来技術の問題点に鑑み、特に厚い薄膜であっても高速でかつ厚み方向の酸化度を均一にできる、金属酸化物薄膜付シートの製造装置ならびに金属酸化物薄膜付きシートの製造方法を提供することを検討した。   As described above, in the prior art, oxygen cannot be sufficiently supplied into the metal vapor, and it has been difficult to form a relatively thick metal oxide thin film of 50 to 300 nm on the sheet surface at high speed. Therefore, in view of the above-described problems of the prior art, the present inventors have prepared a metal oxide thin film-attached sheet manufacturing apparatus and metal capable of uniforming the oxidation degree in the thickness direction at high speed even with a particularly thick thin film. It was studied to provide a method for producing a sheet with an oxide thin film.

上記目的を達成するための本発明は、以下の(1)〜(14)のいずれかの構成を特徴とするものである。
(1)シートと接触しながら前記シートを搬送するシート案内面を有し、前記シート案内面の運動に伴って前記シートを搬送する搬送手段と、前記シート案内面上の前記シートに向かって金属蒸気を飛散させる蒸発源と、前記金属蒸気と酸化反応させるために酸素を導入する酸素導入手段とを備え、搬送される前記シートに連続的に金属酸化物薄膜を形成する金属酸化物薄膜付シートの製造装置であって、前記酸素導入手段が導入管をシート幅方向に複数個配列して構成されるとともに、かつ前記酸素導入手段が、前記蒸発源のシート搬送方向に関する上流側および下流側に配置され、かつ前記導入管が前記蒸発源と前記シート案内面との間の領域に向けて突出していることを特徴とする金属酸化物薄膜付シートの製造装置。
(2)前記蒸発源と前記シート案内面との最短距離hが200〜800[mm]の範囲内であり、かつ前記導入管の開口部が該蒸発源から0.2×h[mm]以上でかつ0.8×h[mm]以下の距離に配置されていることを特徴とする、前記(1)に記載の金属酸化物薄膜付シートの製造装置。
(3)前記導入管の長さが30[mm]以上で、かつ導入管の内側断面積が3〜50[mm]の範囲内であることを特徴とする、前記(1)または(2)に記載の金属酸化物薄膜付シートの製造装置。
(4)前記導入管の開口部が前記シート案内面に向いていることを特徴とする、前記(1)〜(3)のいずれかに記載の金属酸化物薄膜形成装置。
(5)前記酸素導入手段は、前記開口部の前記蒸発源からの距離を調整する機構を有していることを特徴とする、前記(1)〜(4)のいずれかに記載の金属酸化物薄膜付シートの製造装置。
(6)前記蒸発源が電子銃によって加熱されるものであり、かつ前記蒸発源はシート搬送方向よりもシート幅方向に長手の形状で、さらにシート幅方向の長さが300[mm]以上であることを特徴とする、前記(5)に記載の金属酸化物薄膜付シートの製造装置。
(7)前記(1)〜(6)のいずれかに記載の装置を用い、減圧雰囲気下において、前記蒸発源から前記シートに向けて金属蒸気を飛来させると同時に、前記金属蒸気内に酸素を導入し、前記シート上に連続的に金属酸化物薄膜を形成する金属酸化物薄膜付きシートの製造方法であって、前記蒸発源の上流側および下流側において前記シートの幅方向に設けた複数個の導入管を、金属蒸気流にさらされる領域に突出させて、酸素を導入することを特徴とする金属酸化物薄膜付きシートの製造方法。
(8)前記酸素導入手段の各導入管から導入する酸素導入量を、該導入管の内側断面積で割った値が、25〜300[×10−6/分/mm]の範囲内となるように制御することを特徴とする、前記(7)に記載の金属酸化物薄膜付シートの製造方法。
(9)前記金属蒸気がアルミニウム蒸気であり、前記シートの上に酸化アルミ膜を形成することを特徴とする、前記(7)または(8)に記載の金属酸化物薄膜付シートの製造方法。
(10)前記金属酸化物薄膜の成膜レートが400[nm/秒]以上であることを特徴とする、前記(7)〜(9)のいずれかに記載の金属酸化物薄膜付シートの製造方法。
(11)前記金属蒸気が飛散している領域で、かつ、前記金属蒸気中の仮想成膜レートが1500[nm/秒]以下となる領域に、酸素を導入することを特徴とする、前記(7)〜(10)のいずれかに記載の金属酸化物薄膜付シートの製造方法。
(12)前記金属酸化物薄膜の膜厚が50〜300[nm]の範囲内であること特徴とする、前記(7)〜(11)のいずれかに記載の金属酸化物薄膜付シートの製造方法。
(13)全光線透過率をT[%]、金属酸化物薄膜の膜厚をd[μm]としたときに、次式で示される光学濃度の値が1.0〜20.0の範囲内であることを特徴とする、前記(7)〜(12)のいずれかに記載の金属酸化物膜付シートの製造方法。
(光学濃度)=−{log(T/100)}/d
(14)前記(7)〜(13)のいずれかに記載した方法で、電気絶縁性シートの両面に金属酸化物薄膜を形成することを特徴とする両面金属酸化物膜付シートの製造方法。
The present invention for achieving the above object is characterized by any one of the following configurations (1) to (14).
(1) A sheet guide surface that conveys the sheet while being in contact with the sheet, a conveying unit that conveys the sheet as the sheet guide surface moves, and a metal toward the sheet on the sheet guide surface A sheet with a metal oxide thin film, comprising: an evaporation source that scatters vapor; and an oxygen introduction means that introduces oxygen to cause an oxidation reaction with the metal vapor, and continuously forms a metal oxide thin film on the conveyed sheet The oxygen introduction means is configured by arranging a plurality of introduction pipes in the sheet width direction, and the oxygen introduction means are arranged upstream and downstream in the sheet conveyance direction of the evaporation source. An apparatus for producing a sheet with a metal oxide thin film, wherein the sheet is disposed and the introduction pipe projects toward a region between the evaporation source and the sheet guide surface.
(2) The shortest distance h between the evaporation source and the sheet guide surface is in the range of 200 to 800 [mm], and the opening of the introduction pipe is 0.2 × h [mm] or more from the evaporation source. And the metal oxide thin film-attached sheet manufacturing apparatus according to (1), wherein the apparatus is disposed at a distance of 0.8 × h [mm] or less.
(3) The length of the introduction pipe is 30 [mm] or more, and the inner cross-sectional area of the introduction pipe is in the range of 3 to 50 [mm 2 ], (1) or (2) The manufacturing apparatus of the sheet | seat with a metal oxide thin film as described in).
(4) The metal oxide thin film forming apparatus according to any one of (1) to (3), wherein an opening of the introduction pipe faces the sheet guide surface.
(5) The metal oxide according to any one of (1) to (4), wherein the oxygen introduction unit has a mechanism for adjusting a distance of the opening from the evaporation source. Equipment for manufacturing sheet with physical thin film.
(6) The evaporation source is heated by an electron gun, and the evaporation source has a shape longer in the sheet width direction than the sheet conveyance direction, and further has a length in the sheet width direction of 300 [mm] or more. The apparatus for producing a sheet with a metal oxide thin film according to the above (5), characterized in that it exists.
(7) Using the apparatus according to any one of (1) to (6), in a reduced pressure atmosphere, metal vapor is allowed to fly from the evaporation source toward the sheet, and at the same time, oxygen is introduced into the metal vapor. A method of manufacturing a sheet with a metal oxide thin film that is introduced and continuously forms a metal oxide thin film on the sheet, the plurality of sheets being provided in the width direction of the sheet on the upstream side and the downstream side of the evaporation source A method for producing a sheet with a metal oxide thin film, characterized in that oxygen is introduced by projecting the introduction pipe of 1 to an area exposed to a metal vapor flow.
(8) The value obtained by dividing the oxygen introduction amount introduced from each introduction pipe of the oxygen introduction means by the inner cross-sectional area of the introduction pipe is in the range of 25 to 300 [× 10 −6 m 3 / min / mm 2 ]. The method for producing a sheet with a metal oxide thin film according to the above (7), wherein the sheet is controlled to be inside.
(9) The method for producing a sheet with a metal oxide thin film according to (7) or (8), wherein the metal vapor is aluminum vapor and an aluminum oxide film is formed on the sheet.
(10) The production rate of the sheet with a metal oxide thin film according to any one of (7) to (9), wherein a film formation rate of the metal oxide thin film is 400 [nm / second] or more. Method.
(11) Oxygen is introduced into a region in which the metal vapor is scattered and a virtual film formation rate in the metal vapor is 1500 [nm / second] or less. The manufacturing method of the sheet | seat with a metal oxide thin film in any one of 7)-(10).
(12) The production of a sheet with a metal oxide thin film according to any one of (7) to (11), wherein the thickness of the metal oxide thin film is in a range of 50 to 300 [nm]. Method.
(13) When the total light transmittance is T [%] and the film thickness of the metal oxide thin film is d [μm], the value of the optical density represented by the following formula is in the range of 1.0 to 20.0. It is a manufacturing method of the sheet | seat with a metal oxide film in any one of said (7)-(12) characterized by the above-mentioned.
(Optical density) =-{log (T / 100)} / d
(14) A method for producing a sheet with a double-sided metal oxide film, wherein a metal oxide thin film is formed on both sides of an electrically insulating sheet by the method described in any of (7) to (13) above.

ここで、本発明において適用されるシートとして、代表的なものには、プラスチックフィルムや紙等のシートがある。特にプラスチックフィルムは本発明において好適に用いられる。プラスチックフィルムの材質としては、ポリエチレン、ポリプロピレンなどのポリオレフィン類や、ポリエステル、ポリカーボネート、ポリイミド、ポリフェニレンサルファイド、アラミド、ナイロンなどの高分子プラスチックフィルムが例示できる。また、プラスチックフィルムは単層でもよく、また2層以上の積層体フィルムでもよい。   Here, as a typical sheet applied in the present invention, there are sheets such as a plastic film and paper. In particular, a plastic film is preferably used in the present invention. Examples of the material of the plastic film include polyolefins such as polyethylene and polypropylene, and polymer plastic films such as polyester, polycarbonate, polyimide, polyphenylene sulfide, aramid, and nylon. The plastic film may be a single layer or a laminate film having two or more layers.

本発明において、金属酸化物薄膜の形成方法としては、真空蒸着法、イオンプレーティング法が挙げられる。中でも真空蒸着法は、成膜レートが数百[nm/秒]の高速成膜が可能であり、好適である。真空蒸着法の蒸発源においては、材料を加熱する方法として、誘導加熱方式の他、抵抗加熱方式、電子ビーム加熱方式などあるが、いずれでも適用可能である。特に電子ビーム加熱方式は、シート幅方向において均一な膜厚分布になるように、シート幅方向の蒸発量に制御しやすいため、均一な金属酸化物薄膜を得る方法として最も適した方式である。   In the present invention, examples of the method for forming the metal oxide thin film include a vacuum deposition method and an ion plating method. Among these, the vacuum evaporation method is preferable because high-speed film formation with a film formation rate of several hundreds [nm / second] is possible. In the evaporation source of the vacuum evaporation method, as a method of heating the material, there are a resistance heating method and an electron beam heating method in addition to the induction heating method, and any of them can be applied. In particular, the electron beam heating method is the most suitable method for obtaining a uniform metal oxide thin film because the evaporation amount in the sheet width direction can be easily controlled so as to obtain a uniform film thickness distribution in the sheet width direction.

本発明において「蒸発源」とは、薄膜の材料となる金属材料を溶融させる容積部分を指す。この蒸発源の周囲に金属材料を収容する容器、断熱材、材料供給装置、加熱用ヒータなどが配置されるが、この蒸発源を加熱する方式により、適宜好適なものが選択されるものであり、特に限定するものではない。
本発明において「導入管」とは、酸素を金属蒸気雰囲気まで導入するための管のことを指す。また、本発明において「導入管の開口部」とは、前記「導入管」から酸素を金属蒸気雰囲気に向けて送り出す出口のことを指す。この「導入管」は、酸素が流れる方向に垂直な面の断面形状が同じ形状のまま「導入管の開口部」まで連続している構造のものが好ましく、断面形状は丸、正方形、長方形などいずれでもよい。さらに、本発明において「導入管の長さ」とは、導入管が実質的に直線を形成している部分の長さのことをいう。なお、実質的とは、導入管の配置スペースの影響などから、45[°]以内の範囲で導入管が屈曲している場合、かかる屈曲部分も前述の、導入管が直線を形成している部分に含まれことを意味する。また、「導入管の内側断面積」とは、前述の酸素が流れる方向に垂直な面において、酸素が流れる内側空間部分の面積のことを指す。
In the present invention, the “evaporation source” refers to a volume portion that melts a metal material that is a thin film material. A container for storing a metal material, a heat insulating material, a material supply device, a heater for heating, and the like are disposed around the evaporation source. A suitable one is appropriately selected depending on the method of heating the evaporation source. There is no particular limitation.
In the present invention, the “introducing pipe” refers to a pipe for introducing oxygen to a metal vapor atmosphere. In the present invention, the “opening pipe opening” refers to an outlet for sending oxygen from the “introducing pipe” toward the metal vapor atmosphere. This “introducing tube” preferably has a structure in which the cross-sectional shape of the surface perpendicular to the direction in which oxygen flows is the same and continues to the “opening tube opening”, and the cross-sectional shape is round, square, rectangular, etc. Either is acceptable. Further, in the present invention, the “length of the introduction pipe” refers to the length of the part where the introduction pipe forms a substantially straight line. In addition, when the introduction pipe is bent within a range of 45 [°] due to the influence of the arrangement space of the introduction pipe, the introduction pipe forms a straight line as described above. Means included in the part. The “inner cross-sectional area of the introduction pipe” refers to the area of the inner space where oxygen flows in a plane perpendicular to the direction in which oxygen flows.

本発明において「蒸発源の上流側および下流側」とは、蒸発源のシート搬送方向における中心線と、シート案内面上のシート成膜領域の搬送方向における中心線とを結んだ面において、シート案内面上のシート搬送方向における上流側を「蒸発源の上流側」、シート案内面上のシート搬送方向における上流側を「蒸発源の下流側」とする。なお、「シート成膜領域」とは、シート案内面上を搬送されるシートのうち、蒸発源から飛来し該シート上に金属蒸気が堆積する領域を言う。一般的な巻取式蒸着機の場合、シート案内面と蒸発源との間は、シート表面に金属粒子が飛来する領域を制限し、余分な場所に金属蒸気が付着しないように、マスクと呼ばれる開口部が設けられる。簡易的には、「シート成膜領域」はこのマスクの開口部を指すこともできる。   In the present invention, “upstream and downstream of the evaporation source” means a sheet connecting a center line in the sheet conveyance direction of the evaporation source and a center line in the conveyance direction of the sheet film formation area on the sheet guide surface. The upstream side in the sheet conveyance direction on the guide surface is defined as “upstream side of the evaporation source”, and the upstream side in the sheet conveyance direction on the sheet guide surface is defined as “downstream side of the evaporation source”. The “sheet deposition region” refers to a region of the sheet transported on the sheet guide surface that is ejected from the evaporation source and metal vapor is deposited on the sheet. In the case of a general wind-up type vapor deposition machine, it is called a mask between the sheet guide surface and the evaporation source so as to limit the area where the metal particles fly on the sheet surface and prevent the metal vapor from adhering to an extra place. An opening is provided. For simplicity, the “sheet deposition region” can also refer to the opening of the mask.

本発明において「金属蒸気流」とは、蒸発源から飛来する金属蒸気のうち、シート案内面やその周囲のマスクに向かって飛来する金属蒸気の流れのことを指す。   In the present invention, the “metal vapor flow” refers to a flow of metal vapor flying from the evaporation source toward the sheet guide surface and the surrounding mask.

本発明において「成膜レート」とは、シート成膜領域において、シート表面に金属酸化物が堆積していく速度のことを指し、具体的にはシートの搬送速度をv[m/秒]、シート表面に堆積した金属酸化物薄膜の膜厚をd[nm]、シート成膜領域のシート搬送方向の長さをL[m]としたときに、次式で表される値のことを指す。   In the present invention, the “film formation rate” refers to a speed at which the metal oxide is deposited on the surface of the sheet in the sheet film formation region, specifically, the sheet conveyance speed is v [m / sec], When the film thickness of the metal oxide thin film deposited on the sheet surface is d [nm] and the length of the sheet deposition region in the sheet conveyance direction is L [m], it indicates a value represented by the following formula. .

(成膜レート)[nm/秒]=(v×d)/L (1)
本発明において「金属蒸気中の仮想成膜レート」とは、蒸発源とシート案内面との間における金属蒸気が飛来する単位時間あたりの量を指す。具体的には、蒸発源からのある高さに仮想的にシートを配置したときに、シートに金属酸化物薄膜が堆積していく速度のことで、単位は(1)式と同じ[nm/秒]で表せる。
(Film formation rate) [nm / sec] = (v × d) / L (1)
In the present invention, the “virtual film formation rate in the metal vapor” refers to the amount per unit time that the metal vapor flies between the evaporation source and the sheet guide surface. Specifically, when the sheet is virtually arranged at a certain height from the evaporation source, it is the rate at which the metal oxide thin film is deposited on the sheet, and the unit is the same as the equation (1) [nm / Second].

本発明において「シート案内面」とは、シート上に薄膜を形成する際に、シートの薄膜形成面とは反対の面に接触しながらシートを搬送する薄膜形成装置の構成要素をいう。この「シート案内面」は主にシートをシワなく搬送する役目と、シートが受けた熱を効率よく逃がす役目を持つ。代表的なものとしては、後述する図1に示すように円筒形状のもので、軸を中心に回転しながらシートを搬送するものがある。また特に円筒形状に限らず、ベルト体の上にシートを搬送する方式のものも知られているが、本発明においてはいずれのものでも有効である。   In the present invention, the “sheet guide surface” refers to a constituent element of a thin film forming apparatus that conveys a sheet while contacting a surface opposite to the thin film forming surface of the sheet when a thin film is formed on the sheet. This “sheet guide surface” mainly serves to convey the sheet without wrinkles and to efficiently release the heat received by the sheet. A typical one is a cylindrical one as shown in FIG. 1 described later, and conveys a sheet while rotating about an axis. In addition, not only the cylindrical shape but also a method of conveying a sheet on a belt body is known, but any one is effective in the present invention.

本発明において「蒸発源とシート案内面との間の領域」とは、蒸発源から金属蒸気が多く飛来している領域のことであり、蒸発源の金属溶融部の任意の位置から上向き鉛直方向との成す角度が45°以内の領域でかつシート案内面よりも下方の領域のことを指す。   In the present invention, the “region between the evaporation source and the sheet guide surface” refers to a region where a large amount of metal vapor is flying from the evaporation source, and the upward vertical direction from an arbitrary position of the metal melting portion of the evaporation source. Is an area within an angle of 45 ° and below the sheet guide surface.

本発明においては、金属材料を蒸発させて、その蒸気雰囲気に酸素を導入して金属酸化物の薄膜を設けるが、その金属材料としては、目的の特性が得られれば特に問わないが、アルミおよび/または銅を主体とする材料が、融点も低温であり、安価な材料であるため好適に用いられる。また酸化アルミ膜、酸化銅膜はその特性上、ガスバリア性、剛性、熱膨張特性、生産性などが良好であり好ましく用いられる。その他の材料としては、Zn、Sn、Ni、Ag、Co、Fe、Mn、Mg、In、Tiなどの金属も挙げられる。これらの材料の中には酸化物が半導体の性能を有するものとなるSn、Mg、Inなどの材料、またはこれらの合金材料もあるが、薄膜付きシートの用途によって適宜選択されるものであり、本発明の適用を限定するものではない。   In the present invention, a metal material is evaporated and oxygen is introduced into the vapor atmosphere to provide a metal oxide thin film. The metal material is not particularly limited as long as the desired characteristics are obtained, but aluminum and A material mainly composed of copper is preferably used because it has a low melting point and is an inexpensive material. Aluminum oxide films and copper oxide films are preferably used because of their good characteristics such as gas barrier properties, rigidity, thermal expansion properties, and productivity. Examples of other materials include metals such as Zn, Sn, Ni, Ag, Co, Fe, Mn, Mg, In, and Ti. Among these materials, there are materials such as Sn, Mg, In, etc. in which oxides have semiconductor performance, or alloy materials thereof, but these are appropriately selected depending on the use of the sheet with a thin film, The application of the present invention is not limited.

本発明によれば、後述の実施例と比較例との対比からも明らかなように、50〜300[nm]の比較的厚い金属酸化物薄膜であっても高速で成膜でき、かつ厚み方向の酸化度がほぼ均一な金属酸化物薄膜を有する金属酸化物薄膜付シートを製造できる。   According to the present invention, as is clear from the comparison between Examples and Comparative Examples, which will be described later, even a relatively thick metal oxide thin film of 50 to 300 [nm] can be formed at high speed and in the thickness direction. A sheet with a metal oxide thin film having a metal oxide thin film having a substantially uniform oxidation degree can be produced.

以下、本発明の最良の実施形態の例を巻取式蒸着装置に適用した場合を例にとって、図面を参照しながら説明する。   Hereinafter, an example in which the example of the best embodiment of the present invention is applied to a winding type vapor deposition apparatus will be described as an example with reference to the drawings.

図1は、本発明の製造装置の一実施態様を示す巻取式蒸着装置の概略断面図であり、(a)は主要部のみを示し、構造物を収納する真空チャンバや中間ロールは省略してある。また(b)は、(a)の金属蒸気が飛来している部位を拡大し、各構成要素の配置等、位置関係をわかりやすく説明した概略断面図である。さらに、この図1とともに、酸素ノズルなどの詳細部は省き、真空チャンバや真空ポンプを記載した全体概略図を図4に示す。なお、従来例と同一または同等の機能を有する構成要素には同一番号を付け、詳細な説明を省略する。   FIG. 1 is a schematic cross-sectional view of a wind-up type vapor deposition apparatus showing an embodiment of the production apparatus of the present invention, in which (a) shows only the main part, and a vacuum chamber and an intermediate roll for housing a structure are omitted. It is. Further, (b) is a schematic cross-sectional view in which the portion where the metal vapor of (a) is flying is enlarged and the positional relationship such as the arrangement of each component is easily explained. Further, FIG. 4 shows an overall schematic diagram illustrating the vacuum chamber and the vacuum pump, omitting details such as the oxygen nozzle, together with FIG. Note that components having the same or equivalent functions as those of the conventional example are denoted by the same reference numerals, and detailed description thereof is omitted.

また、図2および図3は、図1(a)の右手から見た装置の概要構成図である。図2と図3では、酸素をシート幅方向に分岐する方法を変えた2例を示している。図2はシート幅方向に配置した管状の分岐部18から、シート幅方向の各位置に導入管15を分岐させたものである。図3は、酸素供給配管19から各導入管15までの導入経路が同じ距離になるように、トーナメント型に分岐経路を設けた分岐部18の例である。   2 and 3 are schematic configuration diagrams of the apparatus viewed from the right hand of FIG. 2 and 3 show two examples in which the method of branching oxygen in the sheet width direction is changed. In FIG. 2, the introduction pipe 15 is branched from the tubular branch portion 18 arranged in the sheet width direction to each position in the sheet width direction. FIG. 3 shows an example of the branching portion 18 in which a branch path is provided in the tournament type so that the introduction path from the oxygen supply pipe 19 to each introduction pipe 15 has the same distance.

図1に示す巻取式蒸着装置には、シート1と接触しながらシート1を搬送するシート案内面3を有し、シート案内面3の運動に伴って1シートを搬送する、円筒状の金属製キャン等の搬送手段と、シート案内面3上のシート1に向かって金属蒸気を飛散させる坩堝7(蒸発源)と、金属蒸気と酸化反応させるために酸素を導入する酸素導入手段とが設けられている。酸素導入手段は、複数個の導入管15がシート幅方向に配列され構成されるとともに、それら複数個の導入管15が、シート搬送方向に関して坩堝7の上流側および下流側に配置されている。また、各導入管15は、坩堝7とシート案内面3との間の領域に向けて突出している。   The take-up type vapor deposition apparatus shown in FIG. 1 has a sheet guide surface 3 that conveys the sheet 1 while in contact with the sheet 1, and a cylindrical metal that conveys one sheet as the sheet guide surface 3 moves. Conveying means such as a can made, a crucible 7 (evaporation source) for scattering metal vapor toward the sheet 1 on the sheet guide surface 3, and an oxygen introduction means for introducing oxygen to cause an oxidation reaction with the metal vapor It has been. The oxygen introduction means is configured such that a plurality of introduction pipes 15 are arranged in the sheet width direction, and the plurality of introduction pipes 15 are arranged on the upstream side and the downstream side of the crucible 7 in the sheet conveyance direction. Further, each introduction pipe 15 protrudes toward a region between the crucible 7 and the sheet guide surface 3.

このような装置において、長尺のシート1は、原反ロール体2から連続的に繰り出され、シートの走行方向に沿って回転する円筒状の金属製キャンの表面であるシート案内面3に中間ローラ4、5によって決まる所要の巻き付け角で、巻付点33から剥離点32まで巻き付いた状態で搬送され、その後中間ローラ5を介して巻き取られ、巻取ロール6を形成する。   In such an apparatus, the long sheet 1 is continuously fed out from the raw roll body 2 and is intermediate between the sheet guide surface 3 which is the surface of a cylindrical metal can that rotates along the traveling direction of the sheet. At a required winding angle determined by the rollers 4 and 5, the paper is conveyed in a state of being wound from the winding point 33 to the peeling point 32, and then wound around the intermediate roller 5 to form a winding roll 6.

図4において、減圧室41はシートの巻取り巻出しを行う巻取室41aと蒸着を行う成膜室41bに略別れており、それぞれ巻取室用真空ポンプ42aおよび成膜室用真空ポンプ42bによって減圧される。真空ポンプはしばしば粗引き用ポンプと高真空ポンプを併用して高真空に到達させる。通常の真空蒸着では、成膜室を10−1[Pa]以下になるまで減圧し、蒸着時も10−3〜10−2[Pa]台で行われる。巻取室も、成膜室の圧力を維持するのに影響がない範囲で、10−2〜10[Pa]台に調整されるのが一般的である。 In FIG. 4, the decompression chamber 41 is roughly divided into a winding chamber 41a for winding and unwinding a sheet and a film forming chamber 41b for performing vapor deposition, and a vacuum pump 42a for the winding chamber and a vacuum pump 42b for the film forming chamber, respectively. To reduce the pressure. The vacuum pump is often used in combination with a roughing pump and a high vacuum pump to reach a high vacuum. In normal vacuum vapor deposition, the pressure in the film forming chamber is reduced to 10 −1 [Pa] or less, and the vapor deposition is performed on the order of 10 −3 to 10 −2 [Pa]. Generally, the winding chamber is also adjusted to a level of 10 −2 to 10 0 [Pa] as long as the pressure in the film forming chamber is not affected.

このとき、坩堝7の中にある金属の蒸着材料8を蒸発させると同時に、シート搬送方向に関して坩堝7の上流側および下流側に設けた複数個の導入管を、金属蒸気流にさらされる領域に突出させ、当該導入管15より酸素を導入する。これにより、シート1がシート案内面3上に搬送される際に、マスク部材11で制限される成膜開始点30から成膜終了点31の間の領域において、坩堝7の中にある蒸着材料8より蒸発した蒸気10がシート1上に付着し、シート1上に薄膜13が形成される。かかる薄膜13は、導入管15より金属蒸気雰囲気10に導入された酸素により、金属酸化物となる。すなわち、シート1の表面には金属酸化物の薄膜13が形成される。   At this time, the metal vapor deposition material 8 in the crucible 7 is evaporated, and at the same time, a plurality of introduction pipes provided on the upstream side and the downstream side of the crucible 7 with respect to the sheet conveying direction are exposed to the region exposed to the metal vapor flow. Oxygen is introduced through the introduction pipe 15. Thereby, when the sheet 1 is conveyed onto the sheet guide surface 3, the vapor deposition material in the crucible 7 in the region between the film formation start point 30 and the film formation end point 31 limited by the mask member 11. The vapor 10 evaporated from 8 adheres onto the sheet 1, and a thin film 13 is formed on the sheet 1. The thin film 13 becomes a metal oxide by oxygen introduced into the metal vapor atmosphere 10 from the introduction pipe 15. That is, a metal oxide thin film 13 is formed on the surface of the sheet 1.

さらに金属酸化物薄膜の形成について図1(b)に基づいて詳しく説明すると、薄膜形成にあたっては、坩堝7の中に金属材料8を入れ、図示しない加熱方法で加熱して、金属材料8を溶融状態とする。さらに加熱すると溶融した金属材料8の湯面から金属蒸気10が蒸発しはじめる。こうして蒸発させた金属の蒸気10がシート案内面3に沿わせたシート1に向けて飛来する。このとき、坩堝7からシート案内面3までの間に酸素ガスが存在することで金属蒸気が酸化反応し、シート表面に金属酸化物薄膜13が形成される。   Further, the formation of the metal oxide thin film will be described in detail with reference to FIG. 1B. When forming the thin film, the metal material 8 is put in the crucible 7 and heated by a heating method (not shown) to melt the metal material 8. State. When further heated, the metal vapor 10 begins to evaporate from the molten metal surface of the metal material 8. The vapor 10 of the metal thus vaporized flies toward the sheet 1 along the sheet guide surface 3. At this time, the presence of oxygen gas between the crucible 7 and the sheet guide surface 3 causes the metal vapor to undergo an oxidation reaction, and a metal oxide thin film 13 is formed on the sheet surface.

なお金属を溶融して蒸発する方法としては、例えば誘導加熱や抵抗加熱の原理を利用して蒸着材料を加熱する方式や、電子ビームを蒸着材料に照射して加熱する方式がある。すなわち、減圧下での高周波誘導加熱法、抵抗加熱法、電子ビーム法、レーザアブレーション法などが挙げられる。金属酸化物膜の厚膜化のためには、高周波誘導加熱法、電子ビーム法が好ましく用いられ、高融点材料、例えば1500[℃]以上の融点材料であれば電子ビーム法が好ましく用いられる。   As a method for melting and evaporating a metal, for example, there are a method of heating a vapor deposition material using the principle of induction heating or resistance heating, and a method of heating the vapor deposition material by irradiating the vapor deposition material. That is, a high-frequency induction heating method under reduced pressure, a resistance heating method, an electron beam method, a laser ablation method, and the like can be given. In order to increase the thickness of the metal oxide film, a high frequency induction heating method or an electron beam method is preferably used, and an electron beam method is preferably used if it is a high melting point material, for example, a melting point material of 1500 [° C.] or higher.

また、シート案内面3は主にシート1をシワなく搬送する役目と、シート1が受けた熱負荷を効率よく逃がす役目を持つ。このため例えば公知の熱媒体の循環による温度制御により、所要の温度に制御する。具体的には、エチレングリコールやシリコーンオイルなどの冷媒を利用して、たとえば−20[℃]程度に冷却する。また特に円筒に限らず、ベルト体の上にシートを搬送する方式も適用できる。   Further, the sheet guide surface 3 mainly has a role of conveying the sheet 1 without wrinkles and a role of efficiently releasing the heat load received by the sheet 1. For this reason, for example, it is controlled to a required temperature by temperature control by circulation of a known heat medium. Specifically, it is cooled to, for example, about −20 [° C.] using a refrigerant such as ethylene glycol or silicone oil. In addition, a method of conveying a sheet on a belt body is also applicable, not limited to a cylinder.

このような本実施形態と図7(a)に記載した先行技術との大きな相違点は、本実施形態においては、図1(a)に示すように、酸素ガスを金属蒸気に付与するためのノズルの形状として管状のものを選択し、図2に示すようにこの導入管15をシート幅方向に複数個配列し、なおかつその導入管15を、蒸発源である坩堝7とシート案内面との間の領域に向けて突出するように、すなわち坩堝7からシート1に飛来する金属蒸気流にさらされる領域に突出するように、坩堝7のシート搬送方向に関する上流側および下流側に配置している点である。   The major difference between this embodiment and the prior art described in FIG. 7A is that, in this embodiment, as shown in FIG. 1A, oxygen gas is applied to metal vapor. As the shape of the nozzle, a tubular one is selected, and as shown in FIG. 2, a plurality of introduction pipes 15 are arranged in the sheet width direction, and the introduction pipes 15 are connected to the crucible 7 serving as an evaporation source and the sheet guide surface. The crucible 7 is arranged on the upstream side and the downstream side in the sheet conveying direction so as to protrude toward the region between the two, that is, to protrude into the region exposed to the metal vapor flow flying from the crucible 7 to the sheet 1. Is a point.

50[nm]以上の金属酸化物薄膜の膜厚を、100[m/分]以上のシート搬送速度で成膜する場合、蒸発源からの金属蒸気密度が比較的高い条件となる。このような高い蒸気密度の金属蒸気と酸素とを反応させ、かつ薄膜の厚み方向に均一な酸化度合いの薄膜を形成するには、金属蒸気領域の内部まで酸素を均一に導入させる必要がある。そのためには、酸素ノズルをできるだけ金属蒸気密度の高い領域まで近づける必要がある。しかしながら、従来多く用いられてきたピンホールを複数あけたタイプのピンホール型ノズルを金属蒸気密度の高い領域まで近づけると、ノズル本体の体積が無視できず、結果的に酸素ノズル本体が金属蒸気の流れを遮ることになり、蒸発源からの蒸気量に対し、実際にシート表面に付着する金属付着量の効率が悪い成膜になってしまう。なお、このピンホール型ノズルの代表的な例を図8に示す。酸素供給配管19から矢印17の方向に導入された酸素が、側面にピンホールを複数設けたピンホール型ノズル内に送り込まれ、各ピンホール21から酸素が放出される。各ピンホールからできるだけ同じ量の酸素が放出されるように、ピンホールの穴の径を各位置で変更する技術や、ピンホールの間隔を変更する技術も知られている。しかしながら発明者らは、減圧雰囲気においては、このようなピンホール型ノズルよりも、実質的に端部に開口部を有する管状部材の方が、開口部の向きに指向性よく酸素が供給されることを見いだした。そこで、本発明者らは、金属蒸気の流れを遮らず、かつ金属蒸気領域の内部にまで酸素を行き届かせるノズルとして、蒸発源とシート案内面との間の領域に向けて突出するような導入管がもっとも適していることを見いだした。さらに薄膜の厚み方向に均一な酸化度合いの金属酸化物薄膜を形成するために、蒸発源のシート搬送方向に関する上流および下流に、前述の導入管を配置することが好ましく、加えてシート幅方向に均一な酸化度合いの金属酸化物薄膜を得るために、シート幅方向に複数の導入管を配置した方が好ましいとの結論に至った。   When the film thickness of the metal oxide thin film of 50 [nm] or more is formed at a sheet conveyance speed of 100 [m / min] or more, the metal vapor density from the evaporation source is relatively high. In order to react such a high vapor density metal vapor with oxygen and form a thin film having a uniform oxidation degree in the thickness direction of the thin film, it is necessary to introduce oxygen uniformly into the metal vapor region. For this purpose, it is necessary to bring the oxygen nozzle as close as possible to a region having a high metal vapor density. However, when a pinhole type nozzle having a plurality of pinholes, which has been widely used in the past, is brought close to a region where the metal vapor density is high, the volume of the nozzle body cannot be ignored, and as a result, the oxygen nozzle body is made of metal vapor. As a result, the flow is interrupted, and the efficiency of the metal adhesion amount actually adhered to the sheet surface with respect to the amount of vapor from the evaporation source is reduced. A typical example of this pinhole type nozzle is shown in FIG. Oxygen introduced in the direction of the arrow 17 from the oxygen supply pipe 19 is sent into a pinhole type nozzle having a plurality of pinholes on the side surface, and oxygen is released from each pinhole 21. There are also known a technique for changing the diameter of the pinhole at each position and a technique for changing the interval between the pinholes so that the same amount of oxygen is released from each pinhole as much as possible. However, the inventors, in a reduced-pressure atmosphere, supply oxygen with better directivity in the direction of the opening of the tubular member having an opening substantially at the end than such a pinhole type nozzle. I found out. Therefore, the present inventors, as a nozzle that does not block the flow of the metal vapor and allows oxygen to reach the inside of the metal vapor region, protrudes toward the region between the evaporation source and the sheet guide surface. We found that the introduction pipe was most suitable. Furthermore, in order to form a metal oxide thin film having a uniform oxidation degree in the thickness direction of the thin film, it is preferable to arrange the introduction pipes upstream and downstream in the sheet conveyance direction of the evaporation source, and in addition, in the sheet width direction. In order to obtain a metal oxide thin film having a uniform oxidation degree, it was concluded that it is preferable to arrange a plurality of introduction pipes in the sheet width direction.

さらに、真空蒸着法においては、蒸発源から金属蒸気が上方に拡散しながら飛来する。そのため金属蒸気密度は、蒸発源近傍が最も高く、金属蒸気が付着するシート表面が最も低くなるように、傾斜分布を持っている。発明者らは、この高さ方向に傾斜分布をもつ金属蒸気において、酸素が最も効率よく導入でき、かつ膜厚方向に均一な酸化度合いの薄膜を形成することに適した導入管の蒸発源からの高さを検討した。その結果、蒸発源とシート案内面との最短距離hが200〜800[mm]の範囲内の場合、導入管の開口部が該蒸発源から0.2×h[mm]以上でかつ0.8×h[mm]以下の高さであることが適していることを見いだした。蒸発源からの高さが0.2×h[mm]よりも低い位置に導入管を配置した場合、金属蒸気の蒸気密度が大きすぎるので、酸素が金属蒸気内に十分浸透せず、金属蒸気の酸化反応に使われない過剰な酸素が増え易い。その結果、成膜室の圧力が高くなり蒸発源からの金属蒸気の蒸発が不安定になったり、また得られた金属酸化物薄膜の厚み方向の酸化度合いが、シートとの界面側および薄膜の表面側で高くなり内層で低くなるという厚み方向で不均一な薄膜になるといった不具合が生じる場合がある。一方、蒸発源からの高さが0.8×h[mm]よりも高い位置に導入管を配置した場合には、金属蒸気の蒸気密度が小さくなりすぎて、酸素が金属蒸気と衝突し反応する確率が低くなるため、前述と同様に金属蒸気の酸化に使われない過剰な酸素が増えたり、また、導入管の向きによる薄膜の厚み方向の酸化度合いが変わりやすく、導入管の向きの調整が困難になる、といった不具合が生じる場合がある。   Further, in the vacuum deposition method, metal vapor comes from the evaporation source while diffusing upward. Therefore, the metal vapor density has a gradient distribution so that the vicinity of the evaporation source is the highest and the sheet surface to which the metal vapor adheres is the lowest. The inventors of the present invention have been able to introduce oxygen in a metal vapor having a gradient distribution in the height direction, and from an evaporation source of an introduction pipe suitable for forming a thin film having a uniform oxidation degree in the film thickness direction. The height of was examined. As a result, when the shortest distance h between the evaporation source and the sheet guide surface is in the range of 200 to 800 [mm], the opening of the introduction pipe is 0.2 × h [mm] or more from the evaporation source and is less than 0. It has been found that a height of 8 × h [mm] or less is suitable. When the introduction pipe is disposed at a position where the height from the evaporation source is lower than 0.2 × h [mm], the vapor density of the metal vapor is too large, so that oxygen does not sufficiently penetrate into the metal vapor, and the metal vapor Excess oxygen that is not used in the oxidation reaction tends to increase. As a result, the pressure in the film formation chamber becomes high and the evaporation of the metal vapor from the evaporation source becomes unstable, and the degree of oxidation in the thickness direction of the obtained metal oxide thin film depends on the interface side with the sheet and the thin film. There may be a problem that the thin film is uneven in the thickness direction, which becomes higher on the surface side and lower on the inner layer. On the other hand, when the introduction pipe is arranged at a position where the height from the evaporation source is higher than 0.8 × h [mm], the vapor density of the metal vapor becomes too small and oxygen collides with the metal vapor and reacts. As described above, excess oxygen that is not used for the oxidation of metal vapor increases, and the degree of oxidation in the thickness direction of the thin film easily changes depending on the direction of the introduction pipe, and the orientation of the introduction pipe is adjusted. In some cases, it becomes difficult.

さらに本発明者らは、酸素を導入するのに最適な金属蒸気密度、および蒸発源の大きさやシートの成膜領域の大きさ、蒸発源とシートとの距離から、蒸発源からの高さと金属蒸気密度の関係を導き、導入管の適した高さを求めることを検討した。その結果、金属酸化物薄膜の成膜レートが400[nm/秒]以上である成膜条件においては、シートの成膜領域と蒸発源との間の領域において、金属蒸気の中が仮想成膜レート1500[nm/秒]以下となる領域に、導入管の開口部を配置し、金属蒸気に向けて酸素を導入することが有効であることを見出した。金属蒸気中の仮想成膜レートが1500[nm/秒]より大きくなる領域(すなわち蒸発源からの高さが低い位置)に酸素を導入すると、金属蒸気密度が大きいため、金属蒸気内に充分酸素が浸透せず、膜厚方向に不均一な酸化度の薄膜を形成してしまう場合がある。さらに好ましくは、金属蒸気中の仮想成膜レートが1000〜1500[nm/秒]の範囲となる領域に酸素を導入した方がよい。金属蒸気中の仮想成膜レートが1000[nm/秒]より小さくなる領域では、金属蒸気密度が比較的希薄で、導入した酸素が金属蒸気と反応する確率が小さくなり、酸化反応に使われない酸素が増え、成膜室の圧力が上がってしまう場合がある。   Furthermore, the present inventors have found that the metal vapor density optimum for introducing oxygen, the size of the evaporation source, the size of the film formation region of the sheet, the distance between the evaporation source and the sheet, the height from the evaporation source and the metal The relationship between the vapor density was derived and the appropriate height of the inlet pipe was determined. As a result, in the film formation conditions where the film formation rate of the metal oxide thin film is 400 [nm / second] or more, the virtual vapor is formed in the metal vapor in the region between the film formation region of the sheet and the evaporation source. It has been found that it is effective to arrange the opening of the introduction pipe in a region where the rate is 1500 [nm / sec] or less and introduce oxygen toward the metal vapor. When oxygen is introduced into a region where the virtual film formation rate in the metal vapor is higher than 1500 [nm / second] (that is, a position where the height from the evaporation source is low), the metal vapor density is large. May not penetrate and form a thin film having a non-uniform oxidation degree in the film thickness direction. More preferably, oxygen should be introduced into a region where the virtual film formation rate in the metal vapor is in the range of 1000 to 1500 [nm / second]. In the region where the virtual film formation rate in the metal vapor is smaller than 1000 [nm / second], the metal vapor density is relatively dilute, and the probability that the introduced oxygen reacts with the metal vapor is small and is not used for the oxidation reaction. Oxygen increases and the pressure in the film formation chamber may increase.

なお、本実施形態においてこの金属蒸気中の仮想成膜レートを求める方法としては、シートの成膜領域のうち、蒸発源との距離が最短となる直線上に、水晶振動式の膜厚計を配置させてその金属蒸気中の仮想成膜レートを直接測定する方法を採用することができる。また、金属蒸気中の仮想成膜レートは蒸発源からの高さが高くなるほど低減する。   In this embodiment, as a method for obtaining the virtual film formation rate in the metal vapor, a quartz-vibration type film thickness meter is placed on a straight line that has the shortest distance from the evaporation source in the film formation region of the sheet. It is possible to employ a method of arranging and directly measuring the virtual film formation rate in the metal vapor. Further, the virtual film formation rate in the metal vapor decreases as the height from the evaporation source increases.

また、金属蒸気中の仮想成膜レートが1500[nm/秒]以下となる蒸発源からの高さy[m]を求める方法として、蒸発源からシート案内面との最短距離をh[m]、「金属蒸気中の仮想成膜レート」を求める蒸発源からの高さをy[m]としたとき、次式で求めることもできる。すなわち、次式の関係を満たす領域に導入管の開口部を配置してもよい。   Further, as a method for obtaining the height y [m] from the evaporation source at which the virtual film formation rate in the metal vapor is 1500 [nm / sec] or less, the shortest distance from the evaporation source to the sheet guide surface is h [m]. When the height from the evaporation source for obtaining the “virtual film formation rate in metal vapor” is y [m], it can also be obtained by the following equation. That is, the opening of the introduction pipe may be arranged in a region that satisfies the relationship of the following formula.

y[m]≧(d×v×h)/(1500×L) (2)
また、蒸発源に対する導入管の開口部の水平位置については、導入管の開口部と蒸発源との最短距離を成す直線と、蒸発源から上向き鉛直方向との成す角度が45°以内であることが好ましい。45°を超える場合はシートの成膜領域に飛来する金属蒸気に対して遠い位置から酸素を導入することになり、金属蒸気内に酸素が充分浸透せず、膜厚方向で不均一な酸化膜になる可能性がある。
y [m] ≧ (d × v × h) / (1500 × L) (2)
As for the horizontal position of the opening of the introduction pipe with respect to the evaporation source, the angle formed between the straight line forming the shortest distance between the opening of the introduction pipe and the evaporation source and the upward vertical direction from the evaporation source must be within 45 °. Is preferred. If it exceeds 45 °, oxygen will be introduced from a position far from the metal vapor flying into the film formation region of the sheet, and oxygen will not penetrate sufficiently into the metal vapor, resulting in a non-uniform oxide film in the film thickness direction. There is a possibility.

さらに本実施形態の装置においては、前述の最適な金属蒸気密度の領域に酸素導入口の開口部を配置できるように、導入管の開口部の蒸発源からの距離を調整できる機構になっていることが好ましい。例えば、図1において導入管15が分岐部18から容易に着脱可能な構造になっていて、先述の成膜レートや金属蒸気中の仮想成膜レートが違う条件の蒸着を行う際に、長さの違う導入管に変更する構成が挙げられる。   Furthermore, in the apparatus of the present embodiment, the mechanism is capable of adjusting the distance from the evaporation source of the opening of the introduction pipe so that the opening of the oxygen introduction port can be arranged in the region of the optimum metal vapor density described above. It is preferable. For example, in FIG. 1, the introduction pipe 15 has a structure that can be easily detached from the branch portion 18, and the length of the deposition pipe 15 is different when the above-described film formation rate or the virtual film formation rate in the metal vapor is different. The configuration can be changed to a different introduction pipe.

本実施形態において、酸素の供給に用いる導入管は長さが30[mm]以上であることが好ましい。30[mm]よりも短い場合は、最適な範囲の蒸気密度の金属蒸気内に導入管を配置できなかったり、あるいは金属蒸気内に導入管の開口部を突出させるために無理な配置をとらざるを得なくなり、図2や図3に示すような酸素供給配管の分岐部18などの導入管15以外の部材が金属蒸気10を遮ってしまい、シートへ1の蒸気付着レートが下がってしまう場合がある。さらに導入管は、内側断面積が3〜50[mm]であることが好ましい。50[mm]よりも大きいと導入管が蒸気流を遮る量が多くなり、シートへの蒸気付着レートが下がってしまう場合がある。3[mm]よりも小さいと開口部付近で酸素が雰囲気中に拡散してしまい、酸素が蒸気流の内部に浸透しにくくなることがある。さらに本実施形態においては、導入管の採用により、従来に多くみられるピンホール型ノズルよりも、酸素を開口部の方向に指向性よく導入するものであり、その理由でも導入管は長さが30[mm]以上であり、かつ導入管の内側断面積が3〜50[mm]であることが好ましい。 In this embodiment, it is preferable that the introduction pipe used for supplying oxygen has a length of 30 [mm] or more. If it is shorter than 30 [mm], the introduction pipe cannot be arranged in the metal vapor having the optimum range of vapor density, or the arrangement of the introduction pipe is not allowed to protrude into the metal vapor. 2 and FIG. 3, members other than the introduction pipe 15 such as the branch portion 18 of the oxygen supply pipe as shown in FIG. 2 and FIG. 3 block the metal vapor 10, and the vapor deposition rate of 1 on the sheet may decrease. is there. Further, the introduction pipe preferably has an inner cross-sectional area of 3 to 50 [mm 2 ]. If it is larger than 50 [mm 2 ], the amount of the introduction pipe blocking the vapor flow increases, and the vapor deposition rate on the sheet may decrease. If it is smaller than 3 [mm 2 ], oxygen diffuses in the atmosphere in the vicinity of the opening, and it may be difficult for oxygen to penetrate into the vapor stream. Furthermore, in this embodiment, the introduction pipe introduces oxygen with better directivity in the direction of the opening than the conventional pinhole type nozzle, and for this reason, the introduction pipe has a length. It is preferably 30 [mm] or more, and the inner cross-sectional area of the introduction tube is 3 to 50 [mm 2 ].

導入管は、金属蒸気が飛来する領域に酸素を送り出すために、実質的な端部に開口部を有しているが、該開口部は、シート案内面に向いていることが好ましい。成膜されるシートに向けて酸素を導入することにより、シートや金属蒸気流の外部に漏れる酸素量の比率を小さくでき、少ない酸素量で所望の酸化度の金属酸化物薄膜を得ることができる。また酸化反応に寄与しない酸素の量も少なくてすむので、成膜室の圧力が上昇することも少ない。導入管の開口部は、導入管を切断してできる切り口でよく、またその切り口は、管の軸方向に対して垂直に切断したもの、斜めに切断したもののいずれでもよい。但し開口部の開口面積が、導入管の内側断面積よりも極端に小さいと、開口部付近で酸素が雰囲気中に拡散してしまい、酸素が蒸気流の内部に浸透しにくくなる場合があるため、導入管の内側断面形状がそのまま開口部まで連続した構造であることが好ましい。   The introduction pipe has an opening at a substantial end in order to send out oxygen to a region where the metal vapor comes, and the opening is preferably directed to the sheet guide surface. By introducing oxygen toward the film to be formed, the ratio of the amount of oxygen leaking to the outside of the sheet and the metal vapor flow can be reduced, and a metal oxide thin film having a desired degree of oxidation can be obtained with a small amount of oxygen. . In addition, since the amount of oxygen that does not contribute to the oxidation reaction can be reduced, the pressure in the film formation chamber does not increase. The opening of the introduction pipe may be a cut made by cutting the introduction pipe, and the cut may be cut vertically or obliquely with respect to the axial direction of the pipe. However, if the opening area of the opening is extremely smaller than the inner cross-sectional area of the introduction pipe, oxygen diffuses into the atmosphere near the opening, and oxygen may not easily penetrate into the vapor stream. It is preferable that the inner cross-sectional shape of the introduction pipe is a structure that continues to the opening as it is.

また、蒸発源のシート搬送方向に関する上流側および下流側に配置した酸素導入手段それぞれの酸素導入量を独立に調整する酸素流量調整手段を備えていることが好ましい。この独立した酸素流量調整手段により、薄膜の厚み方向の酸化度の分布をより均一に調整することができる。さらに、シート幅方向に配列された複数個の導入管の酸素導入量を独立に調整する酸素流量調整手段を備えていることが好ましい。このシート幅方向の独立した酸素流量調整手段により、シート幅方向の酸化度の分布をより均一に制御することができる。   Further, it is preferable that an oxygen flow rate adjusting unit that independently adjusts the oxygen introduction amount of each of the oxygen introducing units disposed on the upstream side and the downstream side in the sheet conveyance direction of the evaporation source is provided. By this independent oxygen flow rate adjusting means, the distribution of the degree of oxidation in the thickness direction of the thin film can be adjusted more uniformly. Furthermore, it is preferable to include an oxygen flow rate adjusting means for independently adjusting the oxygen introduction amount of the plurality of introduction pipes arranged in the sheet width direction. With the independent oxygen flow rate adjusting means in the sheet width direction, the distribution of the degree of oxidation in the sheet width direction can be more uniformly controlled.

本実施形態においては、蒸発源を電子銃によって加熱する蒸着機がより好ましく適用される。電子銃によって加熱する蒸発源は、溶融金属に電子銃を照射することによって金属を加熱し蒸発させる原理であるが、シート幅方向の各位置における電子銃の照射時間や投入エネルギーを調整することによって、比較的容易にシート幅方向の蒸発量分布を変えることができるので、上記導入管と併用することで、シート幅方向により均一な酸化度の薄膜を得ることができる。   In this embodiment, a vapor deposition machine that heats the evaporation source with an electron gun is more preferably applied. The evaporation source heated by the electron gun is the principle of heating and evaporating the metal by irradiating the electron gun to the molten metal, but by adjusting the irradiation time and input energy of the electron gun at each position in the sheet width direction Since the evaporation amount distribution in the sheet width direction can be changed relatively easily, a thin film having a more uniform degree of oxidation can be obtained in the sheet width direction when used in combination with the introduction tube.

本実施形態に適した蒸発源は、シート搬送方向よりもシート幅方向に長手の形状であり、かつ、シート幅方向の長さが300[mm]以上であることが好ましい。このように蒸発源がシート幅方向に長手となり、金属を蒸発させる幅が大きくなると、特にその中央部の蒸発領域は隣接する領域からも金属蒸気が蒸発しているため、金属蒸気の密度が比較的高くなり、酸素が金属蒸気内に浸透しにくい状態になりやすい。そのため、本実施形態の対象として好適である。   It is preferable that the evaporation source suitable for the present embodiment has a shape that is longer in the sheet width direction than the sheet conveyance direction, and the length in the sheet width direction is 300 mm or more. In this way, when the evaporation source is longer in the sheet width direction and the width for evaporating the metal becomes larger, the metal vapor is also evaporated from the adjacent region, especially in the central evaporation region. The oxygen tends to become difficult to penetrate into the metal vapor. Therefore, it is suitable as an object of this embodiment.

さらに金属酸化物薄膜つきフィルムの透過率を測定し、透過率に基づいて、透過率が実質的に一定になるように蒸発源のエネルギーおよび/または酸素導入量を調整制御することが好ましい。インラインで透過率を測定しそれを維持することで透明性の品質が維持でき好ましい。またその調整は、蒸発源への投入エネルギー(電力)で調整する方法もあるが、酸素導入量を調整する方が簡便で行いやすい。ただし、金属酸化物薄膜の膜厚の品質が重要な場合は蒸発源への投入電力と酸素導入量のバランスで制御することが好ましい。インラインでモニタする透過率は、全光線透過率であっても、ある特定の波長の光の透過率であっても良いが、測定精度や測定機器の分解能の関係で光強度の強い500〜600[nm]の特定の波長の光の透過率を用いて代用することが好ましい。   Furthermore, the transmittance of the film with the metal oxide thin film is measured, and it is preferable to adjust and control the energy of the evaporation source and / or the amount of oxygen introduced so that the transmittance is substantially constant based on the transmittance. Measuring the transmittance in-line and maintaining it is preferable because the quality of transparency can be maintained. In addition, there is a method of adjusting the amount by the input energy (electric power) to the evaporation source, but it is easier and easier to adjust the oxygen introduction amount. However, when the quality of the thickness of the metal oxide thin film is important, it is preferable to control by the balance between the input power to the evaporation source and the amount of oxygen introduced. The transmittance monitored in-line may be the total light transmittance or the transmittance of light of a specific wavelength, but the light intensity is 500 to 600 which is strong due to the measurement accuracy and the resolution of the measuring equipment. It is preferable to substitute the transmittance of light having a specific wavelength of [nm].

本実施形態においては、各導入管から導入する酸素導入量を、前記導入管の内側断面積で割った値が、25〜300[×10−6/分/mm]の範囲内となるように制御することが好ましい。また、複数の導入管を単一の流量制御器等から分岐して酸素を導入する場合は、この25〜300[×10−6/分/mm]の範囲内になるように、シート幅方向の導入管の数を選定することが好ましい。300[×10−6/分/mm]よりも大きいと、導入管内の圧力と導入管の外の圧力との差が大きくなり、導入管の開口部を出た酸素ガスが拡散しやすくなり、蒸気内部に酸素が浸透しにくくなることがある。25[×10−6/分/mm]よりも小さくなるようにシート幅方向の導入管の数を選定すると、シート幅方向の導入管の数が多くなり、蒸気流を遮ってしまい、シートへの薄膜の付着レートが低くなってしまう場合がある。 In this embodiment, the value obtained by dividing the oxygen introduction amount introduced from each introduction pipe by the inner cross-sectional area of the introduction pipe is in the range of 25 to 300 [× 10 −6 m 3 / min / mm 2 ]. It is preferable to control so that it becomes. In addition, when oxygen is introduced by branching a plurality of introduction pipes from a single flow rate controller or the like, the range is 25 to 300 [× 10 −6 m 3 / min / mm 2 ]. It is preferable to select the number of introduction pipes in the sheet width direction. If it is larger than 300 [× 10 −6 m 3 / min / mm 2 ], the difference between the pressure inside the introduction pipe and the pressure outside the introduction pipe becomes large, and the oxygen gas exiting the opening of the introduction pipe diffuses. It may become easier and oxygen may not easily penetrate into the vapor. If the number of introduction pipes in the sheet width direction is selected so as to be smaller than 25 [× 10 −6 m 3 / min / mm 2 ], the number of introduction pipes in the sheet width direction increases and the steam flow is blocked. In some cases, the deposition rate of the thin film on the sheet is lowered.

本実施形態は、膜厚方向に均一な酸化度を形成しにくかった比較的膜厚の厚い成膜に特に有効であるが、具体的には膜厚50[nm]以上の金属酸化物薄膜の形成により好適である。一方膜厚が300[nm]よりも厚くなると、薄膜の厚み方向の均一性において酸化反応以外の要素が主要因となるため、本実施形態の効果が薄くなり好適な対象とはいえなくなる。具体的には、シートの成膜領域において金属蒸気が入射してくる角度や金属粒子が到来する速度の違いの方が、膜の均一性の主要因となる。また酸化金属薄膜が堆積する速度のパラメータとして、シートの搬送速度[m/分]と薄膜の膜厚[nm]をかけた、ダイナミックレート[nm・m/分]というパラメータが用いられるが、膜厚50〜300[nm]の金属酸化物薄膜を成膜する場合、このダイナミックレートにおいては10000〜30000[nm・m/分]が本実施形態に好適な成膜条件となる。   The present embodiment is particularly effective for a relatively thick film which is difficult to form a uniform oxidation degree in the film thickness direction. Specifically, a metal oxide thin film having a film thickness of 50 [nm] or more is used. More preferred for formation. On the other hand, when the film thickness is greater than 300 [nm], factors other than the oxidation reaction are the main factors in the uniformity in the thickness direction of the thin film, and thus the effect of the present embodiment is reduced and cannot be said to be a suitable target. Specifically, the difference in the angle at which the metal vapor enters and the speed at which the metal particles arrive in the film formation region of the sheet is the main factor of the film uniformity. Further, as a parameter of the rate at which the metal oxide thin film is deposited, a parameter called a dynamic rate [nm · m / min] obtained by multiplying the sheet conveyance speed [m / min] and the film thickness [nm] of the thin film is used. In the case of forming a metal oxide thin film having a thickness of 50 to 300 [nm], 10000 to 30000 [nm · m / min] is a film forming condition suitable for this embodiment at this dynamic rate.

膜厚方向の金属酸化物薄膜の酸化度をみる方法としては、透過電子顕微鏡(TEM)により薄膜断面の切片を観察する方法が知られている。図5、図6はその観察例の特徴を示した模式図である。この方法で観察した場合、例えば図7に示すようなシート案内面の近傍でシート搬送方向における上流側および下流側から、従来のピンホール型ノズルを使って成膜した金属酸化物薄膜を観察すると、図5に示すようにシートとの界面側および薄膜の表面側において、薄膜の中央に比べ酸化度の高い層が観察され、薄膜全体としては3層構造として観察される。一方本実施形態により製造された金属酸化物薄膜付シートを観察すると、図6のように層の区切りがはっきりとは見えないほぼ均一な層として観察される。このように金属酸化物薄膜が均一に見えるシートほど、薄膜の機械的な強度を上げるのに有効であり、磁気テープの支持体として使う強化フィルムの用途に好適である。   As a method of checking the degree of oxidation of the metal oxide thin film in the film thickness direction, a method of observing a section of the thin film cross section with a transmission electron microscope (TEM) is known. 5 and 6 are schematic diagrams showing the characteristics of the observation example. When observed with this method, for example, when a metal oxide thin film formed using a conventional pinhole type nozzle is observed from the upstream side and the downstream side in the sheet conveying direction in the vicinity of the sheet guide surface as shown in FIG. As shown in FIG. 5, on the interface side with the sheet and on the surface side of the thin film, a layer having a higher degree of oxidation than the center of the thin film is observed, and the entire thin film is observed as a three-layer structure. On the other hand, when the sheet with the metal oxide thin film produced according to the present embodiment is observed, the layer separation is observed as a substantially uniform layer as shown in FIG. Thus, the sheet in which the metal oxide thin film looks uniform is more effective in increasing the mechanical strength of the thin film, and is suitable for use as a reinforcing film used as a support for a magnetic tape.

本実施形態において、金属酸化物薄膜が酸化アルミニウムの場合、薄膜の表面抵抗値が10〜1012[Ω/□]の範囲内であることが好ましい。この表面抵抗値の範囲は、導入する酸素量が比較的少量の変化でも抵抗値が変動しやすい領域であり、シート幅方向やシート搬送方向に表面抵抗のムラを発生させやすいが、本実施形態を適用することにより、シート幅方向およびシート搬送方向に表面抵抗を均一に調整しやすくなる。 In the present embodiment, when the metal oxide thin film is aluminum oxide, the surface resistance value of the thin film is preferably in the range of 10 2 to 10 12 [Ω / □]. The range of the surface resistance value is a region where the resistance value is likely to fluctuate even when the amount of oxygen introduced is relatively small, and surface resistance unevenness is likely to occur in the sheet width direction and the sheet conveyance direction. By applying, it becomes easy to adjust the surface resistance uniformly in the sheet width direction and the sheet conveying direction.

また、金属酸化物薄膜の膜厚をd[μm]、金属酸化物薄膜を含むシートとしての全光線透過率をT[%]としたときに、次式で示される光学濃度の値が1.0〜20.0の範囲である場合には、少量の酸素量の変化で光学濃度が変動しやすく、また薄膜の内部に酸化されずに残った金属粒子が厚み方向で偏りやすいため、本実施形態の適用に適した条件である。
(光学濃度)=−{log(T/100)}/d
さらに本発明の酸素導入方法を、シートの両面に金属酸化物薄膜形成に適用することにより、例えば磁気テープ用のベースフィルムに使用可能な、強度や寸法安定性を持つシートを得ることができる。
When the film thickness of the metal oxide thin film is d [μm] and the total light transmittance as a sheet including the metal oxide thin film is T [%], the value of the optical density represented by the following formula is 1. When it is in the range of 0 to 20.0, the optical density tends to fluctuate due to a small amount of oxygen change, and the metal particles that remain without being oxidized inside the thin film tend to be biased in the thickness direction. It is a condition suitable for application of the form.
(Optical density) =-{log (T / 100)} / d
Furthermore, by applying the oxygen introduction method of the present invention to metal oxide thin film formation on both sides of a sheet, a sheet having strength and dimensional stability that can be used for a base film for a magnetic tape, for example, can be obtained.

本実施例で用いた測定法を下記に示す。   The measurement method used in this example is shown below.

(1)金属酸化物薄膜の厚み、および薄膜の断面構造
下記条件にて断面観察を行い、得られた合計9点の厚み[nm]の平均値を算出し、金属酸化物薄膜の厚み[nm]とした。
測定装置:透過型電子顕微鏡(TEM)H−7100FA型 日立製
測定条件:加速電圧 100[kV]
測定倍率:20万倍
試料調整:超薄膜切片法
観察面 :TD−ZD断面
測定回数:1視野につき3点、3視野を測定した。
(1) Thickness of metal oxide thin film and cross-sectional structure of thin film Cross-sectional observation was performed under the following conditions, and the average value of the obtained thickness [nm] of 9 points in total was calculated, and the thickness of the metal oxide thin film [nm ].
Measuring apparatus: Transmission electron microscope (TEM) H-7100FA type Hitachi measurement conditions: Acceleration voltage 100 [kV]
Measurement magnification: 200,000 times Sample preparation: Observation surface of ultrathin film section method: TD-ZD cross-section measurement count: 3 points per field and 3 fields were measured.

(2)表面抵抗値
表面抵抗値の範囲によって、測定可能な装置が異なるため、まずi)の方法で測定を行い、表面抵抗値が低すぎて測定不可能なサンプルをii)の方法で測定した。5回の測定結果の平均値を本実施形態における表面抵抗値とした。
i)高抵抗率測定 JIS−C2151(1990)に準拠し、下記測定装置を用いて測定する。
測定装置:デジタル超高抵抗/微小電流計R8340 アドバンテスト(株)製
印加電圧:100[V]
印加時間:10秒間
測定単位:Ω
測定環境:温度23℃湿度65%RH
測定回数:5回測定する。
ii)低抵抗率測定
JIS−K7194(1994)に準拠し、下記測定装置を用いて測定する。
測定装置:ロレスターEP MCP−T360 三菱化学製
測定環境:温度23℃湿度65%RH
測定回数:5回測定する。
(2) Surface resistance value Since the measurable device differs depending on the range of surface resistance value, first measure by the method of i), and measure the sample whose surface resistance value is too low to measure by the method of ii). did. The average value of the five measurement results was used as the surface resistance value in this embodiment.
i) High resistivity measurement Measured with the following measuring device in accordance with JIS-C2151 (1990).
Measuring device: Digital ultrahigh resistance / microammeter R8340 Advantest Co., Ltd. Applied voltage: 100 [V]
Application time: 10 seconds Measurement unit: Ω
Measurement environment: Temperature 23 ° C Humidity 65% RH
Number of measurements: Measure 5 times.
ii) Low resistivity measurement Measured using the following measuring device in accordance with JIS-K7194 (1994).
Measuring device: Lorester EP MCP-T360 Mitsubishi Chemical Measuring Environment: Temperature 23 ° C Humidity 65% RH
Number of measurements: Measure 5 times.

(3)薄膜付シートの全光線透過率
スガ試験機株式会社製の”ヘーズコンピュータHZ−1”装置にて、サンプルをセットして、全光線透過率を測定した。5回の測定を行い、その平均値を本実施形態における全光線透過率とした。
(3) Total light transmittance of sheet with thin film A sample was set in a “haze computer HZ-1” apparatus manufactured by Suga Test Instruments Co., Ltd., and the total light transmittance was measured. Five measurements were performed, and the average value was taken as the total light transmittance in this embodiment.

(4)金属酸化物膜の厚み方向の組成の評価
下記条件にて、深さ方向の組成分析を行った。すなわち炭素濃度が50[%]を越える深さを金属酸化物薄膜層とポリエステルフィルムとの界面とし、表層から下記イオンエッチング条件にてSiO換算で9[nm]ずつ掘り進みながら各厚み位置での組成分析を行う。ピークの結合エネルギー値から元素情報が得られ、各ピークの面積比を用いて組成を定量化(at.%)する。SiO換算で得られた表面から界面までの距離が、(1)で求めた金属酸化物薄膜の膜厚になるように係数を掛け、横軸に金属酸化物薄膜の表面からの深さ[nm]を、縦軸に元素の組成比[%]を取り、グラフ化する。
(4) Evaluation of composition in thickness direction of metal oxide film Composition analysis in the depth direction was performed under the following conditions. That is, the depth where the carbon concentration exceeds 50 [%] is taken as the interface between the metal oxide thin film layer and the polyester film, and each thickness position is excavated from the surface layer by 9 [nm] in terms of SiO 2 under the following ion etching conditions. The composition analysis is performed. Element information is obtained from the peak binding energy value, and the composition is quantified (at.%) Using the area ratio of each peak. Multiply the coefficient so that the distance from the surface obtained in terms of SiO 2 to the interface is the thickness of the metal oxide thin film obtained in (1), and the horizontal axis represents the depth from the surface of the metal oxide thin film [ [nm] and the elemental composition ratio [%] on the vertical axis.

・測定装置:X線光電子分光機 Quantera−SXM 米国PHI社製
・励起X線:monochromatic AlKα1,2線(1486.6eV)
・X線径 :100[μm]
・光電子脱出角度:45°
・ラスター領域:2×2[mm]
・Arイオンエッチング: 2.0[kV] 2.0×10 −5 [Pa]
・スパッタ速度:3.68nm/min(SiO換算値)
・データ処理:9−point smoothing
(5)酸素導入量の測定方法
金属蒸気内に酸素を供給するための導入管に、下記のマスフローコントローラを介して酸素を供給するよう配管し、そのマスフローコントローラの流量を調整して、インラインの光学モニタが所望の透過率になったときの流量表示値を読みとった。
・ マスフローコントローラ:アドバンスドエナジー社製Aera@FC−7710CD
・ 校正ガス:酸素
・ 最大流量:40[l/分]
[実施例1]
シートとして、厚さ4.5[μm]、幅1100[mm]のポリエチレンテレフタレートフィルム(東レ株式会社製「ルミラー」)の片面に、図4に示す巻取式真空蒸着装置を用い、以下に示す蒸着条件で蒸着した。
・ Measurement device: X-ray photoelectron spectrometer Quantera-SXM manufactured by PHI, USA ・ Excitation X-ray: monochromatic AlKα1,2 (1486.6 eV)
・ X-ray diameter: 100 [μm]
-Photoelectron escape angle: 45 °
・ Raster area: 2 × 2 [mm]
Ar ion etching: 2.0 [kV] 2.0 × 10 −5 [Pa]
Sputtering speed: 3.68 nm / min (SiO 2 equivalent value)
-Data processing: 9-point smoothing
(5) Measuring method of oxygen introduction amount Pipes to supply oxygen through the following mass flow controller to the introduction pipe for supplying oxygen into the metal vapor, adjust the flow rate of the mass flow controller, The flow rate display value was read when the optical monitor reached the desired transmittance.
-Mass flow controller: Advanced Energy Aera @ FC-7710CD
・ Calibration gas: Oxygen ・ Maximum flow rate: 40 [l / min]
[Example 1]
As a sheet, the winding type vacuum vapor deposition apparatus shown in FIG. 4 is used on one side of a polyethylene terephthalate film (“Lumirror” manufactured by Toray Industries, Inc.) having a thickness of 4.5 [μm] and a width of 1100 [mm]. Vapor deposition was performed under deposition conditions.

(蒸着条件)
・蒸発源の容器:アルミナ製ルツボ
・蒸発源加熱方式:電子銃による加熱
・蒸発材料 :アルミニウム
・電子銃の投入パワー:65[kW]
・蒸発源のルツボとシート案内面との最短距離:450[mm]
・フィルム搬送方向のマスク開口長:400[mm]
・フィルム幅方向のマスク開口長:1000[mm]
(フィルム搬送条件)
・搬送速度 :150[m/分]
・フィルム幅:1100[mm]
(シート案内面条件)
図4に示すように円筒形のシート案内面を使用した。このシート案内面の内部には、シート案内面の表面の温度を調整するための媒体が循環され、装置外部の冷媒循環装置から一定温度の媒体が導入されている。各条件は以下の通り。
・円筒形シート案内面の直径:1000[mm]
・シート案内面内部に流す媒体温度:−20[℃]
(酸素供給手段条件)
図4に示すように、蒸発源とシート案内面との間の領域に向けて突出する丸断面の導入管を下記の条件で配置した。
・導入管15の内径:4[mm](内側断面積:約12.6[mm])
・導入管15の外径:6[mm]
・導入管15の直線部の長さ:150[mm]
・蒸発源のルツボ上面から導入管の開口部までの距離:200[mm]
・導入管15の向き:開口部を有する導入管15の直線部の延長線上がシート案内面の最下点になる向き
・シート幅方向の導入管の本数:10本
・シート幅方向の導入管の間隔:105[mm]の等間隔(両端の導入管の間隔は945[mm])
(金属酸化物薄膜の形成)
未蒸着のフィルムロールを図4の原反ロール体2にセットし、中間ローラ4、シート案内面3、中間ローラ5にフィルムを沿わせて、巻取ロール体6にフィルム端部を貼り付けセットした。装置にはシート搬送方向に150[mm]、シート幅方向に1500[mm]の容積部分をもつアルミナ製の坩堝7が、坩堝7の長手方向がフィルム幅方向と同じになるように配置され、これに金属材料8としてアルミを20[kg]セットした。その後、蒸着機の巻取室41aおよび成膜室41bを減圧し、成膜室41bの真空圧力を5×10−3[Pa]まで排気した。その後、シャッター部材51を閉じた状態にして電子銃加熱方式で坩堝7内のアルミを溶かした。投入した電力は75[kW]であった。アルミ材料が全て溶融したことを確認した後、電子銃の電力量を微調整し約60[kW]にした。原反ロール体2の張力を110[N]、巻取ロール体6の張力を140[N]に設定し、シート案内面3と中間ローラ4、5の速度設定により150[m/分]の速度でフィルムの搬送を開始した。その後シャッター部材51を開側にして、アルミ蒸着を行った。アルミ膜が幅方向に均等に蒸着されているかを光学モニタ52により監視し、透過率が一定になるように坩堝への電子銃の投入電力分布を微調整した。ここでの透過率は、ハロゲンランプを光源として、中心波長565[nm]のフィルタを通して測定した透過率である。光学モニタ52はフィルム幅方向に11カ所付いており、この11個の透過率が0.05%になるように調整した。なお、透過率0.05%という値は、金属アルミ薄膜の膜厚60[nm]の目安である。この状態で真空計10の圧力は2.0×10−2[Pa]であった。その後、坩堝7のシート搬送方向に関する巻出側および巻取側の導入管15から酸素導入量を増やし25[l/分]とした。酸素を導入するに従い成膜室41bの圧力は3.5×10−2[Pa]となった。この状態で巻取側の監視窓53からフィルムを観察すると茶色がかった透明であった。透過率は11個の光学モニタの平均値で30%を示していた。この状態で11000m分のフィルム巻取搬送を行い、酸化アルミ膜付きフィルムを形成した。その後、シャッター部材51を閉側にして酸素導入を止め、蒸発源加熱用の電子銃への電力供給を切った。そして搬送速度を5[m/分]まで下げ巻取室41aおよび成膜室41bの放圧を行った。
(Deposition conditions)
・ Evaporation source container: Alumina crucible ・ Evaporation source heating method: Heating with an electron gun ・ Evaporation material: Aluminum ・ Electron gun input power: 65 kW
・ Minimum distance between crucible of evaporation source and sheet guide surface: 450 [mm]
-Mask opening length in the film transport direction: 400 [mm]
-Mask opening length in the film width direction: 1000 [mm]
(Film transport conditions)
・ Conveying speed: 150 [m / min]
-Film width: 1100 [mm]
(Sheet guide surface conditions)
A cylindrical sheet guide surface was used as shown in FIG. Inside the sheet guide surface, a medium for adjusting the temperature of the surface of the sheet guide surface is circulated, and a medium having a constant temperature is introduced from a refrigerant circulation device outside the apparatus. Each condition is as follows.
-Diameter of cylindrical sheet guide surface: 1000 [mm]
・ Temperature of medium flowing inside the sheet guide surface: -20 [℃]
(Oxygen supply means conditions)
As shown in FIG. 4, the introduction pipe having a round cross section protruding toward the region between the evaporation source and the sheet guide surface was arranged under the following conditions.
Inner diameter of introduction pipe 15: 4 [mm] (inner cross-sectional area: about 12.6 [mm 2 ])
・ Outer diameter of introduction pipe 15: 6 [mm]
-Length of the straight portion of the introduction pipe 15: 150 [mm]
・ Distance from crucible upper surface of evaporation source to opening of introduction pipe: 200 [mm]
・ Direction of introduction pipe 15: Direction in which the extended line of the straight part of introduction pipe 15 having an opening is the lowest point of the sheet guide surface ・ Number of introduction pipes in sheet width direction: 10 ・ Introduction pipes in sheet width direction Interval: 105 [mm] equally spaced (the interval between the introduction pipes at both ends is 945 [mm])
(Formation of metal oxide thin film)
The undeposited film roll is set on the raw roll body 2 in FIG. 4, the film is placed along the intermediate roller 4, the sheet guide surface 3, and the intermediate roller 5, and the film end is attached to the winding roll body 6. did. In the apparatus, an alumina crucible 7 having a volume portion of 150 [mm] in the sheet conveying direction and 1500 [mm] in the sheet width direction is arranged so that the longitudinal direction of the crucible 7 is the same as the film width direction, 20 [kg] of aluminum was set as the metal material 8 to this. Then, the winding chamber 41a and the film forming chamber 41b of the vapor deposition machine were depressurized, and the vacuum pressure in the film forming chamber 41b was exhausted to 5 × 10 −3 [Pa]. Thereafter, the aluminum in the crucible 7 was melted by the electron gun heating method with the shutter member 51 closed. The electric power input was 75 [kW]. After confirming that all of the aluminum material was melted, the electric energy of the electron gun was finely adjusted to about 60 [kW]. The tension of the raw roll body 2 is set to 110 [N], the tension of the take-up roll body 6 is set to 140 [N], and the speed of the sheet guide surface 3 and the intermediate rollers 4 and 5 is set to 150 [m / min]. The conveyance of the film was started at a speed. Thereafter, aluminum was deposited with the shutter member 51 opened. The optical monitor 52 was used to monitor whether the aluminum film was uniformly deposited in the width direction, and the power distribution of the electron gun to the crucible was finely adjusted so that the transmittance was constant. Here, the transmittance is a transmittance measured through a filter having a central wavelength of 565 [nm] using a halogen lamp as a light source. There are 11 optical monitors 52 in the film width direction, and the 11 transmittances were adjusted to 0.05%. The value of transmittance of 0.05% is a guideline for the film thickness of 60 [nm] of the metal aluminum thin film. In this state, the pressure of the vacuum gauge 10 was 2.0 × 10 −2 [Pa]. Thereafter, the amount of oxygen introduced was increased to 25 [l / min] from the introduction pipe 15 on the unwinding side and the winding side in the sheet conveying direction of the crucible 7. As the oxygen was introduced, the pressure in the film forming chamber 41b became 3.5 × 10 −2 [Pa]. In this state, when the film was observed from the monitoring window 53 on the winding side, the film was brownish and transparent. The transmittance was 30% as an average value of 11 optical monitors. In this state, 11000 m of film was wound and conveyed to form a film with an aluminum oxide film. Thereafter, the shutter member 51 was closed to stop the introduction of oxygen, and the power supply to the electron gun for heating the evaporation source was cut off. And the conveyance speed was lowered to 5 [m / min], and the pressure release of the winding chamber 41a and the film-forming chamber 41b was performed.

こうして成膜した酸化アルミ膜の膜厚は、TEMの断面観察の結果、100±10[nm]の範囲であった。また成膜後に取り出した蒸着済みフィルムの全光線透過率は53%であった。表面抵抗値は1.5×10 [Ω/□]であった。この蒸着済みフィルムの酸化アルミ膜の厚み方向における組成分析結果を図11に示すが、膜厚方向でアルミと酸素がほぼ均一な分布であった。この酸化金属薄膜付フィルムの蒸着条件および評価結果を表1にまとめる。 The thickness of the aluminum oxide film thus formed was in the range of 100 ± 10 [nm] as a result of TEM cross-sectional observation. The total light transmittance of the deposited film taken out after the film formation was 53%. The surface resistance value was 1.5 × 10 5 [Ω / □]. The composition analysis result in the thickness direction of the aluminum oxide film of this deposited film is shown in FIG. 11, and aluminum and oxygen were almost uniformly distributed in the film thickness direction. Table 1 summarizes the deposition conditions and evaluation results of the metal oxide thin film.

[実施例2]
以下の点を変更した以外は、実施例1と同様にして、金属酸化物薄膜を形成した。
[Example 2]
A metal oxide thin film was formed in the same manner as in Example 1 except that the following points were changed.

(蒸着条件)
・蒸発源の容器:アルミナ製ルツボ
・蒸発源加熱方式:電子銃による加熱
・蒸発材料 :アルミニウム
・電子銃の投入パワー:65[kW]
・蒸発源のルツボとシート案内面との最短距離:600[mm]
・フィルム搬送方向のマスく開口長:600[mm]
・フィルム幅方向のマスク開口長:1000[mm]
(酸素ノズル条件)
図4に示すように丸管状酸素導入口を下記の条件で配置した。
・導入管15の内径:4[mm](内側断面積:約12.6[mm])
・導入管15の外径:6[mm]
・導入管15の直線部の長さ:150[mm]
・蒸発源のルツボ上面から導入管の開口部までの距離:200[mm]
・導入管15の向き:開口部を有する導入管15の直線部の延長線上がシート案内面の最下点になる向き
・シート幅方向の導入管の本数:10本
・シート幅方向の導入管の間隔:105[mm]の等間隔(両端の導入管の間隔は945[mm])
(金属酸化物薄膜の形成)
未蒸着のフィルムロールを図4の原反ロール体2にセットし中間ローラ4、シート案内面3、中間ローラ5にフィルムを沿わせて、巻取ロール体6にフィルム端部を貼り付けセットした。装置にはシート搬送方向に150[mm]、シート幅方向に1500[mm]の容積部分をもつアルミナ製坩堝7が、坩堝の長手方向がフィルム幅方向と同じになるように配置され、これに金属材料8としてアルミを20[kg]セットした。その後、蒸着機の巻取室41aおよび成膜室41bを減圧し、成膜室41bの真空圧力を5×10−3[Pa]まで排気した。その後、シャッター部材51を閉じた状態で電子銃加熱方式で坩堝7内のアルミを溶かした。投入した電力は75[kW]であった。アルミ材料が全て溶融したことを確認した後、電子銃の電力量を微調整し約60[kW]にした。原反ロール体2の張力を110[N]、巻取ロール体6の張力を140[N]に設定し、シート案内面3と中間ローラ4、5の速度設定により150[m/分]の速度でフィルムの搬送を開始した。その後シャッター部材51を開側にして、アルミ蒸着を行った。アルミ膜が幅方向に均等に蒸着されているかを光学モニタ52により監視し、透過率が一定になるように坩堝7への電子銃の投入電力分布を微調整した。光学モニタ52はフィルム幅方向に11カ所付いておりこの11個の透過率が0.05%になるように調整した。なお、透過率0.05%という値は、金属アルミ薄膜の膜厚60[nm]の目安である。この状態で真空計10の圧力は2.0×10−2[Pa]であった。その後、ルツボのシート搬送方向に関する上流側および下流側の導入管15から酸素導入量を増やし30[l/分]とした。酸素を導入するに従い成膜室41bの圧力は3.0×10−2[Pa]となった。この状態で巻取側の監視窓53からフィルムを観察すると茶色がかった透明であった。透過率は11個の光学モニタ52の平均値で30%を示していた。この状態で11000[m]分のフィルム巻取搬送を行い酸化アルミ膜付きフィルムを形成した。その後、シャッター部材51を閉側にして酸素導入を止め、蒸発源加熱用の電子銃への電力供給を切った。そして搬送速度を5[m/分]まで下げ巻取室41aおよび成膜室41bの放圧を行った。
(Deposition conditions)
・ Evaporation source container: Alumina crucible ・ Evaporation source heating method: Heating with an electron gun ・ Evaporation material: Aluminum ・ Electron gun input power: 65 kW
・ Minimum distance between crucible of evaporation source and sheet guide surface: 600 [mm]
-Opening length in the direction of film conveyance: 600 [mm]
-Mask opening length in the film width direction: 1000 [mm]
(Oxygen nozzle condition)
As shown in FIG. 4, the round tubular oxygen inlet was disposed under the following conditions.
Inner diameter of introduction pipe 15: 4 [mm] (inner cross-sectional area: about 12.6 [mm 2 ])
・ Outer diameter of introduction pipe 15: 6 [mm]
-Length of the straight portion of the introduction pipe 15: 150 [mm]
・ Distance from crucible upper surface of evaporation source to opening of introduction pipe: 200 [mm]
・ Direction of introduction pipe 15: Direction in which the extended line of the straight part of introduction pipe 15 having an opening is the lowest point of the sheet guide surface ・ Number of introduction pipes in sheet width direction: 10 ・ Introduction pipes in sheet width direction Interval: 105 [mm] equally spaced (the interval between the introduction pipes at both ends is 945 [mm])
(Formation of metal oxide thin film)
An undeposited film roll is set on the original roll body 2 in FIG. 4, the film is placed along the intermediate roller 4, the sheet guide surface 3, and the intermediate roller 5, and the film end is attached to the winding roll body 6. . In the apparatus, an alumina crucible 7 having a volume of 150 [mm] in the sheet conveying direction and 1500 [mm] in the sheet width direction is arranged so that the longitudinal direction of the crucible is the same as the film width direction. 20 [kg] of aluminum was set as the metal material 8. Then, the winding chamber 41a and the film forming chamber 41b of the vapor deposition machine were depressurized, and the vacuum pressure in the film forming chamber 41b was exhausted to 5 × 10 −3 [Pa]. Thereafter, the aluminum in the crucible 7 was melted by the electron gun heating method with the shutter member 51 closed. The electric power input was 75 [kW]. After confirming that all of the aluminum material was melted, the electric energy of the electron gun was finely adjusted to about 60 [kW]. The tension of the raw roll body 2 is set to 110 [N], the tension of the take-up roll body 6 is set to 140 [N], and the speed of the sheet guide surface 3 and the intermediate rollers 4 and 5 is set to 150 [m / min]. The conveyance of the film was started at a speed. Thereafter, aluminum was deposited with the shutter member 51 opened. Whether the aluminum film was uniformly deposited in the width direction was monitored by the optical monitor 52, and the power distribution of the electron gun to the crucible 7 was finely adjusted so that the transmittance was constant. There are 11 optical monitors 52 in the film width direction, and the 11 transmittances are adjusted to 0.05%. The value of transmittance of 0.05% is a guideline for the film thickness of 60 [nm] of the metal aluminum thin film. In this state, the pressure of the vacuum gauge 10 was 2.0 × 10 −2 [Pa]. Thereafter, the oxygen introduction amount was increased to 30 [l / min] from the upstream side and downstream side introduction pipes 15 in the sheet conveying direction of the crucible. As oxygen was introduced, the pressure in the film formation chamber 41b became 3.0 × 10 −2 [Pa]. In this state, when the film was observed from the monitoring window 53 on the winding side, the film was brownish and transparent. The transmittance was 30% as an average value of 11 optical monitors 52. In this state, 11000 [m] of film was wound and conveyed to form a film with an aluminum oxide film. Thereafter, the shutter member 51 was closed to stop the introduction of oxygen, and the power supply to the electron gun for heating the evaporation source was cut off. And the conveyance speed was lowered to 5 [m / min], and the pressure release of the winding chamber 41a and the film-forming chamber 41b was performed.

こうして成膜した酸化アルミ膜の膜厚は、TEMの断面観察の結果、100±10[nm]の範囲内であった。また成膜後に取り出した蒸着済みフィルムの全光線透過率は53%であった。表面抵抗値は2.7×10 [Ω/□]であった。この酸化金属薄膜付フィルムの蒸着条件および評価結果を表1にまとめる。 The thickness of the aluminum oxide film thus formed was in the range of 100 ± 10 [nm] as a result of TEM cross-sectional observation. The total light transmittance of the deposited film taken out after the film formation was 53%. The surface resistance value was 2.7 × 10 5 [Ω / □]. Table 1 summarizes the deposition conditions and evaluation results of the metal oxide thin film.

[比較例1]
電気絶縁性シートとして、厚さ4.5[μm]、幅1100[mm]のポリエチレンテレフタレートフィルム(東レ株式会社製「ルミラー」)の片面に、図9に示す巻取式真空蒸着装置を用い、以下に示す蒸着条件で蒸着した。
(蒸着条件)
・蒸発源の容器:アルミナ製ルツボ
・蒸発源加熱方式:電子銃による加熱
・蒸発材料 :アルミニウム
・電子銃の投入パワー:75[kW]
・蒸発源のルツボとシート案内面との最短距離:450[mm]
・フィルム搬送方向のマスク開口長:400[mm]
・フィルム幅方向のマスク開口長:1000[mm]
(フィルム搬送条件)
・搬送速度 :150[m/分]
・フィルム幅:1100[mm]
(シート案内面条件)
図9に示すように円筒形のシート案内面3を使用した。このシート案内面3の内部には、シート案内面の表面の温度を調整するための媒体が循環され、装置外部の冷媒循環装置から一定温度の媒体が導入されている。各条件は以下の通り。
・円筒形シート案内面の直径:1000[mm]
・シート案内面内部に流す媒体温度:−20[℃]
(酸素供給手段)
図8に示すようなピンホール型ノズルを下記の条件で配置した。
・ピンホール型ノズル20の内径:14[mm]、外径:18[mm]
・ピンホール21の径:1[mm]
・ピンホール21の配列のピッチ:15[mm]
・蒸発源の金属材料8の上面からピンホールまでの距離:400[mm]
・ピンホール21の向き:ピンホール21の延長線上がシート案内面3の最下点になる向き
(金属酸化物薄膜の形成)
未蒸着のフィルムロールを図9の原反ロール体2にセットし中間ローラ4、シート案内面3、中間ローラ5にフィルム1を沿わせて、巻取ロール体6にフィルム端部を貼り付けセットした。装置にはシート搬送方向に150[mm]、シート幅方向に1500[mm]の容積部分をもつアルミナ製の坩堝7が、坩堝の長手方向がフィルム幅方向と同じになるように配置され、これに金属材料8としてアルミを20[kg]セットした。その後、蒸着機の巻取室41aおよび成膜室41bを減圧し、成膜室41bの真空圧力を5×10−3[Pa]まで排気した。その後、シャッター部材51を閉じた状態で電子銃加熱方式で坩堝7内のアルミ8を溶かした。投入した電力は75[kW]であった。アルミ材料が全て溶融したことを確認した後、電子銃の電力量を微調整し約60[kW]にした。原反ロール体2の張力を110[N]、巻取ロール体6の張力を140[N]に設定し、シート案内面3と中間ローラ4、5の速度設定により150[m/分]の速度でフィルムの搬送を開始した。その後シャッター部材51を開側にして、アルミ蒸着を行った。アルミ膜が幅方向に均等に蒸着されているかを光学モニタ52により監視し、透過率が一定になるように坩堝7への電子銃の投入電力分布を微調整した。光学モニタ52はフィルム幅方向に11カ所付いており、この11個の透過率が0.05%になるように調整した。なお、透過率0.05%という値は金属アルミ薄膜の膜厚60[nm]の目安である。この状態で真空計10の圧力は2.0×10−2[Pa]であった。その後、坩堝7のシート搬送方向に関する上流側および下流側のピンホール型ノズル20から酸素導入量を増やし32[l/分]まで導入した。酸素導入に応じて成膜室41bの圧力は3.2×10−2[Pa]であった。この状態で巻取側の監視窓53からフィルムを観察すると茶色がかった透明であった。透過率は11個の光学モニタ52の平均値で30%を示していた。この状態で11000[m]分のフィルム巻取搬送を行い酸化アルミ膜付きフィルムを形成した。その後、シャッター部材51を閉側にして酸素導入を止め、蒸発源加熱用の電子銃への電力供給を切った。そして搬送速度を5[m/分]まで下げ巻取室41aおよび成膜室41bの放圧を行った。こうして成膜した酸化アルミ膜の膜厚は、TEMの断面観察の結果、45[nm]±10nmであった。また成膜後に取り出した蒸着済みフィルムの全光線透過率は63%であった。この蒸着済みフィルムの酸化アルミ膜の厚み方向における組成分析結果を図12に示すが、膜厚方向の表面近傍や界面近傍にくらべ中央部でアルミが比較的多くなる分布であった。表面抵抗値は4.2×10 [Ω/□]であった。この酸化金属薄膜付フィルムの蒸着条件および評価結果を表1にまとめる。
[Comparative Example 1]
As an electrical insulating sheet, on one side of a polyethylene terephthalate film (“Lumirror” manufactured by Toray Industries, Inc.) having a thickness of 4.5 [μm] and a width of 1100 [mm], a winding type vacuum vapor deposition apparatus shown in FIG. Vapor deposition was performed under the following vapor deposition conditions.
(Deposition conditions)
・ Evaporation source container: Alumina crucible ・ Evaporation source heating method: Heating with an electron gun ・ Evaporation material: Aluminum ・ Electron gun input power: 75 kW
・ Minimum distance between crucible of evaporation source and sheet guide surface: 450 [mm]
-Mask opening length in the film transport direction: 400 [mm]
-Mask opening length in the film width direction: 1000 [mm]
(Film transport conditions)
・ Conveying speed: 150 [m / min]
-Film width: 1100 [mm]
(Sheet guide surface conditions)
A cylindrical sheet guide surface 3 was used as shown in FIG. Inside the sheet guide surface 3, a medium for adjusting the temperature of the surface of the sheet guide surface is circulated, and a medium having a constant temperature is introduced from a refrigerant circulation device outside the apparatus. Each condition is as follows.
-Diameter of cylindrical sheet guide surface: 1000 [mm]
・ Temperature of medium flowing inside the sheet guide surface: -20 [℃]
(Oxygen supply means)
A pinhole type nozzle as shown in FIG. 8 was arranged under the following conditions.
-Inner diameter of pinhole type nozzle 20: 14 [mm], outer diameter: 18 [mm]
-Diameter of pinhole 21: 1 [mm]
・ Pitch of pinhole 21 array: 15 [mm]
-Distance from the top surface of the metal material 8 of the evaporation source to the pinhole: 400 [mm]
-Direction of pinhole 21: Direction in which the extension line of pinhole 21 is the lowest point of sheet guide surface 3 (formation of metal oxide thin film)
An undeposited film roll is set on the original fabric roll body 2 in FIG. 9, the film 1 is placed along the intermediate roller 4, the sheet guide surface 3, and the intermediate roller 5, and the film end is attached to the winding roll body 6. did. In the apparatus, an alumina crucible 7 having a volume of 150 [mm] in the sheet conveying direction and 1500 [mm] in the sheet width direction is arranged so that the longitudinal direction of the crucible is the same as the film width direction. 20 [kg] of aluminum was set as the metal material 8. Then, the winding chamber 41a and the film forming chamber 41b of the vapor deposition machine were depressurized, and the vacuum pressure in the film forming chamber 41b was exhausted to 5 × 10 −3 [Pa]. Thereafter, the aluminum 8 in the crucible 7 was melted by the electron gun heating method with the shutter member 51 closed. The electric power input was 75 [kW]. After confirming that all of the aluminum material was melted, the electric energy of the electron gun was finely adjusted to about 60 [kW]. The tension of the raw roll body 2 is set to 110 [N], the tension of the take-up roll body 6 is set to 140 [N], and the speed of the sheet guide surface 3 and the intermediate rollers 4 and 5 is set to 150 [m / min]. The conveyance of the film was started at a speed. Thereafter, aluminum was deposited with the shutter member 51 opened. Whether the aluminum film was uniformly deposited in the width direction was monitored by the optical monitor 52, and the power distribution of the electron gun to the crucible 7 was finely adjusted so that the transmittance was constant. There are 11 optical monitors 52 in the film width direction, and the 11 transmittances were adjusted to 0.05%. Note that the transmittance of 0.05% is a guideline for the thickness of the metal aluminum thin film of 60 [nm]. In this state, the pressure of the vacuum gauge 10 was 2.0 × 10 −2 [Pa]. Thereafter, the oxygen introduction amount was increased from the upstream and downstream pinhole type nozzles 20 in the sheet conveying direction of the crucible 7 and introduced up to 32 [l / min]. The pressure in the film forming chamber 41b was 3.2 × 10 −2 [Pa] according to the introduction of oxygen. In this state, when the film was observed from the monitoring window 53 on the winding side, the film was brownish and transparent. The transmittance was 30% as an average value of 11 optical monitors 52. In this state, 11000 [m] of film was wound and conveyed to form a film with an aluminum oxide film. Thereafter, the shutter member 51 was closed to stop the introduction of oxygen, and the power supply to the electron gun for heating the evaporation source was cut off. And the conveyance speed was lowered to 5 [m / min], and the pressure release of the winding chamber 41a and the film-forming chamber 41b was performed. The thickness of the aluminum oxide film thus formed was 45 [nm] ± 10 nm as a result of TEM cross-sectional observation. The total light transmittance of the deposited film taken out after the film formation was 63%. The composition analysis result in the thickness direction of the aluminum oxide film of this deposited film is shown in FIG. 12, and it was a distribution in which the amount of aluminum was relatively larger in the central portion than in the vicinity of the surface in the film thickness direction or near the interface. The surface resistance value was 4.2 × 10 8 [Ω / □]. Table 1 summarizes the deposition conditions and evaluation results of the metal oxide thin film.

[比較例2]
電気絶縁性シートとして、厚さ4.5[μm]、幅1100[mm]のポリエチレンテレフタレートフィルム(東レ株式会社製「ルミラー」)の片面に、図10に示す巻取式真空蒸着装置を用い、以下に示す蒸着条件で蒸着した。比較例1における装置(図9)との違いは、ピンホール型ノズル20の位置を坩堝7の方に近づけたことである。
(蒸着条件)
・蒸発源の容器:アルミナ製ルツボ
・蒸発源加熱方式:電子銃による加熱
・蒸発材料 :アルミニウム
・電子銃の投入パワー:75[kW]
・蒸発源のルツボとシート案内面との最短距離:450[mm]
・フィルム搬送方向のマスク開口長:600[mm]
・フィルム幅方向のマスク開口長:1000[mm]
(酸素供給手段条件)
図8に示すようなピンホール配列ノズルを下記の条件で配置した。
・ピンホール型ノズル20の内径:14[mm]、外径:18[mm]
・ピンホール21の径:1[mm]
・ピンホール21の配列のピッチ:15[mm]
・蒸発材料8の上面からピンホール21までの距離:200[mm]
・ピンホール型ノズル20の向き:ピンホール21の延長線上がシート案内面3の最下点になる向き
(金属酸化物薄膜の形成)
未蒸着のフィルムロールを図10の原反ロール体2にセットし中間ローラ4、シート案内面3、中間ローラ5にフィルム1を沿わせて、巻取ロール体6にフィルム端部を貼り付けセットした。装置にはシート搬送方向に150[mm]、シート幅方向に1500[mm]の容積部分をもつアルミナ製坩堝7が、坩堝7の長手方向がフィルム幅方向と同じになるように配置され、これに金属材料8としてアルミを20[kg]セットした。その後、蒸着機の巻取室41aおよび成膜室41bを減圧し、成膜室41bの真空圧力を5×10−3[Pa]まで排気した。その後、シャッター部材51を閉じた状態で電子銃加熱方式で坩堝7内のアルミ8を溶かした。投入した電力は75[kW]であった。アルミ材料8が全て溶融したことを確認した後、電子銃の電力量を微調整し約60[kW]にした。巻出ロール体2の張力を110[N]、巻取ロール体6の張力を140[N]に設定し、シート案内面3とガイドローラ4、5の速度設定により150[m/分]の速度でフィルムの搬送を開始した。その後シャッター部材51を開側にして、アルミ蒸着を行った。アルミ膜が幅方向に均等に蒸着されているかを光学モニタ52により監視し、透過率が一定になるように蒸発源への電子銃の投入電力分布を微調整した。光学モニタ52はフィルム幅方向に11カ所付いており、この11個の透過率が0.05%になるように調整した。なお、透過率0.05%という値は金属アルミ薄膜の膜厚60[nm]の目安である。この状態で成膜室41bの圧力は2.0×10−2[Pa]であった。その後、蒸発源のシート搬送方向に関する上流側および下流側のピンホール型ノズル20から酸素導入量を20[l/分]の量で導入したが、酸素導入に応じて成膜室41bの圧力が徐々に上昇し、1.0×10−1[Pa]を上回る状態となったため、いったん酸素導入を止めた。その後、シートの搬送速度を80[m/分]まで下げて、再度フィルム幅方向11個の光学モニタ52の透過率が0.05%になるように電子銃の投入電力分布を微調整した。この状態で成膜室41bの圧力は2.0×10−2[Pa]であった。その後、蒸発源のシート搬送方向に関する巻出側および巻取側のピンホール型ノズル20から酸素導入量を徐々に増やし、25[l/分]に達したところで、透過率は11個の光学モニタ52の平均値で30%を示していた。この状態で成膜室41bの圧力は7.0×10−2[Pa]であった。この状態で11000[m]分のフィルム巻取搬送を行い酸化アルミ膜付きフィルムを形成した。その後、シャッター部材51を閉側にして酸素導入を止め、蒸発源加熱用の電子銃への電力供給を切った。そして搬送速度を5[m/分]まで下げ巻取室41aおよび成膜室41bの放圧を行った。
[Comparative Example 2]
As an electrical insulating sheet, on one side of a polyethylene terephthalate film (“Lumirror” manufactured by Toray Industries, Inc.) having a thickness of 4.5 [μm] and a width of 1100 [mm], a winding type vacuum vapor deposition apparatus shown in FIG. Vapor deposition was performed under the following vapor deposition conditions. The difference from the apparatus (FIG. 9) in Comparative Example 1 is that the position of the pinhole type nozzle 20 is brought closer to the crucible 7.
(Deposition conditions)
・ Evaporation source container: Alumina crucible ・ Evaporation source heating method: Heating with an electron gun ・ Evaporation material: Aluminum ・ Electron gun input power: 75 kW
・ Minimum distance between crucible of evaporation source and sheet guide surface: 450 [mm]
-Mask opening length in the film transport direction: 600 [mm]
-Mask opening length in the film width direction: 1000 [mm]
(Oxygen supply means conditions)
Pinhole array nozzles as shown in FIG. 8 were arranged under the following conditions.
-Inner diameter of pinhole type nozzle 20: 14 [mm], outer diameter: 18 [mm]
-Diameter of pinhole 21: 1 [mm]
・ Pitch of pinhole 21 array: 15 [mm]
-Distance from the upper surface of the evaporation material 8 to the pinhole 21: 200 [mm]
The direction of the pinhole type nozzle 20: the direction in which the extended line of the pinhole 21 is the lowest point of the sheet guide surface 3 (formation of a metal oxide thin film)
An undeposited film roll is set on the original fabric roll body 2 in FIG. 10, the film 1 is placed along the intermediate roller 4, the sheet guide surface 3, and the intermediate roller 5, and the film end is attached to the winding roll body 6. did. In the apparatus, an alumina crucible 7 having a volume of 150 [mm] in the sheet conveying direction and 1500 [mm] in the sheet width direction is arranged so that the longitudinal direction of the crucible 7 is the same as the film width direction. 20 [kg] of aluminum was set as the metal material 8. Then, the winding chamber 41a and the film forming chamber 41b of the vapor deposition machine were depressurized, and the vacuum pressure in the film forming chamber 41b was exhausted to 5 × 10 −3 [Pa]. Thereafter, the aluminum 8 in the crucible 7 was melted by the electron gun heating method with the shutter member 51 closed. The electric power input was 75 [kW]. After confirming that all the aluminum material 8 was melted, the electric energy of the electron gun was finely adjusted to about 60 [kW]. The tension of the unwinding roll body 2 is set to 110 [N], the tension of the winding roll body 6 is set to 140 [N], and the speed of the sheet guide surface 3 and the guide rollers 4 and 5 is set to 150 [m / min]. The conveyance of the film was started at a speed. Thereafter, aluminum was deposited with the shutter member 51 opened. The optical monitor 52 was used to monitor whether the aluminum film was uniformly deposited in the width direction, and the power distribution of the electron gun to the evaporation source was finely adjusted so that the transmittance was constant. There are 11 optical monitors 52 in the film width direction, and the 11 transmittances were adjusted to 0.05%. Note that the transmittance of 0.05% is a guideline for the thickness of the metal aluminum thin film of 60 [nm]. In this state, the pressure in the film forming chamber 41b was 2.0 × 10 −2 [Pa]. Thereafter, the oxygen introduction amount was introduced from the upstream and downstream pinhole type nozzles 20 in the sheet conveyance direction of the evaporation source in an amount of 20 [l / min], but the pressure in the film formation chamber 41b was changed according to the oxygen introduction. Since it gradually increased and exceeded 1.0 × 10 −1 [Pa], the introduction of oxygen was once stopped. Thereafter, the sheet conveyance speed was lowered to 80 [m / min], and the input power distribution of the electron gun was finely adjusted so that the transmittance of the 11 optical monitors 52 in the film width direction was again 0.05%. In this state, the pressure in the film forming chamber 41b was 2.0 × 10 −2 [Pa]. Thereafter, the amount of oxygen introduced from the pinhole type nozzles 20 on the unwinding side and the winding side in the sheet conveyance direction of the evaporation source is gradually increased, and when it reaches 25 [l / min], the transmittance is 11 optical monitors. The average value of 52 showed 30%. In this state, the pressure in the film forming chamber 41b was 7.0 × 10 −2 [Pa]. In this state, 11000 [m] of film was wound and conveyed to form a film with an aluminum oxide film. Thereafter, the shutter member 51 was closed to stop the introduction of oxygen, and the power supply to the electron gun for heating the evaporation source was cut off. And the conveyance speed was lowered to 5 [m / min], and the pressure release of the winding chamber 41a and the film formation chamber 41b was performed.

こうして成膜した酸化アルミ膜の膜厚は、TEMの断面観察の結果、70±10[nm]の範囲内であった。また成膜後に取り出した蒸着済みフィルムの全光線透過率は 59%であった。表面抵抗値は3.9×10 [Ω/□]であった。この酸化金属薄膜付フィルムの蒸着条件および評価結果を表1にまとめる。 The thickness of the aluminum oxide film thus formed was in the range of 70 ± 10 [nm] as a result of TEM cross-sectional observation. The total light transmittance of the deposited film taken out after the film formation was 59%. The surface resistance value was 3.9 × 10 7 [Ω / □]. Table 1 summarizes the deposition conditions and evaluation results of the metal oxide thin film.

Figure 2009235545
Figure 2009235545

本発明は、電気絶縁性のプラスチックフィルムを対象とする真空蒸着に非常に好適であるが、紙等のウェブの真空蒸着などにも応用でき、その応用範囲が、これらに限られるものではない。   The present invention is very suitable for vacuum vapor deposition for an electrically insulating plastic film, but can also be applied to vacuum vapor deposition of a web such as paper, and its application range is not limited thereto.

本発明の製造装置の一実施態様を示す巻取式真空蒸着装置の概略構成図である。It is a schematic block diagram of the winding-type vacuum evaporation system which shows one embodiment of the manufacturing apparatus of this invention. 本発明の製造装置の一実施態様を示す巻取式真空蒸着装置の概略構成図である。It is a schematic block diagram of the winding-type vacuum evaporation system which shows one embodiment of the manufacturing apparatus of this invention. 本発明の製造装置の一実施態様を示す巻取式真空蒸着装置の概略構成図である。It is a schematic block diagram of the winding-type vacuum evaporation system which shows one embodiment of the manufacturing apparatus of this invention. 本発明の製造装置の一実施態様を示す巻取式真空蒸着装置の概略構成図である。It is a schematic block diagram of the winding-type vacuum evaporation system which shows one embodiment of the manufacturing apparatus of this invention. 従来の方法により成膜した金属酸化物薄膜付きシートの一態様の断面模式図である。It is a cross-sectional schematic diagram of the one aspect | mode of the sheet | seat with a metal oxide thin film formed into a film by the conventional method. 本発明の方法により成膜した金属酸化物薄膜付きシートの一態様の断面模式図である。It is a cross-sectional schematic diagram of one aspect | mode of the sheet | seat with a metal oxide thin film formed into a film by the method of this invention. 従来の巻取式真空蒸着装置の一例を示した概略構成図である。It is the schematic block diagram which showed an example of the conventional winding type vacuum evaporation system. 従来の酸素供給手段の一例を示した概略構成図である。It is the schematic block diagram which showed an example of the conventional oxygen supply means. 比較例1で用いた従来の巻取式真空蒸着装置の一例を示した概略構成図である。It is the schematic block diagram which showed an example of the conventional winding type vacuum evaporation system used in the comparative example 1. 比較例2で用いた従来の巻取式真空蒸着装置の一例を示した概略構成図である。It is the schematic block diagram which showed an example of the conventional winding type vacuum evaporation system used in the comparative example 2. 実施例1で成膜した酸化アルミ膜の厚み方向の組成分析結果である。4 shows the composition analysis result in the thickness direction of the aluminum oxide film formed in Example 1. FIG. 比較例1で成膜した酸化アルミ膜の厚み方向の組成分析結果である。3 is a composition analysis result in a thickness direction of the aluminum oxide film formed in Comparative Example 1. FIG.

符号の説明Explanation of symbols

1 シート
2 原反ロール体
3 シート案内面
4 中間ローラ(巻出側)
5 中間ローラ(巻取側)
6 巻取ロール体
7 坩堝(蒸発源)
8 蒸着材料
10 蒸気
11 マスク部材
12 開口部
13 薄膜
15 導入管
16 導入管の開口部
17 酸素を導入する方向
18 分岐部
19 酸素供給配管
20 ピンホール型ノズル
21 ピンホール
24 隔壁
25 シート搬送方向
26 シートの成膜領域
29 ガス導入経路
30 成膜開始点
31 成膜終了点
32 剥離点
33 巻付点
41 減圧室
41a 巻取室
41b 成膜室
42 真空ポンプ
42a 巻取室用真空ポンプ
42b 成膜室用真空ポンプ
43 バルブ
44 ガスボンベ
45 減圧弁
46 ガス流量調整器
51 シャッタ部材
52 光学モニタ
53 覗き窓
61 低酸化金属層
62 高酸化金属層
DESCRIPTION OF SYMBOLS 1 Sheet 2 Original roll body 3 Sheet guide surface 4 Intermediate roller (unwinding side)
5 Intermediate roller (winding side)
6 Winding roll body 7 Crucible (evaporation source)
DESCRIPTION OF SYMBOLS 8 Vapor deposition material 10 Vapor 11 Mask member 12 Opening part 13 Thin film 15 Introducing pipe 16 Introducing part of introducing pipe 17 Direction of introducing oxygen 18 Branching part 19 Oxygen supply pipe 20 Pinhole type nozzle 21 Pinhole 24 Bulkhead 25 Sheet conveying direction 26 Sheet deposition region 29 Gas introduction path 30 Deposition start point 31 Deposition end point 32 Separation point 33 Winding point 41 Decompression chamber 41a Winding chamber 41b Film forming chamber 42 Vacuum pump 42a Vacuum pump for winding chamber 42b Film forming Vacuum pump for room 43 Valve 44 Gas cylinder 45 Pressure reducing valve 46 Gas flow regulator 51 Shutter member 52 Optical monitor 53 Viewing window 61 Low metal oxide layer 62 High metal oxide layer

Claims (14)

シートと接触しながら前記シートを搬送するシート案内面を有し、前記シート案内面の運動に伴って前記シートを搬送する搬送手段と、前記シート案内面上の前記シートに向かって金属蒸気を飛散させる蒸発源と、前記金属蒸気と酸化反応させるために酸素を導入する酸素導入手段とを備え、搬送される前記シートに連続的に金属酸化物薄膜を形成する金属酸化物薄膜付シートの製造装置であって、前記酸素導入手段が導入管をシート幅方向に複数個所定の間隔をおいて配列して構成されるとともに、かつ前記酸素導入手段が、前記蒸発源のシート搬送方向に関する上流側および下流側に配置され、かつ前記導入管が前記蒸発源と前記シート案内面との間の領域に向けて突出していることを特徴とする金属酸化物薄膜付シートの製造装置。 A sheet guide surface configured to convey the sheet while being in contact with the sheet; a conveying unit configured to convey the sheet along with the movement of the sheet guide surface; and metal vapor is scattered toward the sheet on the sheet guide surface. An apparatus for producing a sheet with a metal oxide thin film, comprising: an evaporation source to be used; and an oxygen introduction means for introducing oxygen to cause an oxidation reaction with the metal vapor, wherein the metal oxide thin film is continuously formed on the conveyed sheet The oxygen introduction means is configured by arranging a plurality of introduction pipes at a predetermined interval in the sheet width direction, and the oxygen introduction means includes an upstream side in the sheet conveyance direction of the evaporation source and An apparatus for producing a sheet with a metal oxide thin film, wherein the sheet is disposed on the downstream side, and the introduction pipe projects toward a region between the evaporation source and the sheet guide surface. 前記蒸発源と前記シート案内面との最短距離hが200〜800[mm]の範囲内であり、かつ前記導入管の開口部が該蒸発源から0.2×h[mm]以上でかつ0.8×h[mm]以下の距離に配置されていることを特徴とする請求項1に記載の金属酸化物薄膜付シートの製造装置。 The shortest distance h between the evaporation source and the sheet guide surface is in the range of 200 to 800 [mm], and the opening of the introduction pipe is 0.2 × h [mm] or more from the evaporation source and 0 The apparatus for producing a sheet with a metal oxide thin film according to claim 1, wherein the apparatus is disposed at a distance of 8 × h [mm] or less. 前記導入管の長さが30[mm]以上で、かつ導入管の内側断面積が3〜50[mm]の範囲内であることを特徴とする請求項1または2に記載の金属酸化物薄膜付シートの製造装置。 3. The metal oxide according to claim 1, wherein the length of the introduction pipe is 30 [mm] or more and an inner cross-sectional area of the introduction pipe is in a range of 3 to 50 [mm 2 ]. Manufacturing equipment for sheet with thin film. 前記導入管の開口部が前記シート案内面に向いていることを特徴とする請求項1〜3のいずれかに記載の金属酸化物薄膜形成装置。 The metal oxide thin film forming apparatus according to claim 1, wherein an opening of the introduction pipe faces the sheet guide surface. 前記酸素導入手段は、前記開口部の前記蒸発源からの距離を調整する機構を有していることを特徴とする請求項1〜4のいずれかに記載の金属酸化物薄膜付シートの製造装置。 The said oxygen introduction means has a mechanism which adjusts the distance from the said evaporation source of the said opening part, The manufacturing apparatus of the sheet | seat with a metal oxide thin film in any one of Claims 1-4 characterized by the above-mentioned. . 前記蒸発源が電子銃によって加熱されるものであり、かつ前記蒸発源はシート搬送方向よりもシート幅方向に長手の形状で、さらにシート幅方向の長さが300[mm]以上であることを特徴とする請求項5に記載の金属酸化物薄膜付シートの製造装置。 The evaporation source is heated by an electron gun, and the evaporation source has a shape that is longer in the sheet width direction than the sheet conveyance direction, and further has a length in the sheet width direction of 300 mm or more. The manufacturing apparatus of the sheet | seat with a metal oxide thin film of Claim 5 characterized by the above-mentioned. 請求項1〜6のいずれかに記載の装置を用い、減圧雰囲気下において、前記蒸発源から前記シートに向けて金属蒸気を飛来させると同時に、前記金属蒸気内に酸素を導入し、前記シート上に連続的に金属酸化物薄膜を形成する金属酸化物薄膜付きシートの製造方法であって、前記蒸発源の上流側および下流側において前記シートの幅方向に設けた複数個の導入管を、金属蒸気流にさらされる領域に突出させて、酸素を導入することを特徴とする金属酸化物薄膜付きシートの製造方法。 Using the apparatus according to any one of claims 1 to 6, in a reduced pressure atmosphere, metal vapor is allowed to fly from the evaporation source toward the sheet, and at the same time, oxygen is introduced into the metal vapor, A method for producing a sheet with a metal oxide thin film that continuously forms a metal oxide thin film, wherein a plurality of introduction pipes provided in the width direction of the sheet on the upstream side and the downstream side of the evaporation source are made of metal. A method for producing a sheet with a metal oxide thin film, wherein oxygen is introduced into a region exposed to a vapor flow. 前記酸素導入手段の各導入管から導入する酸素導入量を、該導入管の内側断面積で割った値が、25〜300[×10−6/分/mm]の範囲内となるように制御することを特徴とする請求項7に記載の金属酸化物薄膜付シートの製造方法。 A value obtained by dividing the amount of oxygen introduced from each introduction pipe of the oxygen introduction means by the inner cross-sectional area of the introduction pipe is in the range of 25 to 300 [× 10 −6 m 3 / min / mm 2 ]. It controls as follows, The manufacturing method of the sheet | seat with a metal oxide thin film of Claim 7 characterized by the above-mentioned. 前記金属蒸気がアルミニウム蒸気であり、前記シートの上に酸化アルミ膜を形成することを特徴とする請求項7または8に記載の金属酸化物薄膜付シートの製造方法。 The method for producing a sheet with a metal oxide thin film according to claim 7 or 8, wherein the metal vapor is aluminum vapor, and an aluminum oxide film is formed on the sheet. 前記金属酸化物薄膜の成膜レートが400[nm/秒]以上であることを特徴とする請求項7〜9のいずれかに記載の金属酸化物薄膜付シートの製造方法。 The method for producing a sheet with a metal oxide thin film according to any one of claims 7 to 9, wherein a film formation rate of the metal oxide thin film is 400 [nm / sec] or more. 前記金属蒸気が飛散している領域で、かつ、前記金属蒸気中の仮想成膜レートが1500[nm/秒]以下となる領域に、酸素を導入することを特徴とする請求項7〜10のいずれかに記載の金属酸化物薄膜付シートの製造方法。 The oxygen is introduced into a region where the metal vapor is scattered and a virtual film formation rate in the metal vapor is 1500 [nm / sec] or less. The manufacturing method of the sheet | seat with a metal oxide thin film in any one. 前記金属酸化物薄膜の膜厚が50〜300[nm]の範囲内となるよう成膜すること特徴とする請求項7〜11のいずれかに記載の金属酸化物薄膜付シートの製造方法。 The method for producing a sheet with a metal oxide thin film according to any one of claims 7 to 11, wherein the metal oxide thin film is formed so that a film thickness thereof is in a range of 50 to 300 [nm]. 金属酸化物膜付シートの全光線透過率をT[%]、金属酸化物薄膜の膜厚をd[μm]としたときに、次式で示される光学濃度の値が1.0〜20.0の範囲内となるよう成膜することを特徴とする請求項7〜12のいずれかに記載の金属酸化物膜付シートの製造方法。
(光学濃度)=−{log(T/100)}/d
When the total light transmittance of the sheet with the metal oxide film is T [%] and the film thickness of the metal oxide thin film is d [μm], the value of the optical density represented by the following formula is 1.0 to 20. It forms into a film so that it may become in the range of 0, The manufacturing method of the sheet | seat with a metal oxide film in any one of Claims 7-12 characterized by the above-mentioned.
(Optical density) =-{log (T / 100)} / d
請求項7〜13のいずれかに記載した方法で、電気絶縁性シートの両面に金属酸化物薄膜を形成することを特徴とする両面金属酸化物膜付シートの製造方法。 A method for producing a sheet with a double-sided metal oxide film, wherein a metal oxide thin film is formed on both sides of an electrically insulating sheet by the method according to claim 7.
JP2008085850A 2008-03-28 2008-03-28 Metal oxide thin film forming apparatus and method for producing sheet with metal oxide thin film Active JP5194939B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008085850A JP5194939B2 (en) 2008-03-28 2008-03-28 Metal oxide thin film forming apparatus and method for producing sheet with metal oxide thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008085850A JP5194939B2 (en) 2008-03-28 2008-03-28 Metal oxide thin film forming apparatus and method for producing sheet with metal oxide thin film

Publications (2)

Publication Number Publication Date
JP2009235545A true JP2009235545A (en) 2009-10-15
JP5194939B2 JP5194939B2 (en) 2013-05-08

Family

ID=41249851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008085850A Active JP5194939B2 (en) 2008-03-28 2008-03-28 Metal oxide thin film forming apparatus and method for producing sheet with metal oxide thin film

Country Status (1)

Country Link
JP (1) JP5194939B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2818572A1 (en) * 2013-06-28 2014-12-31 Applied Materials, Inc. Evaporation apparatus with gas supply
JP6121639B1 (en) * 2015-06-09 2017-04-26 株式会社アルバック Winding type film forming apparatus and winding type film forming method
WO2017188927A1 (en) * 2016-04-25 2017-11-02 Applied Materials, Inc. Method and apparatus for the production of separators for battery applications

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62298026A (en) * 1986-06-17 1987-12-25 Hitachi Maxell Ltd Production of magnetic recording medium
JPS6324057A (en) * 1986-07-17 1988-02-01 Kawasaki Steel Corp Dry plating device
JPH05166184A (en) * 1991-12-19 1993-07-02 Matsushita Electric Ind Co Ltd Production of magnetic recording medium
JPH06240440A (en) * 1993-02-12 1994-08-30 Matsushita Electric Ind Co Ltd Device for forming thin compound film, device for forming thin oxide film and formation of optical multilayer film
JPH07320264A (en) * 1994-05-23 1995-12-08 Kao Corp Device for producing magnetic recording medium and method therefor
JPH11229119A (en) * 1998-02-19 1999-08-24 Dainippon Printing Co Ltd Transparent barrier film
JPH11335819A (en) * 1998-05-22 1999-12-07 Dainippon Printing Co Ltd Vacuum deposition device
JP2000008161A (en) * 1998-06-22 2000-01-11 Mitsubishi Heavy Ind Ltd Film producing device
JP2000202940A (en) * 1999-01-18 2000-07-25 Toppan Printing Co Ltd Gas barrier material and its manufacture
JP2003129229A (en) * 2001-10-23 2003-05-08 Toray Ind Inc Method and apparatus for producing film with metal oxide film
JP2007270251A (en) * 2006-03-31 2007-10-18 Toray Ind Inc Method for manufacturing layered body provided with multilayer thin film, and manufacturing apparatus therefor

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62298026A (en) * 1986-06-17 1987-12-25 Hitachi Maxell Ltd Production of magnetic recording medium
JPS6324057A (en) * 1986-07-17 1988-02-01 Kawasaki Steel Corp Dry plating device
JPH05166184A (en) * 1991-12-19 1993-07-02 Matsushita Electric Ind Co Ltd Production of magnetic recording medium
JPH06240440A (en) * 1993-02-12 1994-08-30 Matsushita Electric Ind Co Ltd Device for forming thin compound film, device for forming thin oxide film and formation of optical multilayer film
JPH07320264A (en) * 1994-05-23 1995-12-08 Kao Corp Device for producing magnetic recording medium and method therefor
JPH11229119A (en) * 1998-02-19 1999-08-24 Dainippon Printing Co Ltd Transparent barrier film
JPH11335819A (en) * 1998-05-22 1999-12-07 Dainippon Printing Co Ltd Vacuum deposition device
JP2000008161A (en) * 1998-06-22 2000-01-11 Mitsubishi Heavy Ind Ltd Film producing device
JP2000202940A (en) * 1999-01-18 2000-07-25 Toppan Printing Co Ltd Gas barrier material and its manufacture
JP2003129229A (en) * 2001-10-23 2003-05-08 Toray Ind Inc Method and apparatus for producing film with metal oxide film
JP2007270251A (en) * 2006-03-31 2007-10-18 Toray Ind Inc Method for manufacturing layered body provided with multilayer thin film, and manufacturing apparatus therefor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2818572A1 (en) * 2013-06-28 2014-12-31 Applied Materials, Inc. Evaporation apparatus with gas supply
WO2014207088A1 (en) * 2013-06-28 2014-12-31 Applied Materials, Inc. Evaporation apparatus with gas supply
CN105378136A (en) * 2013-06-28 2016-03-02 应用材料公司 Evaporation apparatus with gas supply
US10081866B2 (en) 2013-06-28 2018-09-25 Applied Materials, Inc. Evaporation apparatus with gas supply
JP6121639B1 (en) * 2015-06-09 2017-04-26 株式会社アルバック Winding type film forming apparatus and winding type film forming method
CN107406969A (en) * 2015-06-09 2017-11-28 株式会社爱发科 Coiling type film formation device, evaporation source unit and coiling type film build method
WO2017188927A1 (en) * 2016-04-25 2017-11-02 Applied Materials, Inc. Method and apparatus for the production of separators for battery applications
TWI644471B (en) * 2016-04-25 2018-12-11 應用材料股份有限公司 Method and apparatus for the production of separators for battery applications

Also Published As

Publication number Publication date
JP5194939B2 (en) 2013-05-08

Similar Documents

Publication Publication Date Title
KR20190041506A (en) Roll-to-roll type surface treatment apparatus, film forming method using same, and film forming apparatus
JP5194939B2 (en) Metal oxide thin film forming apparatus and method for producing sheet with metal oxide thin film
JP7485107B2 (en) Method for producing gas barrier film
JP5481239B2 (en) Manufacturing apparatus for sheet with thin film, manufacturing method for sheet with thin film, and cylindrical roll used in these
JP5892056B2 (en) Long resin film cooling apparatus and cooling method, and long resin film surface treatment apparatus
JP4103368B2 (en) Method and apparatus for producing film with metal oxide film
JP5239483B2 (en) Manufacturing method and manufacturing apparatus for sheet with metal oxide thin film
JP6610803B2 (en) Gas barrier laminate
KR20170101796A (en) Method for forming a film and method for manufacturing a laminate substrate using the same
JP2007270251A (en) Method for manufacturing layered body provided with multilayer thin film, and manufacturing apparatus therefor
KR100715702B1 (en) Functional roll film and vacuum evaporation apparatus capable of producing the functional roll film
JP4601387B2 (en) Pressure gradient ion plating film deposition system
JP5849934B2 (en) Vacuum film forming apparatus and vacuum film forming method
JP5343622B2 (en) Manufacturing apparatus and manufacturing method for sheet with metal compound thin film
JP2006111931A (en) Pressure gradient type ion plating film-forming apparatus
JP2005054212A (en) Method and apparatus for manufacturing base material with thin film deposited thereon
JP2011195850A (en) Film-forming method and gas barrier film
JP2021186982A (en) Aluminum vapor deposition film and method for producing the same
WO2022118711A1 (en) Method and apparatus for producing transparent gas barrier film
JP2009197340A (en) Metal vapor-deposited polyester film for tinsel, and tinsel
JP2019178370A (en) Vapor deposition apparatus
JP6848391B2 (en) Film formation method, laminate film manufacturing method, and sputtering film deposition equipment
CN116600905A (en) Method for producing multilayer film and coating device
JP2006260659A (en) Manufacturing apparatus of magnetic recording medium
JP2010037589A (en) Vapor deposition apparatus and vapor deposition method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5194939

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3